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Abstract

Many Natural Language Processing (NLP) tasks involve some kind of structure anal-

ysis, such as word alignment for machine translation, syntactic parsing for coreference

resolution, semantic parsing for question answering, etc.Traditional supervised learning

methods rely on manually labeled structures for training. Unfortunately, manual annota-

tions are often expensive and time-consuming for large amounts of rich text. It has great

value to induce structures automatically from unannotatedsentences for NLP research.

In this thesis, I first introduce and analyze the existing methods in structure induc-

tion, then present our explorations on three unsupervised structure induction tasks: the

transliteration equivalence learning, the constituency grammar induction and the depen-

dency grammar induction.

In transliteration equivalence learning, transliteratedbilingual word pairs are given

without internal syllable alignments. The task is to automatically infer the mapping be-

tween syllables in source and target languages. This dissertation addresses problems

of the state-of-the-art grapheme-based joint source-channel model, and proposes Syn-

chronous Adaptor Grammar (SAG), a novel nonparametric Bayesian learning approach

for machine transliteration. This model provides a generalframework to automatically

learn syllable equivalents without heuristics or restrictions.

The constituency grammar induction is useful since annotated treebanks are only

available for a few languages. This dissertation focuses onthe effective Constituent-

Context Model (CCM) and proposes to enrich this model with linguistic features. The

xiii



features are defined in log-linear form with local normalization, in which the efficient

Expectation-Maximization (EM) algorithm is still applicable. Moreover, we advocate

using a separated development set (a.k.a. the validation set) to perform model selec-

tion, and measure trained model on an additional test set. Under this framework, we

could automatically select suitable model and parameters without setting them manually.

Empirical results demonstrate the feature-based model could overcome the data sparsity

problem of original CCM and achieve better performance using compact representations.

Dependency grammars could model the word-word dependencies which is suitable

for other high-level tasks such as relation extraction and coreference resolution. This

dissertation investigates Combinatory Categorial Grammar (CCG), an expressive lexi-

calized grammar formalism which is able to capture long-range dependencies. We in-

troduce boundary part-of-speech (POS) tags into the baseline model (Bisk and Hocken-

maier, 2012b) to capture lexical information. For learning, we propose aBayesian model

to learn CCG grammars, and the full EM andk-best EM algorithms are also implemented

and compared. Experiments show the boundary model improvesthe dependency accu-

racy for all these three learning algorithms. The proposed Bayesian model outperforms

the full EM algorithm, but underperforms thek-best EM learning algorithm.

In summary, this dissertation investigates unsupervised learning methods including

Bayesian learning models and feature-based models, and provides some novel ideas of

unsupervised structure induction for natural language processing. The automatically in-

duced structures may help on subsequent NLP applications.
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Chapter 1

Introduction

1.1 Background

In many Natural Language Processing (NLP) tasks, the core process involves some

kind of structure analysis. For example, in phrase-based machine translation, the training

process would first induce word alignment structures between bilingual sentences. Ques-

tion answering is another example, in which the knowledge isobtained from the parsed

semantic structures. Unfortunately, there are limited resources of annotated structures for

NLP. For example, the Penn Treebank (Marcus et al., 1993) has only tens of thousands

annotated trees. As a comparison, we can easily obtain billions of sentences from the

web. To make things worse, the annotated structures are onlyavailable for small number

of widely used languages, which limits the NLP researches onother languages. How to

induce structures automatically from unannotated sentences has great values.

In this thesis, we investigate and propose new ideas for three structure induction tasks:

the transliteration equivalence learning, constituency grammar induction and dependency

grammar induction. Evaluation results on annotated test set show effectiveness of our

methods.
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1.2 Transliteration Equivalence

Proper names are one source of out-of-vocabulary words in many NLP tasks, such

as machine translation and cross-lingual information retrieval. They are often translated

through transliteration, i.e. translation by preserving how words sound in both languages.

For some language pairs with similar alphabets, the transliteration task is relatively easy.

However, for languages with different alphabets and sound systems (such as English-

Chinese), the task is more challenging.

s m I T

sh i m i s i

s m i t h

史 密 斯

(a) phoneme representation (b) grapheme representation

Figure 1.1: Transliteration alignments of〈smith/史[shi]密[mi]斯[si]〉. (a) the
phoneme representation, in which Chinese characters are converted to Pinyin and En-
glish word is represented as phonetic symbols; (b) the grapheme representation, in which
literal characters are directly aligned.

Since enumeration of all transliteration pairs is impossible, we have to break word

pairs into small transliterated substrings. Syllable equivalents acquisition is a critical

phase for all transliteration models. General speaking, there are two kinds of alignments

at different representations: phoneme-based and grapheme-based. In the phoneme repre-

sentations, words are first converted into the phonemic syllables and then the phonemes

are aligned. The phoneme systems may be different for sourceand target languages, e.g.

