528 research outputs found

    OPTIMIZACIÓN DE DISEÑO DE GRANJAS AVÍCOLAS DE POLLOS

    Full text link
    Tesis por compendio[EN] Intensive (broiler) poultry farming is a strategic sector for the economy and development of many countries and regions, including Spain and the Valencian Community region. Intensive production consists of keeping the animals in specific buildings (broiler buildings) under a controlled indoor microclimate. Two main options are found regarding the ventilation systems: production in broiler buildings with natural ventilation and production in broiler buildings with mechanical ventilation (commonly with negative depression by exhaust fans). Inadequate design is the main cause of thermal stress and the mortality of broilers. In this sense, one solution to decrease the broilers' heat stress and mortality consists of assisting in their biological thermoregulation by increasing the air velocity over them. In this PhD dissertation, the ventilation (ranges of the air velocity and its distribution, mainly at the level and plane where the broilers are located) in the main mechanical ventilation systems installed in the broiler buildings is characterised and analysed. Despite the magnitude of the current difficulties (broilers' thermal stress and mortality) and society's sensitivity regarding aspects of animal welfare, to date, the different mechanical ventilation systems in the different types of broiler building have not been characterised and analysed with scientific scrupulousness. In this PhD dissertation, the three most relevant types have been studied: cross, tunnel and single-sided. The methodological approach has been very similar in all the cases of study: some measurements by means a multi-sensor system (with our own original design and building) has been used for isotemporal recordings, the corresponding Computational Fluid Dynamics (CFD) simulations have been carried out and finally these simulations have been validated. These validations were carried out by means of two statistical techniques: by means of linear regression techniques and by means of a study of the significance (in an analysis of the variance) for the method used (sensors or CFD) in each different proposed validation model. Having validated these CFD results, CFD techniques can safely be used to characterise and analyse the ventilation in all the indoor space of the broiler buildings (sensors only allow it to be characterised in their physical locations). The first case studied involves a broiler building which has a cross mechanical ventilation system (commonplace in Mediterranean climates) installed. The conclusions from this study show that this ventilation system is adequate for broiler rearing during nearly the whole year in mild climatic locations (e.g. Mediterranean climate). However, on certain days or in periods of heat (summer), it would not be adequate because it cannot reach high enough air velocity values to reduce the heat stress on the broilers. The second case studied is a broiler building with tunnel mechanical ventilation installed. The conclusions from this study show that it is less suitable than the first one analysed (cross mechanical ventilation) for broiler rearing over nearly the whole year in mild climatic locations. However, on certain days or in periods of heat (summer), it is very suitable because it can reach higher air velocity values to reduce the heat stress on the broilers. The third case studied is a broiler building with single-sided mechanical ventilation installed. The conclusions from this study show that this ventilation system is suitable for broiler rearing almost throughout the year in mild climatic locations. However, on certain days or in periods of heat (summer), it would be not adequate because it cannot reach high enough air velocity values to reduce the heat stress.[ES] La avicultura intensiva del pollo de carne (broiler) es un sector estratégico en la economía y desarrollo de muchos países y regiones, entre ellos España y la Comunidad Valenciana. La producción intensiva del broiler se da confinando al animal en edificios específicos (granjas de pollos) bajo un microclima interno controlado. Tiene dos variantes fundamentales en función de su sistema de ventilación: producción en granjas con ventilación natural y producción en granjas con ventilación mecánica (generalmente por depresión negativa mediante ventiladores de extracción). Un inadecuado diseño de la ventilación es la causa principal del estrés térmico y de la mortalidad de los pollos. En este sentido, una solución para disminuir el estrés térmico por calor y la mortalidad de los pollos es ayudar en su termorregulación biológica mediante un aumento de la velocidad del aire sobre ellos. En esta tesis doctoral, se ha caracterizado y analizado la ventilación (rangos de velocidad del aire y su distribución, especialmente al nivel de presencia del pollo) en los principales sistemas de ventilación mecánicos instalados en las granjas de pollos. Pese a la envergadura de la actual problemática (estrés térmico y mortalidad de los pollos) y la sensibilidad de la sociedad hacia los aspectos del bienestar animal, hasta la fecha no se han caracterizado y analizado con rigurosidad científica los diferentes sistemas de ventilación mecánicos en las diferentes tipologías de granjas de pollos. En esta tesis doctoral se han estudiado los tres más relevantes: cruzado, túnel y de pared única. El enfoque metodológico en todos los casos de estudio ha sido muy similar: se han realizado unas mediciones mediante un sistema multisensor de registro isotemporal (de diseño y fabricación propios), se han realizado las correspondientes simulaciones Computational Fluid Dynamics (CFD) y finalmente se han validado estas simulaciones. Estas validaciones se han llevado a cabo mediante dos técnicas estadísticas: mediante técnicas de regresión lineal y