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Abstract

This thesis is about the study of Diophantine equations involving binary recur-
rent sequences with arithmetic functions. Various Diophantine problems are in-
vestigated and new results are found out of this study. Firstly, we study several
questions concerning the intersection between two classes of non-degenerate bi-
nary recurrence sequences and provide, whenever possible, effective bounds on
the largest member of this intersection. Our main study concerns Diophantine
equations of the form ϕ(|aun|) = |bvm|, where ϕ is the Euler totient function,
{un}n≥0 and {vm}m≥0 are two non-degenerate binary recurrence sequences and
a, b some positive integers. More precisely, we study problems involving mem-
bers of the recurrent sequences being rep-digits, Lehmer numbers, whose Eu-
ler’s function remain in the same sequence. We particularly study the case when
{un}n≥0 is the Fibonacci sequence {Fn}n≥0, the Lucas sequences {Ln}n≥0 or the
Pell sequence {Pn}n≥0 and its companion {Qn}n≥0. Secondly, we look of Lehmer’s
conjecture on some recurrence sequences. Recall that a composite number N is
said to be Lehmer if ϕ(N) | N − 1. We prove that there is no Lehmer num-
ber neither in the Lucas sequence {Ln}n≥0 nor in the Pell sequence {Pn}n≥0. The
main tools used in this thesis are lower bounds for linear forms in logarithms
of algebraic numbers, the so-called Baker-Davenport reduction method, contin-
ued fractions, elementary estimates from the theory of prime numbers and sieve
methods.
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Notation

p, q, r prime numbers
gcd(a, b) greatest common divisor of a and b
log natural logarithm
νp(n) exponent of p in the factorization of n
P (`) the largest prime factor of ` with the convention that P (±1) = 1(
a
p

)
Legendre symbol of a modulo p

Fn n-th Fibonacci number
Ln n-th Lucas number
Pn n-th Pell number
un(r, s) fundamental Lucas sequence
vn(r, s) companion Lucas sequence
σ(n) sum of divisors of n
Ω(n) number of prime power factors of n
ω(n) number of distinct prime factors of n
τ(n) number of divisors of n, including 1 and n
ϕ(n) Euler totient function of n
φ Golden Ratio
|A| cardinal of the set A
� a square number
η algebraic number
h(η) logarithm height of η
Q field of rational numbers
K number field over Q

11



12



Contents

Acknowledgement 5

Abstract 9

Notation 11

1 Introduction 1
1.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Some background and Diophantine Problems . . . . . . . . . . . . . 3
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminary results 9
2.1 Arithmetic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Euler Totient ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Linearly Recurrence Sequences . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Lucas sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 The Fibonacci sequence . . . . . . . . . . . . . . . . . . . . . 14

2.4 The Primitive Divisor Theorem . . . . . . . . . . . . . . . . . . . . . 16
2.5 Linear forms in logarithms . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Algebraic Numbers . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Linear forms in logarithms of rational numbers . . . . . . . 18
2.5.3 Matveev’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 Some properties of continued fractions . . . . . . . . . . . . 21
2.6.2 The Baker–Davenport Lemma . . . . . . . . . . . . . . . . . 22

3 Pell numbers whose Euler function is a Pell number 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Proof of Theorem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 On The Equation ϕ(Xm − 1) = Xn − 1 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 On the Equation ϕ(5m − 1) = 5n − 1 . . . . . . . . . . . . . . . . . . 41
4.3 On the Equation ϕ(Xm − 1) = Xn − 1 . . . . . . . . . . . . . . . . . 50

13



14 Contents

5 Repdigits and Lucas sequences 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Repdigits as Euler functions of Lucas numbers . . . . . . . . . . . . 57
5.3 The proof of Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Method of the proof . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 The case of the digit d 6∈ {4, 8} . . . . . . . . . . . . . . . . . 59
5.3.3 The case of Ln even . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.4 The case of n even . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.5 r = 3, d = 8 and m is even . . . . . . . . . . . . . . . . . . . . 64
5.3.6 n ∈ {p, p2} for some prime p with p3 | 10p−1 − 1 . . . . . . . . 66
5.3.7 Bounding n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Pell and Pell-Lucas Numbers With Only One Distinct Digit . . . . . 73

6 On Lehmer’s Conjecture 77
6.1 Lucas Numbers with the Lehmer property . . . . . . . . . . . . . . 77
6.2 Pell Numbers with the Lehmer property . . . . . . . . . . . . . . . . 79



Chapter 1

Introduction

Diophantine equations are one of the oldest subjects in number theory. They have
been first studied by the Greek mathematician Diophantus of Alexandria during the
third century. By definition, a Diophantine equation is a polynomial equation of
the form

P (x1, . . . , xn) = 0. (1.1)

What is of interest is to find all its integer solutions, that is all the n−uplets
(x1, . . . , xn) in Zn which satisfy equation (1.1).

Historically, one of the first Diophantine equation is the equation x2 + y2 = z2.
This arises from the problem of finding all the rectangular triangles whose sides
have integer lengths. Such triples (x, y, z) are called Pythagorean triples. Some
Pythagorean triples are (3, 4, 5), (5, 12, 13), (8, 15, 17) but these are not all. All
Pythagorean triples can be obtained as follows: if (x, y, z) is a solution, then
(x/z, y/z) is a rational solution. We have then (x/z)2 + (y/z)2 = 1, namely
(x/z, y/z) is the unit circle and has rational coordinates. Using the parametriza-
tion of the circle cos θ = 1−t2

1+t2
and sin θ = 2t

1+t2
where t = tan(θ/2), the rational

values of t give all the solutions of the equation. Another example is the linear
Diophantine equation ax + by = c where a, b, c are fixed integers and x, y are
integer unknowns.

Given a Diophantine equation, the fundamental problem is to study is whether
solutions exist. If they exist one would like to know how many there are and how
to find all of them. Certain Diophantine equations have no solutions in non zero
integers like the Fermat equation, xn + yn = zn with n ≥ 3.

The study of Diophantine equations helped to develop many tools in mod-
ern number theory. For example, for the proof of Fermat’s Last Theorem, many
tools from algebraic geometry, elliptic curves, algebraic number theory, etc. were
developed.

Among the 23 problems posed by Hilbert in 1900, the 10th Problem concerned
Diophantine equations. Hilbert asked if there is a universal method for solving
all Diophantine equations. Here we reformulate it:

"Given a Diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: To devise a process according to which it can be
determined by a finite number of operations whether the equation is solvable in integers".
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2 1.1. Motivation and Overview

In 1970, Y. Matiyasevich gave a negative solution to Hilbert’s 10th Problem.
His result is the following.

Theorem 1 (Y. Matiyasevich). There is no algorithm which, for a given arbitrary Dio-
phantine equation, would tell whether the equation has an integer solution or not.

Remark 1.0.1. For rational solutions, the analog of Hilbert’s 10th problem is not yet
solved. That is, the question whether there exists an algorithm to decide if a Diophantine
equation has a rational solution or not is still open.

Since there is no general method to solve Diophantine equations, some tech-
niques were found to solve particular families of Diophantine equations. Many
great mathematicians like Pierre Fermat, Leonhard Euler, Joseph Louis Lagrange and
Henri Poincaré have interesting work on the subject. Many tools have also been
developed such as transcendental number theory and computational number
theory.

In this thesis, we study certain Diophantine equations involving arithmetic
functions and binary recurrence sequences.

1.1 Motivation and Overview

Many problems in number theory may be reduced to finding the intersection
of two sequences of positive integers. The heuristic is that the finiteness of this
intersection should depend on how quickly the two sequences grow. During his
life time, P. Erdős and his collaborators devoted a lot of work to the study of the
intersection of two arithmetic functions. In that line of research, we might add
the recurrence sequences.

In the last years, many papers have been published concerning Diophantine
equations of the form

un = vm, or (1.2)

ϕ(|aun|) = |bvm|, (1.3)

where {un}n≥0 and {vm}m≥0 are two non-degenerate binary recurrence sequences,
m ≥ 0, n ≥ 0 and a, b are fixed positive integers. We refer to the papers [BD69],
[KP75], [Ve80], [Lu00b].

Considering the Diophantine equation of the form (1.3), one can see that on
the one-hand the Euler function ϕ is a multiplicative function so it behaves well
with respect to the multiplicative properties of the integers while on the other-
hand the recurrence sequence has some additive properties. So, the study of the
intersection between the multiplicative and the additive structure makes such
equations interesting.

In 1978, M. Mignotte (see [Mi78] and [Mi79]) proved that the equation (1.2)
has only finitely many solutions that are effectively computable under certain
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conditions. For example, if {un}n≥0 and {vm}m≥0 are two non degenerate binary
recurrence sequences whose characteristic equation has real roots, then it suffices
that the logarithm of the absolute values of the largest roots to be linearly inde-
pendent over Q. In 1981,Mátyás [Ma81] gave a criterion for determining whether
two second order linear recurrence sequences have nonempty intersection.

Later in 2002, F. Luca studied Diophantine equations of form (1.3) (see [Lu02]),
involving the Euler totient function of binary recurrent sequences and proved
that if {un}n≥0 and {vm}m≥0 are two non-degenerate binary recurrent sequences
of integers such that {vm}m≥0 satisfies some technical assumptions, then the Dio-
phantine equation (1.3) has only finitely many effectively computable positive
integer solutions (m,n). Though, for two given binary recurrent sequences, it is
in general difficult to find all such solutions. Furthermore, since these results are
ineffective, the determination of all the solutions is a challenge.

Our goal in this thesis is to continue this line of research by solving effectively
certain equations of the form (1.2) and (1.3).

The material presented in this thesis covers all the results from the following
journal papers:

[FLT15] B. Faye, F. Luca, A. Tall On the equation φ(5m− 1) = 5n− 1 Korean Journal of
Math. Soc. 52 (2015) No. 2, 513-514.

[FL15a] B. Faye, F. Luca, On the equation φ(Xm − 1) = Xn − 1 International Journal
of Number Theory, 11, No. 5, (2015) 1691-1700.

[JBLT15] B. Faye, Jhon J. Bravo, F. Luca, A. Tall Repdigits as Euler functions of Lucas
numbers An. St. Math. Univ. Ovidius Constanta 24(2) (2016) 105-126.

[FL15b] B. Faye, F. Luca, Pell and Pell Lucas numbers with only one distinct digit Ann.
Math. Informaticae, 45 (2015) 55-60.

[FL15d] B. Faye, F. Luca, Pell Numbers whose Euler Function is a Pell Number Publi-
cations de l’Institut Mathématique nouvelle série (Beograd), 101 (2015) 231-
245.

[FL15c] B. Faye, F. Luca, Lucas Numbers with Lehmer Property Mathematical Reports,
19(69), 1(2017), 121-125.

[FL15e] B. Faye, F. Luca, Pell Numbers with the Lehmer property, Afrika Matematika,
28(1-2) (2017), 291-294.

1.2 Some background and Diophantine Problems

In this section, we give an overview of the different Diophantine problems which
have been studied in this thesis. All these problems have been treated in papers
which are either published or have been submitted for publication.



4 1.2. Some background and Diophantine Problems

Pell numbers whose Euler function is a Pell number

In [LF09], it is shown that 1, 2, and 3 are the only Fibonacci numbers whose Euler
function is also a Fibonacci number, while in [Lu00a], Luca found all the Fibonacci
numbers whose Euler function is a power of 2. In [LS14], Luca and Stănică found
all the Pell numbers whose Euler function is a power of 2. In [DFLT14], we proved
a more general result which contains the results of [Lu00a] and [LS14] as partic-
ular cases. Namely, consider the Lucas sequence {un}n≥0, with u0 = 0, u1 = 1
and

un+2 = run+1 + sun for all n ≥ 0,

where s ∈ {±1} and r 6= 0 is an integer. We proved that there are finitely many
terms of this sequence which their Euler’s function are powers of 2.

In the same direction, we have investigated in this thesis, the solutions of the
Diophantine equation

ϕ(Pn) = Pm,

where {Pn}n≥0 is the Pell sequence given by P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 +Pn
for all n ≥ 0. In others words, we are interested in knowing which are the terms of
the Pell sequence whose Euler’s function are also the terms of the Pell sequence.

In Chapter 3, we effectively solve the above equation. We prove the following

Theorem (Chapter 3, Theorem 16). The only solutions in positive integers (n,m) of
the equation

ϕ(Pn) = Pm

are (n,m) = (1, 1), (2, 1).

Repdigits and Lucas sequences

Let {Fn}n≥0 and {Ln}n≥0 be the sequence of Fibonacci and Lucas numbers given
by F0 = 0, F1 = 1 and L0 = 2, L1 = 1 and recurrences

Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln for all n ≥ 0.

In [LM06], it was shown that the largest solution of the Diophantine equation

ϕ(Fn) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9} (1.4)

is obtained when n = 11. Numbers of the form d(10m− 1)/9 are called repdigits in
base 10, since their base 10 representation is the string dd · · · d︸ ︷︷ ︸

m times

. Here, we look at

Diophantine equation (1.4) with Fn replaced by Ln:

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9}. (1.5)

Altrough we did not completely solve the problem, we obtained some inter-
esting properties of the solutions of the above equation. These results are the
main result in [JBLT15], which is presented in Chapter 5. We prove the following.



Chapter 1. Introduction 5

Theorem (Chapter 5, Theorem 19). Assume that n > 6 is such that equation (1.5)
holds with some d. Then

• d = 8;

• m is even;

• n = p or p2, where p3 | 10p−1 − 1.

• 109 < p < 10111.

Furthermore, we investigated the terms of the Pell sequence {Pn}n≥0 and its
companions {Qn}n≥0 given by Q0 = 2, Q1 = 2 and Qn+2 = 2Qn+1 + Qn for all
n ≥ 0, which are repdigits. This leads us to solve the equations

Pn = a

(
10m − 1

9

)
for some a ∈ {1, 2, . . . , 9} (1.6)

and

Qn = a

(
10m − 1

9

)
for some a ∈ {1, 2, . . . , 9}. (1.7)

One can see that this problem leads to a Diophantine equation of the form
(1.2). In fact, a straightforward use of the theory of linear form in logarithms
gives some very large bounds on max{m,n}, which then can be reduced either by
using the LLL [LLL82] algorithm or by using a procedure originally discovered
by Baker and Davenport [BD69] and improved by Dujella and Pethő [DP98].

In our case, we do not use linear forms in logarithms. We prove in an ele-
mentary way that the solutions of the equations (1.6) and (1.7) are respectively
n = 0, 1, 2, 3 and n = 0, 1, 2. Theses results are the main results of [FL15b] and are
presented in Chapter 5.

American Mathematical Monthly problem

Problem 10626 from the American Mathematical Monthly [Lu97] asks to find all
positive integer solutions (m,n) of the Diophantine equation

ϕ(5m − 1) = 5n − 1. (1.8)

To our knowledge, no solution was ever received to this problem. In this thesis,
we prove the following result.

Theorem (Chapter 4, Theorem 17). Equation (1.8) has no positive integer solution
(m,n).

In [Lu08], it was shown that if b ≥ 2 is a fixed integer, then the equation

ϕ

(
x
bm − 1

b− 1

)
= y

bn − 1

b− 1
x, y ∈ {1, . . . , b− 1} (1.9)
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has only finitely many positive integer solutions (x, y,m, n). That is, there are
only finitely many repdigits in base b whose Euler function is also a repdigit in
base b. Taking b = 5, with x = y = 4, it follows that equation (1.8) has only finitely
many positive integer solutions (m,n).

In [FL15a], our main result improve the result of [Lu08] for certain values of
x, y.

Theorem (Chapter 4, Theorem 18). Each one of the two equations

ϕ(Xm − 1) = Xn − 1 and ϕ

(
Xm − 1

X − 1

)
=
Xn − 1

X − 1
(1.10)

has only finitely many positive integer solutions (X,m, n) with the exceptionm = n = 1
case in which any positive integer X leads to a solution of the second equation above.
Aside from the above mentioned exceptions, all solutions have X < ee

8000 .

On Lehmer’s Conjecture

A composite positive integer n is Lehmer if ϕ(n) divides n − 1. Lehmer [Le32]
conjectured that there is no such integer. To this day, the conjecture remains open.
Counterexamples to Lehmer’s conjecture have been dubbed Lehmer numbers.

Several people worked on getting larger and larger lower bounds on a poten-
tial Lehmer number. Lehmer himself proved that if N is Lehmer, then ω(N) ≥ 7.
This has been improved by Cohen and Hagis [CH80] to ω(N) ≥ 14. The current
record ω(N) ≥ 15 is due to Renze [Re04]. If in addition 3 | N , then ω(N) ≥ 40 ·106

and N > 1036·107 .
Not succeeding in proving that there are no Lehmer numbers, some researchers

have settled for the more modest goal of proving that there are no Lehmer num-
bers in certain interesting subsequences of positive integers. In 2007, F. Luca
[Lu07] proved that there is no Lehmer number in the Fibonacci sequence. In
[RL12], it is shown that there is no Lehmer number in the sequence of Cullen
numbers {Cn}n≥1 of general term Cn = n2n + 1, while in [KO13] the same con-
clusion is shown to hold for generalized Cullen numbers. In [CL11], it is shown
that there is no Lehmer number of the form (gn − 1)/(g − 1) for any n ≥ 1 and
integer g ∈ [2, 1000]. In Chapter 6, we adapt the method from [Lu07] to prove the
following theorems:

Theorem (Chapter 6, Theorem 22). There is no Lehmer number in the Lucas sequence
{Ln}n≥0.

Theorem (Chapter 6, Theorem 23). There is no Lehmer number in the Pell sequence
{Pn}n≥0.

1.3 Organization of the Thesis

Our thesis consists of six chapters. This chapter, as the title suggests, gives a gen-
eral introduction and the main motivation of this thesis, together with a descrip-
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tion of the different Diophantine problems which have been studied. From Chap-
ter 3 to Chapter 6 , each chapter contains new results concerning Diophantine
equations with arithmetic function and some given binary recurrence sequences.

In Chapter 2, we give the preliminary tools and main results that will be used
in this work. We start by reminding some definitions and properties of binary
recurrence sequences and arithmetic functions with the main emphasis of the Eu-
ler’s function. In Section 2.4, we recall results on the Primitive Divisor Theorem of
members of Lucas sequences. Chapter 2 concludes with a result due to Matveev
[Ma00] which gives a general lower bound for linear forms in logarithms of alge-
braic numbers(Section 2.5) and results from Diophantine properties of continued
fractions(Section 2.6).

In Chapter 3, we investigate Pell numbers whose Euler function is also a Pell
number.

In Chapter 4, we solve the Diophantine equations (1.8) and (1.10).
In Chapter 5, we use some tools and results from Diophantine approximations

and linear form in logarithms of algebraic numbers, continued fractions and sieve
methods to solve Theorem 17, Theorem 18 and Diophantine equations (1.6) and
(1.7).

In Chapter 6, we prove that the Lehmer Conjecture holds for the Lucas se-
quence {Ln}n≥0 and the Pell sequence {Pn}n≥0. Namely, none of these sequences
contains a Lehmer number.
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Chapter 2

Preliminary results

In this chapter, we give some preliminaries that will be useful in this thesis. In
Section 2.1, we discuss some basic definitions and properties of arithmetic func-
tions, in Section 2.2, the Euler function and related results. In Section 2.3, we
study the arithmetic of binary recurrence sequences. In Section 2.4, we recall the
Primitive Divisor Theorem for members of Lucas sequences. We conclude this
chapter with results from linear forms in logarithms of algebraic numbers in Sec-
tion 2.5 and properties of continued fractions in Section 2.6.

2.1 Arithmetic Functions

An arithmetic function is a function defined on the set of natural numbers N with
real or complex values. It can be also defined as a sequence {a(n)}n≥1. An active
part of number theory consists, in some way, of the study of these functions.

The usual number theoretic examples of arithmetic functions are τ(n), ω(n)
and Ω(n) for the number of divisors of n including 1, the number of distinct prime
factors of n and the number of prime power factors of n, respectively. These func-
tions can be described in terms of the prime factorization of n as in the following
proposition:

Proposition 1. Suppose that n > 1, has the prime factorization

n =
m∏
j=1

p
kj
j .

Then,

τ(n) =
m∏
j=1

(kj + 1), ω(n) = m, Ω(n) =
m∑
j=1

kj.

Proof. The expression of ω(n) and Ω(n) follow from their definition. Divisors of n
have the form

∏m
j=1 p

rj
j where for each j, the possible values of rj are 0, 1, . . . , kj.

This gives the expression of τ(n).

9
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Definition 1. An arithmetic function a, such that a(1) = 1, is said to be

• completely multiplicative if a(mn) = a(m)a(n) for all m, n;

• multiplicative if a(mn) = a(m)a(n) when (m,n) = 1.

Example 1. 1. For any s, a(n) = ns is completely multiplicative.

2. τ is multiplicative.