Pinyin for Chinese and phonetic symbols for English. In the grapheme representations,

the literal characters in each language are directly aligned. Figure1.1 illustrates the

two representations for aligned transliterated example. Note that the alignments could

be one-to-one, one-to-many, many-to-one, and many-to-many. Although many-to-many

alignments may be excluded for English-Chinese transliteration, they can be found in

other language pairs, e.g. the English-Japanese case (Knight and Graehl, 1998).
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Due to the lack of annotated data, inferring the alignments and equivalence map-

pings for transliteration is often considered as unsupervised learning problems. Simple

rule-based models may be used to acquire transliterated equivalences. For instance, for

the English-Chinese transliteration task, we may apply rules to find the corresponding

character in English word according to the consonants in Chinese Pinyin, and split the

English word into substrings. However, rule-based systemsoften require expert knowl-

edge to specify language-dependent rules, making them hardto handle instances with

exceptions or be applied to other language pairs.

Another formalism is the statistical model, which automatically infers alignment

structures from given transliterated instances. If there are enough training data, sta-

tistical models often perform better than rule-based systems. Furthermore, statistical

models could be easily trained for different language pairs. To handle ambiguities, prob-

abilities are assigned to different transliteration alignments in statistical models. The

Expectation-Maximization (EM) algorithm is often used to estimate model parameters

so as to maximize the data likelihood. One problem of EM is overfitting. In many mod-

els (we will see in Section2.1), if EM is performed without any restriction, the system

would memorize all training examples without any meaningful substrings. We propose

our Bayesian solution to this problem in Chapter3.

There are some issues needing to be concerned in transliteration. The first one is that

there may be many correct transliteration candidates for the same source word. For exam-

ple, the name “abare” in English could be transliterated to “阿[a]贝[bei]尔[er]” or

“阿[a]巴[ba]尔[er]” in Chinese, and the Chinese transliteration “阿[a]贝[bei]尔[er]”

corresponds to “abare” or “ abbel” in English. Secondly, name origin may affect the

transliteration results. For example, the correct transliterated correspondence of the

Japanese-origin name “田[tian]中[zhong]” is “ tanaka”, where the two words have

quite different sounds. In this thesis, we ignore this name origin problem.
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1.3 Constituency Grammars

In linguistics, aconstituentis a word or a group of words that represents some lin-

guistic function as a single unit. For example, in the following English sentences, the

noun phrase “a pair of shoes” is a constituent acting as a single noun.

She boughta pair of shoes.

It wasa pair of shoesthat she bought.

A pair of shoesis what she bought.

There are many kinds of constituents according to their linguistic functions, such as noun

phrase (NP), verb phrase (VP), sentence (S), prepositional phrase (PP), etc. Usually, the

constituents with the same type are syntactically interchangeable. For instance, we may

replace the singular noun phrase “a pair of shoes” with “ a watch” without changing the

syntactic structure in above examples.

TOP

S

NP

NP

DT JJ JJ NN

PP

IN

NP

NNP

VP

MD

VP

VB

NP

CD

a full four-color page in newsweek will cost 100,980
0 1 2 3 4 5 6 7 8 9

Figure 1.2: A constituency tree example.

The hierarchical structure of constituents forms a constituency tree. Figure1.2shows

an example, in which the special labelTOP indicates the root of the tree. Each labeled

tree node represents some kind of constituents (NP, VP . . . ), and the leaf nodes represent

the words. The labels of non-leaf nodes are often callednon-terminalssince they could

be expanded in some way, and the words in leaf nodes areterminalsbecause the expan-

sion process terminates at these nodes. From this constituency tree, we can extract the
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following context-free transformation rules (rules that generate terminals are ignored to

save spaces):

TOP → S

S → NP VP

NP → NP PP

NP → DT JJ JJ NN

PP → IN NP

NP → NNP

VP → MD VP

VP → VB NP

NP → CD

Each rule rewrites (or expands) its left non-terminal (the parent) to the sequence of ter-

minals or non-terminals on the right (the children). The term context-free means that

rule applications are independent of contexts and history.

A constituency grammaris defined as the tuple of terminals, non-terminals, the spe-

cial starting symbol, and the set of context-free rewrite rules (Hopcroft et al., 2006).

Given constituency grammar, the process of finding grammatical structure from plain

string is calledparsing. Due to the context-free property, dynamic programming algo-

rithms exist for efficient parsing, either from root down to terminals, e.g. the Earley

algorithm (Earley, 1983), or in the bottom-up fashion, e.g. the CKY algorithm (Cocke

and Schwartz, 1970) for binarized grammars.

To facilitate syntactic analysis, many constituency tree banks have been created in

various languages, such as the Penn English Treebank (Marcus et al., 1993), the Penn

Chinese treebank (Xue et al., 2005), the German NEGRA corpus (Skut et al., 1998),

etc. However, manually creating tree structures is expensive and time-consuming. In this

thesis, we are interested in inducing constituency grammars and trees from plain strings.