mediante el estudio de la significatividad (en un análisis de la varianza) de la metodología utilizada (sensores o CFD) en sendos modelos de validación propuestos. Una vez validadas estas simulaciones CFD, se tiene la seguridad de poder utilizarlas para caracterizar y analizar la ventilación en todo el espacio interior de las granjas (los sensores sólo permiten caracterizarla en las localizaciones físicas de los mismos). El primer caso de estudio es el de una granja que tiene instalado un sistema de ventilación mecánico cruzado (habitual en el clima Mediterráneo). Las conclusiones de este estudio demuestran que este sistema de ventilación es adecuado para la crianza del pollo para casi todo el año en localizaciones climáticas templadas (por ejemplo, el clima Mediterráneo). Sin embargo, en días o periodos de calor (verano), no será adecuado porque no se pueden alcanzar valores de velocidad del aire grandes que permiten disminuir el estrés por calor de los pollos. El segundo caso de estudio es el de una granja que instala el sistema de ventilación mecánico túnel. Las conclusiones de este estudio demuestran que es menos apropiado que el anterior (sistema de ventilación mecánico cruzado) para la crianza del pollo durante todo el año en localizaciones climáticas templadas. Sin embargo, en días o periodos de calor (verano), será muy adecuado porque se pueden alcanzar valores de velocidad del aire grandes que permiten disminuir el estrés por calor de los pollos. El tercer caso de estudio es el de una granja que instala el sistema de ventilación mecánico de pared única. Las conclusiones de este estudio demuestran que este sistema de ventilación es adecuado para la crianza del pollo para casi todo el año en localizaciones climáticas templadas. Sin embargo, en días o periodos de calor (verano), no será adecuado porque no se pueden alcanzar valores de ve[CA] L'avicultura intensiva del pollastre de carn (broiler) és un sector estratègic en l'economia i desenvolupament de molts països i regions, entre ells Espanya i la Comunitat Valenciana. La producció intensiva del broiler es dóna confinant a l'animal en edificis específics (granges de pollastres) sota un microclima intern controlat. Té dues variants fonamentals en funció del seu sistema de ventilació: producció en granges amb ventilació natural i producció en granges amb ventilació mecànica (generalment per depressió negativa mitjançant ventiladors d'extracció). Un inadequat disseny de la ventilació és la causa principal de l'estrés tèrmic i de la mortalitat dels pollastres. En aquest sentit, una solució per disminuir l'estrés tèrmic per calor i la mortalitat dels pollastres és ajudar en la seua termoregulació biològica mitjançant un augment de la velocitat damunt d'ells. En aquesta tesi doctoral, s'ha caracteritzat i analitzat la ventilació (rangs de velocitat de l'aire i la seua distribució, especialment al nivell de presència del pollastre) en els principals sistemes de ventilació mecànics instal·lats a les granges de pollastres. Malgrat l'envergadura de l'actual problemàtica (estrés tèrmic i mortalitat dels pollastres) i la sensibilitat de la societat envers els aspectes del benestar animal, fins aquesta data no s'han caracteritzat i analitzat amb rigor científic els diferents sistemes de ventilació mecànics a les diferents tipologies de granges de pollastres. En aquesta tesi doctoral han sigut estudiats els tres més rellevants: creuat, túnel i de paret única. L'enfocament metodològic en tots els casos d'estudi ha sigut molt similar: han sigut realitzats uns mesuraments mitjançat us sistema multisensor de registre isotemporal (de disseny i fabricació propis), han sigut realitzades les corresponents simulacions Computational Fluid Dynamics (CFD) i finalment han sigut validades aquestes simulacions. Aquestes validacions s'han dut a terme mitjançant dues tècniques estadístiques: mitjançant tècniques de regressió lineal i mitjançant l'estudi de la significativitat (en una anàlisi de la variància) de la metodologia utilitzada (sensors o CFD) en sengles models de validació proposats. Una vegada validades aquestes simulacions CFD, es té la seguretat de poder utilitzar-les per a caracteritzar i analitzar la ventilació en tot l'espai interior de les granges (els sensors només permeten caracteritzar-la en les localitzacions físiques dels mateixos). El primer cas d'estudi és el d'una granja que té instal·lat un sistema de ventilació mecànic creuat (habitual en el clima Mediterrani). Les conclusions d'aquest estudi demostren que aquest sistema és adequat per a la criança del pollastre durant quasi tot l'any en localitzacions climàtiques moderades (per exemple, el clima Mediterrani). Tanmateix, en dies o períodes de calor (estiu), no serà adequat perquè no es poden obtenir valors de velocitat de l'aire grans que permeten disminuir l'estrés per calor dels pollastres. El segon cas d'estudi és el d'una granja que instal·la el sistema de ventilació mecànic túnel. Les conclusions d'aquest estudi demostren que és menys adequat que l'anterior (sistema de ventilació mecànic creuat) per a la criança del pollastre durant tot l'any en localitzacions climàtiques moderades. Tanmateix, en dies o períodes de calor (estiu), serà molt adequat perquè es poden obtenir valors de velocitat de l'aire grans que permeten disminuir l'estrés per calor dels pollastres. El tercer cas d'estudi és el d'una granja que instal·la el sistema de ventilació mecànic de paret única. Les conclusions d'aquest estudi demostren que aquest sistema és adequat per a la criança del pollastre durant quasi tot l'any en localitzacions climàtiques moderades. Tanmateix, en dies o períodes de calor (estiu), no serà adequat perquè no es poden obtenir valors de velocitat de l'aire grans que permeBustamante García, E. (2015). OPTIMIZACIÓN DE DISEÑO DE GRANJAS AVÍCOLAS DE POLLOS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59450TESISCompendi