3. Neither ω nor Ω is multiplicative.

2.2 The Euler Totient ϕ

Definition 2. For a positive integer n, the Euler totient function ϕ(n) counts the number
of positive integers m ≤ n which are coprime to n, that is:

ϕ(n) =
∣∣∣{1 ≤ m ≤ n : (m,n) = 1}

∣∣∣.
Clearly, if n is a prime number, then ϕ(n) = n− 1. Further, let Z/nZ be the set

of congruence classes a (mod n). This set is also a ring and its invertible elements
form a group whose cardinality is ϕ(n). Lagrange’s theorem from group theory
tells us that the order of every element in a finite group is a divisor of the order
of the group. In this particular case, this theorem implies that

aϕ(n) ≡ 1 (mod n)

holds for all integers a coprime to n. The above relation is known as the Euler
Theorem.

Theorem 2. The Euler totient function ϕ(n) is multiplicative, i.e

ϕ(mn) = ϕ(m)ϕ(n) for all m ≥ 1, n ≥ 1 and (m,n) = 1.

Proof. If m = 1 and n = 1, then the result holds. Suppose now that m > 1 and
n > 1. We denote by

U = {u : 1 ≤ u ≤ m, (u,m) = 1},

V = {v : 1 ≤ v ≤ n, (v, n) = 1},

W = {w : 1 ≤ w ≤ m× n, (w,m× n) = 1}.

Then, we obtain that |U | = ϕ(m), |V | = ϕ(n) and |W | = ϕ(m × n). We now
show that the set W has as many elements as the set U × V = {(u, v) : u ∈ U, v ∈
V }, then the theorem follows.
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Theorem 3. If n = pα1
1 p

α2
2 . . . pαkk , where p1, . . . , pk are distinct primes and α1, . . . , αk

are positive integers, then

ϕ(n) =
∏

pαi−1
i (pi − 1) = pα1−1

1 (p1 − 1) . . . pαk−1
k (pk − 1),

and

σ(n) =

(
pα1+1

1 − 1

p1 − 1

)
. . .

(
pαk+1
k − 1

pk − 1

)
,

where σ is the sum of divisors of n.

Example 2.2.1. .

• ϕ(68) = ϕ(22.17) = (22−1(2− 1))(17− 1) = 2.16 = 32.

• σ(68) = 2 + 17 = 126.

The next lemma from [Lu01] is useful in order to obtain an upper bound on
the sum appearing in the right–hand side of (3.3).

Lemma 1. We have ∑
d|n

log d

d
<

∑
p|n

log p

p− 1

 n

ϕ(n)
.

2.3 Linearly Recurrence Sequences

Linear recurrence sequences have interesting properties and played a central role
in number theory. The arithmetic of these sequences have been studied by François
Edouard Anatole Lucas (1842-1891). We shall reference some theorems from the
multitude of results that had been proved over recent years.

Definition 3. In general, a linear recurrence sequence {un}n≥ of order k is

un+k = ck−1un+k−1 + ck−2un+k−2 + . . .+ c0un, n ≥ 0

with c0 6= 0, for n ≥ k, where c0, c1, . . . , ck−1 are constants. The values u0, . . . , uk−1 are
not all zero.

Linear recurrence sequences of order 2 are called binary and the ones of order 3
ternary. For a linear recurrence sequence of order k, the k initial values determine
all others elements of the sequence.

Example 2.3.1. For k = 3, let u0 = u1 = 1, u2 = 2 and

un+3 = 3un+2 + 2un+1 + un for n ≥ 0

is a linear recurrence sequence.
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Definition 4. The characteristic polynomial of the linear recurrence of recurrence

un+k = ck−1un+k−1 + ck−2un+k−2 + . . .+ c0un, n ≥ 0

is the polynomial,
f(x) = xk − ck−1x

k−1 − . . .− c1x− c0.

We assume that this polynomial has distinct roots α1, α2, . . . , αs i.e.,

f(X) =
s∏
i=1

(X − αi)βi

of multiplicities β1, . . . , βs respectively.

It is well known from the theory of linearly recurrence sequences that for all n,
there exist uniquely determined polynomials gi ∈ Q(u0, . . . , c0, . . . , ck, α1, . . . , αk)[x]
of degree less than βi(i = 1, . . . , s) such that

fn(x) =
s∑
i=1

gi(n)αni , for n ≥ 0 (2.1)

In this thesis, we consider only integer recurrence sequences, namely recur-
rence sequences whose coefficients and initial values are integers i.e s = k(all the
roots of f(x) are distinct). Hence, gi(n) is an algebraic number for all i = 1, . . . , k
and n ∈ Z. Thus, we have the following result.

Theorem 4. Assume that f(X) ∈ Z[X] has distinct roots. Then there exist constants
γ1, . . . , γk ∈ K = Q(α1, . . . , αk) such that the formula

un =
k∑
i=1

γiα
n
i holds for all n ≥ 0.

Proof. Conf [Lu09b], page 8.

A geometric sequence is a simple example of linear recurrence sequences. It
is defined by

{
u0 = a,
un+1 = cun.

The constant ratio (un+1/un) = c is called the common ratio of the sequence.

2.3.2 Lucas sequence

Let (r, s) ∈ N2 such that (r, s) = 1 and r2 + 4s 6= 0.

Definition 5. A Lucas sequence un(r, s) is a binary recurrence sequence that satisfies
the recurrence sequence u0 = 0, u1 = 1. Its characteristic polynomial is of the form

x2 − rx− s = 0.
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Clearly, un is an integer for all n ≥ 0. Let α1 and α2 denote the two roots of its
characteristic polynomial and its discriminant ∆ = r2 + 4s 6= 0. Then the roots are

α1 =
r +
√

∆

2
and α2 =

r −
√

∆

2
.

Remark 2.3.3. If (r, s) = 1, u0 = 0, and u1 = 1 then {un}n≥0 is called a Lucas sequence
of the first kind.

Binet’s Formula

Binet’s formula is a particular case of Theorem 4 . Its named after the mathe-
matician Jacques Phillipe Marie Binet who found first the similar formula for the
Fibonacci sequence. For a Lucas sequence {un}n≥0, Theorem 4 tells us that the cor-
responding Binet formula is

un = γ1α
n
1 + γ2α

n
2 for all n ≥ 0. (2.2)

The values of γ1 and γ2 are found by using the formula (2.2), when n = 0, 1.
Hence, one obtains the system

γ1 + γ2 = u0 = 0 γ1α1 + γ2α2 = u1 = 1.

Solving it, we get that γ1 =
√

∆ and γ1 = −1/
√

∆. Since
√

∆ = (α1 − α2), we
can write

un =
αn1 − αn2
α1 − α2

for all n ≥ 0, (2.3)

The companion Lucas-sequence {vn}n≥0 of {un}n≥0 has the following Binet
formula

vn = αn1 + αn2 for all n ≥ 0. (2.4)

Example 2.3.4. .

• u(1,−3) : {0, 1, 1, 4, 7, 19, 40, 97, 217, 508, 1159, 2683, 6160, 14209, . . . , }

• v(1,−3) : {2, 1, 7, 10, 31, 61, 154, 337, 799, 1810, 4207, 9637, 22258, . . . , }

Definition 6. A Lucas sequence, as defined by formula (2.2), is said to be nondegenerate
if γ1γ2α1α2 6= 0 and α1/α2 is not a root of unity.

There are several relations among the Lucas sequence {un}n≥0 and its com-
panion sequence {vn}n≥0 which can be proved using their Binet formulas. Here,
we recall some of those relations that will be useful throughout this thesis.

Theorem 5. Let {un}n≥0 be a Lucas sequence. Then, the following holds:

• u2n = unvn where vn is its companion sequence.



14 2.3. Linearly Recurrence Sequences

• (um, un) = u(m,n) for all positive integers m,n. Consequently, the integers un and
um are relatively prime when n and m are relatively prime.

• If n | m, then un | um.

Proposition 2. Assume that p - s is odd and e = (∆
p

). The following holds:

• If p | ∆ = r2 + 4s, then p | up.

• If p - ∆ and α ∈ Q then p | up−1.

• If p - ∆ and α /∈ Q then p | up−e.

Definition 7. For a prime p, let z(p) be the order of appearance of p in {un}n≥0; i.e., the
minimal positive integer k such that p | uk.

Proposition 3. • If p | un, then z(p) | n.

• If p - ∆, then p ≡ ±1 (mod z(p)).

• If p | s, then z(p) = p.

2.3.5 The Fibonacci sequence

Definition 8. The Fibonacci sequence is a Lucas sequence defined by


F0 = 0
F1 = 1
Fn+2 = Fn+1 + Fn for n ≥ 0.

The polynomial f(x) = x2−x−1 is the characteristic polynomial for Fn whose
roots are α = (1+

√
5)/2 and β = (1−

√
5)/2. For the Fibonacci numbers, the quo-

tient of successive term is not constant as it is the case for geometric sequences.
Indeed, Johannes Kepler found that the quotient converges and it corresponds to
φ := α = (1+

√
5)/2, the Golden Ratio. The following theorems, which correspond

to (2.3) and (2.4) respectively, give the Binet formula of the Fibonacci sequence
{Fn}n≥0 and its companion {Ln}n≥0 in terms of the Golden Ratio.

Theorem 6. If Fn is the nth Fibonacci number,

Fn =
αn − βn

α− β
=

1√
5

(αn − βn) for n ≥ 0.

Theorem 7. We have
Ln = αn − βn for n ≥ 0.
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The sequence of Fibonacci numbers can also be extended to negative indices
n by rewriting the recurrence by

Fn−2 = Fn − Fn−1.

Using Theorems 6 and 7, we have the following Lemma.

Lemma 2. (i) F−n = (−1)n+1Fn and L−n = (−1)nLn;

(ii) 2Fm+n = FmLn + LnFm and 2Lm+n = 5FmFn + LmLn;

(iii) L2n = L2
n + 2(−1)n+1;

(iv) L2
n − 5F 2

n = 4(−1)n;

(v) Let p > 5 be a prime number. If (5
p
) = 1 then p | Fp−1. Otherwise p | Fp+1.

(vi) If m | n and n
m

is odd, then Lm | Ln

(vii) Let p and n be positive integers such that p is odd prime. Then (Lp, Fn) > 2 if and
only if p | n and n/p is even.

(viii)

Ln − 1 =

{
5F(n+1)/2F(n−1)/2 if n ≡ 1 (mod 4);
L(n+1)/2L(n−1)/2 if n ≡ 3 (mod 4).

(2.5)

Proof. : See. [Lu97], [Lu08], [Lu02].

Many Diophantine equations involving Fibonacci and Lucas numbers being
squares, perfect powers of the larger exponents of some others integers were
proved over the past years. Here we give few of them.

Lemma 3 (Bugeaud, Luca, Mignotte and Siksek, [BMS06] and [BLMS08] ). The
equation Ln = yk with some k ≥ 1 implies that n ∈ {1, 3}. Furthermore, the only
solutions of the equation Ln = qayk for some prime q < 1087 and integers a > 0, k ≥ 2
have n ∈ {0, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17}.

We also recall a result about square-classes of members of Lucas sequences
due to McDaniel and Ribenboim (see [MR98]).

Lemma 4. If LmLn = � with n > m ≥ 0, then (m,n) = (1, 3), (0, 6) or (m, 3m) with
3 - m odd.

Before we end this section, we recall well-known results on the sequences
{Pn}n≥0 and {Qn}n≥0 which can be easily proved using formulas (2.3) and (2.4).

Lemma 5. The relation
Q2
n − 8P 2

n = 4(−1)n

holds for all n ≥ 0.

Lemma 6. The relations
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(i) ν2(Qn) = 1,

(ii) ν2(Pn) = ν2(n)

(iii)

Pn − 1 =

{
P(n−1)/2Q(n+1)/2 if n ≡ 1 (mod 4);
P(n+1)/2Q(n−1)/2 if n ≡ 3 (mod 4).

(2.6)

hold for all positive integers n.

2.4 The Primitive Divisor Theorem

In this section, we recall the Primitive Divisor Theorem of members for Lucas
sequences. In fact, the Primitive Divisor Theorem is an extension of Zygmondy’s
theorem.

Definition 9. Let un be a Lucas sequence. The integer p, with p - ∆ is said to be a
primitive divisor for un if p divide un and p not divide um for all 1 < m < n. In other
words, a prime factor p of un such that z(p) = n is a primitive prime.

The existence of primitive divisors is an old problem which has been com-
pletely solved by Yuri Bilu, Guillaume Hanrot and Paul M Voutier [BHV01]. Here
we state it.

Theorem 8. For n > 30, the nth term un of any Lucas sequence has a primitive divisor.

Carmichael proved the theorem in the case when the roots of the characteristic
polynomial of un are real. In particular he proved the following results.

Lemma 7 (Carmichael [Ca13]). Fn has a primitive divisor for all n ≥ 12.

Lemma 8 (Carmichael [Ca13]). Ln has a primitive divisor for all n 6= 6, while L6 =
2× 32, and 2 | L3, 3 | L2.

Moreover, any primitive prime p such that p | un, satisfies the congruence of
the following theorem.

Theorem 9. If p is a primitive divisor of a Lucas sequences un, then

p ≡ ±1 (mod n).

In fact
(

∆
p

)
= ±1. Further, when un = Fn, then

If p ≡ 1 (mod 5) then p ≡ 1 (mod n)

If p 6≡ 1 (mod 5) then p ≡ −1 (mod n)

We recall a result of McDaniel on the prime factors of the Pell sequence {Pn}n≥0.
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Lemma 9 (McDaniel [Mc02]). Let {Pn}n≥0 be the sequence of Pell numbers. Then Pn
has a prime factor q ≡ 1 (mod 4) for all n > 14.

It is known that Pn has a primitive divisor for all n ≥ 2 (see [Ca13] or [BHV01]).
Write Pz(p) = pepmp, where mp is coprime to p. It is known that if pk | Pn for some
k > ep, then pz(p) | n. In particular,

νp(Pn) ≤ ep whenever p - n. (2.7)

We need a bound on ep. We have the following result.

Lemma 10. The inequality

ep ≤
(p+ 1) logα

2 log p
. (2.8)

holds for all primes p.

Proof. Since e2 = 1, the inequality holds for the prime 2. Assume that p is odd.
Then z(p) | p+ ε for some ε ∈ {±1}. Furthermore, by Theorem 5 we have

pep | Pz(p) | Pp+ε = P(p+ε)/2Q(p+ε)/2.

By Lemma 5, it follows easily that p cannot divide both Pn andQn for n = (p+ε)/2
since otherwise p will also divide

Q2
n − 8P 2

n = ±4,

which is a contradiction since p is odd. Hence, pep divides one of P(p+ε)/2 or
Q(p+ε)/2. If pep divides P(p+ε)/2, we have, by (3.2), that

pep ≤ P(p+ε)/2 ≤ P(p+1)/2 < α(p+1)/2,

which leads to the desired inequality (2.8) upon taking logarithms of both sides.
In case pep divides Q(p+ε)/2, we use the fact that Q(p+ε)/2 is even by Lemma 6 (i).
Hence, pep divides Q(p+ε)/2/2, therefore, by formula (2.4), we have

pep ≤
Q(p+ε)/2

2
≤
Q(p+1)/2

2
<
α(p+1)/2 + 1

2
< α(p+1)/2,

which leads again to the desired conclusion by taking logarithms of both sides.

Before we end our discussion on preliminaries of this thesis, it will be help-
ful to recall some basic definitions and results from Diophantine approximations
which will be very useful for Chapter 5. We will also introduce others tools as
continued fractions in Section 2.6.
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2.5 Linear forms in logarithms

2.5.1 Algebraic Numbers

Definition 10. A complex (or real) number η is an algebraic number if it is the root of a
polynomial

f(x) = anx
n + . . .+ a1x+ a0

with integers coefficients an 6= 0 for all n.

Let η be an algebraic number of degree d over Q with minimal primitive poly-
nomial over the integers

f(X) = a0

d∏
i=1

(X − η(i)) ∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of η is given by

h(η) =
1

d

(
log a0 +

d∑
i=1

log max{|η(i)|, 1}

)
.

2.5.2 Linear forms in logarithms of rational numbers

We first define what is meant by linear forms in logarithms. We refer to the descrip-
tion given in [Bu08].

Let n be an integer. For i = 1, . . . , n, let xi/yi be a non zero rational number,
bi be a positive integer and set Ai := max{|xi|, |yi|, 3} and B := max{bi, . . . , bn, 3}.
We consider the quantity:

Λ :=

(
x1

y1

)b1
· · ·
(
xn
yn

)bn
− 1,

which occurs naturally in many Diophantine equations. It’s often easy to prove
that Λ 6= 0 and to find an upper bound for it. For applications to Diophantine
problems, it is important that not only the above linear form is nonzero, but also
that we have a strong enough lower bound for the absolute value of this linear
form. Since |Λ| ≤ 1

2
, the reason why it is called linear form in logarithms is that,

|Λ| ≥ | log(1 + Λ)|
2

=
1

2

∣∣∣b1 log
x1

y1

+ . . .+ bn log
xn
yn

∣∣∣.
Assuming that Λ is nonzero, one can state a trivial lower bound for |Λ|. Then,

|Λ| ≥ −
n∑
i=1

bi log |yi| ≥ −B
n∑
i=1

logAi.
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The dependence on the Ai’s is very satisfactory, unlike the dependence on B.
However, to solve many Diophantine questions, we need a better dependence on
B, even if the dependence on the Ai’s is not the best possible. More generally,
one can state analogous lower bounds when the xi/yi are replaced by nonzero
algebraic numbers ηi , the real numbers Ai being then expressed in terms of the
logarithmic height of ηi.

Lower bounds for linear forms in logarithms of algebraic num-
bers

A lower bound for a nonzero expression of the form

ηb11 . . . ηb
n

n − 1,

where η1, . . . , ηn are algebraic numbers and b1, . . . , bn are integers, is the same as
a lower bound for a nonzero number of the form

n∑
i=1

bi log ηi, (2.9)

since ez−1 ∼ z for z → 0. The first nontrivial lower bounds were obtained by A.O.
Gel’fond. His estimates were effective only for n = 2. Later, A. Schinzel deduced
explicit Diophantine results using the approach introduced by A.O. Gel’fond. In
1968, A. Baker succeeded to extend to any n ≥ 2 the transcendence method used
by A.O. GelâĂŹfond for n = 2.

Theorem 10 (A. Baker, 1975). Let η1, . . . , ηn be algebraic numbers from C different
from 0, 1. Further, let b1, . . . , bn be rational integers such that

b1 log η1 + · · ·+ bn log ηn 6= 0.

Then
|b1 log η1 + · · ·+ bn log ηn| ≥ (eB)−C ,

where B := max(|b1|, . . . , |bn|) and C is an effectively computable constant depending
only on n and on η1, . . . , ηn.

Baker’s result marked a rise of the area of effective resolution of the Diophan-
tine equations of certain types, more precisely those that can be reduced to expo-
nential equations. Many important generalizations and improvements of Baker’s
result have been obtained. We refer to a paper of Baker (see [Ba67]) for an inter-
esting survey on these results.

From this theory, we recall results that we shall use in this thesis. We present
a Baker type inequality with explicit constants which is easy to apply. Here, we
give the result of Matveev [Ma00].
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2.5.3 Matveev’s Theorem

Theorem 11 (Matveev [Ma00]). Let K be a number field of degree D over Q η1, . . . , ηt
be positive real numbers of K, and b1, . . . , bt rational integers. Put

Λ = ηb11 · · · ηbtt − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(ηi), | log ηi|, 0.16} be real numbers, for i = 1, . . . , t. Then, assuming
that Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At).

2.6 Continued Fractions

We recall some definitions and properties of continued fractions. The material of
this section is mainly from [Lu09b]. We also present the reduction method based
on a lemma of Baker–Davenport [BD69].

Definition 11. A finite continued fraction is an expression of the form

1.

b0 +
1

b1 +
1

b2 +
1

. . . +
1

bn

where b0 ∈ R and bi ∈ R>0 for all 1 ≤ i ≤ n. We use the notation [b0, b1, . . . , bn]
for the above expression.

2. The continued fraction [b0, b1, . . . , bn] is called simple if b0, b1, . . . , bn ∈ Z.

3. The continued fraction Cj = [b0, b1, . . . , bj] with 0 ≤ j ≤ n is called the j-th
convergent of [b0, b1, . . . , bn].

One can easily see that every simple continued fraction is a rational number.
Conversely, using the Euclidean algorithm, every rational number can be repre-
sented as a simple continued fraction; however the expression is not unique. For
example, the continued fraction of 1

4
= [0, 4] = [0, 3, 1]. However, if bn > 1, then

the representation of a rational number as a finite continued fraction is unique.
Continued fractions are important in many branches of mathematics, and partic-
ularly in the theory of approximation to real numbers by rationals.

Definition 12. Let (an)n≥0 be an infinite sequence of integers with an > 0 for all n ≥ 1.
The infinite continued fraction is defined as the limit of the finite continued fraction

[a0, a1, . . .] := lim
n→∞

Cn.

Infinite continued fractions always represent irrational numbers. Conversely, every
irrational number can be expanded in an infinite continued fraction.
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Example 2. The most basic of all continued fractions is the one using all 1’s:

[1, 1, 1, 1, ....] = 1 +
1

1 +
1

...

.

If we put x for the dots numbers then x = [1, x]. So x = 1 + 1
x

which is equivalent to
x2 − x− 1 = 0. The quadratic formula gives us, x = 1+

√
5

2
, i.e., the golden ratio.

