10 research outputs found

    Euclidean Greedy Drawings of Trees

    Full text link
    Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each source-destination pair of nodes s, t in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of greedy embeddings in the Euclidean plane R^2 is known for certain graph classes such as 3-connected planar graphs. We completely characterize the trees that admit a greedy embedding in R^2. This answers a question by Angelini et al. (Graph Drawing 2009) and is a further step in characterizing the graphs that admit Euclidean greedy embeddings.Comment: Expanded version of a paper to appear in the 21st European Symposium on Algorithms (ESA 2013). 24 pages, 20 figure

    On the Area Requirements of Planar Greedy Drawings of Triconnected Planar Graphs

    Full text link
    In this paper we study the area requirements of planar greedy drawings of triconnected planar graphs. Cao, Strelzoff, and Sun exhibited a family H\cal H of subdivisions of triconnected plane graphs and claimed that every planar greedy drawing of the graphs in H\mathcal H respecting the prescribed plane embedding requires exponential area. However, we show that every nn-vertex graph in H\cal H actually has a planar greedy drawing respecting the prescribed plane embedding on an O(n)×O(n)O(n)\times O(n) grid. This reopens the question whether triconnected planar graphs admit planar greedy drawings on a polynomial-size grid. Further, we provide evidence for a positive answer to the above question by proving that every nn-vertex Halin graph admits a planar greedy drawing on an O(n)×O(n)O(n)\times O(n) grid. Both such results are obtained by actually constructing drawings that are convex and angle-monotone. Finally, we consider α\alpha-Schnyder drawings, which are angle-monotone and hence greedy if α≀30∘\alpha\leq 30^\circ, and show that there exist planar triangulations for which every α\alpha-Schnyder drawing with a fixed α<60∘\alpha<60^\circ requires exponential area for any resolution rule

    Drawing Graphs as Spanners

    Full text link
    We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph GG, the goal is to construct a straight-line drawing Γ\Gamma of GG in the plane such that, for any two vertices uu and vv of GG, the ratio between the minimum length of any path from uu to vv and the Euclidean distance between uu and vv is small. The maximum such ratio, over all pairs of vertices of GG, is the spanning ratio of Γ\Gamma. First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio 11, a proper straight-line drawing with spanning ratio 11, and a planar straight-line drawing with spanning ratio 11 are NP-complete, ∃R\exists \mathbb R-complete, and linear-time solvable problems, respectively, where a drawing is proper if no two vertices overlap and no edge overlaps a vertex. Second, we show that moving from spanning ratio 11 to spanning ratio 1+Ï”1+\epsilon allows us to draw every graph. Namely, we prove that, for every Ï”>0\epsilon>0, every (planar) graph admits a proper (resp. planar) straight-line drawing with spanning ratio smaller than 1+Ï”1+\epsilon. Third, our drawings with spanning ratio smaller than 1+Ï”1+\epsilon have large edge-length ratio, that is, the ratio between the length of the longest edge and the length of the shortest edge is exponential. We show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line drawing with constant spanning ratio

    Succinct Greedy Drawings Do Not Always Exist

    Get PDF
    A greedy drawing is a graph drawing containing a distance-decreasing path for every pair of nodes. A path (v0 , v1 , . . . , vm ) is distance-decreasing if d(vi , vm ) < d(vi−1 , vm ), for i = 1, . . . , m. Greedy drawings easily support geographic greedy routing. Hence, a natural and practical problem is the one of constructing greedy drawings in the plane using few bits for representing vertex Cartesian coordinates and using the Euclidean distance as a metric. We show that there exist greedy-drawable graphs that do not admit any greedy drawing in which the Cartesian coordinates have less than a polynomial number of bits

    Complete combinatorial characterization of greedy-drawable trees

    Full text link
    A (Euclidean) greedy drawing of a graph is a drawing in which, for any two vertices s,ts,t (s≠ts \neq t), there is a neighbor vertex of ss that is closer to tt than to ss in the Euclidean distance. Greedy drawings are important in the context of message routing in networks, and graph classes that admit greedy drawings have been actively studied. N\"{o}llenburg and Prutkin (Discrete Comput. Geom., 58(3), pp.543-579, 2017) gave a characterization of greedy-drawable trees in terms of an inequality system that contains a non-linear equation. Using the characterization, they gave a linear-time recognition algorithm for greedy-drawable trees of maximum degree ≀4\leq 4. However, a combinatorial characterization of greedy-drawable trees of maximum degree 5 was left open. In this paper, we give a combinatorial characterization of greedy-drawable trees of maximum degree 55, which leads to a complete combinatorial characterization of greedy-drawable trees. Furthermore, we give a characterization of greedy-drawable pseudo-trees.Comment: 26 pages, 30 fugure

    Graph Embeddings Motivated by Greedy Routing

    Get PDF
    corecore