    Effect of cooling pad installation on indoor airflow distribution in a tunnel-ventilated laying-hen house

    Get PDF
    Extra cooling pads on the sidewalls are needed for larger poultry houses using tunnel ventilation system. Preliminary study showed that the airflow velocity going through different aisles varies greatly when the extra pads are installed at the end of sidewalls, making a “[”-shape air inlet. Combined with field tests, the CFD (computational fluid dynamics) technology was used to study the uniformity of airflow distribution in a tunnel-ventilated laying-hen house. The air distribution was first monitored in a layer house to find the main reason resulting in the variations of airflows in different aisles. Then CFD simulations were carried out with different distances (D=2 m, 3 m or 4 m) between the pads on end-wall and the extra pads on side walls. The field test showed that airflow streams from the different groups of cooling pads collided vertically at the house corners, mixed with each other, then flew towards the center of the house. This was the main reason that the wind speed in the middle aisle was much higher than in other aisles, leaving large zones of lower ventilation in the aisles adjacent to the sidewalls. The results of CFD simulations indicated that air distributions could be significantly improved when the extra pieces of pads were moved away for an appropriate distance from the end cooling pads. As far as conventional poultry house with a span of 12 m, the air speeds in different aisles were more uniform when this distance was about 3 m

    Computational Fluid Dynamics Modeling of Ammonia Concentration in a Commercial Broiler Building