2.6.1 Some properties of continued fractions

In this section, we use the following notations:

p0 = a0,

p1 = a0a1 + 1,

pj = ajpj + pj−1,

q0 = 1,

q1 = a1,

qj = ajqj−1 + qj−2.

The following theorem indicates that the convergents Cj = pj/qj give the best

approximations by rationals of the irrational number α.

Theorem 12. (Convergents).

1. Let α be an irrational number and let Cj = pj/qj for j ≥ 0 be the convergents of
the continued fraction of α. If r, s ∈ Z with s > 0 and k is a positive integer such
that

|sα− r| < |qjα− pj|,

then s ≥ qj + 1.

2. If α is irrational and r/s is a rational number with s > 0 such that∣∣∣α− r

s

∣∣∣ < 1

2s2
,

then r/s is a convergent of α.

Proof. See [Lu09b].

Theorem 13 (Legendre’s Theorem). If α is an irrational number and p/q is a rational
number in lowest terms, q > 0, such that∣∣∣α− p

q

∣∣∣ < 1

2q2
,

then p/q is a convergent of the continued fraction of α.

Legendre’s Theorem is an important result in the study of continued fractions,
because it tells us that good approximations of irrational numbers by rational
numbers are given by its convergents.
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2.6.2 The Baker–Davenport Lemma

In 1998, Dujella and Pethő in [DP98, Lemma 5(a)] gave a version of the reduction
method based on a lemma of Baker–Davenport lemma [BD69]. The next lemma
from [BL13], gave a variation of their result. This will be our key tool used to
reduce the upper bounds on the variable n in Chapter 5.

Lemma 11. Let M be a positive integer, let p/q be a convergent of the continued fraction
of the irrational γ such that q > 6M , and let A,B, µ be some real numbers with A > 0
and B > 1. Let ε := ||µq|| −M ||γq||, where || · || denotes the distance from the nearest
integer. If ε > 0, then there is no solution to the inequality

0 < uγ − v + µ < AB−w, (2.10)

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

Proof. We proceed as in the proof of Lemma 5 in [DP98]. In fact, we assume that
0 ≤ u ≤M . Multiplying the relation (2.10) by keeping in mind that ||qγ|| = |p−qγ|
(because p/q is a convergent of γ), we then have that

qAB−w > qµ− qv + quγ = |qµ− qv + quγ|
= |qµ− (qv − up)− u(p− qγ)|
≥ |qµ− (qv − up)| − u|p− qγ|
≥ ||qµ|| − u||qγ||
≥ ||qµ|| −M ||qγ|| = ε,

leading to

w <
log(Aq/ε)

logB
.



Chapter 3

Pell numbers whose Euler function is
a Pell number

In this chapter, we find all the members of the Pell sequence whose Euler’s func-
tion is also a member of the Pell sequence. We prove that the only solutions are 1
and 2. The material of this chapter is the main result in [FL15d].

3.1 Introduction

In this chapter, we have the following result.

Theorem 14. The only solutions in positive integers (n,m) of the equation

ϕ(Pn) = Pm (3.1)

are (n,m) = (1, 1), (2, 1).

For the proof, we begin by following the method from [LF09], but we add to
it some ingredients from [Lu07].

3.2 Preliminary results

Let (α, β) = (1+
√

2, 1−
√

2) be the roots of the characteristic equation x2−2x−1 =
0 of the Pell sequence {Pn}n≥0. Formula (2.2) implies easily that the inequalities

αn−2 ≤ Pn ≤ αn−1 (3.2)

hold for all positive integers n.

We need some inequalities from the prime number theory. The following in-
equalities (i), (ii) and (iii) are inequalities (3.13), (3.29) and (3.41) in [RS62], while
(iv) is Theorem 13 from [Ro83].

Lemma 12. Let p1 < p2 < · · · be the sequence of all prime numbers. We have:

23
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(i) The inequality
pn < n(log n+ log log n)

holds for all n ≥ 6.

(ii) The inequality

∏
p≤x

(
1 +

1

p− 1

)
< 1.79 log x

(
1 +

1

2(log x)2

)

holds for all x ≥ 286.

(iii) The inequality

ϕ(n) >
n

1.79 log log n+ 2.5/ log log n

holds for all n ≥ 3.

(iv) The inequality

ω(n) <
log n

log log n− 1.1714

holds for all n ≥ 26.

For a positive integer n, we put Pn = {p : z(p) = n}. We need the following
result.

Lemma 13. Put
Sn :=

∑
p∈Pn

1

p− 1
.

For n > 2, we have

Sn < min

{
2 log n

n
,
4 + 4 log log n

ϕ(n)

}
. (3.3)

Proof. Since n > 2, it follows that every prime factor p ∈ Pn is odd and satisfies
the congruence p ≡ ±1 (mod n). Further, putting `n := #Pn, we have

(n− 1)`n ≤
∏
p∈Pn

p ≤ Pn < αn−1

(by inequality (3.2)), giving

`n ≤
(n− 1) logα

log(n− 1)
. (3.4)

Thus, the inequality

`n <
n logα

log n
(3.5)
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holds for all n ≥ 3, since it follows from (3.4) for n ≥ 4 via the fact that the
function x 7→ x/ log x is increasing for x ≥ 3, while for n = 3 it can be checked
directly. To prove the first bound, we use (3.5) to deduce that

Sn ≤
∑

1≤`≤`n

(
1

n`− 2
+

1

n`

)
≤ 2

n

∑
1≤`≤`n

1

`
+
∑
m≥n

(
1

m− 2
− 1

m

)

≤ 2

n

(∫ `n

1

dt

t
+ 1

)
+

1

n− 2
+

1

n− 1

≤ 2

n

(
log `n + 1 +

n

n− 2

)
≤ 2

n
log

(
n

(
(logα)e2+2/(n−2)

log n

))
. (3.6)

Since the inequality
log n > (logα)e2+2/(n−2)

holds for all n ≥ 800, (3.6) implies that

Sn <
2 log n

n
for n ≥ 800.

The remaining range for n can be checked on an individual basis. For the second
bound on Sn, we follow the argument from [Lu07] and split the primes in Pn in
three groups:

(i) p < 3n;

(ii) p ∈ (3n, n2);

(iii) p > n2;

We have

T1 =
∑
p∈Pn
p<3n

1

p− 1
≤


1

n− 2
+

1

n
+

1

2n− 2
+

1

2n
+

1

3n− 2
<

10.1

3n
, n ≡ 0 (mod 2),

1

2n− 2
+

1

2n
<

7.1

3n
, n ≡ 1 (mod 2),

(3.7)
where the last inequalities above hold for all n ≥ 84. For the remaining primes in
Pn, we have∑

p∈Pn
p>3n

1

p− 1
<
∑
p∈Pn
p>3n

1

p
+

∑
m≥3n+1

(
1

m− 1
− 1

m

)
= T2 + T3 +

1

3n
, (3.8)

where T2 and T3 denote the sums of the reciprocals of the primes in Pn satisfying
(ii) and (iii), respectively. The sum T2 was estimated in [Lu07] using the large
sieve inequality of Montgomery and Vaughan [MV73] which asserts that

π(x; d, 1) <
2x

ϕ(d) log(x/d)
for all x > d ≥ 2, (3.9)
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where π(x; d, 1) stands for the number of primes p ≤ x with p ≡ 1 (mod d), and
the bound on it is

T2 =
∑

3n<p<n2

1

p
<

4

ϕ(n) log n
+

4 log log n

ϕ(n)
<

1

ϕ(n)
+

4 log log n

ϕ(n)
, (3.10)

where the last inequality holds for n ≥ 55. Finally, for T3, we use the estimate
(3.5) on `n to deduce that

T3 <
`n
n2

<
logα

n log n
<

0.9

3n
, (3.11)

where the last bound holds for all n ≥ 19. To summarize, for n ≥ 84, we have, by
(3.7), (3.8), (3.10) and (3.11),

Sn <
10.1

3n
+

1

3n
+

0.9

3n
+

1

ϕ(n)
+

4 log log n

ϕ(n)
<

4

n
+

1

ϕ(n)
+

4 log log n

ϕ(n)
≤ 3 + 4 log log n

ϕ(n)

for n even, which is stronger that the desired inequality. Here, we used that
ϕ(n) ≤ n/2 for even n. For odd n, we use the same argument except that the
first fraction 10.1/(3n) on the right–hand side above gets replaced by 7.1/(3n) (by
(3.7)), and we only have ϕ(n) ≤ n for odd n. This was for n ≥ 84. For n ∈ [3, 83],
the desired inequality can be checked on an individual basis.

3.3 Proof of Theorem 14

A bird’s eye view of the proof

In this section, we explain the plan of attack for the proof Theorem 14. We assume
n > 2. We put k for the number of distinct prime factors of Pn and ` = n − m.
We first show that 2k | m and that any possible solution must be large. This
only uses the fact that p − 1 | φ(Pn) = Pm for all prime factors p of Pn, and all
such primes with at most one exception are odd. We show that k ≥ 416 and
n > m ≥ 2416. This is Lemma 14. We next bound ` in terms of n by showing
that ` < log log log n/ logα + 1.1 (Lemma 15). Next we show that k is large, by
proving that 3k > n/6 (Lemma 16). When n is odd, then q ≡ 1 (mod 4) for all
prime factor q of Pn. This implies that 4k | m. Thus, 3k > n/6 and n > m ≥ 4k, a
contradiction in our range for n. This is done in Subsection 3.3. When n is even,
we write n = 2sn1 with an odd integer n1 and bound s and the smallest prime
factor r1 of n1. We first show that s ≤ 3, that if n1 and m have a common divisor
larger than 1, then r1 ∈ {3, 5, 7} (Lemma 17). A lot of effort is spent into finding a
small bound on r1. As we saw, r1 ≤ 7 if n1 and m are not coprime. When n1 and
m are coprime, we succeed in proving that r1 < 106. Putting er for the exponent
of r in the factorization of Pz(r), it turns out that our argument works well when
er = 1 and we get a contradiction, but when er = 2, then we need some additional
information about the prime factors of Qr. It is always the case that er = 1 for
all primes r < 106, except for r ∈ {13, 31} for which er = 2, but, lucky for us,
both Q13 and Q31 have two suitable prime factors each which allows us to obtain
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a contradiction. Our efforts in obtaining r1 < 106 involve quite a complicated
argument (roughly the entire argument after Lemma 17 until the end), which we
believe it is justified by the existence of the mighty prime r1 = 1546463, for which
er1 = 2. Should we have only obtained say r1 < 1.6 × 106, we would have had
to say something nontrivial about the prime factors of Q15467463, a nuisance which
we succeeded in avoiding simply by proving that r1 cannot get that large!

Some lower bounds on m and ω(Pn)

Firstly, by a computational search we get that when n ≤ 100, the only solutions
are obtained at n = 1, 2. So, from now on n > 100. We write

Pn = qα1
1 . . . qαkk , (3.12)

where q1 < · · · < qk are primes and α1, . . . , αk are positive integers. Clearly,
m < n.

Lemma 9 on page 17 applies, therefore

4 | q − 1 | ϕ(Pn) | Pm,

thus 4 | m by Lemma 6. Further, it follows from [FL15c], that ϕ(Pn) ≥ Pϕ(n).
Hence, m ≥ ϕ(n). Thus,

m ≥ ϕ(n) ≥ n

1.79 log log n+ 2.5/ log log n
, (3.13)

by Lemma 12 (iii). The function

x 7→ x

1.79 log log x+ 2.5/ log log x

is increasing for x ≥ 100. Since n ≥ 100, inequality (3.13) together with the fact
that 4 | m, show that m ≥ 24.

Let ` = n−m. Since m is even, then βm > 0, and

Pn
Pm

=
αn − βn

αm − βm
>
αn − βn

αm
≥ α` − 1

αm+n
> α` − 10−40, (3.14)

where we used the fact that

1

αm+n
≤ 1

α124
< 10−40.

We now are ready to provide a large lower bound on n. We distinguish the fol-
lowing cases.

Case 1: n is odd.

Here, we have ` ≥ 1. So,

Pn
Pm

> α− 10−40 > 2.4142.



28 3.3. Proof of Theorem 14

Since n is odd, then Pn is divisible only by primes p with z(p) being odd. There
are precisely 2907 among the first 10000 primes with this property. We set them
as

F1 = {5, 13, 29, 37, 53, 61, 101, 109, . . . , 104597, 104677, 104693, 104701, 104717}.

Since ∏
p∈F1

(
1− 1

p

)−1

< 1.963 < 2.4142 <
Pn
Pm

=
k∏
i=1

(
1− 1

qi

)−1

,

we get that k > 2907. Since 2k | ϕ(Pn) | Pm, we get, by Lemma 6, that

n > m > 22907. (3.15)

Case 2: n ≡ 2 (mod 4).

Since both m and n are even, we get ` ≥ 2. Thus,

Pn
Pm

> α2 − 10−40 > 5.8284. (3.16)

If q is a factor of Pn, as in Case 1, we have that 4 - z(p). There are precisely 5815
among the first 10000 primes with this property. We set them again as

F2 = {2, 5, 7, 13, 23, 29, 31, 37, 41, 47, 53, 61, . . . , 104693, 104701, 104711, 104717}.

Writing pi as the ith prime number inF2, a computation with Mathematica shows
that

415∏
i=1

(
1− 1

pi

)−1

= 5.82753 . . .

416∏
i=1

(
1− 1

pi

)−1

= 5.82861 . . . ,

which via inequality (3.16) shows that k ≥ 416. Of the k prime factors of Pn, we
have that only k − 1 of them are odd (q1 = 2 because n is even), but one of those
is congruent to 1 modulo 4 by McDaniel’s result (Lemma 9, page 17). Hence,
2k | ϕ(Pn) | Pm, which shows, via Lemma 6, that

n > m ≥ 2416. (3.17)

Case 3: 4 | n.

In this case, since bothm and n are multiples of 4, we get that ` ≥ 4. Therefore,

Pn
Pm

> α4 − 10−40 > 33.97.

Letting p1 < p2 < · · · be the sequence of all primes, we have that

2000∏
i=1

(
1− 1

pi

)−1

< 17.41 . . . < 33.97 <
Pn
Pm

=
k∏
i=1

(
1− 1

qi

)
,
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showing that k > 2000. Since 2k | ϕ(Pn) = Pm, we get

n > m ≥ 22000. (3.18)

To summarize, from (3.15), (3.17) and (3.18), we get the following results.

Lemma 14. If n > 2, then

1. 2k | m;

2. k ≥ 416;

3. n > m ≥ 2416.

Computing a bound for ` in term of n

From the previous section, we have seen that k ≥ 416. Since n > m ≥ 2k, we have

k < k(n) :=
log n

log 2
. (3.19)

Let pi be the ith prime number. Lemma 12 shows that

pk ≤ pbk(n)c ≤ k(n)(log k(n) + log log k(n)) := q(n).

We then have, using Lemma 12 (ii), that

Pm
Pn

=
k∏
i=1

(
1− 1

qi

)
≥

∏
2≤p≤q(n)

(
1− 1

p

)
>

1

1.79 log q(n)(1 + 1/(2(log q(n))2))
.

Inequality (ii) of Lemma 12 requires that x ≥ 286, which holds for us with x =
q(n) because k(n) ≥ 416. Hence, we get

1.79 log q(n)

(
1 +

1

(2(log q(n))2)

)
>
Pn
Pm

> α` − 10−40 > α`
(

1− 1

1040

)
.

Since k ≥ 416, we have q(n) > 3256. Hence, we get

log q(n)

(
1.79

(
1− 1

1040

)−1(
1 +

1

2(log(3256))2

))
> α`,

which yields, after taking logarithms, to

` ≤ log log q(n)

logα
+ 0.67. (3.20)

The inequality
q(n) < (log n)1.45 (3.21)

holds in our range for n (in fact, it holds for all n > 1083, which is our case since
for us n > 2416 > 10125). Inserting inequality (3.21) into (3.20), we get

` <
log log(log n)1.45

logα
+ 0.67 <

log log log n

logα
+ 1.1.

Thus, we proved the following result.

Lemma 15. If n > 2, then

` <
log log log n

logα
+ 1.1. (3.22)
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Bounding the primes qi for i = 1, . . . , k

Write
Pn = q1 · · · qkB, where B = qα1−1

1 · · · qαk−1
k . (3.23)

Clearly, B | ϕ(Pn), therefore B | Pm. Since also B | Pn, we have, by Theorem
5, that B | gcd(Pn, Pm) = Pgcd(n,m) | P` where the last relation follows again by
Theorem 5 because gcd(n,m) | `. Using the inequality (3.2) and Lemma 15, we
get

B ≤ Pn−m ≤ αn−m−1 ≤ α0.1 log log n. (3.24)

We now use the inductive argument from Section 3.3 in [LF09] in order to find a
bound for the primes qi for all i = 1, . . . , k. We write

k∏
i=1

(
1− 1

qi

)
=
ϕ(Pn)

Pn
=
Pm
Pn

.

Therefore,

1−
k∏
i=1

(
1− 1

qi

)
= 1− Pm

Pn
=
Pn − Pm
Pn

≥ Pn − Pn−1

Pn
>
Pn−1

Pn
.

Using the inequality

1− (1− x1) · · · (1− xs) ≤ x1 + · · ·+ xs valid for all xi ∈ [0, 1] for i = 1, . . . , s,
(3.25)

we get, therefore,

q1 < k

(
Pn
Pn−1

)
< 3k. (3.26)

Using an inductive argument on the index i for i ∈ {1, . . . , k} , we now show that
if we put

ui :=
i∏

j=1

qj,

then
ui <

(
2α2.1k log log n

)(3i−1)/2
. (3.27)

For i = 1, we get

q1 <
(
2α2.117(log log n)k

)
which is implies by the inequality (3.26) and the fact that n > 3 · 10150, we have
that (2α2.117(log log n)) > 61 > 6. We assume now that for i ∈ {1, . . . , k − 1} the
inequality (3.27) is satisfied and let us prove it for k by replacing i by i + 1. We
have,

k∏
j=i+1

(
1− 1

qi

)
=

q1 · · · qi
(q1 − 1) · · · (qi − 1)

· qm
qn

=
q1 · · · qi

(q1 − 1) · · · (qi − 1)
· α

m − βm

αn − βn
,
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which we write as

1−
k∏

j=i+1

(
1− 1

qi

)
= 1− q1 · · · qi

(q1 − 1) · · · (qi − 1)
· α

m − βm

αn − βn

=
αm((q1 − 1) · · · (qi − 1)αn−m − q1 · · · qi)

(q1 − 1) · · · (qi − 1)(αn − βn)

+
βm(q1 · · · qi − βn−m(q1 − 1) · · · (qi − 1))

(q1 − 1) · · · (qi − 1)(αn − βn)

=: V +W

with

V :=
αm((q1 − 1) · · · (qi − 1)αn−m − q1 · · · qi)

(q1 − 1) · · · (qi − 1)(αn − βn)
,

and
W :=

βm(q1 · · · qi − βn−m(q1 − 1) · · · (qi − 1))

(q1 − 1) · · · (qi − 1)(αn − βn)
.

Since m is even, then |β| < 1. Therefore W ≥ 0. Further, since n−m = ` > 0,
and β = −α−1, it follows that VW 6= 0. Suppose that V < 0. Then,

1−
k∏

j=i+1

(
1− 1

qi

)
< W <

2q1 · · · qi
αm(q1 − 1) · · · (qi − 1)(αn − βn)

<
2Pn

φ(Pn)(αm − βm)(αn − βn)
=

1

4P 2
m

.

Since the denominator of the positive rational integer on the left hand side of
the above inequality divides qi+1 · · · qk | Pn, it follows that this number is at least
as large as 1/Pn. Hence,

1

Pn
<

1

4P 2
m

, which gives P 2
m < 1

4
Pn.

Since the inequalities αs−2 ≤ Ps ≤ αs−1 hold for all s ≥ 2, we get that,

α2m−4 ≤ P 2
m <

1

4
Pn ≤

1

4
αn−1

therefore,

2m < 3 +
log(1/4)

logα
+ n.

Using Lemma 15, we have that

m > n− 1.117− log log log n

logα
.

Combining these inequalities, we get
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n < 5.234 +
log(1/4)

logα
+

2 log log log n

logα
< 3.67 +

2 log log log n

logα

which is not possible in our range of n. Hence, V > 0. Since also W > 0, we get
that

1−
k∏

j=i+1

(
1− 1

qi

)
> V.

Now, note that

((q1 − 1) · · · (qi − 1)αn−m − q1 · · · qi)((q1 − 1) · · · (qi − 1)βn−m − q1 · · · qi)

is non zero integer since β and α are conjugate, therefore,∣∣∣((q1 − 1) · · · (qi − 1)αn−m − q1 · · · qi)((q1 − 1) · · · (qi − 1)βn−m − q1 · · · qi)
∣∣∣ ≥ 1.

Since we certainly have∣∣∣((q1 − 1) · · · (qi − 1)βn−m − q1 · · · qi)
∣∣∣ < 2q1 · · · qi

and
((q1 − 1) · · · (qi − 1)αn−m − q1 · · · qi) > 0

because V > 0, we get that

((q1 − 1) · · · (qi − 1)αn−m − q1 · · · qi) >
1

2q1 · · · qi
.

