1,811 research outputs found

    Multimedia Streaming Rate Optimization in Peer-to-peer Network

    Get PDF

    Bandwidth-efficient Video Streaming with Network Coding on Peer-to-Peer Networks

    Get PDF
    PhDOver the last decade, live video streaming applications have gained great popularity among users but put great pressure on video servers and the Internet. In order to satisfy the growing demands for live video streaming, Peer-to-Peer(P2P) has been developed to relieve the video servers of bandwidth bottlenecks and computational load. Furthermore, Network Coding (NC) has been proposed and proved as a significant breakthrough in information theory and coding theory. According to previous research, NC not only brings substantial improvements regarding throughput and delay in data transmission, but also provides innovative solutions for multiple issues related to resource allocation, such as the coupon-collection problem, allocation and scheduling procedure. However, the complex NC-driven P2P streaming network poses substantial challenges to the packet scheduling algorithm. This thesis focuses on the packet scheduling algorithm for video multicast in NC-driven P2P streaming network. It determines how upload bandwidth resources of peer nodes are allocated in different transmission scenarios to achieve a better Quality of Service(QoS). First, an optimized rate allocation algorithm is proposed for scalable video transmission (SVT) in the NC-based lossy streaming network. This algorithm is developed to achieve the tradeoffs between average video distortion and average bandwidth redundancy in each generation. It determines how senders allocate their upload bandwidth to different classes in scalable data so that the sum of the distortion and the weighted redundancy ratio can be minimized. Second, in the NC-based non-scalable video transmission system, the bandwidth ineffi- ciency which is caused by the asynchronization communication among peers is reduced. First, a scalable compensation model and an adaptive push algorithm are proposed to reduce the unrecoverable transmission caused by network loss and insufficient bandwidth resources. Then a centralized packet scheduling algorithm is proposed to reduce the unin- formative transmission caused by the asynchronized communication among sender nodes. Subsequently, we further propose a distributed packet scheduling algorithm, which adds a critical scalability property to the packet scheduling model. Third, the bandwidth resource scheduling for SVT is further studied. A novel multiple- generation scheduling algorithm is proposed to determine the quality classes that the receiver node can subscribe to so that the overall perceived video quality can be maxi- mized. A single generation scheduling algorithm for SVT is also proposed to provide a faster and easier solution to the video quality maximization function. Thorough theoretical analysis is conducted in the development of all proposed algorithms, and their performance is evaluated via comprehensive simulations. We have demon- strated, by adjusting the conventional transmission model and involving new packet scheduling models, the overall QoS and bandwidth efficiency are dramatically improved. In non-scalable video streaming system, the maximum video quality gain can be around 5dB compared with the random push method, and the overall uninformative transmiss- sion ratio are reduced to 1% - 2%. In scalable video streaming system, the maximum video quality gain can be around 7dB, and the overall uninformative transmission ratio are reduced to 2% - 3%

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor

    Partitioning and Offloading for IoT and Video Streaming Applications that Utilize Computing Resources at the Network Edge

    Get PDF
    The Internet of Things (IoT) is a concept in which physical objects embedded with sensors, actuators, and network connectivity can communicate and react to their surroundings. IoT applications connect physical objects for the purpose of decision making by sensing and analysing generated data from the embedded sensors in physical objects. IoT applications are growing rapidly as sensors become less expensive. Sensors generate large amounts of data that may meaningless unless the data is used to derive knowledge with in a certain period of time. Stream processing paradigm is used by IoT to provide requirements of IoT applications. In a stream processing paradigm, unlike traditional data bases, data is not stored but rather processed as it is generated. To transfer generated data from distributed data sources to a processing center such as cloud may not allow for real-time processing due to the network delay. Another high-demand application is live streaming of video. The performance of live video stream systems is inferior when there is a sudden large demand in the number of users. This thesis addresses some of the limitations of current architectures for video streaming systems and IoT applications based on the use of nearby computing resources (e.g., cloudlet, fog). First, we addressed the degrading performance in video stream systems when a flash crowd occurs. The performance of video streaming systems is affected by flash crowd and degrade the quality of service for subscribers to the content delivery system. A flash crowd happens when there is a sudden large increase in the number of users. Therefore, flash crowds increase network traffic for any particular server. The main challenge is to make sure that the video streaming system has sufficient capacity to handle the occurrence of flash crowds. Second, we address the limitation of current architectures for running mobile applications by introducing a dynamic partitioning and offloading of a mobile application. Mobile devices have limited resources including short battery life, storage capacity and processor performance. This limits the applications that can run on it. Mobile applications can be partitioned so that some of the application runs on a cloud. This works well for applications with relatively little data to be transferred and that do not have a high level of interaction with the user. Challenges with applications that have large amounts of data to be transferred and have a high level interactiveness is the high latency incurred by the network and packet loss of the wireless network. A mobile application can be partitioned so that part of it runs on a nearby computing resource e.g., fog node or cloudlet. This thesis presents a framework that introduces fine-grained offloading approach and support for runtime and dynamic partitioning of an application. Third, we present a solution for placement of stream operators over distributed fog nodes for live processing of data streams from geographically distributed data sources. This placement of stream operators takes place in such a way that it supports applications with a high volume of data that require real-time (or near real-time) analysis To this end, this thesis proposed a set of algorithms for placement of stream operators among fog nodes

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Performance Optimization and Dynamics Control for Large-scale Data Transfer in Wide-area Networks

    Get PDF
    Transport control plays an important role in the performance of large-scale scientific and media streaming applications involving transfer of large data sets, media streaming, online computational steering, interactive visualization, and remote instrument control. In general, these applications have two distinctive classes of transport requirements: large-scale scientific applications require high bandwidths to move bulk data across wide-area networks, while media streaming applications require stable bandwidths to ensure smooth media playback. Unfortunately, the widely deployed Transmission Control Protocol is inadequate for such tasks due to its performance limitations. The purpose of this dissertation is to conduct rigorous analytical study of the design and performance of transport solutions, and develop an integrated transport solution in a systematical way to overcome the limitations of current transport methods. One of the primary challenges is to explore and compose a set of feasible route options with multiple constraints. Another challenge essentially arises from the randomness inherent in wide-area networks, particularly the Internet. This randomness must be explicitly accounted for to achieve both goodput maximization and stabilization over the constructed routes by suitably adjusting the source rate in response to both network and host dynamics.The superior and robust performance of the proposed transport solution is extensively evaluated in a simulated environment and further verified through real-life implementations and deployments over both Internet and dedicated connections under disparate network conditions in comparison with existing transport methods

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    • …
    corecore