    Get PDF
    In the present study, a numerical model was developed to predict the flow pattern inside a broiler building. The model intends to predict the velocities fields inside the domain and am-monia (NH3) emitted or released by litter from poultry housing. The numerical model developed in Computational Fluid Dynamics (CFD) commercial code, intends to represent a commercial broiler building, and intends to simulate the 3D and heat transfer, in steady state flow. The evaporative cooling pads were also included in the model. The validation of the model was based in experimental measurements obtained in previous studies. The simulations were fo-cused on Summer, Winter and also Mid-Season situation. The numerical results of NH3 concen-tration were compared with the experimental measurements, and a quite good agreement was verified. The numerical results allowed the characterization of: the inside flow pattern devel-oped for the summer and winter situation; the inside NH3 distribution, and the velocity field distribution inside the broiler building. It was found that NH3 concentration increases along the tunnel, especially in low flow rate imposed from the exhaust fan. Also, it was verified that the low velocities inside domain are no sufficient to remove the gaseous pollutants.info:eu-repo/semantics/publishedVersio

    Investigation of bio-aerosol dispersion in a tunnel-ventilated poultry house

    Get PDF
    Bio-aerosol concentrations in poultry houses must be controlled to provide adequate air quality for both birds and workers. High concentrations of airborne bio-aerosols would affect the environmental sustainability of the production and create environmental hazards to the surroundings via the ventilation systems. Previous studies demonstrate that several factors including the age of the birds, the housing configuration, the humidity and temperature would strongly affect the indoor concentration of bio-aerosols. However, limited studies are performed in the literature to investigate the bio-aerosol dispersion pattern inside poultry buildings. In order to fill a gap of the understanding of the bio-aerosol dispersion behavior, experimental measurements of the indoor bio-aerosol distribution are performed in a tunnel-ventilated poultry house in this paper. Meanwhile a three-dimensional computational fluid dynamics (CFD) model is built and validated to further investigate the effect of flow pattern, turbulence and vortex on the dispersion and deposition of the bio-aerosols. Furthermore, bio-aerosols with various diameters are also examined in the CFD model. It is found that higher concentrations of bio-aerosols are detected at the rear part of the house and strong turbulent flow resulting from the ventilation inlets enhances the diffusion and dispersion of bio-aerosols. Local vortex or disturbed flow is responsible for higher local concentration due to the re-suspension of settled bio-aerosols, which suggests that careful attentions should be paid to these locations during cleaning and disinfection. Results from present study contribute to the optimization of design and operation of the poultry houses from the standing point of reducing airborne bio-aerosol concentrations

    Computational modeling of urban wind flow and natural ventilation potential of buildings

    Get PDF

    Development of a CFD model to simulate natural ventilation in a semi-open free-stall barn for dairy cows

    Get PDF
    Natural ventilation is the most common passive cooling system in livestock buildings. The aim of this research is to assess airflow distribution inside a free-stall barn for dairy cows by computational fluid dynamics (CFD) modelling and simulation. The model is validated by using the average values of experimental data acquired in a free-stall barn, which is considered relevant because it is located in a region characterised by hot climate conditions during the summer that could induce animal heat stress. Simulations are carried out in steady-state conditions, and simulated data are validated by the average values of air velocity measurements. Since the modelled air velocity distribution in the barn fits the real one well, the CFD model is considered reliable to simulate other conditions. The application of the proposed CFD model in the simulation of specific building design alternatives could be aimed at studying the related airflow distribution in order to find the best configuration

    Improving the energy efficiency of buildings based on fluid dynamics models: a critical review

    Get PDF
    The built environment is the global sector with the greatest energy use and greenhouse gas emissions. As a result, building energy savings can make a major contribution to tackling the current energy and climate change crises. Fluid dynamics models have long supported the understanding and optimization of building energy systems and have been responsible for many important technological breakthroughs. As Covid-19 is continuing to spread around the world, fluid dynamics models are proving to be more essential than ever for exploring airborne transmission of the coronavirus indoors in order to develop energy-efficient and healthy ventilation actions against Covid-19 risks. The purpose of this paper is to review the most important and influential fluid dynamics models that have contributed to improving building energy efficiency. A detailed, yet understandable description of each model’s background, physical setup, and equations is provided. The main ingredients, theoretical interpretations, assumptions, application ranges, and robustness of the models are discussed. Models are reviewed with comprehensive, although not exhaustive, publications in the literature. The review concludes by outlining open questions and future perspectives of simulation models in building energy research