Hence,

1−
k∏

j=i+1

(
1− 1

qi

)
> X >

αm

2(q1 · · · qi)2(αn − βn)
>

αm − βm

2u2
i (α

n − βn)
=

Pm
2u2

iPn
,

which combined with (3.25) lead to

Pm
2u2

iPn
< 1−

k∏
j=i+1

(
1− 1

qi

)
≤

k∑
i=1

1

qi
<

k

qi+1

.

Thus,

qi+1 < 2u2
i k
Pn
Pm

.

However,
Pn
Pm

< αn−m+1 < α2.117 log log n.

By Lemma 15. Hence,
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qi+1 < (2α2.117k log log n)u2
i .

Multiplying both sides by ui, we get that,

ui+1 < (2α2.117k log log n)u3
i .

Using the assumption hypothesis, we get that,

ui+1 < (2α2.117k log log n)1+3(3i−1)/2) = (2α2.117k log log n)(3i+1−1)/2,

This ends the proof by induction of the estimate (3.27).

In particular,
q1 · · · qk = uk < (2α2.1k log log n)(3k−1)/2,

which together with formulae (3.20) and (3.24) gives

Pn = q1 · · · qkB < (2α2.1k log log n)1+(3k−1)/2 = (2α2.1k log log n)(3k+1)/2.

Since Pn > αn−2 by inequality (3.2), we have that

(n− 2) logα <
(3k + 1)

2
log(2α2.1k log log n).

Since k < log n/ log 2 (see (3.19)), we get

3k > (n− 2)

(
2 logα

log(2α2.1(log n)(log log n)(log 2)−1)

)
− 1 > 0.17(n− 2)− 1 >

n

6
,

where the last two inequalities above hold because n > 2416.
So, we proved the following result.

Lemma 16. We have
3k > n/6.

The case when n is odd

Let q be any prime factor of Pn. Reducing relation

Q2
n − 8P 2

n = 4(−1)n (3.28)

of Lemma 5 modulo q, we get Q2
n ≡ −4 (mod q). Since q is odd, (because n is

odd), then q ≡ 1 (mod 4). This is satisfied by all prime factors q of Pn. Hence,

4k |
k∏
i=1

(qi − 1) | ϕ(Pn) | Pm,

which, by Lemma 6 (ii), gives 4k | m. Thus,

n > m ≥ 4k,



34 3.3. Proof of Theorem 14

inequality which together with Lemma 16 gives

n >
(
3k
)log 4/ log 3

>
(n

6

)log 4/ log 3

,

so
n < 6log 4/ log(4/3) < 5621,

in contradiction with Lemma 14.

Bounding n

From now on, n is even. We write it as

n = 2srλ11 · · · rλtt =: 2sn1,

where s ≥ 1, t ≥ 0 and 3 ≤ r1 < · · · < rt are odd primes. Thus, by inequality
(3.14), we have

α`
(

1− 1

1040

)
< α` − 1

1040
<

Pn
ϕ(Pn)

=
∏
p|Pn

(
1 +

1

p− 1

)
= 2

∏
d≥3
d|n

∏
p∈Pd

(
1 +

1

p− 1

)
,

and taking logarithms we get

` logα− 1

1039
< log

(
α`
(

1− 1

1040

))
< log 2 +

∑
d≥3
d|n

∑
p∈Pd

log

(
1 +

1

p− 1

)

< log 2 +
∑
d≥3
d|n

Sd. (3.29)

In the above, we used the inequality log(1 − x) > −10x which is valid for all
x ∈ (0, 1/2) with x = 1/1040 and that x ≥ log(1 + x) for x ∈ R with x = p for all
p ∈ Pd and all divisors d | n with d ≥ 3.

Let us deduce that the case t = 0 is impossible. Indeed, if this were so, then
n is a power of 2 and so, by Lemma 14, both m and n are divisible by 2416. Thus,
` ≥ 2416. Inserting this into (3.29), and using Lemma 13, we get

2416 logα− 1

1039
<
∑
a≥1

2 log(2a)

2a
= 4 log 2,

a contradiction.
Thus, t ≥ 1 so n1 > 1. We now put

I := {i : ri | m} and J = {1, . . . , t}\I.

We put
M =

∏
i∈I

ri.
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We also let j be minimal in J . We split the sum appearing in (3.29) in two parts:∑
d|n

Sd = L1 + L2,

where
L1 :=

∑
d|n

r|d⇒r|2M

Sd and L2 :=
∑
d|n

ru|d for some u∈J

Sd.

To bound L1, we note that all divisors involved divide n′, where

n′ = 2s
j∏
i∈I

rλii .

Using Lemmas 1 and 13, we get

L1 ≤ 2
∑
d|n′

log d

d

< 2

∑
r|n′

log r

r − 1

( n′

ϕ(n′)

)

= 2

∑
r|2M

log r

r − 1

( 2M

ϕ(2M)

)
. (3.30)

We now bound L2. If J = ∅, then L2 = 0 and there is nothing to bound. So,
assume that J 6= ∅. We argue as follows. Note that since s ≥ 1, by Theorem 5, we
have

Pn = Pn1Qn1Q2n1 · · ·Q2s−1n1
.

Let q be any odd prime factor ofQn1 . By reducing the relation of Lemma 5 modulo
q and using the fact that n1 and q are both odd, we get 2P 2

n1
≡ 1 (mod q), therefore(

2

q

)
= 1. Hence, z(q) | q − 1 for such primes q. Now let d be any divisor of n1

which is a multiple of rj . The number of them is τ(n1/rj). For each such d, there
is a primitive prime factor qd of Qd | Qn1 . Thus, rj | d | qd − 1. This shows that

νrj(ϕ(Pn)) ≥ νrj(ϕ(Qn1)) ≥ τ(n1/rj) ≥ τ(n1)/2, (3.31)

where the last inequality follows from the fact that

τ(n1/rj)

τ(n1)
=

λj
λj + 1

≥ 1

2
.

Since rj does not divide m, it follows from (2.7) that

νrj(Pm) ≤ erj . (3.32)
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Hence, (3.31), (3.32) and (3.1) imply that

τ(n1) ≤ 2erj . (3.33)

Invoking Lemma 10, we get

τ(n1) ≤ (rj + 1) logα

log rj
. (3.34)

Now every divisor d participating in L2 is of the form d = 2ad1, where 0 ≤ a ≤ s
and d1 is a divisor of n1 divisible by ru for some u ∈ J . Thus,

L2 ≤ τ(n1) min


∑

0≤a≤s
d1|n1

ru|d1 for some u∈J

S2ad1

 := g(n1, s, r1). (3.35)

In particular, d1 ≥ 3 and since the function x 7→ log x/x is decreasing for x ≥ 3,
we have that

g(n1, s, r1) ≤ 2τ(n1)
∑

0≤a≤s

log(2arj)

2arj
. (3.36)

Putting also s1 := min{s, 416}, we get, by Lemma 14, that 2s1 | `. Thus, inserting
this as well as (3.30) and (3.36) all into (3.29), we get

` logα− 1

1039
< 2

∑
r|2M

log r

r − 1

( 2M

ϕ(2M)

)
+ g(n1, s, r1). (3.37)

Since ∑
0≤a≤s

log(2arj)

2arj
<

4 log 2 + 2 log rj
rj

, (3.38)

inequalities (3.38), (3.34) and (3.36) give us that

g(n1, s, r1) ≤ 2

(
1 +

1

rj

)(
2 +

4 log 2

log rj

)
logα := g(rj).

The function g(x) is decreasing for x ≥ 3. Thus, g(rj) ≤ g(3) < 10.64. For a
positive integer N put

f(N) := N logα− 1

1039
− 2

∑
r|N

log r

r − 1

( N

ϕ(N)

)
. (3.39)

Then inequality (3.37) implies that both inequalities

f(`) < g(rj),

(`−M) logα + f(M) < g(rj) (3.40)
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hold. Assuming that ` ≥ 26, we get, by Lemma 12, that

` logα− 1

1039
− 2(log 2)

(1.79 log log `+ 2.5/ log log `) log `

log log `− 1.1714
≤ 10.64.

Mathematica confirmed that the above inequality implies ` ≤ 500. Another cal-
culation with Mathematica showed that the inequality

f(`) < 10.64 (3.41)

for even values of ` ∈ [1, 500] ∩ Z implies that ` ∈ [2, 18]. The minimum of the
function f(2N) forN ∈ [1, 250]∩Z is atN = 3 and f(6) > −2.12. For the remaining
positive integers N , we have f(2N) > 0. Hence, inequality (3.40) implies

(2s1 − 2) logα < 10.64 and (2s1 − 2)3 logα < 10.64 + 2.12 = 12.76,

according to whether M 6= 3 or M = 3, and either one of the above inequalities
implies that s1 ≤ 3. Thus, s = s1 ∈ {1, 2, 3}. Since 2M | `, 2M is square free and
` ≤ 18, we have thatM ∈ {1, 3, 5, 7}. AssumeM > 1 and let i be such thatM = ri.
Let us show that λi = 1. Indeed, if λi ≥ 2, then

199 | Q9 | Pn, 29201 | P25 | Pn, 1471 | Q49 | Pn,

and 32 | 199 − 1, 52 | 29201 − 1, 72 | 1471 − 1. Thus, we get that 32, 52, 72 divide
ϕ(Pn) = Pm, showing that 32, 52, 72 divide `. Since ` ≤ 18, only the case ` = 18 is
possible. In this case, rj ≥ 5, and inequality (3.40) gives

8.4 < f(18) ≤ g(5) < 7.9,

a contradiction. Let us record what we have deduced so far.

Lemma 17. If n > 2 is even, then s ∈ {1, 2, 3}. Further, if I 6= ∅, then I = {i},
ri ∈ {3, 5, 7} and λi = 1.

We now deal with J . For this, we return to (3.29) and use the better inequality
namely

2sM logα− 1

1039
≤ ` logα− 1

1039
≤ log

(
Pn

ϕ(Pn)

)
≤
∑
d|2sM

∑
p∈Pd

log

(
1 +

1

p− 1

)
+L2,

so

L2 ≥ 2sM logα− 1

1039
−
∑
d|2sM

∑
p∈Pd

log

(
1 +

1

p− 1

)
. (3.42)

In the right–hand side above, M ∈ {1, 3, 5, 7} and s ∈ {1, 2, 3}. The values of the
right–hand side above are in fact

h(u) := u logα− 1

1039
− log(Pu/ϕ(Pu))
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for u = 2sM ∈ {2, 4, 6, 8, 10, 12, 14, 20, 24, 28, 40, 56}. Computing we get:

h(u) ≥ Hs,M

(
M

ϕ(M)

)
for M ∈ {1, 3, 5, 7}, s ∈ {1, 2, 3},

where

H1,1 > 1.069, H1,M > 2.81 for M > 1, H2,M > 2.426, H3,M > 5.8917.

We now exploit the relation

Hs,M

(
M

ϕ(M)

)
< L2. (3.43)

Our goal is to prove that r1 < 106. Assume this is not so. We use the bound

L2 <
∑
d|n

ru|d for sume u∈J

4 + 4 log log d

ϕ(d)

of Lemma 13. Each divisor d participating in L2 is of the form 2ad1, where a ∈
[0, s] ∩ Z and d1 is a multiple of a prime at least as large as rj . Thus,

4 + 4 log log d

ϕ(d)
≤ 4 + 4 log log 8d1

ϕ(2a)ϕ(d1)
for a ∈ {0, 1, . . . , s},

and
d1

ϕ(d1)
≤ n1

ϕ(n1)
≤ M

ϕ(M)

(
1 +

1

rj − 1

)ω(n1)

.

Using (3.34), we get

2ω(n1) ≤ τ(n1) ≤ (rj + 1) logα

log rj
< rj,

where the last inequality holds because rj is large. Thus,

ω(n1) <
log rj
log 2

< 2 log rj. (3.44)

Hence,

n1

ϕ(n1)
≤ M

ϕ(M)

(
1 +

1

rj − 1

)ω(n1)

<
M

ϕ(M)

(
1 +

1

rj − 1

)2 log rj

<
M

ϕ(M)
exp

(
2 log rj
rj − 1

)
<

M

ϕ(M)

(
1 +

4 log rj
rj − 1

)
, (3.45)
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where we used the inequalities 1 + x < ex, valid for all real numbers x, as well as
ex < 1 + 2x which is valid for x ∈ (0, 1/2) with x = 2 log rj/(rj − 1) which belongs
to (0, 1/2) because rj is large. Thus, the inequality

4 + 4 log log d

ϕ(d)
≤
(

4 + 4 log log 8d1

d1

)(
1 +

4 log rj
rj − 1

)(
1

ϕ(2a)

)
M

ϕ(M)

holds for d = 2ad1 participating in L2. The function x 7→ (4 + 4 log log(8x))/x is
decreasing for x ≥ 3. Hence,

L2 ≤
(

4 + 4 log log(8rj)

rj

)
τ(n1)

(
1 +

4 log rj
rj − 1

)( ∑
0≤a≤s

1

ϕ(2a)

)(
M

ϕ(M)

)
. (3.46)

Inserting inequality (3.34) into (3.46) and using (3.43), we get

log rj < 4

(
1 +

1

rj

)(
1 +

4 log rj
rj − 1

)
(1 + log log(8rj))(logα)

(
Gs

Hs,M

)
, (3.47)

where
Gs =

∑
0≤a≤s

1

ϕ(2a)
.

For s = 2, 3, inequality (3.47) implies rj < 900, 000 and rj < 300, respectively. For
s = 1 and M > 1, inequality (3.47) implies rj < 5000. When M = 1 and s = 1, we
get n = 2n1. Here, inequality (3.47) implies that r1 < 8 × 1012. This is too big, so
we use the bound

Sd <
2 log d

d

of Lemma 13 instead for the divisors d of participating in L2, which in this case
are all the divisors of n larger than 2. We deduce that

1.06 < L2 < 2
∑
d|2n1

d>2

log d

d
< 4

∑
d1|n1

log d1

d1

.

Since all the divisors d > 2 of n are either of the form d1 or 2d1 for some divisor
d1 ≥ 3 of n1, and the function x 7→ x/ log x is increasing for x ≥ 3, hence the last
inequality above follows immediately. Using Lemma 1 and inequalities (3.44)
and (3.45), we get

1.06 < 4

∑
r|n1

log r

r − 1

( n1

ϕ(n1)

)
<

(
4 log r1

r1 − 1

)
ω(n1)

(
1 +

4 log r1

r1 − 1

)

<

(
4 log r1

r1 − 1

)
(2 log r1)

(
1 +

4 log r1

r1 − 1

)
,

which gives r1 < 159. So, in all cases, rj < 106. Here, we checked that er = 1 for
all such r except r ∈ {13, 31} for which er = 2. If erj = 1, we then get τ(n1/rj) ≤ 1,
so n1 = rj . Thus, n ≤ 8 · 106, in contradiction with Lemma 14. Assume now that
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rj ∈ {13, 31}. Say rj = 13. In this case, 79 and 599 divide Q13 which divides Pn,
therefore 132 | (79− 1)(599− 1) | ϕ(Pn) = Pm. Thus, if there is some other prime
factor r′ of n1/13, then 13r′ | n1, and there is a primitive prime q of Q13r′ such that
q ≡ 1 (mod 13r′). In particular, 13 | q − 1. Thus, ν13(ϕ(Pn)) ≥ 3, showing that
133 | Pm. Hence, 13 | m, therefore 13 |M , a contradiction. A similar contradiction
is obtained if rj = 31 since Q31 has two primitive prime factors namely 424577
and 865087 so 31 |M . This finishes the proof.



Chapter 4

On The Equation ϕ(Xm − 1) = Xn − 1

In this chapter, we study all positive integer solutions (m,n) of the Diophantine
equation of the form ϕ(Xm − 1) = Xn − 1. In Section 4.2, we first present the
proof of the case when X = 5. In Section 4.3, we give the complete proof of the
equation from the title, which is the main result in [FL15a].

4.1 Introduction

As we mentioned in the Introduction, Problem 10626 from the American Math-
ematical Monthly [Lu97] asks to find all positive integer solutions (m,n) of the
Diophantine equation

ϕ(5m − 1) = 5n − 1. (4.1)

In [LM06], it was shown that if b ≥ 2 is a fixed integer, then the equation

ϕ

(
x
bm − 1

b− 1

)
= y

bn − 1

b− 1
x, y ∈ {1, . . . , b− 1} (4.2)

has only finitely many positive integer solutions (x, y,m, n). That is, there are
only finitely many repdigits in base b whose Euler function is also a repdigit in
base b. Taking b = 5, it follows that equation (4.1) should have only finitely many
positive integer solutions (m,n).

The main objective is to bound the value of k = m − n. Firstly, we make
explicit the arguments from [LM06] together with some specific features which
we deduce from the factorizations of Xk − 1 for small values of k.

In the process of bounding k, we use two analytic inequalities i.e., inequality
(3.9) and the approximation (iii) of Lemma 12.

4.2 On the Equation ϕ(5m − 1) = 5n − 1

In this section we show that the equation of the form ϕ(5m − 1) = 5n − 1 has no
positive integer solutions (m,n), where ϕ is the Euler function. Here we follow
[FLT15].

41
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Theorem 15. The Diophantine equation

φ(5m − 1) = 5n − 1. (4.3)

has no positive integer solution (m,n).

The proof of Theorem 15

For the proof, we make explicit the arguments from [LM06] together with some
specific features which we deduce from the factorizations of 5k−1 for small values
of k. Write

5m − 1 = 2αpα1
1 · · · pαrr . (4.4)

Thus,
φ(5m − 1) = 2α−1pα1−1

1 (p1 − 1) · · · pαr−1
r (pr − 1). (4.5)

We achieve the proof of Theorem 15 as a sequence of lemmas. The first one is
known but we give a proof of it for the convenience of the reader.

Lemma 18. In equation (4.3), m and n are not coprime.

Proof. Suppose that gcd(m,n) = 1. Assume first that n is odd. Then ν2(5n−1) = 2.
Applying the ν2 function in both sides of (4.5) and comparing it with (4.3), we get

(α− 1) + r ≤ (α− 1) +
r∑
i=1

ν2(pi − 1) = 2.

If m is even, then α ≥ 3, and the above inequality shows that α = 3, r = 0, so
5m − 1 = 8, false. Thus, m is odd, so α = 2 and r = 1. If α1 ≥ 2, then

pα1−1
1 | gcd(φ(5m − 1), 5m − 1) = gcd(5m − 1, 5n − 1) = 5gcd(m,n) − 1 = 4,

is a contradiction. So, α1 = 1, 5m − 1 = 4p1, and

5n − 1 = 2(p1 − 1) =
5m − 1

2
− 2 =

5m − 5

2
,

which is impossible. Thus, n is even and since gcd(m,n) = 1, it follows that m
is odd so α = 2. Furthermore, a previous argument shows that in (4.4) we have
α1 = · · · = αr = 1. Since m is odd, we have that 5 · (5(m−1)/2)2 ≡ 1 (mod pi),

therefore
(

5

pi

)
= 1 for i = 1, . . . , r. Hence, pi ≡ 1, 4 (mod 5). If pi ≡ 1 (mod 5),

it follows that 5 | φ(5m − 1) = 5n − 1, a contradiction. Hence, pi ≡ 4 (mod 5) for
i = 1, . . . , r. Reducing now relation (4.4) modulo 5, we get

4 ≡ 41+r (mod 5), therefore r ≡ 0 (mod 2).

Reducing now equation

2(p1 − 1) · · · (pr − 1) = φ(5m − 1) = 5n − 1
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modulo 5, we get

2 · (3r/2)2 ≡ 4 (mod 5), therefore
(

2

5

)
= 1,

a contradiction.

Lemma 19. If (m,n) satisfies equation (4.3), then m is not a multiple of any number d
such that p | 5d − 1 for some prime p ≡ 1 (mod 5).

Proof. This is clear, because if m is a multiple of a number d such that p | 5d − 1
for some prime p ≡ 1 (mod 5), then 5 | (p − 1) | φ(5d − 1) | φ(5m − 1) = 5n − 1,
which is false.

Since 29423041 is a prime dividing 532 − 1, it follows that ν2(m) ≤ 4. From
the Cunningham project tables [BLSTW02], we deduced that if q ≤ 512 is an odd
prime, then 5q − 1 has a prime factor p ≡ 1 (mod 5) except for
q ∈ {17, 41, 71, 103, 223, 257}. So, if q | m is odd, then

q ∈ Q := {17, 41, 71, 103, 223, 257} ∪ {q > 512}. (4.6)

Lemma 20. The following inequality holds:

log

(
log

(
5ke

3.6

))
< 20

∑
q|m

log log q

q
. (4.7)

Proof. Write

m = 2α0

s∏
i=1

qαii qi odd prime i = 1, . . . , s.

