Abstract

In this paper we study the area requirements of planar greedy drawings of triconnected planar graphs. Cao, Strelzoff, and Sun exhibited a family H\cal H of subdivisions of triconnected plane graphs and claimed that every planar greedy drawing of the graphs in H\mathcal H respecting the prescribed plane embedding requires exponential area. However, we show that every nn-vertex graph in H\cal H actually has a planar greedy drawing respecting the prescribed plane embedding on an O(n)×O(n)O(n)\times O(n) grid. This reopens the question whether triconnected planar graphs admit planar greedy drawings on a polynomial-size grid. Further, we provide evidence for a positive answer to the above question by proving that every nn-vertex Halin graph admits a planar greedy drawing on an O(n)×O(n)O(n)\times O(n) grid. Both such results are obtained by actually constructing drawings that are convex and angle-monotone. Finally, we consider α\alpha-Schnyder drawings, which are angle-monotone and hence greedy if α30\alpha\leq 30^\circ, and show that there exist planar triangulations for which every α\alpha-Schnyder drawing with a fixed α<60\alpha<60^\circ requires exponential area for any resolution rule

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021