We will review related work in Section2.2and propose our model in Chapter4.
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1.4 Dependency Grammars

Constituency grammars perform well for languages with relatively strict word order

(e.g. English). However, some free word order languages (e.g. Czech, Turkish) lack a

finite verb phrase constituent, making constituency parsing difficult. In contrast, depen-

dency grammars model the word-to-word dependency relations, which is more suitable

for languages with free word order.

ROOTROOT DT JJ JJ NN IN NNP MD VB CD

a full four-color page in newsweek will cost 100,980

Figure 1.3: A dependency tree example.

In dependency grammar, each word in sentence has exactly onehead worddomi-

nating it in the structure. Figure1.3 shows a dependency tree in the arc form. Arrows

pointing from head to dependents represent dependency relations. The special symbol

ROOT demonstrates the root of dependency tree that always pointsto the head word of

the sentence (usually the main verb). Arcs may be associatedwith labels to indicate the

relations between the two words, which we omit here for simplicity.

In general, there are two types of relations: thefunctor-argument relationand the

content-modifier relation. In the functor-argument relation, functor itself is not a com-

pleted syntactic category, unless it takes other word(s) asarguments. For example in

Figure1.3, if we remove the word with POS tag “CD” from the sentence, the sentence

becomes incomplete, since the transitive verb with POS tag “VB” must first take an ar-

gument as the object. In contrast, if we remove the adjectives with the POS tag “JJ”

in above example, the sentence remains completed, since thenoun “NN” could act as a

meaningful syntactic category without taking any arguments. In this case, we say that the
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adjectives “modify” the noun, which forms the content-modifier relation. We will revisit

these concepts in the context of Combinatory Categorial Grammar (CCG) described in

Section1.5. Compared to constituency grammar, lexical information and word order is

naturally encoded within dependency grammar.

ROOTROOT WP VBZ PRP VBN VBG

who has he been seeking

Figure 1.4: A non-projective dependency tree example.

For efficient parsing, many dependency grammars require thedependency trees to be

projective, i.e. the arcs can not be crossed. However, this assumption may be violated

for languages with free word order. Even for some special structures of English, the

projectivity property is not preserved for dependency structure. Figure1.4gives example

of non-projective dependency structures for the wh-movement structure in English.

Instead of dependency grammar induction, we focus on the induction task of Com-

binatory Categorial Grammar (CCG) in this thesis. CCG is a more expressive grammar

formalism, in which the coordination and the above wh-movement structures are dealt

with in an elegant way. We introduce CCG in next section and present models to induce

CCG trees in Chapter5.

1.5 Combinatory Categorial Grammars

Combinatory Categorial Grammar (CCG) is a linguistically expressive lexicalized

grammar formalism (Steedman, 2000). Compared to dependency grammars in which

words directly act as heads, CCG tree nodes are associated with rich syntactic categories

which capture the basic word order and subcategorization. Specifically, the CCG cat-
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egories are defined recursively: (1) There are some atomic categories, e.g.S, N; (2)

Complex categories either take the formX/Y or X\Y, representing the category that takes

categoryY as input and outputs the result categoryX. The forward slash (/) and the back-

ward slash (\) indicate the input categoryY follows or precedes the complex category

respectively. Note thatX andY themselves may be complex categories too. Parentheses

can be used to specify the order of function applications if needed. By default, the slashes

are left-associated, e.g. “X\Y/Z” is the shorthand of “(X\Y)/Z”. If the order of categories is

not important in some cases, we use symbol “|” to represent either the forward slash or

the backward slash. The following examples show some commoncategories in English

grammars:N for nouns,NP for noun phrases,S for sentences, (S\NP)/NP for transitive

verbs,NP/N for determiners, etc.

The derivationof CCG is the sequence of CCG rule applications. There are a few

kinds of rule templates defined in CCG. The simplest rules arethe forward application

(>) and the backward application (<), where the complex category functors take atomic

categories as input:

X/Y Y ⇒ X (>)

Y X\Y ⇒ X (<)

The input categories could be complex too, which forms the composition rules:

X/Y Y|Z ⇒ X|Z (>B1)

Y|Z X\Y ⇒ X|Z (<B1)

Higher order composition rules can be defined similarly:

X/Y Y|Z1| . . . |Zn ⇒ X|Z1| . . . |Zn (>Bn)

Y|Z1| . . . |Zn X\Y ⇒ X|Z1| . . . |Zn (<Bn)

In a sense, the application rules (> and<) can be regarded as the zero-order case of com-

position rules (>B0 and<B0). Example1.1 shows the CCG derivations of a declarative

sentence. In this example, the lexical category (S\NP)/NP for transitive verb “saw” re-

stricts that the verb must first consume a object noun phrase (NP) on the right to obtain
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the intransitive verb categoryS\NP, then take another noun phrase (NP) on the left as the

subject to form sentence. Note that the categoryN of noun “John” is changed to the

categoryNP using the unary type-changing rule (T). We can see that the CCG lexicons

encode rich lexical information as well as the syntactic restriction.