Recall that α0 ≤ 4. None of the values m = 1, 2, 4, 8, 16 satisfies equation (4.3) for
some n, so s ≥ 1. Put k = m−n. Note that k ≥ 2 becausem and n are not coprime
by Lemma 18. Then

5k <
5m − 1

5n − 1
=

5m − 1

φ(5m − 1)
=

∏
p|5m−1

(
1 +

1

p− 1

)
. (4.8)

For each prime number p 6= 5, we write z(p) for the order of appearance of p in
the Lucas sequence of general term 5n−1. That is, z(p) is the order of 5 modulo p.
Clearly, if p | 5m − 1, then z(p) = d for some divisor d of m. Thus, we can rewrite
inequality (4.8) as

5k <
∏
d|m

∏
z(p)=d

(
1 +

1

p− 1

)
. (4.9)

If p | m and z(p) is a power of 2, then z(p) | 16, therefore p | 516 − 1. Hence,

p ∈ P = {2, 3, 13, 17, 313, 11489}.

Thus, ∏
z(p)|16

(
1 +

1

p− 1

)
≤
∏
p∈P

(
1 +

1

p− 1

)
< 3.5. (4.10)
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Inserting (4.10) into (4.9), we get

5k

3.5
<

∏
d|m

P (d)>2

∏
z(p)=d

(
1 +

1

p− 1

)
. (4.11)

We take logarithms in inequality (4.11) above and use the inequality log(1+x) < x
valid for all real numbers x to get

log

(
5k

3.5

)
<
∑
d|m

P (d)>2

∑
z(p)=d

1

p− 1
.

If z(p) = d, then p ≡ 1 (mod d). If P (d) > 2, then since d | m, we get that every
odd prime factor of d is in Q. In particular, it is at least 17. Thus, p > 34. Hence,

log

(
5k

3.5

)
<
∑
d|m

P (d)>2

∑
z(p)=d

1

p
+
∑
p≥37

1

p(p− 1)
<
∑
d|m

P (d)>2

∑
z(p)=d

1

p
+ 0.007.

We thus get that

log

(
5k

3.6

)
<
∑
d|m

P (d)>2

Sd, (4.12)

where
Sd :=

∑
z(p)=d

1

p
. (4.13)

We need to bound Sd. For this, we first take

Pd = {p : z(p) = d}.

Put ωd := #Pd. Since p ≡ 1 (mod d) for all p ∈ Pd, we have that

(d+ 1)ωd ≤
∏
p∈Pd

p < 5d − 1 < 5d, therefore ωd <
d log 5

log(d+ 1)
. (4.14)

We now use inequality (3.9). Put Qd := {p < 4d : p ≡ 1 (mod d)}. Clearly,
Qd ⊂ {d + 1, 2d + 1, 3d + 1} and since d | m and 3 6∈ Q, it follows that d is not a
multiple of 3. In particular, one of d + 1 and 2d + 1 is a multiple of 3, so that at
most one of these two numbers can be a prime. We now split Sd as follows:

Sd ≤
∑
p<4d

p≡1 (mod d)

1

p
+

∑
4d≤p≤d2

p≡1 (mod d)

1

p
+
∑
p>d2

z(p)=d

1

p
:= T1 + T2 + T3. (4.15)

Clearly,

T1 =
∑
p∈Qd

1

p
. (4.16)
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For S2, we use estimate (3.9) and Abel’s summation formula to get

T2 ≤
π(x; d, 1)

x

∣∣∣d2
x=4d

+

∫ d2

4d

π(t; d, 1)

t2
dt

≤ 2d2

d2φ(d) log d
+

2

φ(d)

∫ d2

4d

dt

t log(t/d)

≤ 2

φ(d) log d
+

2

φ(d)
log log(t/d)

∣∣∣d2
t=4d

=
2 log log d

φ(d)
+

2

φ(d)

(
1

log d
− log log 4

)
.

The expression 1/ log d− log log 4 is negative for d ≥ 34, so

T2 <
2 log log d

φ(d)
for all d ≥ 34. (4.17)

Inequality (4.17) holds for d = 17 as well, since there

T2 < S17 =
1

409
+

1

466344409
< 0.003 < 0.13 <

2 log log 17

φ(17)
.

Hence, inequality (4.17) holds for all divisors d of m with P (d) > 2.
As for T3, we have by (4.14),

T3 <
ωd
d2

<
log 5

d log(d+ 1)
. (4.18)

Hence, collecting (4.16), (4.17) and (4.18), we obtain

Sd <
∑
p∈Qd

1

p
+

2 log log d

φ(d)
+

log 5

d log(d+ 1)
. (4.19)

We now show that
Sd <

3 log log d

φ(d)
. (4.20)

Since φ(d) < d and at most one of d+ 1 and 2d+ 1 is prime, we get, via (4.19), that

Sd <
1

d+ 1
+

1

3d+ 1
+

2 log log d

φ(d)
+

log 5

d log(d+ 1)

<
1

φ(d)

(
4

3
+ 2 log log d+

log 5

log(d+ 1)

)
.

So, in order to prove (4.20), it suffices that

4

3
+

log 5

log(d+ 1)
< 2 log log d, which holds for all d > 200.

The only possible divisors d of m with P (d) > 2 (so, whose odd prime factors are
in Q), and with d ≤ 200 are

R := {17, 34, 41, 68, 71, 82, 103, 136, 142, 164}. (4.21)
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We checked individually that for each of the values of d in R given by (4.21),
inequality (4.20) holds.

Now we write d = 2αdd1, where αd ∈ {0, 1, 2, 3, 4} and d1 is odd. Since d1 ≥
17 > 2αd , we have that d < d2

1. Hence, keeping d1 fixed and summing over αd, we
have that

4∑
αd=0

S2αdd1 < 3
4∑

αd=0

log(2 log d1)

φ(d1)

(
1 + 1 +

1

2
+

1

4
+

1

8

)
<

8.7 log(2 log d1)

φ(d1)
. (4.22)

Inserting inequalities (4.20) and (4.22) into (4.12), we get that

log

(
5k

3.6

)
<
∑
d1|m
d1>1
d1 odd

8.7 log(2 log d1)

φ(d1)
. (4.23)

The function
a 7→ 8.7 log(2 log a)

is sub–multiplicative when restricted to the set A = {a ≥ 17}. That is, the in-
equality

8.7 log(2 log(ab)) ≤ 8.7 log(2 log a) · 8.7 log(2 log b) holds if min{a, b} ≥ 17.

Indeed, to see why this is true, assume say that a ≤ b. Then log ab ≤ 2 log b, so it
is enough to show that

8.7 log 2 + 8.7 log(2 log b) ≤ 8− 7 log(2 log a) · 8.7 log(2 log b)

which is equivalent to

8.7 log(2 log b) (8.7 log(2 log a)− 1) > 8.7 log 2,

which is clear for min{a, b} ≥ 17. It thus follows that

∑
d1|m
d1>1
d1 odd

8.7 log(2 log d1)

φ(d1)
<
∏
q|m

(
1 +

∑
i≥1

8.7 log(2 log qi)

φ(qi)

)
− 1.

Inserting the above inequality into (4.23), taking logarithms and using the fact
that log(1 + x) < x for all real numbers x, we get

log

(
log

(
5ke

3.6

))
<
∑
q|m

∑
i≥1

8.7 log(2 log qi)

φ(qi)
. (4.24)

Next we show that∑
i≥1

8.7 log(2 log(qi))

φ(qi)
<

20 log log q

q
for q ∈ Q. (4.25)
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We check that it holds for q = 17. So, from now on, q ≥ 41. Since

log(2 log qi) = log(2i) + log log q < (1 + log i) + log log q ≤ i+ log log q,

we have that
∞∑
i=1

log(2 log(qi))

φ(qi)
<

∑
i≥1

i

qi−1(q − 1)
+ log log q

∑
i≥1

1

qi−1(q − 1)

=
q2

(q − 1)3
+ (log log q)

(
q

(q − 1)2

)
< (log log q)

(
q2

(q − 1)3
+

q

(q − 1)2

)
= (log log q)

(
2q2 − q
(q − 1)3

)
because log log q > 1. Thus, it suffices that

8.7

(
2q2 − q
(q − 1)3

)
<

20

q
, which holds for q ≥ 41.

Hence, (4.25) holds, therefore (4.24) implies

log

(
log

(
5ke

3.6

))
< 20

∑
q|m

log log q

q
, (4.26)

which is exactly (4.7). This finishes the proof of the lemma.

Lemma 21. If q < 104 and q | m, then q | n.

Proof. This is clear for q = 2, since then 24 | 52 − 1 | 5m − 1, therefore 8 = φ(24) |
φ(5m − 1) = 5n − 1, so n is even. Let now q be odd. Consider the number

5q − 1

4
= qβ11 · · · q

βl
l . (4.27)

Assume that l ≥ 2. Since qi ≡ 1 (mod q) for i = 1, . . . , l, we have that q2 |
(q1 − 1) · · · (ql − 1) | φ(5m − 1) = 5n − 1. Since q‖5q−1 − 1 for all odd q < 104, we
get that, q | n, as desired. So, it remains to show that l ≥ 2 in (4.27). We do this by
contradiction. Suppose that l = 1. Since q1 ≡ 4 (mod 5), reducing equation (4.27)
modulo 5 we get that

1 ≡ 4β1 (mod 5),

so β1 is even. Hence,
5n − 1

5− 1
= �.

However, the equation
xn − 1

x− 1
= �

for integers x > 1 and n > 2 has been solved by Ljunggren [Lj43] who showed
that the only possibilities are (x, n) = (3, 5), (7, 4). This contradiction shows that
l ≥ 2 and finishes the proof of this lemma.
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Remark 4.2.1. Apart from Ljunggren’s result, the above proof was based on the compu-
tational fact that if p < 104 is an odd prime, then p‖5p−1 − 1. In fact, the first prime
failing this test is q = 20771.

Lemma 22. We have k = 2.

Proof. We split the odd prime factors p of m in two subsets

U = {q | n} and V = {q - n}.

By Lemma 20, we have

log

(
log

(
5ke

3.6

))
≤ 20

(∑
q∈U

log log q

q
+
∑
p∈V

log log q

q

)
:= 20(T1 + T2). (4.28)

We first bound T2. By Lemma 21, if q ∈ V , then q > 104. In particular, q > 512.
Let t ≥ 9, and put It = [2t, 2t+1) ∩ V . Suppose that r1, . . . , ru are all the members
of It. By the Primitive Divisor Theorem, 5dru − 1 has a primitive prime factor for
all divisors d of r1 · · · ru−1, and this prime is congruent to 1 modulo ru. Since the
number r1 · · · ru−1 has 2u−1 divisors, we get that

2u−1 ≤ νru(φ(5m − 1)) = νru(5n − 1).

Since ru - n, we get that

2u−1 ≤ νru(5qu−1 − 1) <
log 5ru

log ru
=
ru log 5

log ru
<

2t+1 log 5

(t+ 1) log 2
.

The above inequality implies that u ≤ t − 1, otherwise for u ≥ t, we would get
that

2t−1 ≤ 2t+1 log 5

(t+ 1) log 2
, or 4 log 5 ≥ (t+ 1) log 2 ≥ 10 log 2,

a contradiction. This shows that #It ≤ t− 1 for all t ≥ 9. Hence,

20T2 ≤
∑
t≥9

20(t− 1) log log 2t

2t
< 1.4.

Hence, we get that

log

(
log

(
5ke

3.6

))
< 20

∑
q|gcd(m,k)

q>2

log log q

q
+ 1.4. (4.29)

We use (4.29) to bound k by better and better bounds. We start with

log

(
log

(
5ke

3.6

))
< 20(log log k)

∑
p|k
q>2

1

q

+ 1.4,
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which is implied by (4.29). Assume k ≥ 3. We have∑
p|k

1

p
<
∑
d|k

1

d
=
σ(k)

k
<

k

φ(k)
< 1.79 log log k +

2.5

log log k

where the last inequality above holds for all k ≥ 3, except for k = 223092870 by
Lemma 12 (iii). We thus get that

log k < log(k log 5 + 1− log(3.6)) < 20(log log k)2 + 51.4,

which gives log k < 1008. Since∑
17≤q≤1051

log q > 1008 > log k,

it follows that

T1 =
∑

q|gcd(m,k)
p>2

log log q

q
<

∑
17≤q≤1051

log log q

q
< 0.9.

Hence,

log

(
log

(
5ke

3.6

))
< 20× 0.9 + 1.4; hence k < 2× 108.

By (4.6), the first few possible odd prime factors of n are 17, 41, 71, 103 and 223.
Since

17× 41× 71× 103× 223 > 109 > k,

it follows that

T2 ≤
log log 17

17
+

log log 41

41
+

log log 71

71
+

log log 103

103
< 0.13.

Hence,

log

(
log

(
5ke

3.6

))
< 20× 0.13 + 1.4 = 4; hence k ≤ 34.

If follows that k can have at most one odd prime, so

T2 ≤
log log 17

17
< 0.07,

therefore

log

(
log

(
5ke

3.6

))
< 20× 0.07 + 1.4 = 2.8; hence k ≤ 11.

Thus, in fact k has no odd prime factor, giving that T2 = 0, so

log

(
log

(
5ke

3.6

))
< 1.4, therefore k ≤ 2.

Since by Lemma 18, m and n are not coprime, it follows that in fact k ≥ 2, so
k = 2.
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Lemma 23. We have k > 2.

Proof. Let q1 be the smallest prime factor of m which exists for if not n | 16, which
is not possible. Let q1, . . . , qs be all the prime factors of m. For each divisor d of
q2 · · · qs−1, the number 5dq1 − 1 has a primitive divisor which is congruent to 1
modulo q1. Since there are 2s−1 divisors of q2 · · · qs, we get that

2s−1 ≤ νq1(φ(5m − 1)) = νq1(5
n − 1)

Since q1 does not divide n (otherwise it would divide k = 2), we get that

2s−1 ≤ νq1
(
5q1−1 − 1

)
<

log 5q1

log q1

=
q1 log 5

log q1

< q1.

Hence,

s < 1 +
log q1

q1

.

Lemmas 20 and 23 now show that

log

(
log

(
52e

3.6

))
< 20

∑
q|m
q>2

log log q

q
<

20s log log q1

q1

< 20

(
1 +

log q1

log 2

)
log log q1

q1

.

This gives q1 < 300, so by Lemma 21, we have q1 | k, which finishes the proof of
this lemma.

Obviously, Lemma 22 and 23 contradict each other, which completes the proof
of the theorem.

4.3 On the Equation ϕ(Xm − 1) = Xn − 1

In this section, we prove that the equation of the form ϕ(Xm − 1) = Xn − 1 has
only finitely many integers solutions (m,n). Here we follow [FL15a].

Theorem 16. Each one of the two equations

ϕ(Xm − 1) = Xn − 1 and ϕ

(
Xm − 1

X − 1

)
=
Xn − 1

X − 1

has only finitely many positive integer solutions (X,m, n) with the exceptionm = n = 1
case in which any positive integer X leads to a solution of the second equation above.
Aside from the above mentioned exceptions, all solutions have X < ee

8000 .
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Proof of Theorem 16

Here we follow the same approach as for the proof of Theorem 15. Since most of
the details are similar, we only sketch the argument.

Since ϕ(N) ≤ N with equality only when N = 1, it follows easily that m ≥ n
and equality occurs only when m = n = 1, case in which only X = 2 leads to a
solution of the first equation while any positive integer X leads to a solution of
the second equation. From now on, we assume that m > n ≥ 1. The next lemma
gives an upper bound on k

2
logX .

Lemma 24. Assume that X > e1000. Then the following inequality holds:

k

2
logX < 8

∑
d|m
d≥5

log log d

ϕ(d)
. (4.30)

Proof. Observe that either one of the two equations leads to

Xk <
Xm − 1

Xn − 1
≤ Xm − 1

ϕ(Xm − 1)
=

∏
p|Xm−1

(
1 +

1

p− 1

)
. (4.31)

Following the argument from Lemma 20, we get that

Xk <
∏
d|m

∏
z(p)=d

(
1 +

1

p− 1

)
. (4.32)

Note also that X is odd, since if X is even, then both numbers Xn − 1 and (Xn −
1)/(X − 1) = Xn−1 + · · · + X + 1 are odd, and the only positive integers N such
that ϕ(N) is odd are N = 1, 2. However, none of the equations Xm − 1 = 1, 2 or
(Xm − 1)/(X − 1) = 1, 2 has any positive integer solutions X and m > 1. In the
right–hand side of (4.32), we separate the cases d ∈ {1, 2, 3, 4}. Note that since X
is odd, it follows that∏

z(p)≤4

p ≤ 1

8
(X4 − 1)(X2 +X + 1) < X6. (4.33)

For x ≥ 3, put

L(x) := 1.79 log log x+
2.5

log log x
. (4.34)

Lemma 12(iii) together with inequality (4.33) show that∏
z(p)≤4

(
1 +

1

p− 1

)
≤ L(X6). (4.35)

We take logarithms in (4.32) use (4.35) as well as the inequality log(1 + x) < x
valid for all real numbers x to get

k logX < logL(X6) +
∑
d|m
d≥5

∑
z(p)=d

1

p− 1
.



52 4.3. On the Equation ϕ(Xm − 1) = Xn − 1

If z(p) = d, then p ≡ 1 (mod d). Thus, p ≥ 7 for d ≥ 5. Hence,

k logX < logL(X6) +
∑
d|m
d≥5

∑
z(p)=d

1

p
+
∑
p≥7

1

p(p− 1)

< logL(X6) + 0.06 +
∑
d|m
d≥5

∑
z(p)=d

1

p

= logL(X6) + 0.06 +
∑
d|m
d≥5

Sd. (4.36)

We now proceed to bound Sd. Letting for a divisor d of m the notation Pd stand
for the set of primitive prime factors of Xm − 1, the argument from the proof of
Lemma 20 gives

Sd ≤
∑
p∈Qd

1

p
+

∑
4d≤p≤d2 logX
p≡1 (mod d)

z(p)=d

1

p
+

∑
p>d2 logX
z(p)=d

1

p
:= T1 + T2 + T3. (4.37)

For T2, we use estimate (3.9) and Abel’s summation formula as in the upper
bound of inequality (4.17) to get

T2 ≤
π(x; d, 1)

x

∣∣∣d2 logX

x=4d
+

∫ d2 logX

4d

π(t; d, 1)

t2
dt

≤ 2d2

d2ϕ(d) log(d logX)
+

2

ϕ(d)

∫ d2 logX

4d

dt

t log(t/d)

≤ 2

ϕ(d) log(d logX)
+

2

ϕ(d)
log log(t/d)

∣∣∣d2 logX

t=4d

=
2 log log(d logX)

ϕ(d)
+

2

ϕ(d)

(
1

log(d logX)
− log log 4

)
.

The expression 1/ log(d logX)− log log 4 is negative for d ≥ 5 and X > e1000, so

T2 <
2 log log(d logX)

ϕ(d)
for all d ≥ 5. (4.38)

For T3, we have that

T3 <
ωd

d2 logX
<

1

d log(d+ 1)
. (4.39)

Hence, collecting (4.16), (4.38) and (4.39), we get that

Sd <
∑
p∈Qd

1

p
+

1

d log(d+ 1)
+

2 log log(d logX)

ϕ(d)
. (4.40)

We show that

Sd <

{
4 log log d
ϕ(d)

if logX ≤ d.
4 log log d
ϕ(d)

+ 2 log log(logX)2

ϕ(d)
if 5 ≤ d < logX.

(4.41)
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We first deal with the range when d ≥ logX . In this case, by (4.40), using the fact
that logX ≤ d, so

log log(d logX) ≤ log log d2 = log 2 + log log d,

as well as the fact that∑
p∈Qd

1

p
≤ 1

d+ 1
+

1

2d+ 1
+

1

3d+ 1
<

11

6d
, (4.42)

we have

Sd <
log log d

ϕ(d)

(
11ϕ(d)

6d log log d
+

ϕ(d)

d log(d+ 1) log log d
+ 2 +

2 log 2

log log d

)
,

and the factor in parenthesis in the right–hand side above is smaller than 4 since
d ≥ logX > 1000 and ϕ(d)/d < 1. Assume now that 5 ≤ d < logX . Then using
(4.40), we get that

Sd ≤
∑
p∈Qd

1

p
+

1

d log(d+ 1)
+

2 log log(logX)2

ϕ(d)
.

It remains to check that the sum of the first two terms in the right above is at most
4(log log d)/ϕ(d). Using the fact that the first term is at most 11/(6d) (see (4.42)),
we get that it suffices that

11

6d
+

1

d log(d+ 1)
≤ 4 log log d

ϕ(d)
,

which is equivalent to

11ϕ(d)

6d
+

ϕ(d)

d log(d+ 1)
≤ 4 log log d.

Since ϕ(d)/d < 1, for d ≥ 7 the left-hand side above is smaller than the number
11/6 + 1/ log 8 < 2.4, while the right–hand side is larger than 4 log log 7 > 2.6, so
the above inequality holds for d ≥ 7. Once checks that it also holds for d = 6
(because ϕ(6) = 2), while for d = 5, the only prime in Q5 is 11 and

1

11
+

1

5 log 6
<

4 log log 5

ϕ(5)
,

so the desired inequality holds for d = 5 as well. This proves (4.41).
Inserting (4.41) into (4.36), we get

k logX < logL(X6) + 0.06 + 2 log log(logX)2
∑

5≤d<logX

1

ϕ(d)
+
∑
d|m
d≥5

4 log log d

ϕ(d)
.

