13 research outputs found

    Conditional Random Field Autoencoders for Unsupervised Structured Prediction

    Full text link
    We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines

    Exploiting Parallel Corpus for Handling Out-of-vocabulary Words

    Get PDF

    Do we need bigram alignment models? On the effect of alignment quality on transduction accuracy in G2P

    Get PDF
    Abstract We investigate the need for bigram alignment models and the benefit of supervised alignment techniques in graphemeto-phoneme (G2P) conversion. Moreover, we quantitatively estimate the relationship between alignment quality and overall G2P system performance. We find that, in English, bigram alignment models do perform better than unigram alignment models on the G2P task. Moreover, we find that supervised alignment techniques may perform considerably better than their unsupervised brethren and that few manually aligned training pairs suffice for them to do so. Finally, we estimate a highly significant impact of alignment quality on overall G2P transcription performance and that this relationship is linear in nature

    Unsupervised Structure Induction for Natural Language Processing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Exploiting Cross-Lingual Representations For Natural Language Processing

    Get PDF
    Traditional approaches to supervised learning require a generous amount of labeled data for good generalization. While such annotation-heavy approaches have proven useful for some Natural Language Processing (NLP) tasks in high-resource languages (like English), they are unlikely to scale to languages where collecting labeled data is di cult and time-consuming. Translating supervision available in English is also not a viable solution, because developing a good machine translation system requires expensive to annotate resources which are not available for most languages. In this thesis, I argue that cross-lingual representations are an effective means of extending NLP tools to languages beyond English without resorting to generous amounts of annotated data or expensive machine translation. These representations can be learned in an inexpensive manner, often from signals completely unrelated to the task of interest. I begin with a review of different ways of inducing such representations using a variety of cross-lingual signals and study algorithmic approaches of using them in a diverse set of downstream tasks. Examples of such tasks covered in this thesis include learning representations to transfer a trained model across languages for document classification, assist in monolingual lexical semantics like word sense induction, identify asymmetric lexical relationships like hypernymy between words in different languages, or combining supervision across languages through a shared feature space for cross-lingual entity linking. In all these applications, the representations make information expressed in other languages available in English, while requiring minimal additional supervision in the language of interest

    Applying dynamic Bayesian networks in transliteration detection and generation

    Get PDF
    Peter Nabende promoveert op methoden die programma’s voor automatisch vertalen kunnen verbeteren. Hij onderzocht twee systemen voor het genereren en vergelijken van transcripties: een DBN-model (Dynamische Bayesiaanse Netwerken) waarin Pair Hidden Markovmodellen zijn geïmplementeerd en een DBN-model dat op transductie is gebaseerd. Nabende onderzocht het effect van verschillende DBN-parameters op de kwaliteit van de geproduceerde transcripties. Voor de evaluatie van de DBN-modellen gebruikte hij standaard dataverzamelingen van elf taalparen: Engels-Arabisch, Engels-Bengaals, Engels-Chinees, Engels-Duits, Engels-Frans, Engels-Hindi, Engels-Kannada, Engels-Nederlands, Engels-Russisch, Engels-Tamil en Engels-Thai. Tijdens het onderzoek probeerde hij om verschillende modellen te combineren. Dat bleek een goed resultaat op te leveren
    corecore