John saw the man

N (S\NP)/NP NP/N N
T >

NP NP
>

S\NP
<

S

(1.1)

For coordination, CCG assumes that only the same categoriescan be conjuncted to

yield a single category of the same type. In detail, CCG includes a ternary conjunction

rule (&). For parsing algorithms (e.g. bottom-up CKY algorithm) that require binary

rules, we often use the binarized conjunction rules (>& and<&).

X conj X ⇒ X (&)

X X[conj] ⇒ X (>&)

conj X ⇒ X[conj] (<&)

CCG also includes type-raising rules, which turn argumentsinto functions over functions-

over-such-arguments.

X ⇒ T/(T\X) (>T)

X ⇒ T\(T/X) (<T)

These rules are needed to form some unusual constituents, such as the constituent “John saw”

in Example1.2. In this example, there is no argument on the right to transitive verb “saw”

due to the clause structure, so the noun “John” has to be type-raised. Another example

of type-raising is the uncommon coordination case (see below), in which two categories

of the typeS/N are conjuncted.
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the man that John saw

N/N N (N\N)/(S/N) N (S\N)/N
> >T

N S/(S\N)
>B1

S/N
>

N\N
<

N

(1.2)

I dislike and Mary likes opera

N (S\N)/N conj N (S\N)/N N
>T >T

S/(S\N) S/(S\N)
>B1 >B1

S/N S/N
&

S/N
>

S

(1.3)

From example (1.1) and example (1.2), it should be emphasised that the same words

have the same lexical categories, although the sentence structures are totally different.

This elegant and semantically transparent capture of coordination and extraction of CCG

allows recovery of the long-range dependencies and semantics.

Following (Bisk and Hockenmaier, 2012b), we define categoryX|Y asfunctor if X is

different fromY, and category in the form ofX|X asmodifier. In dependency terminol-

ogy, the functorX|Y corresponds to the head of its argumentY, while the modifierX|X

corresponds to the argument ofX.

In the formal grammar theory, Combinatory Categorial Grammars are known to be

able to generate the language{anbncndn : n ≥ 0}, and weekly equivalent to Linear

Indexed Grammars, Tree-adjoining Grammars, and Head Grammars (Vijay-Shanker and

Weir, 1994). As a mildly context-sensitive grammar, CCG models can be efficiently

parsed in polynomial time with respect to the sentence length, which makes CCG prac-

tical in real tasks. In practice, the “spurious ambiguity” of CCG derivations may lead to

an exponential number of derivations for a given constituent. The normal forms of CCG

are described in (Eisner, 1996) and (Hockenmaier and Bisk, 2010).
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1.6 Structure of the Thesis

The rest of this thesis is structured as follows.

Chapter 2 provides a review of the related unsupervised structure induction ap-

proaches, specifically on three induction tasks: transliteration equivalence learning, con-

stituency grammar induction, and dependency grammar induction.

Chapter 3 proposes synchronous adaptor grammar, a general language-independent

framework based on nonparametric Bayesian inference, for machine transliteration. The

nonparametric priors illustrate the “rich get richer” dynamics, leading to compact translit-

eration equivalences. The experimental results show that the proposed methods perform

better than the EM-based joint source channel model on transliteration tasks for four

language pairs.

Chapter 4 presents our explorations on constituency grammar induction. We intro-

duce features to the context-constituent model (CCM), in which various linguistic knowl-

edge could be encoded. Experiments show the proposed model significantly outperforms

the CCM, especially on long sentences.

Chapter 5 discusses some improvements on combinatory categorial grammar (CCG)

induction. We propose the boundary model and Bayesian learning framework for better

CCG induction. The boundary models outperform basic modelsfor full EM, k-best EM

and Bayesian inference. Bayesian models achieve better performance than the full EM.

Chapter 6 summarizes contributions of our work and describes some future research

directions on these topics.
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Chapter 2

Related Work

The rising amount of available rich texts on the web gives an opportunity to improve

the performance of many natural language processing tasks.Unfortunately, manual an-

notations are often expensive and time-consuming. To make things worse, annotated

structure corpora are only available for wildly used languages, such as English and Chi-

nese. There are very limited annotated corpora for under-resourced languages. There-

fore, it has great value to induce structures automaticallyfrom unannotated sentences for

NLP research.

Although structure induction remains a challenging problem due to the unsupervised

setting, great progress has been made during past twenty years. In this chapter, we

first give a quick glance at existing approaches on the transliteration equivalence learn-

ing problems, including the monotonic machine translationmodel and the joint source-

channel model. In the second part, we focus on the constituency grammar induction and

introduce the constituent-context model, tree-substitution model, and adaptor grammars.