For the first sum above, we use Lemma 12(iii) to conclude that

d

ϕ(d)
≤ L(d) ≤ L(logX),
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therefore ∑
5≤d<logX

1

ϕ(d)
< L(logX)

∑
5≤d<logX

1

d
< L(logX)

∫ logX

4

dt

t

= L(logX)(log logX − log log 4).

Thus, putting

M(x) := logL(x6) + 0.06 + 2 log log(log x)2L(log x)(log log x− log log 4),

we get that

k logX < M(X) +
∑
d|m
d≥5

4 log log d

ϕ(d)
. (4.43)

One checks that if logX > 150 (which is our case), then

M(X) < 0.5 logX.

Since k ≥ 1, we have k − 0.5 ≥ k/2, therefore inequality (4.43) implies that

k

2
logX < 8

∑
d|m
d≥5

log log d

ϕ(d)
,

which is the required result.

Lemma 25. Assume X > e1000. We have

log (k logX) ≤ 60
∑
q|m
q≥5

log log q

q
+ 25.

Proof. Lemma 24 implies that

k logX <
∑
d|m
d≥5

10 log(2 log d)

ϕ(d)
. (4.44)

Following the argument in the proof of Lemma 20, one get that

∑
d|m
d≥5

10 log(2 log d)

ϕ(d)
<
∏
q|m

(
1 +

∑
i≥1

10 log(2 log qi)

ϕ(qi)

)
− 1.

Inserting the above inequality into (4.44), taking logarithms and using the fact
that log(1 + x) < x for all real numbers x, we get

log (k logX) <
∑
q|m

∑
i≥1

10 log(2 log qi)

ϕ(qi)
. (4.45)
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Next, ∑
i≥1

q∈{2,3}

10 log(2 log(qi))

ϕ(qi)
< 25. (4.46)

Hence, the inequality (4.25) becomes∑
i≥1

10 log(2 log(qi))

ϕ(qi)
<

60 log log q

q
for q ≥ 5. (4.47)

The desired inequality follows now from (4.46) and (4.47).

Lemma 26. We have X < ee
8000 .

Proof. By Lemma 25, we have

log (k logX) < 25 + 60

(∑
q∈U

log log q

q
+
∑
p∈V

log log q

q

)
:= 25 + 60(T1 + T2). (4.48)

Clearly, if q participates in T1, then q ≥ 5 divides both m and n, so it is an odd
prime factor of k.

We next bound T2 and we shall return to T1 later. Following the argument in
the proof of Lemma 21, we get that

60T2 ≤ 60
∑

5≤q<1024

log log q

q
+ 60

∑
t≥10

(t+ (log logX)/ log 2) log log 2t

2t
.

Since

60
∑

5≤q<1024

log log q

q
< 96.74,

60
∑
t≥10

t log log 2t

2t
< 2.63,

60
∑
t≥10

log log 2t

2t log 2
< 0.35,

we get that
60T2 < 100 + 0.35 log logX.

Hence, we get from (4.48), that

log (k logX) ≤ 60

 ∑
q|gcd(m,k)

q≥5

log log q

q

+ 0.35 log logX + 125, (4.49)

therefore

log logX <
1

0.65
(60T1 − log k + 125) < 100 log log k − 1.5 log k + 200. (4.50)
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If k ∈ {1, 2}, then T1 = 0, so log logX < 200, or X < ee
200 .

Suppose now that k ≥ 3. Then

T1 ≤ log log k
∑
q|k

1

q
,

which together with (4.50) gives

log logX < 100 log log k
∑
q|k

1

q
− 1.5 log k + 200.

However, ∑
q|k

1

q
<
∑
d|k

1

d
=
σ(k)

k
<

k

ϕ(k)
< L(k),

by Lemma 12(iii). We thus get that

log logX < 179(log log k)2 − 1.5 log k + 450.

Note that
179(log log k)2 − 1.5 log k + 450 = N(log log k),

where N(x) := 179x2 − 1.5ex + 450. The function N(x) has a maximum at x0 =
7.48843 . . ., and N(x0) < 8000, therefore

log logX < 8000,

giving X < ee
8000 , as desired.

Remark 4.3.1. A close analysis of our argument shows that X < ee
8000 is in fact an

upper bound for all positive integers X arising from equations of the form

ϕ

(
x
Xm − 1

X − 1

)
= y

Xn − 1

X − 1
x, y ∈ {1, 2, . . . , X},

assuming that m ≥ n + 2. Since m ≥ n must hold in the above equation, in order to
infer whether equation (4.2) has only finitely or infinitely many solutions when b ≥ 2 is
a variable as well, it remains to only treat the cases m = n and m = n+ 1. We leave the
analysis of these cases as a future project.



Chapter 5

Repdigits and Lucas sequences

5.1 Introduction

In this chapter, we are interested in finding all Repdigits among members of some
Lucas sequences. In Section 5.2, we study members of the Lucas sequence {Ln}n≥0

whose Euler function is a repdigit. In Section 5.4, we find all the repdigits which
are members of Pell or Pell-Lucas sequences. The main tools used to prove the re-
sults in this chapter are linear forms in logarithm à la Baker (Matveev Theorem),
the Baker-Davenport reduction algorithm and the Primitive Divisor Theorem for
members of Lucas sequences.

5.2 Repdigits as Euler functions of Lucas numbers

We prove in this section some results about the structure of all Lucas numbers
whose Euler function is a repdigit in base 10. For example, we show that if Ln is
such a Lucas number, then n < 10111 is of the form p or p2, where p3 | 10p−1 − 1.
We follow the material from [JBLT15].

As mentioned in the Introduction, here we look at the Diophantine equation

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9}. (5.1)

We have the following result.

Theorem 17. Assume that n > 6 is such that equation (5.1) holds with some d. Then:

• d = 8;

• m is even;

• n = p or p2, where p3 | 10p−1 − 1.

• 109 < p < 10111.

57
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5.3 The proof of Theorem 17

5.3.1 Method of the proof

The main method for solving the Diophantine equation (5.1) consists essentially
of three parts: a transformation step, an application of the theory of linear forms
in logarithms of algebraic numbers, and a procedure for reducing upper bounds.

Firstly, we transform the equation (5.1) into a purely exponential equation or
inequality, i.e., a Diophantine equation or inequality where the unknowns are in
the exponents.

Secondly, a straightforward use of the theory of linear form in logarithms
gives a very large bound on n, which has been explicitly computed by using
Matveev’s theorem [Ma00].

Thirdly, we use a Diophantine approximation algorithm, so-called the Baker-
Davenport reduction method to reduce the bounds.

The exponent of 2 on both sides of (5.1)

Write
Ln = 2δpα1

1 · · · pαrr , (5.2)

where δ ≥ 0, r ≥ 0, p1 < . . . < pr odd primes and αi ≥ 0 for all i = 1, . . . , r. Then

ϕ(Ln) = 2max{0,δ−1}pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαr−1
r (pr − 1). (5.3)

Applying the ν2 function on both sides of (5.1) and using (5.3), we get

max{0, δ − 1}+
r∑
i=1

ν2(pi − 1) = ν2(ϕ(Ln)) = ν2

(
d

(
10m − 1

9

))
= ν2(d). (5.4)

Note that ν2(d) ∈ {0, 1, 2, 3}. Note also that r ≤ 3 and since Ln is never a multiple
of 5, we have that

ϕ(Ln)

Ln
≥
(

1− 1

2

)(
1− 1

3

)(
1− 1

7

)
>

1

4
, (5.5)

so ϕ(Ln) > Ln/4. This shows that if n ≥ 8 satisfies equation (5.1), then ϕ(Ln) >
L8/4 > 10, so m ≥ 2.

We will also use in the later stages of this section the Binet formula (2.4) with
(α1, α2) := (α, β) = ((1 +

√
5)/2, (1−

√
5)/2). In particular,

Ln − 1 = αn − (1− βn) ≤ αn for all n ≥ 0. (5.6)

Furthermore,
αn−1 ≤ Ln < αn+1 for all n ≥ 1. (5.7)
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5.3.2 The case of the digit d 6∈ {4, 8}

If ν2(d) = 0, we get that d ∈ {1, 3, 5, 7, 9}, ϕ(Ln) is odd, so Ln ∈ {1, 2}, therefore
n = 0, 1. If ν2(d) = 1, we get d ∈ {2, 6}, and from (5.4) either δ = 2 and r = 0, so
Ln = 4, therefore n = 3, or δ ∈ {0, 1}, r = 1 and p1 ≡ 3 (mod 4). Thus, Ln = pα1

1

or Ln = 2pα1
1 . Lemma 3 shows that α1 = 1 except for the case when n = 6 when

L6 = 2 × 32. So, for n 6= 6, we get that Ln = p1 or 2p1. Let us see that the second
case is not possible. Assuming it is, we get 6 | n. Write n = 2t × 3 × m, where
t ≥ 1 and m is odd. Clearly, n 6= 6.

If m > 1, then L2t3m has a primitive divisor which does not divide the number
L2t3. Hence, Ln = 2p1 is not possible in this case. However, if m = 1 then t > 1,
and both L2t and L2t3 have primitive divisors, so the equation Ln = 2p1 is not
possible in this case either. So, the only possible case is Ln = p1. Thus, we get

ϕ(Ln) = Ln − 1 = d

(
10m − 1

9

)
and d ∈ {2, 6},

so

Ln = d

(
10m − 1

9

)
+ 1 and d ∈ {2, 6}.

When d = 2, we get Ln ≡ 3 (mod 5). For the Lucas sequence {Ln}n≥0, the value
of the period modulo 5 is 4 . Furthermore, from Ln ≡ 3 (mod 5), we get that
n ≡ 2 (mod 4). Thus, n = 2(2k + 1) for some k ≥ 0. However, this is not possible
for k ≥ 1, since for k = 1, we get that n = 6 and L6 = 2 × 32, while for k > 1, we
have that Ln is divisible by both the primes 3 and at least another prime, namely
a primitive prime factor of Ln, so Ln = p1 is not possible. Thus, k = 0, so n = 2.

When d = 6, we get that Ln ≡ 2 (mod 5). This shows that 4 | n. Write
n = 2t(2k + 1) for some t ≥ 2 and k ≥ 0. As before, if k ≥ 1, then Ln cannot be a
prime since either k = 1, so 3 | n, and then Ln > 2 is even, or k ≥ 2, and then Ln is
divisible by at least two primes, namely the primitive prime factors of L2t and of
Ln. Thus, n = 2t. Assuming m ≥ 2, and reducing both sides of the above formula

L2
2t−1 − 2 = L2t = 6

(
10m − 1

9

)
+ 1

modulo 8, we get 7 ≡ −5 (mod 8), which is not possible. This shows that m = 1,
so t = 2, therefore n = 4.

To summarize, we have proved the following result.

Lemma 27. The equation

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9},

has no solutions with n > 6 if d 6∈ {4, 8}.
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5.3.3 The case of Ln even

Next we treat the case δ > 0. It is well-known and easy to see by looking at the
period of {Ln}n≥0 modulo 8 that 8 - Ln for any n. Hence, we only need to deal
with the cases δ = 1 or 2.

If δ = 2, then 3 | n and n is odd. Furthermore, relation (5.4) shows that r ≤ 2.
Assume first that n = 3t. We check that t = 2, 3 are not convenient. For t ≥ 4,
we have L9, L27 and L81 are divisors of Ln and all have odd primitive divisors
which are prime factors of Ln, contradicting the fact that r ≤ 2. Assume now
that n is a multiple of some prime p ≥ 5. Then Lp and L3p already have primitive
prime factors, so n = 3p, for if not, then n > 3p, and Ln would have (at least)
one additional prime factor, namely a primitive prime factor of Ln. Thus, n = 3p.
Write

Ln = L3p = Lp(L
2
p + 3).

The two factors above are coprime, so, up to relabeling the prime factors of Ln,
we may assume that Lp = pα1

1 and L2
p + 3 = 4pα2

2 . Lemma 3 shows that α1 = 1.
Further, since p is odd, we get thatLp ≡ 1, 4 (mod 5), therefore the second relation
above implies that pα2

2 ≡ 1 (mod 5). If α2 is odd, we then get that p2 ≡ 1 (mod 5).
This leads to 5 | (p2 − 1) | ϕ(Ln) = d(10m − 1)/9 with d ∈ {4, 8}, which is a
contradiction. Thus, α2 is even, showing that

L2
p + 3 = �,

which is impossible.
If δ = 1, then 6 | n. Assume first that p | n for some prime p > 3. Write

n = 2t × 3 × m. If t ≥ 2, then r ≥ 4, since Ln is then a multiple of a primitive
prime factor of L2t , a primitive prime factor of L2t3, a primitive prime factor of
L2tp and a primitive prime factor of L2t3p. So, t = 1. Then Ln is a multiple of 3
and of the primitive prime factors of L2p and L6p, showing that n = 6p, for if not,
then n > 6p and Ln would have (at least) an additional prime factor, namely a
primitive prime factor of Ln. Thus, with n = 6p, we may write

Ln = L6p = L2p(L
2
2p − 3).

Further, it is easy to see that up to relabeling the prime factors of Ln, we may
assume that p1 = 3, α1 = 2, L2p = 3pα2

2 and L2
2p − 3 = 6pα3

3 . Furthermore, since
r = 3, relation (5.4) tells us that pi ≡ 3 (mod 4) for i = 2, 3. Reducing equation

L2
p + 2 = L2p = 3pα2

2

modulo 4 we get 3 ≡ 3α2+1 (mod 4), so α2 is even. We thus get L2p = 3�, an
equation which has no solutions by Lemma 3.

So, it remains to assume that n = 2t × 3s.
Assume s ≥ 2. If also t ≥ 2, then Ln is divisible by the primitive prime factors

of L2t , L2t3 and L2t9. This shows that n = 2t × 9 and we have

Ln = L2t9 = L2t(L
2
2t − 3)(L2

2t3 − 3).
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Up to relabeling the prime factors of Ln, we get L2t = pα1
1 , L2

2t−3 = 2pα2
2 , L2

2t3−3 =
pα3

3 and pi ≡ 3 (mod 4) for i = 1, 2, 3. Reducing the last relation modulo 4, we get
1 ≡ 3α3 (mod 4), so α3 is even. We thus get L2

2t3 − 3 = �, and this is false. Thus,
t = 1. By the existence of primitive divisors Lemma 8, s ∈ {2, 3}, so n ∈ {18, 54}
and none leads to a solution.

Assume next that s = 1. Then n = 2t × 3 and t ≥ 2. We write

Ln = L2t3 = L2t(L
2
2t − 3).

Assume first that there exist i such that pi ≡ 1 (mod 4). Then r ≤ 2 by (5.4). It
then follows that in fact r = 2 and up to relabeling the primes we have L2t = pα1

1

and L2
2t − 3 = 2pα2

2 . Since L2t = L2
2t−1 − 2, we get that L2

2t−1 − 2 = pα1
1 , which

reduced modulo 4 gives 3 ≡ pα1
1 (mod 4), therefore p1 ≡ 3 (mod 4). As for the

second relation, we get (L2
2t − 3)/2 = pα2

2 , which reduced modulo 4 also gives
3 ≡ pα2

2 (mod 4), so also 3 ≡ p2 (mod 4). This is impossible since pi ≡ 1 (mod 4)
for some i ∈ {1, . . . , r}. Thus, pi ≡ 3 (mod 4) for all i ∈ {1, . . . , r}. Reducing
relation

L2
2t3 − 5F 2

2t3 = 4

modulo pi, we get that
(
−5

pi

)
= −1, and since pi ≡ 3 (mod 4), we get that

(
5

pi

)
= −1

for i ∈ {1, . . . , r}. Since pi are also primitive prime factors for L2t and/or L2t3, re-
spectively, we get that pi ≡ −1 (mod 2t).

Suppose next that r = 2. We then get d = 4,

L2
2t−1 − 2 = L2t = pα1

1 and L2
2t − 3 = 2pα2

2 .

Reducing the above relations modulo 8, we get that α1, α2 are odd. Thus,

4

(
10m − 1

9

)
= ϕ(Ln) = pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1)

≡ (−1)α1−1(−2)(−1)α2−1(−2) (mod 2t) ≡ 4 (mod 2t),

giving

10m − 1

9
≡ 1 (mod 2t−2) therefore 10m ≡ 10 (mod 2t−2),

so t ≤ 3 for m ≥ 2. Thus, n ∈ {12, 24}, in these cases equation (5.1) has no
solutions.

Assume next that r = 3. We then get that d = 8 and either

L2
2t−1 − 2 = L2t = pα1

1 p
α2
2 and L2

2t − 3 = 2pα3
3 ,

or
L2

2t−1 − 2 = L2t = pα1
1 and L2

2t − 3 = 2pα2
2 p

α3
3 .

Reducing the above relations modulo 8 as we did before, we get that exactly one
of α1, α2, α3 is even and the other two are odd. Then

8

(
10m − 1

9

)
= ϕ(Ln) = pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1)pα3−1

3 (p3 − 1)

≡ (−1)α1+α2+α3−3(−2)3 (mod 2t) ≡ 8 (mod 2t)
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giving

10m − 1

9
≡ 1 (mod 2max{0,t−3}) therefore 10m ≡ 10 (mod 2max{0,t−3}),

which implies that t ≤ 4 for m ≥ 2. The only new possibility is n = 48, which
does not fulfill (5.1).

So, we proved the following result.

Lemma 28. There is no n > 6 with Ln even such that the relation

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9},

holds.

5.3.4 The case of n even

Next we look at the solutions of (5.1) with n even. Write n = 2tm, where t ≥ 1, m
is odd and coprime to 3.

Assume first that there exists an i such that pi ≡ 1 (mod 4). Without loss of
generality we assume that p1 ≡ 1 (mod 4). It then follows from (5.4) that r ≤ 2,
and that r = 1 if d = 4. So, if d = 4, then r = 1, Ln = pα1

1 , and by Lemma 3, we get
that α1 = 1. In this case, by the existence of primitive divisors Lemma 8, we get
that m = 1, otherwise Ln would be divisible both by a primitive prime factor of
L2t as well as by a primitive prime factor of Ln. Hence, L2t = p1, so

L2t − 1 = ϕ(L2t) = 4

(
10m − 1

9

)
, therefore L2t ≡ 5 (mod 10).

Thus, 5 | Ln and this is not possible for any n. Suppose now that d = 8. If t ≥ 2,
then

L2
n/2 − 2 = Ln

and reducing the above relation modulo p1, we get that
(

2

p1

)
= 1. Since p1 ≡ 1

(mod 4), we read that p1 ≡ 1 (mod 8). Relation (5.4) shows that r = 1 so Ln = pα1
1 .

By Lemma 3, we get again that α1 = 1 and by the existence of primitive divisors
Lemma 8, we get that m = 1. Thus,

L2t − 1 = ϕ(L2t) = 8

(
10m − 1

9

)
, therefore L2t ≡ 4 (mod 5),

which is impossible for t ≥ 2, since Ln ≡ 2 (mod 5) whenever n is a multiple of
4. This shows that t = 1, so m > 1. Let p ≥ 5 be a prime factor of n. Then Ln
is divisible by 3 and by the primitive prime factor of L2p, and since r ≤ 2, we
get that r = 2, and n = 2p. Thus, Ln = L2p = 3pα2

2 , and, by Lemma 3, we get
that α2 = 1. Reducing the above relation modulo 5, we get that 3 ≡ 3p2 (mod 5),
so p2 ≡ 1 (mod 5), showing that 5 | (p2 − 1) | ϕ(Ln) = 8(10m − 1)/9, which is
impossible.
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This shows that in fact we have pi ≡ 3 (mod 4) for i = 1, . . . , r. Reducing

relation L2
n − 5F 2

n = 4 modulo pi, we get that
(
−5

pi

)
= 1 for i = 1, . . . , r. Since we

already know that
(
−1

pi

)
= −1, we get that

(
5

pi

)
= −1 for all i = 1, . . . , r. Since

in fact pi is always a primitive divisor for L2tdi for some divisor di of m, we get
that pi ≡ −1 (mod 2t). Reducing relation

Ln = pα1
1 · · · pαrr

modulo 4, we get 3 ≡ 3α1+···+αr (mod 4), therefore α1 + · · · + αr is odd. Next,
reducing the relation

ϕ(Ln) = pα1−1
1 (p1 − 1) · · · pαr−1

r (pr − 1)

modulo 2t, we get

d

(
10m − 1

9

)
= ϕ(Ln) ≡ (−1)α1+···+αr−r(−2)r (mod 2t) ≡ −2r (mod 2t).

Since r ∈ {2, 3} and d = 2r, we get that

10m − 1

9
≡ −1 (mod 2max{0,t−r}), so 10m ≡ 8 (mod 2max{0,t−r}).