    Improving Indoor Arenas for the Equine Industry

    Get PDF
    Equine indoor arenas are a unique infrastructure investment found at equine farms and facilities. They are semi-indoor structures for exercising horses, exhibiting skills during competitive events, and other equine related activities. These spaces do not always include mechanical ventilation or stirring fans and occupancy by horses and humans can be sporadic and inconsistent, which creates a challenging space for understanding and predicting airflow. Typically, indoor arenas have a sand-based footing over which the horse travels. The impact of the hooves can cause dust to become a concern within the facilities. Environmental concerns within these facilities (temperature, respirable dust, moisture, and air movement) have been identified through surveys and small research studies. Three research areas were designed and completed to examine different aspects of indoor arenas. The first research area involved observational studies of the environment within indoor arenas around Lexington, KY. Second, computational fluid dynamic modeling evaluating the impact of different ventilation designs on air movement within indoor arenas. Lastly, an intensive lab study determining the differences environmental conditions and dragging maintenance schedules has on footing moisture content for 3 different footing types. The environmental studies were conducted in two parts. The first characterized 37 indoor arenas in a one-time site assessment and the second monitored 15 indoor arenas for a week in the winter and summer to examine seasonal differences. During the one-time site assessments spatial variability of roof, ambient air, and footing temperatures, air speeds, and light intensity was evaluated in relation to design features of the arena and facility usage information. The environmental monitoring demonstrated distinct diurnal patterns in the facilities regarding temperature, dew point temperature, and solar radiation. In addition, both studies showed that air speeds within the facilities were below recommended levels of 0.51 m/s (100ft/min). Overall, there is a need for more research on the environmental conditions within indoor arenas, the potential health impacts to the humans and horses in the spaces, and how design changes to the facility could improve this environment. Computational fluid dynamic (CFD) modeling provided visualization of the effect of different ventilation design aspects and the impact of orientation on air speeds within indoor arenas. Adding eave ventilation and ridge vents in combination with large windows allows for more air movement through the facilities with large openings at the tops of walls providing the highest amount of air movement within the arena. Orientating the arenas with the long side wall perpendicular to the predominant wind direction allowed for the more air flow through and within the facility. Finally, observing the change in footing moisture content of 3 different footing types (sand with fiber, sand, and sand with organic matter) determined that environmental conditions (winter, summer humid, and summer dry) are important for how quickly the moisture will be evaporated out of the footing. Summer dry conditions (30°C/40% RH) had the largest moisture content change in all 3 footing types, while winter (7°C/75% RH), and summer humid (30°C/80% RH) both demonstrated less water loss. Understanding the rate at which moisture is lost from footing can help facility managers decide when to add more water

    Investigation of natural ventilation performance of large space circular coal storage dome

    Get PDF
    Large space circular coal storage dome (LSCCSD) offers an environmental and dependable alternative to open stockpiles, and it has been consequently widely applied in China. However, due to the lack of scientific guidelines, its natural ventilation performance is lower than expected. Natural ventilation potential strongly depends on the roof geometry and opening mode, which have not yet been investigated for LSCCSD. This paper presents a detailed evaluation of the impact of dome geometry (rise span ratio), opening height, and opening modes on the ventilation performance of LSCCSD. The evaluation is based on computational fluid dynamics (CFD) methods and is validated by available wind tunnel testing. We employed three evaluation indicators, which are wind pressure coefficient, effective ventilation rate, and wind speed ratio. The results demonstrate that the rise span ratio has a significant effect on the wind pressure difference and the effective ventilation rate increases by approximately 9%–42% with a single-annular opening. When double-annular openings are set in a strong positive pressure zone, the effective ventilation rate increases by 100% and the average wind speed ratio increases by 50%. When it is compared with single one with similar opening height, the effective ventilation rate increases by 25%. The optimum natural ventilation performance for LSCCSD is achieved at a rise span ratio of 0.37. In addition, the lateral middle opening is kept higher than the ridge top of the coal pile. The proposed evaluation approach and design parameters provided instructive information in the building design and ventilation control for LSCCSDs
    corecore