Finally, we review the existing approaches on dependency grammar induction, includ-

ing the dependency model with valence and induction models for combinatory categorial

grammars.
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2.1 Transliteration Equivalence Learning

Transliteration is defined as phonetic translation across different language pairs (Knight

and Graehl, 1998). In the training stage of a transliteration system, findingthe alignment

between transliterated source and target substrings playsan important role. We give a

brief overview of existing models of transliteration equivalence learning in this section.

2.1.1 Transliteration as monotonic translation

Transliteration can be regarded as the monotonic translation problem. Machine translit-

eration differs from machine translation in two folds: (1) how words sound is preserved

during transliteration, while meanings are preserved during translation; (2) there is no

reordering problems in transliteration, i.e. the transliterated equivalences are in the same

order in both source and target languages. In this view, the word alignment step in Sta-

tistical Machine Translation (SMT) (Brown et al., 1993) is adopted to align the translit-

erated substrings. Similar to SMT, missing sounds are mapped to a special tokenNULL.

In SMT, how to derived the internal structure mapping is the key problem of SMT sys-

tems. In general, the alignment problem could be categorized by different types of the

structures. The simple word-based SMT models using the source and target word pairs

as translational equivalences (Brown et al., 1993; Vogel et al., 1996; Moore, 2004; Liu

et al., 2009). Advanced word alignment models include: log-linear models (Liu et al.,

2005; Moore et al., 2006; Dyer et al., 2011), agreement-based models (Liang et al., 2006;

Huang, 2009), Bayesian models (DeNero et al., 2008; Zhao and Gildea, 2010; Mermer

and Saraclar, 2011), etc.

Since there is no reordering problem, most of these approaches use simple phrase-

based translation models with the word-word alignment. Thecharacters in source and

target languages are often aligned using the standard GIZA++ alignment tool1. The

1http://code.google.com/p/giza-pp/

http://code.google.com/p/giza-pp/
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toolkit runs in source-to-target and target-to-source directions to obtain one-to-many

and many-to-one alignments. Then the alignments of two directions are combined with

heuristics. Finally, the equivalents are extracted using the standard phrase extraction

algorithm (Koehn et al., 2003).

Finch and Sumita (2008) andRama and Gali (2009) apply the SMT technique for

Japanese-English transliteration task.Jia et al. (2009) first use GIZA++ to align charac-

ters and then use Moses2 as decoder to perform transliteration. Another work (Finch and

Sumita, 2010b) use a joint multigram model to rescore the output of MT system.

Reddy and Waxmonsky (2009) propose a substring-based transliteration model with

Conditional Random Fields (CRFs). In their model, the substrings are first aligned using

GIZA++, then the CRF is trained on the aligned substring sequences with the target-

side substrings as tags. The similar techniques are also used in (Shishtla et al., 2009).

Aramaki and Abekawa (2009) propose to perform monolingual chunking using CRF and

then align the bilingual using GIZA++. This model is fast andeasy to implement and

test, but the performance is not so good.

2.1.2 Joint source-channel models

Li et al. (2004) propose a grapheme-based joint source-channel transliteration model

for English-Chinese transliteration, in which the string pairs are generated synchronously.

Assuming there areK aligned transliteration units, the probability of string pair 〈C,E〉

is decomposed as:

P (〈C,E〉) = P (〈c1, . . . , cK , e1, . . . , eK〉)

= P (〈c, e〉1, . . . , 〈c, e〉K)

=
K
∏

k=1

P (〈c, e〉k|〈c, e〉
k−1
1 ) (2.1)

2http://www.statmt.org/moses/

http://www.statmt.org/moses/
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To reduce the number of free parameters, they assume the transliteration pair only de-

pends on the precedingn−1 transliteration pairs. This is similar to then-gram language

model. Then the conditional probability can be approximated

P (〈c, e〉k|〈c, e〉
k−1
1 ) ≈ P (〈c, e〉k|〈c, e〉

k−1
k−n+1) (2.2)

Since the transliteration equivalents are not annotated intraining corpus, they perform

Expectation-Maximization (EM) learning to infer the substring boundaries. If EM algo-

rithm is performed without restriction, then the model would overfit training data, i.e.

each training string pair is memorized without any substring alignments. To overcome

this, they restrict that the Chinese side of aligned unit must be one Chinese character.

The joint source-channel model shows the state-of-the-artEnglish-Chinese translitera-

tion performance on the standard run of the ACL Named Entities Workshop Shared Task

on Transliteration (Li et al., 2009b).

Although the joint source channel models achieve promisingresults, the overfitting

problem of EM needs to be solved carefully. For some languagepairs, the one-character

restriction is correct in most cases. However, for other language pairs such as Japanese-

English, the many-to-many character mappings are common intransliteration equiva-

lents. We show some examples in section3.4.

To overcome the overfitting problem,Finch and Sumita (2010a) describe a Bayesian

model for joint source-channel transliteration model. They formulate the equivalents

generating process as the Chinese Restaurant Process (CRP)to learn compact models.