Thus, if m ≥ 4, then t ≤ 6. Suppose that m ≥ 4. Computing L2t for t ∈ {5, 6}, we
get that p ≡ 1 (mod 5) for each prime factor p of them. Thus, 5 | (p− 1) | ϕ(Ln) =
d(10m − 1)/9, which is impossible. Hence, t ∈ {1, 2, 3, 4}. We get the relations

L2tm = L2tp
α1
1 , or L2tm = L2tp

α2
2 p

α3
3 and t ∈ {1, 2, 3, 4}. (5.8)

Assume that the first relation in (5.8) holds for some t ∈ {1, 2, 3, 4}. Reducing the
first equation in (5.8) modulo 5, we get L2t ≡ L2tp

α1
1 (mod 5), therefore pα1

1 ≡ 1
(mod 5). If α1 is odd, we then obtain p1 ≡ 1 (mod 5); hence, 5 | (p1 − 1) | ϕ(Ln) =
d(10m − 1)/9 with d ∈ {4, 8}, which is impossible. If α1 is even, we then get that
Ln/L2t = pα1

1 = �, and this is impossible since n 6= 2t × 3 by Lemma 4. Assume
now that the second relation in (5.8) holds for some t ∈ {2, 3, 4}. Reducing it
modulo 5, we get L2t ≡ L2tp

α2
2 p

α3
3 (mod 5). Hence, pα2

2 p
α3
3 ≡ 1 (mod 5). Now

8

(
10m − 1

9

)
= ϕ(Ln) = (L2t − 1)pα2−1

2 pα3−1
3 (p2 − 1)(p3 − 1)

≡
(
p2 − 1

p2

)(
p3 − 1

p3

)
(mod 5),

so (
p2 − 1

p2

)(
p3 − 1

p3

)
≡ 3 (mod 5).

The above relation shows that p2 and p3 are distinct modulo 5, because otherwise
the left–hand side above is a quadratic residue modulo 5 while 3 is not a quadratic
residue modulo 5. Thus, {p2, p3} ≡ {2, 3} (mod 5), and we get(

2− 1

2

)(
3− 1

3

)
≡ 3 (mod 5) or 1 ≡ 32 (mod 5),
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a contradiction. Finally, assume that t = 1 and that the right relation (5.8) holds.
Reducing it modulo 4, we get 3 ≡ 3α2+α3 (mod 4), therefore α2 + α3 is even. If
α2 is even, then so is α3, so we get that L2m = 3�, which is false by Lemma 4.
Hence, α2 and α3 are both odd. Furthermore, since m is odd and not a multiple
of 3, we get that 2m ≡ 2 (mod 4) and 2m ≡ 2, 4 (mod 6), giving 2m ≡ 2, 10
(mod 12). Looking at the values of {Ln}n≥1 modulo 8, we see that the period is
12, and L2 ≡ L10 ≡ 3 (mod 8), showing that L2m ≡ 3 (mod 8). This shows that
pα2

2 p
α3
3 ≡ 1 (mod 8), and since α2 and α3 are odd, we get the congruence p2p3 ≡ 1

(mod 8). This together with the fact that pi ≡ 3 (mod 4) for i = 1, 2, implies that
p2 ≡ p3 (mod 8). Thus, (p2 − 1)/2 and (p3 − 1)/2 are congruent modulo 4 so their
product is 1 modulo 4. Now we write

ϕ(Ln) = (3− 1)(p2 − 1)pα2−1
2 (p3 − 1)pα3−1

3

= 8
(p2 − 1)

2

(p3 − 1)

2
pα2−1

2 pα3−1
3 = 8M,

where M ≡ 1 (mod 4). However, since in fact M = (10m − 1)/9, we get that
M ≡ 3 (mod 4) for m ≥ 2, a contradiction. So, we must have m ≤ 3, therefore
Ln < 4000, so n ≤ 17, and such values can be dealt with by hand.

Thus, we have proved the following result.

Lemma 29. There is no n > 6 even such that relation

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9},

holds.

5.3.5 r = 3, d = 8 and m is even

From now on, n > 6 is odd and Ln is also odd. If p | Ln, with p a prime number,

therefore reducing the equation L2
n − 5F 2

n = −4 modulo p we get that
(

5

p

)
= 1.

Thus, p ≡ 1, 4 (mod 5). If p ≡ 1 (mod 5), then 5 | (p − 1) | ϕ(Ln) = d(10m − 1)/9
with d ∈ {4, 8}, a contradiction. Thus, pi ≡ 4 (mod 5) for all i = 1, . . . , r.

We next show that pi ≡ 3 (mod 4) for all i = 1, . . . , r. Assume that this is not
so and suppose that p1 ≡ 1 (mod 4). If r = 1, then Ln = pα1

1 and by Lemma 3, we
have α1 = 1. So,

Ln − 1 = ϕ(Ln) = d

(
10m − 1

9

)
so Ln = d

(
10m − 1

9

)
+ 1.

If d = 4, then Ln ≡ 5 (mod 10), so 5 | Ln, which is false. When d = 8, we get that
n ≡ 3 (mod 4) following the fact that Ln ≡ 4 (mod 5). However, we also have
that Ln ≡ 1 (mod 8), showing that n ≡ 1 (mod 12); in particular, n ≡ 1 (mod 4),
a contradiction.

Assume now that r = 2. Then Ln = pα1
1 p

α2
2 and d = 8. Then

ϕ(Ln) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 = 8

(
10m − 1

9

)
. (5.9)
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Reducing the above relation (5.9) modulo 5 we get 4α1+α2−2 × 32 ≡ 3 (mod 5),
which is impossible since the left–hand side is a quadratic residue modulo 5 while
the right–hand side is not.

Thus, pi ≡ 3 (mod 4) for i = 1, . . . , r. Assume next that r = 2. Then Ln =
pα1

1 p
α2
2 and d = 4. Then

ϕ(Ln) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 = 4
10m − 1

9
. (5.10)

Reducing the above relation (5.10) modulo 5, we get 4α1+α2−2 × 32 ≡ 4 (mod 5),
therefore 4α1+α2−2 ≡ 1 (mod 5). Thus, α1 + α2 is even. If α1 is even, so is α2, so
Ln = �, and this is false by Lemma 3. Hence, α2 and α3 are both odd. It now
follows that Ln ≡ 3α1+α2 (mod 4), so Ln ≡ 1 (mod 4), therefore n ≡ 1 (mod 6),
and also Ln ≡ 4α1+α2 (mod 5), so Ln ≡ 1 (mod 5), showing that n ≡ 1 (mod 4).
Hence, n ≡ 1 (mod 12), showing that Ln ≡ 1 (mod 8). Thus, pα1

1 p
α2
2 ≡ 1 (mod 8),

and since α1 and α2 are odd and pα1−1
1 and pα2−1

2 are congruent to 1 modulo 8 (as
perfect squares), we therefore get that p1p2 ≡ 1 (mod 8). Since also p1 ≡ p2 ≡ 3
(mod 4), we get that in fact p1 ≡ p2 (mod 8). Thus, (p1 − 1)/2 and (p2 − 1)/2 are
congruent modulo 4 so their product is 1 modulo 4. Thus,

ϕ(Ln) = 4

(
(p1 − 1)

2

(p2 − 1)

2

)
pα1−1

1 pα2−1
2 = 4M,

where M ≡ 1 (mod 4). Since in fact we have M = (10m− 1)/9, we get that M ≡ 3
(mod 4) for m ≥ 2, a contradiction.

Thus, r = 3 and d = 8. To get that m is even, we write Ln = pα1
1 p

α2
2 p

α3
3 . So,

ϕ(Ln) = (p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 (p3 − 1)pα3−1
3 = 8

(
10m − 1

9

)
, (5.11)

Reducing equation (5.11) modulo 5 we get 4α1+α2+α3−3 × 33 ≡ 3 (mod 5), giving
4α1+α2+α3 ≡ 1 (mod 5). Hence, α1 + α2 + α3 is even. It is not possible that all αi
are even for i = 1, 2, 3, since then we would get Ln = �, which is not possible
by Lemma 3. Hence, exactly one of them is even, say α3 and the other two are
odd. Then Ln ≡ 3α1+α2+α3 ≡ 1 (mod 4) and Ln ≡ 4α1+α2+α3 ≡ 1 (mod 5). Thus,
n ≡ 1 (mod 6) and n ≡ 1 (mod 4), so n ≡ 1 (mod 12).This shows that Ln ≡ 1
(mod 8). Since pα1−1

1 pα2−1
2 pα3

3 is congruent to 1 modulo 8 (as a perfect square), we
get that p1p2 ≡ 1 (mod 8). Thus, p1 ≡ p2 (mod 8), so (p1 − 1)/2 and (p2 − 1)/2 are
congruent modulo 4 so their product is 1. Then

ϕ(Ln) = 8

(
(p1 − 1)

2

(p2 − 1)

2

)(
p3(p3 − 1)

2

)
pα1−1

1 pα2−1
2 pα3−2

3 = 8M, (5.12)

where M = (10m − 1)/9 ≡ 3 (mod 4). In the above product, all odd factors
are congruent to 1 modulo 4 except possibly for p3(p3 − 1)/2. This shows that
p3(p3 − 1)/2 ≡ 3 (mod 4), which shows that p3 ≡ 3 (mod 8). Now since p2

3 | Ln,
we get that p3 | ϕ(Ln) = 8(10m − 1)/9. So, 10m ≡ 1 (mod p3). Assuming that m is
odd, we would get

1 =

(
10

p3

)
=

(
2

p3

)(
5

p3

)
= −1,
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which is a contradiction. In the above, we used that p3 ≡ 3 (mod 8) and p3 ≡ 4

(mod 5) and quadratic reciprocity to conclude that
(

2

p3

)
= −1 as well as

(
5

p3

)
=
(p3

5

)
= 1.

So, we have showed the following result.

Lemma 30. If n > 6 is a solution of the equation

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9},

then n is odd, Ln is odd, r = 3, d = 8 and m is even. Further, Ln = pα1
1 p

α2
2 p

α3
3 , where

pi ≡ 3 (mod 4) and pi ≡ 4 (mod 5) for i = 1, 2, 3, p1 ≡ p2 (mod 8), p3 ≡ 3 (mod 8),
α1 and α2 are odd and α3 is even.

5.3.6 n ∈ {p, p2} for some prime p with p3 | 10p−1 − 1

The factorizations of all Lucas numbers Ln for n ≤ 1000 are known. We used
them and Lemma 30 and found no solution to equation (5.1) with n ∈ [7, 1000].

Let p be a prime factor of n. Suppose first that n = pt for some positive integer
t. If t ≥ 4, then Ln is divisible by at least four primes, namely primitive prime
factors of Lp, Lp2 , Lp3 and Lp4 , respectively, which is false. Suppose that t = 3.
Write

Ln = Lp

(
Lp2

Lp

)(
Lp3

Lp2

)
.

The three factors above are coprime, so they are pα1
1 , p

α2
2 , p

α3
3 in some order. Since

α3 is even, we get that one of Lp, Lp2/Lp or Lp3/Lp2 is a square, which is false by
Lemmas 3 and 4. Hence, n ∈ {p, p2}. All primes p1, p2, p3 are quadratic residues
modulo 5. When n = p, they are primitive prime factors of Lp. When n = p2, all
of them are primitive prime factors of Lp or Lp2 with at least one of them being a
primitive prime factor of Lp2 . Thus, pi ≡ 1 (mod p) holds for all i = 1, 2, 3 both
in the case n = p and n = p2, and when n = p2 at least one of the the above
congruences holds modulo p2. This shows that p3 | (p1 − 1)(p2 − 1)(p3 − 1) |
ϕ(Ln) = 8(10m − 1)/9, so p3 | 10m − 1. When n = p2, we in fact have p4 | 10m − 1.
Assume now that p3 - 10p−1 − 1. Then the congruence p3 | 10m − 1 implies p | m,
while the congruence p4 | 10m − 1 implies p2 | m. Hence, when n = p, we have

2p > Lp > ϕ(Ln) = 8(10m − 1)/9 > (10p − 1)/9 > 10p−1

which is false for any p ≥ 3. Similarly, if n = p2, then

2p
2

> Lp2 > ϕ(Ln) = 8(10m − 1)/9 > (10p
2 − 1)/9 > 10p

2−1

which is false for any p ≥ 3. So, indeed when n is a power of a prime p, then the
congruence p3 | 10p−1 − 1 must hold. We record this as follows.

Lemma 31. If n > 6 and n = pt is solution of he equation

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9},

with some t ≥ 1 and p prime, then t ∈ {1, 2} and p3 | 10p−1 − 1.
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Suppose now that n is divisible by two distinct primes p and q. By Lemma
8, Lp, Lq and Lpq each have primitive prime factors. This shows that n = pq, for
if n > pq, then Ln would have (at least) one additional prime factor, which is a
contradiction. Assume p < q and

Ln = LpLq

(
Lpq
LpLq

)
.

Unless q = Lp, the three factors above are coprime. Say q 6= Lp. Then the three fac-
tors above are pα1

1 , p
α2
2 and pα3

3 in some order. By Lemmas 3 and up to relabeling
the primes p1 and p2, we may assume that α1 = α2 = 1, so Lp = p1, Lq = p2 and
Lpq/(LpLq) = pα3

3 . On the other hand, if q = Lp, then q2‖Lpq. This shows then that
up to relabeling the primes we may assume that α2 = 1, α3 = 2, Lp = p3, Lq = p2,
Lpq/(LpLq) = p3p

α1
1 . However, in this case p3 ≡ 3 (mod 8), showing that p ≡ 5

(mod 8). In particular, we also have p ≡ 1 (mod 4), so p3 = Lp ≡ 1 (mod 5), and
this is not possible. So, this case cannot appear.

Write m = 2m0. Then

(p1 − 1)(p2 − 1)(p3 − 1)pα3−1
3 = ϕ(Ln) =

8(10m0 − 1)(10m0 + 1)

9
.

If m0 is even, then pα3−1
3 | 10m0 − 1 because p3 ≡ 3 (mod 4), so p3 cannot divide

10m0 + 1 = (10m0/2)2 + 1. If m0 is odd, then pα3−1
3 | 10m0 + 1, because if not we

would have that p3 | 10m0 − 1, so 10m0 ≡ 1 (mod p3), and since m0 is odd we

would get
(

10

p3

)
= 1, which is false since

(
2

p3

)
= −1 and

(
5

p3

)
= 1. Thus, we

get, using (5.6), that

αp+qp3 > (Lp − 1)(Lq − 1)p3 = p1p2p3 > (p1 − 1)(p2 − 1)(p3 − 1)

≥ 8(10m0 − 1)

9
>

8

10
× 10m0 . (5.13)

On the other hand, by inequality (5.5), we have

10m >
8(10m − 1)

9
= ϕ(Ln) >

Ln
4
,

so that

10m0 >

√
Ln
2

>
αpq/2−0.5

2
, (5.14)

where we used the inequality (5.7). From (5.13) and (5.14), we get

p3 >
8

20
√
α
αpq/2−p−q =

8

20α4.5
α(p−2)(q−2) >

α(p−2)(q−2)

25
.

Once checks that the inequality

α(p−2)(q−2)/2

25
> αq+1 (5.15)
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is valid for all pairs of primes 5 ≤ p < q with pq > 100. Indeed, the above
inequality (5.15) is implied by

(p− 2)(q − 2)/2− (q + 1)− 7 > 0, or (q − 2)(p− 4) > 20. (5.16)

If p ≥ 7, then q > p ≥ 11 and the above inequality (5.16) is clear, whereas if p = 5,
then q ≥ 23 and the inequality (5.16) is again clear.

We thus get that

p3 >
α(p−2)(q−2)

25
> αq+1 > Lq = p2 > Lp = p1.

We exploit the two relations

0 < 1− ϕ(Ln)

Ln
= 1−

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
<

3

p1

<
5

αp
;

1− (Lp − 1)ϕ(Ln)

LpLn
= 1−

(
1− 1

p2

)(
1− 1

p3

)
<

2

p2

<
4

αq
. (5.17)

In the above, we used the inequality (3.25). Since n is odd, we have Ln = αn−α−n.
Then

1 +
2

α2n
>

1

1− α−2n
> 1,

so
1

αn
+

2

α3n
>

1

Ln
>

1

αn
,

or

8× 10m

9αn
+

16× 10m

9α3n
− 8

9Ln
>

8(10m − 1)

9Ln
=
ϕ(Ln)

Ln
>

8× 10m

9αn
− 8

9Ln
. (5.18)

The first inequality (5.17) and (5.18) show that

∣∣1− (8/9)× 10m × α−n
∣∣ < 3

p1

+
8

9Ln
+

16× 10m

9α3n
. (5.19)

Now

8× 10m−1 <
8(10m − 1)

9
= ϕ(Ln) < Ln < αn+1, so 10m <

10α

8
αn,

showing that
16× 10m

9α3n
<

20α

9α2n
<

0.5

αn
for n > 1000.

Since also
8

9Ln
<

8α

9αn
<

1.5

αn
,

we see
16× 10m

9α3n
+

8

9Ln
<

0.5

αn
+

1.5

αn
<

2

αn
.
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Since also p1 < L
1/3
n < α(n+1)/3, we get that (5.19) becomes∣∣1− (8/9)× 10m × α−n

∣∣ < 3

p1

+
2

αn
<

4

p1

=
4

Lp
<

4α

αp
<

7

αp
, (5.20)

where the middle inequality is implied by αn > 2α(n+1)/3 > 13p1, which holds for
n > 1000.

The same argument based on (5.18) shows that∣∣∣∣1− (8(Lp − 1)

9Lp

)
× 10m × α−n

∣∣∣∣ < 4

αq
+

2

αn
<

5

αq
. (5.21)

We are in a situation to apply Theorem 11 to the left–hand sides of (5.20) and
(5.21). These expressions are nonzero, since any one of these expressions being
zero means αn ∈ Q for some positive integer n, which is false. We always take
K = Q(

√
5) for which D = 2. We take t = 3, α1 = α, α2 = 10, so we can

take A1 = logα = 2h(α1) and A2 = 2 log 10. For (5.20), we take α3 = 8/9, and
A3 = 2 log 9 = 2h(α3). For (5.21), we take α3 = 8(Lp − 1)/9Lp, so we can take
A3 = 2p > h(α3). This last inequality holds because h(α3) ≤ log(9Lp) < (p +
1) logα + log 9 < p for all p ≥ 7, while for p = 5 we have h(α3) = log 99 < 5. We
take α1 = −n, α2 = m, α3 = 1. Since

2n > Ln > ϕ(Ln) > 8× 10m−1

it follows that n > m. So, B = n. Now Theorem 11 implies that

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)(logα)(2 log 10)(2 log 9)

)
,

is a lower bound of the left–hand side of (5.20), so inequality (5.20) implies

p logα− log 7 < 9.5× 1012(1 + log n),

which implies
p < 2× 1013(1 + log n). (5.22)

Now Theorem 11 implies that the right–hand side of inequality (5.21) is at least
as large as

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)(logα)(2 log 10)(2p)

)
leading to

q logα− log 4 < 4.3× 1012(1 + log n)p.

Using (5.22), we get

q < 9× 1012(1 + log n)p < 2× 1026(1 + log n)2.

Using again (5.22), we get

n = pq < 4× 1039(1 + log n)2,
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leading to
n < 5× 1043. (5.23)

Now we need to reduce the bound. We return to (5.20). Put

Λ = m log 10− n logα + log(8/9).

Then (5.20) implies that

|eΛ − 1| < 7

αp
. (5.24)

Assuming p ≥ 7, we get that the right–hand side of (5.24) is < 1/2. Analyzing the
cases Λ > 0 and Λ < 0 and by a use of the inequality 1 + x < ex which holds for
all x ∈ R, we get that

|Λ| < 14

αp
.

Assume say that Λ > 0. Dividing across by logα, we get

0 < m

(
log 10

logα

)
− n+

(
log(8/9)

logα

)
<

30

αp
.

We are now ready to apply Lemma 11 with the obvious parameters

γ =
log 10

logα
, µ =

log(8/9)

logα
, A = 30, B = α.

Since m < n, we can take M = 1045 by (5.23). Applying Lemma 11, performing
the calculations and treating also the case when Λ < 0, we obtain p < 250. Now
we go to inequality (5.21) and for p ∈ [5, 250], we consider

Λp = m log 10− n logα + log

(
8(Lp − 1)

9Lp

)
.

Then inequality (5.21) becomes ∣∣eΛp − 1
∣∣ < 5

αq
. (5.25)

Since q ≥ 7, the right–hand side is smaller than 1/2. We thus obtain

|Λp| <
10

αq
.

We proceed in the same way as we proceeded with Λ by applying Lemma 11 to
Λp and distinguishing the cases in which Λp > 0 and Λp < 0, respectively. In
all cases, we get that q < 250. Thus, 5 ≤ p < q < 250. Note however that we
must have either p2 | 10p−1 − 1 or q2 | 10q−1 − 1. Indeed, the point is that since all
three prime factors of Ln are quadratic residues modulo 5, and they are primitive
prime factors of Lp, Lq and Lpq, respectively, it follows that p1 ≡ 1 (mod p), p2 ≡ 1
(mod q) and p3 ≡ 1 (mod pq). Thus, (pq)2 | (p1 − 1)(p2 − 1)(p3 − 1) | ϕ(Ln) =
8(10m − 1)/9, which in turn shows that (pq)2 | 10m − 1. Assume that neither
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p2 | 10p−1 − 1 nor q2 | 10q−1 − 1. Then relation (pq)2 | 10m − 1 implies that pq | m.
Thus, m ≥ pq, leading to

2pq > Ln > ϕ(Ln) =
8(10m − 1)

9
> 10m−1 ≥ 10pq−1,

a contradiction. So, indeed either p2 | 10p−1 − 1 or q2 | 10q−1 − 1. However, a
computation with Mathematica revealed that there is no prime r such that r2 |
10r−1 − 1 in the interval [5, 250]. In fact, the first such r > 3 is r = 487, but L487 is
not prime!

This contradiction shows that indeed when n > 6, we cannot have n = pq.
Hence, n ∈ {p, p2} and p3 | 10p−1 − 1. We record this as follows.

Lemma 32. The equation

ϕ(Ln) = d

(
10m − 1

9

)
, d ∈ {1, . . . , 9},

has no solution n > 6 which is not of the form n = p or p2 for some prime p such that
p3 | 10p−1 − 1.

5.3.7 Bounding n

Finally, we bound n. We assume again that n > 1000. Equation (5.2) becomes

Ln = pα1
1 p

α2
2 p

α3
3 .

Throughout this last section, we assume that p1 < p2 < p3. First, we bound p1, p2

and p3 in terms of n. Using the first relation of (5.17), we have that

0 < 1− ϕ(Ln)

Ln
= 1−

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
<

3

p1

. (5.26)

By the argument used when estimating (5.18)–(5.20), we get that

|1− (8/9)× 10m × α−n| < 3

p1

+
2

αn
<

4

p1

, (5.27)

where the last inequality holds because p1 ≤ Ln/(p2p3) < Ln/(7× 11) < αn/2.
We apply Theorem 11 to the left-hand side of (5.27) The expression there is

nonzero by a previous argument. We take again K = Q(
√

5) for which D = 2. We
take t = 3, α1 = 8/9, α2 = 10 and α3 = α. Thus, we can take A1 = log 9 = 2h(α1)
, A2 = 2 log 10 and A3 = 2 logα = 2h(α3). We also take b1 = 1, b2 = m, b3 = −n.
We already saw that B = n. Now Theorem 11 implies as before that

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)23(logα)(log 10)(log 9)

)
,

is at least a lower bound for the left–hand side of (5.27), hence inequality (5.20)
implies

log p1 − log 4 < 1.89× 1013(1 + log n),
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Then we get
log p1 < 1.9× 1013(1 + log n). (5.28)

We use the same argument to bound p2. We have

0 < 1−
(
p1 − 1

p1

)
ϕ(Ln)

Ln
=

(
1− 1

p2

)(
1− 1

p3

)
<

2

p2

.

Thus, we get that:∣∣∣∣1− (8(p1 − 1)

9p1

)
× 10mα−n

∣∣∣∣ < 2

p2

+
2

αn
<

3

p2

, (5.29)

where the last inequality follows again because p2 ≤ Ln/(p1p3) < αn/2.
We apply Theorem 11 to the left–hand side of (5.29). We take t = 3, α1 = 8(p1−

1)/(9p1), α2 = 10 and α3 = α, so we take A1 = 2 log(9p1) ≥ 2h(α1), A2 = 2 log 10
and A3 = 2 logα. Again b1 = −1, b2 = m, b3 = −n and B = n. Now Theorem 11
implies that

exp
(
−1.4× 306 × 34.5 × 22 × (1 + log 2)(1 + log n)23(logα) log 10 log(9p1)

)
.

is a lower bound on the left–hand side of (5.29). Using estimate (5.28), inequality
(5.29) implies

log p2 − log 2 < 1.8× 1026(1 + log n)2. (5.30)

Using a similar argument, we get

log p3 − log 2 < 1.8× 1039(1 + log n)3. (5.31)

Now we can bound n. Equation (5.2), gives:

αn + βn = pα1
1 p

α2
2 p

α3
3 .

Thus,

|pα1
1 p

α2
2 p

α3
3 α

−n − 1| = 1

α2n
(5.32)

We can apply Theorem 11, with t = 4, α1 = p1, α2 = p2, α3 = p3, and α4 = α. We
take A1 = 2 log p1 = 2h(α1), A2 = 2 log p2, A3 = 2 log p3 = 2h(α3) and A4 = 2 logα.
We take B = n. Then Theorem 11 implies that

exp

(
−1.4× 307 × 44.5 × 22 × (1 + log 2)(1 + log n)24(logα)

3∏
i=1

(log pi)

)
.

is a lower bound on the left–hand side of (5.32). Using (5.32) and inequalities
(5.28), (5.30), (5.31), we get

n < 8× 1093(1 + log n)7, so n < 10111.

This gives the upper bound. As for the lower bound, a quick check with Math-
ematica revealed that the only primes p < 2 × 109 such that p2 | 10p−1 − 1 are
p ∈ {3, 487, 56598313} and none of these has in fact the stronger property that
p3 | 10p−1 − 1.
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5.4 Pell and Pell-Lucas Numbers With Only One Dis-
tinct Digit

Here, we show that there are no Pell or Pell-Lucas numbers larger than 10 with
only one distinct digit.

In this section, we do not use linear forms in logarithms, but show in an el-
ementary way that 5 and 6 are respectively the largest Pell and Pell-Lucas num-
bers which has only one distinct digit in their decimal expansion. The method
of the proofs is similar to the method from [FL15c], paper in which the authors
determined in an elementary way the largest repdigits in the Fibonacci and the
Lucas sequences. We mention that the problem of determining the repdigits in
the Fibonacci and Lucas sequence was revisited in [FL15a], where the authors de-
termined all the repdigits in all generalized Fibonacci sequences {F (k)

n }n≥0, where
this sequence starts with k− 1 consecutive 0’s followed by a 1 and follows the re-
currence F (k)

n+k = F
(k)
n+k−1 + · · ·+F (k)

n for all n ≥ 0. However, for this generalization,
the method used in [FL15a] involved linear forms in logarithms.

Our results are the following.

Theorem 18. If

Pn = a

(
10m − 1

9

)
for some a ∈ {1, 2, . . . , 9}, (5.33)

then n = 0, 1, 2, 3.

Theorem 19. If

Qn = a

(
10m − 1

9

)
for some a ∈ {1, 2, . . . , 9}, (5.34)

then n = 0, 1, 2.

Proof of Theorem 18

We start by listing the periods of {Pn}n≥0 modulo 16, 5, 3 and 7 since they are
useful later

0, 1, 2, 5, 12, 13, 6, 9, 8, 9, 10, 13, 4, 5, 14, 1, 0, 1 (mod 16)

0, 1, 2, 0, 2, 4, 0, 4, 3, 0, 3, 1, 0, (mod 5)

0, 1, 2, 2, 0, 2, 1, 1, 0, 1 (mod 3) (5.35)
0, 1, 2, 5, 5, 1, 0, 1 (mod 7).

We also compute Pn for n ∈ [1, 20] and conclude that the only solutions in this
interval correspond to n = 1, 2, 3. From now, we suppose that n ≥ 21. Hence,

Pn ≥ P21 = 38613965 > 107.
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Thus, m ≥ 7. Now we distinguish several cases according to the value of a.

Case a = 5.

Since m ≥ 7, reducing equation (5.33) modulo 16 we get

Pn = 5

(
10m − 1

9

)
≡ 3 (mod 16).

A quick look at the first line in (5.35) shows that there is no n such that Pn ≡ 3
(mod 16).

From now on, a 6= 5. Before dealing with the remaining cases, let us prove
that m has to be odd. We assume by contradiction that this is not the case i.e., m
is even. Hence, 2 | m, therefore

11
∣∣∣102 − 1

9

∣∣∣10m − 1

9

∣∣∣Pn.
Since, 11 | Pn, it follows that 12 | n. Hence,

22 · 32 · 5 · 7 · 11 = 13860 = P12 | Pn = a · 10m − 1

9
,

and the last divisibility is not possible since a(10m − 1)/9 cannot be a multiple of
10. Thus, m is odd.

We can now compute the others cases.

Case a = 1.

Reducing equation (5.33) modulo 16, we get Pn ≡ 7 (mod 16). A quick look at
the first line of (5.35) shows that there is no n such that Pn ≡ 7 (mod 16). Thus,
this case is impossible.

Case a = 2.

Reducing equation (5.33) modulo 16, we get

Pn = 2

(
10m − 1

9

)
≡ 14 (mod 16).

A quick look at the first line of (5.35) gives n ≡ 14 (mod 16). Reducing also
equation (5.33) modulo 5, we get Pn ≡ 2 (mod 5), and now line two of (5.35) gives
n ≡ 2, 4 (mod 12). Since also n ≡ 14 (mod 16), we get that n ≡ 14 (mod 48).
Thus, n ≡ 6 (mod 8), and now row three of (5.35) shows that Pn ≡ 1 (mod 3).
Thus,

2

(
10m − 1

9

)
≡ 1 (mod 3).

The left-hand side above is 2(10m−1 + 10m−2 + · · ·+ 10 + 1) ≡ 2m (mod 3), so we
get 2m ≡ 1 (mod 3), so 2 ≡ m (mod 3), and sincem is odd we get 5 ≡ m (mod 6).
Using also the occurrence n ≡ 2 (mod 6), we get from the last row of (5.35) that
Pn ≡ 2 (mod 7). Thus,

2

(
10m − 1

9

)
≡ 2 (mod 7),
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leading to 10m − 1 ≡ 9 (mod 7), so 1 ≡ 10m−1 (mod 7). This gives 6 | m − 1, or
m ≡ 1 (mod 6), contradicting the previous conclusion that m ≡ 5 (mod 6).

Case a = 3.

In this case, we have that 3 | Pn, therefore 4 | n by the third line of (5.35).
Further,

Pn = 3

(
10m − 1

9

)
≡ 5 (mod 16).

The first line of (5.35) shows that n ≡ 3, 13 (mod 16), contradicting the fact that
4 | n. Therefore, this case cannot occur.

Case a = 4.

In this case 4 | Pn, which implies that 4 | n. Reducing equation (5.33) modulo
5 we get that Pn ≡ 4 (mod 5). Row two of (5.35) shows that n ≡ 7, 5 (mod 12).
This is a contradiction with fact that 4 | n. Therefore, this case is not possible.

Case a = 6.

Here, 3 | Pn, therefore 4 | n. Hence,

12 | Pn = 6

(
10m − 1

9

)
,

which is not possible.

Case a = 7.

Here, we have that 7 | Pn, therefore 6 | n by row four of (5.35). Hence,

70 = P6 | Pn = 7

(
10m − 1

9

)
,

which is impossible.

Case a = 8.

We have that 8 | Pn, so 8 | n. Hence,

8 · 3 · 17 = 408 = P8 | Pn = 8

(
10m − 1

9

)
,

implying 17 | 10m − 1. This last divisibility condition implies that 16 | m, contra-
dicting the fact that m is odd.

Case a = 9.

We have 9 | Pn, thus 12 | n. Hence,

13860 = P12 | Pn = 10m − 1,

a contradiction.

This completes the proof of Theorem 18.
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The proof of Theorem 19

We list the periods of {Qn}n≥0 modulo 8, 5 and 3 getting

2, 2, 6, 6, 2, 2 (mod 8)

2, 2, 1, 4, 4, 2, 3, 3, 4, 1, 1, 3, 2, 2 (mod 5) (5.36)
2, 2, 0, 2, 1, 1, 0, 1, 2, 2 (mod 3)

(5.37)

We next compute the first values of Qn for n ∈ [1, 20] and we see that there is no
solution n > 3 in this range. Hence, from now on,

Qn > Q21 = 109216786 > 108,

so m ≥ 9. Further, since Qn is always even and the quotient (10m− 1)/9 is always
odd, it follows that a ∈ {2, 4, 6, 8}. Further, from row one of (5.36) we see that Qn

is never divisible by 4. Thus, a ∈ {2, 6}.

Case a = 2.

Reducing equation (5.34) modulo 8, we get that

Qn = 2

(
10m − 1

9

)
≡ 6 (mod 8).

Row one of (5.36) shows that n ≡ 2, 3 (mod 4). Reducing equation (5.34) modulo
5 we get that Qn ≡ 2 (mod 5), and now row two of (5.36) gives that n ≡ 0, 1, 5
(mod 12), so in particular n ≡ 0, 1 (mod 4). Thus, we get a contradiction.

Case a = 6.

First 3 | n, so by row three of (5.36), we have that n ≡ 2, 6 (mod 8). Next
reducing (5.34) modulo 8 we get

Qn = 6

(
10m − 1

9

)
≡ 2 (mod 8).

and by the first row of (5.36) we get n ≡ 0, 1 (mod 4). Thus, this case cannot
appear.

This finishes the proof of Theorem 19.



Chapter 6

On Lehmer’s Conjecture

In this chapter, we are interested in finding members of the Lucas sequence {Ln}n≥0

and of the Pell sequence {Pn}n≥0 which are Lehmer Numbers. Namely, we study
respectively in Sections 6.1 and 6.2 values of n for which, the divisibility relations
ϕ(Ln) | Ln − 1 and ϕ(Pn) | Pn − 1 hold and further such that Ln and/or Pn is
composite. The contents of this chapter are respectively the papers [FL15c] and
[FL15e].

6.1 Lucas Numbers with the Lehmer property

We are interested in this section on members of the Lucas sequence {Ln}n≥0 which
are Lehmer numbers. Here, we will use some relations among Fibonacci and
Lucas numbers, that can be easily proved using the Binet formulas (2.3) and (2.4).
Our result is the following:

Theorem 20. There is no Lehmer number in the Lucas sequence.

Proof. Assume that Ln is Lehmer for some n. Clearly, Ln is odd and ω(Ln) ≥ 15
by the main result from [Re04]. The product of the first 15 odd primes exceeds
1.6× 1019, so n ≥ 92. Furthermore,

215 | 2ω(Ln) | ϕ(Ln) | Ln − 1. (6.1)

If n is even, Lemma 2 (iii) shows that Ln − 1 = L2
n/2 + 1 or L2

n/2 − 3 and
numbers of the form m2 + 1 or m2 − 3 for some integer m are never multiples of
4, so divisibility (6.1) is impossible. If n ≡ 3 (mod 8), Lemma 2 (viii) and relation
(6.1) show that 215 | L(n+1)/2L(n−1)/2. This is also impossible since no member of
the Lucas sequence is a multiple of 8, fact which can be easily proved by listing
its first 14 members modulo 8:

2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1,

and noting that we have already covered the full period of {Lm}m≥0 modulo 8 (of
length 12) without having reached any zero.

77
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So, we are left with the case when n ≡ 1 (mod 4).
Let us write

n = pα1
1 · · · p

αk
k ,

with p1 < · · · < pk odd primes and α1, . . . , αk positive integers. If p1 = 3, then Ln
is even, which is not the case. Thus, p1 ≥ 5.

Here, we use the argument from [FL15d] to bound p1. Since most of the details
are similar, we only sketch the argument. For p | Ln, using relation (iv) of Lemma
2, we get that −5F 2

n ≡ −4 (mod p). In particular,
(

5
p

)
= 1, so by Quadratic

Reciprocity also p is a quadratic residue modulo 5. Now let d be any divisor of
n which is a multiple of p1. By Lemma 8, there exists a primitive prime pd | Ld,
such that pd - Ld1 for all positive d1 < d. Since n is odd and d | n, we have Ld | Ln,
therefore pd | Ln. Since pd is primitive forLd and a quadratic residue modulo 5, we
have pd ≡ 1 (mod d) (if p were not a quadratic residue modulo 5, then we would
have had that pd ≡ −1 (mod 5), which would be less useful for our problem). In
particular,

p1 | d | pd − 1 | ϕ(Ln). (6.2)

Collecting the above divisibilities (6.2) over all divisors d of nwhich are multiples
of p1 and using Lemma 2 (viii), we have

p
τ(n/p1)
1 | ϕ(Ln) | Ln − 1 | 5F(n−1)/2F(n+1)/2. (6.3)

If p1 = 5, then 5 | n, therefore 5 - F(n±1)/2 because a Fibonacci number Fm is a
multiple of 5 if and only if its index m is a multiple of 5. Thus, τ(n/p1) = 1, so
n = p1, which is impossible since n > 92.

Assume now that p1 > 5. Since

gcd(F(n+1)/2, F(n−1)/2) = Fgcd((n+1)/2,(n−1)/2) = F1 = 1,

divisibility relation (6.3) shows that pτ(n/p1)
1 divides F(n+ε)/2 for some ε ∈ {±1}.

Let z(p1) be the order of appearance of p1 in the Fibonacci sequence. Write

Fz(p1) = p
ep1
1 mp1 , (6.4)

where mp1 is coprime to p1. If pt1 | Fk for some t > ep1 , then necessarily p1 | k.
Since for us (n+ ε)/2 is not a multiple of p1 (because n is a multiple of p1), we get
that τ(n/p1) ≤ ep1 . In particular, if p1 = 7, then ep1 = 1, so n = p1, which is false
since n > 92. So, p1 ≥ 11. We now follow along the argument from [FL15d] to get
that

τ(n) ≤ 2τ(n/p1) ≤ (p1 + 1) logα

log p1

. (6.5)

Further, since (Ln − 1)/ϕ(Ln) is an integer larger than 1, we have

2 <
Ln

ϕ(Ln)
≤
∏
p|Ln

(
1 +

1

p− 1

)
< exp

∑
p|Ln

1

p− 1

 , (6.6)
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or

log 2 ≤
∑
p|Ln

1

p− 1
. (6.7)

For a divisor d of n, we note Pd the set of primitive prime factors of Ld. Then the
argument from [FL15d] gives

∑
p∈Pd

1

p− 1
≤ 0.9

d
+

2.2 log log d

d
. (6.8)

Since the function x 7→ (log log x)/x is decreasing for x > 10 and all divisors d > 1
of n satisfy d > 10, we have, using (6.5), that

∑
p|Ln

1

p− 1
=

∑
d|n

∑
p∈Pd

1

p− 1
≤
∑
d|n
d>1

(
0.9

d
+

2.2 log log d

d

)
(6.9)

≤
(

0.9

p1

+
2.2 log log p1

p1

)
τ(n)

≤ (logα)
(p1 + 1)

log p1

·
(

0.9

p1

+
2.2 log log p1

p1

)
,

which together with inequality (6.7) leads to

log p1 ≤
(logα)

log 2

(
p1 + 1

p1

)
(0.9 + 2.2 log log p1). (6.10)

The above inequality (6.10) implies p1 < 1800. Since p1 < 1014, a calculation of
McIntosh and Roettger [MR07] shows that ep1 = 1. Thus, τ(n/p1) = 1, therefore
n = p1. Since n ≥ 92, we have p1 ≥ 97. Going back to the inequalities (6.7) and
(6.8), we get

log 2 <
0.9

p1

+
2.2 log log p1

p1

,

which is false for p1 ≥ 97. Thus, Theorem (20) is proved.

6.2 Pell Numbers with the Lehmer property

In this section, we study the members of Pell sequence {Pn}n≥0 which are Lehmer
numbers. From relation (3.2), we have the following inequality:

Pn ≥ 2n/2 (6.11)

which hold for all n ≥ 2.
Here, we prove the following result.

Theorem 21. There is no Pell and Pell-Lucas numbers with the Lehmer property.
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Proof. Let us recall that if N has the Lehmer property, then N has to be odd and
square-free. In particular, if Pn has the Lehmer property for some positive integer
n, then Lemma 6 (ii) shows that n is odd. One checks with the computer that there
is no number Pn with the Lehmer property with n ≤ 200. So, we can assume that
n > 200. Put K = ω(Pn) ≥ 15.

From relation (2.6), we have that

Pn − 1 = P(n−ε)/2Q(n+ε)/2 where ε ∈ {±1}.

By Theorem 4 in [Po77], we have that Pn < K2K . By (6.11), we have that K2K >
Pn > 2n/2. Thus,

2K logK >
n log 2

2
>
n

3
. (6.12)

We now check that the above inequality implies that

2K >
n

4 log log n
. (6.13)

Indeed, (6.13) follows immediately from (6.12) when K < (4/3) log log n. On the
other hand, when K ≥ (4/3) log log n, we have K ≥ (log n)4/3, so

2K ≥ 2(logn)4/3 > n,

which holds because n > 200. Then, the relation (6.13) holds.
Let q be any prime factor of Pn. Reducing relation

Q2
n − 8P 2

n = 4(−1)n (6.14)

of Lemma 5 modulo q, we get Q2
n ≡ −4 (mod q). Since q is odd, (because n is

odd), we get that q ≡ 1 (mod 4). This is true for all prime factors q of Pn. Hence,

22K | ϕ(Pn) | Pn − 1 = P(n−ε)/2Q(n+ε)/2.

Since Qn is never divisible by 4, we have that 22K−1 | divides P(n+1)/2 or P(n−1)/2.
Hence, 22K−1 divides (n+ 1)/2 or (n− 1)/2. Using relation (6.13), we have that

n+ 1

2
≥ 22K−1 ≥ 1

2

(
n

4 log log n

)2

.

This last inequality leads to

n2 < 16(n+ 1)(log log n)2,

giving that n < 21, a contradiction, which completes the proof of Theorem 21.
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