(Jansche and Sproat, 2009) and (Nabende, 2009) propose to align syllables based on

the weighted finite-state transducer.Zelenko (2009) combine the Minimum Description

Length (MDL) training with discriminative modeling for transliteration. Varadarajan

and Rao (2009) extend the hidden Markov models and weighted transducers with ǫ-

extension for transliteration. We propose the synchronousadaptor grammar, a general

nonparametric Bayesian learning framework based on the Pitman-Yor Process (PYP) for

transliteration, which we will describe in Chapter3.
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2.1.3 Other transliteration models

System combination often outperforms individual system.Yang et al. (2009) com-

bine the Conditional Random Field (CRF) model and joint source channel model for

transliteration.Finch and Sumita (2009) propose to transliterate left-to-right and right-

to-left, and finally combine the bi-directional transliterated results. Similar bi-directional

transliteration model is also describe in (Freitag and Wang, 2009). Oh et al. (2009) test

different strategies to combine the outputs of multiple transliteration engines.

External (monolingual or bilingual) data usually help on the transliteration models.

Hong et al. (2009) utilize additional pronouncing dictionary and web-baseddata to im-

prove the baseline model.Jiang et al. (2009) use manually written rules to convert be-

tween grapheme characters and phonetic symbols for transliteration.

Usually, we use the evaluation metrics on the development set to tune model param-

eters.Pervouchine et al. (2009) propose the alignment entropy, a new evaluation metric

without the need for the gold standard reference, to guild the transliteration learning.

Name origin is also an important factor for name transliteration. For example, the

written form “田中” is usually transliterated to “tanaka” due to its Japanese origin,

while it would be transliterated to “tian zhong” if treated as a Chinese name.Li et

al. (2007) propose a semantic transliteration approach for personalnames, in which the

name origin and gender are encoded in the probabilistic model. Similarity, Khapra and

Bhattacharyya (2009) improve transliteration accuracy using word-origin detection and

lexicon lookup.

Usually, the training set of transliterated word pairs are assumed to be available.

For some language pairs, however, there are no or small-sizeavailable training datasets.

(Zhang et al., 2010) and (Zhang et al., 2011) present three pivot strategies for ma-

chine transliteration which improve the transliteration results for under-resource lan-

guage pairs.
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2.2 Constituency Grammar Induction

In grammar induction, we want to learn constituency or dependency tree structures

from plain strings (words or part-of-speech tags). The induced grammars can be used

to construct large treebanks (van Zaanen, 2000), study language acquisition (Jones et

al., 2010), improve machine translation (DeNero and Uszkoreit, 2011), and so on. We

describe the main approaches on constituency grammar induction in this section.

2.2.1 Distributional Clustering and Constituent-ContextModels

From the linguistic point of view, the syntactic categories(such asNP, VP) represent

constituents that are syntactically interchangeable. Base on this fact, early induction

approaches are based on the distributional clustering. Although clustering methods show

good performance on unsupervised part-of-speech induction (Schütze, 1995; Merialdo,

1994; Clark, 2003), distributional similarities do not achieve satisfactory results (Clark,

2001; Klein and Manning, 2001) on unsupervised tree structure induction.

The Constituent-Context Model (CCM) (Klein and Manning, 2002) is the first model

achieving better performance than the trivial right-branching baseline in the unsupervised

English grammar induction task. Unlike many models that only deal with constituent

spans, the CCM defines generative probabilistic models oversequences and contexts for

both constituent spans and non-constituent (distituent) spans.

In particular, letB be a boolean matrix with entries indicating whether the corre-

sponding span encloses constituent or distituent. Each tree could be represented by one

and only one bracketing, but some bracketings are not tree-equivalent, since they may

miss the full sentence span or have crossing spans. Define thesequenceσ to be the

substring enclosed by span, and the contextγ to be the pair of preceding and follow-

ing terminals3. The CCM generates sentenceS in two steps: first chooses bracketing

3For example, in sequence “0RB1DT2NN3”, we haveσ〈1,3〉 = 〈DT NN〉, andγ〈1,3〉 = 〈RB, ⋄〉. Since
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B according to prior distributionP (B), then generates the sentence given the chosen

bracketing:

P (S,B) = P (B)P (S|B).

The priorP (B) uniformly distributes its probability mass over all possible binary trees

of the given sentence, and zero for non-tree-equivalent bracketings. The conditional

probabilityP (S|B) is further decomposed to the product of generative probability of

sequenceσ and contextγ for each span〈i, j〉:

P (S|B) =
∏

〈i,j〉

P (σ〈i,j〉, γ〈i,j〉|B〈i,j〉)

=
∏

〈i,j〉

P (σ〈i,j〉|B〈i,j〉)P (γ〈i,j〉|B〈i,j〉).

From the above decomposition, we can see that givenB, the CCM fills each span

independently and generates yield and context independently. The Expectation Max-

imization (EM) algorithm is used to estimate the multinomial parametersθ. In the

E-step, a cubic-time dynamic programming algorithm (modified Inside-Outside algo-

rithm (Lari and Young, 1990)) is used to calculate the expected counts for each se-

quence and context for both constituents and distituents according to the currentθ.

In the M-Step, the model finds newθ′ to maximize the expected completed likelihood
∑

B P (B|S, θold) logP (S,B|θ′) by normalizing relative frequencies. The detailed deriva-

tion can be found in (Klein, 2005).

Although the CCM achieves promising results in short sentences, its performance

drops for longer sentences. There are two reasons: (1) CCM models all constituents un-

der only single multinomial distributions, which cannot capture the detailed information

of span contents; and (2) long sequences only occur a few times in the training corpus,

so the probability estimation highly depends on smoothing.To alleviate these problems,

CCM works on part-of-speech (POS) tags, only POS tags are shown here. The special symbol⋄ represents
the sentence boundary.
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Smith and Eisner (2004) proposes to generate sequences depending on the length of the

spans.Mirroshandel and Ghassem-Sani (2008) describes a parent-based CCM in which

the parent spans are also modeled.Golland et al. (2012) applies the local logistic feature

based generative model (Berg-Kirkpatrick et al., 2010) to CCM.

In short, distributional clustering and variants of CCM model the distribution of sub-

strings. Next, we introduce models that define distributions over sub-trees.

2.2.2 Tree Substitution Grammars and Data-Oriented Parsing

The Tree Substitution Grammars (TSG) are special cases of the Tree Adjoining

Grammar (TAG) (Joshi and Schabes, 1997) formalisms without the adjunction opera-

tor. The TSG can somewhat be considered as an extension of Context-Free Grammars

(CFG) in which the rewriting rules in TSG expand non-terminals to elementary trees

rather than symbol strings in CFG. The substitutions happenon the non-terminal leaves

in elementary trees. Aderivationof TSG is a consecutive application of rewriting rules

that rewrites (substitutes) the root symbol to terminals. Unlike CFG, the same syntax tree

may have more than one derivations in TSG, as illustrated in Figure2.1. Similar to prob-

abilistic CFG, the probabilistic TSG assigns a probabilityto each rule in the grammar,

and the probability of a derivation is the product of the probabilities of rewriting rules in

it. The probability of a syntax tree is the sum of the probabilities of its derivations. Since

there exist few annotated TSG corpora, TSG models are usually defined in the unsuper-

vised fashion and derivations are inferred from tree structures, or more challenging from

the plain strings.

Data-Oriented Parsing (DOP) is a series of models for tree substitution grammar

inference. In the simplest version of DOP (the DOP1 described (Bod, 1998)), tree struc-

tures are assumed to be given. Each occurrence of possible subtrees in the treebank is

counted as1. The final probability of a subtreet is computed by normalizing its counts

respect to all subtrees with the same parent label. Further researches extend DOP1 to
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S

NP

NP

VP

VBZ

NP

NP

Mary hates opera

S

NP

VP

VBZ

VBZ

NP

NP

Mary hates opera

S→ NP ( VP ( VBZ hates ) NP↑ )
NP→ Mary
NP→ opera

S→ ( NP Mary ) (VP VBZ↑ (NP opera ) )
VBZ→ hates

Figure 2.1: Two TSG derivations for the same tree. Arrows indicate the substitution
points. The elementary trees used in these two derivations are shown below.

unsupervised parsing and propose the U-DOP model (Bod, 2006b), in which derivations

are inferred directly from plain strings rather than tree structures. The key idea of U-

DOP is to assign all (unlabeled) binary trees to training sentences and then extract all

subtrees from these binary trees. However, the estimation method of DOP1 and other

models based on it is biased and inconsistent, which means “the estimated distribution

does not in general converge on the true distribution as the size of the training corpus

increases” (Johnson, 2002). Following approaches address this problem and propose to

use the statistically consistent Maximum Likelihood Estimation (MLE) to learn model

parameters (Bod, 2006a; Bod, 2007). Explicitly enumeration of all possible subtrees is

intractable, since there are exponential numbers of subtrees given tree structure. Things

are even worse if only plain string are given. Most DOP approaches use the method

described in (Goodman, 1996; Bod, 2003) to reduce the inference of tree substitution

grammar to the inference problem of context-free grammar, in order to avoid the explicit

enumeration of subtrees.

The MLE tends to overfit the training data, e.g. each tree is inferred to be generated

by single big subtree fragment.Sangati and Zuidema (2011) propose the double-DOP in
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which only subtrees occur at least twice in training corpus are modeled. This criterion

excludes a large amount of “big” subtree fragments which reduces computation cost and

alleviates the overfitting problem as well. Bayesian modelsfor TSG provide systemic

solutions to the overfitting problem of MLE (Post and Gildea, 2009; Cohn et al., 2009;

Cohn and Blunsom, 2010; Cohn et al., 2010). In Bayesian models, sparse priors (usually

the nonparametric Pitman-Yor Process (PYP) priors) are integrated into the model to

enforce simple models and encourage common linguistic constructions. Inferences are

usually based on sampling, in which only a small fraction of subtrees are stored in cache

which avoids the exponential enumeration problem. These models achieve the state-of-

the-art grammar induction results.

Tree substitution grammars encode rich information about the tree structures. Com-

pared to CCM with constituents modeled, TSG is more expressive that both contiguous

and non-contiguous phrases are modeled. However, one shortcoming of TSG models is

the high model complexity with high computation cost, as well as the implementation

difficulty for such models.

2.2.3 Adaptor grammars

Adaptor Grammars (AGs) provide a general framework for defining nonparamet-

ric Bayesian models based on probabilistic CFGs (Johnson et al., 2007b). In adaptor

grammars, additional stochastic processes (named adaptors) are introduced to allow the

expansion of an adapted symbol to depend on the expansion history.

In practice, adaptor grammars based on the Pitman-Yor process (PYP) (Pitman and

Yor, 1997) are often used in inference. The nonparametric priors let the expansion of

nonterminals depend on the number of subtrees stored in cache during sampling. With

suitable choose of parameters, the PYP demonstrates a kind of “rich get richer” dynam-

ics, i.e. previous sampled values would be more likely sampled again in following sam-

pling procedures. This dynamic is suitable for many machinelearning tasks since they
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prefer sparse solutions to avoid the over-fitting problem. Since many existing models

could be viewed as special kinds of probabilistic CFG, adaptor grammars give general

Bayesian extension to them.

One limitation of adaptor grammars is that the nonterminalsin adaptor grammars

cannot be recursively defined (i.e.NP cannot be expended to anotherNP in one or more

induction steps), which restricts the usability of adaptorgrammars for inducing natural

recursive tree structures. Even so, adaptor grammars have been widely used in various

NLP tasks such as topic modeling (Johnson, 2010), perspective modeling (Hardisty et

al., 2010), morphology analysis and word segmentation (Johnson, 2008; Johnson and

Goldwater, 2009; Johnson and Demuth, 2010), and native language identification (Wong

et al., 2012). We will revisit the adaptor grammar and propose extensions in Chapter3.

2.2.4 Other Models

Seginer (2007) describes a novel structure named the Common Cover Links (CCL)

and an unsupervised incremental learning algorithm to induce constituency trees from

plain text4. Compared to dependency structure, the CCL parser is incremental and ex-

tremely fast for both learning and parsing. However, CCL is amodel based on heuristics

instead of probabilistic algorithm, which makes it hard to extend.

Ponvert et al. (2011) focus on the simpler unsupervised chunking task and proposes

a cascaded finite-state model5. They use Hidden Markov Model (HMM) and a general-

ization named Probabilistic Right Linear Grammar (PRLG) (Smith and Johnson, 2007)

to label words with{B, I, O, S} tags (standing forBeginningword, Insideword,Outside

word, andSingleword of chunks). After determining the phrase boundaries, they choose

the most frequent word in each phrase to represent that chunk, repeat the induction steps,

and finally obtain the hierarchical structures.

4http://www.seggu.net/ccl/
5http://elias.ponvert.net/upparse

http://www.seggu.net/ccl/
http://elias.ponvert.net/upparse
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2.3 Dependency Grammar Induction

Lexical information is useful for supervised constituencyparser (Collins, 1997; Char-

niak, 2000), which may also show benefits in unsupervised grammar induction. The

lexical dependencies, such as the head-argument function,modification relation and co-

ordination structures, are directly modeled in dependencygrammars. In this section, we

review the popular unsupervised dependency grammar induction models.

2.3.1 Dependency Model with Valence

Klein and Manning (2004) propose a simple head-outward dependency model, named

Dependency Model with Valence (DMV), where the valence is modeled using a special

STOP token. The generative process begins at theROOT of the dependency tree. Each head

generates its dependents on left side and right side independently. On each side, words

are generated in sequence, and finally aSTOP is generated. The above generative step re-

peats until the whole sentence is covered. Specifically, when generating a word, the deci-

sion whether to terminate (generateSTOP) is made according toPSTOP(STOP|h, dir, adj),

whereh is the head word,dir is the direction (left or right), andadj is a binary variable

indicating whether or not an argument on current side has already been generated. If we

decide to generateSTOP, then no more symbols are generated on that side. Otherwise,

the dependenta is chosen according toPCHOOSE(a|h, dir), which is independent of the

variableadj. Expectation-Maximization (EM) algorithm is used to estimate the model

parameters. With a smart initialization (the ad-hoc “harmonic” completion), the DMV

outperforms the trivial right-branching baseline (Klein and Manning, 2004).

Following models based on DMV mainly improve the estimationprocedures.Smith

and Eisner (2005) propose the contrastive estimation for DMV, in which the probabilities

of observed sentences are estimated, conditioned on heuristically constructed neighbor-

hoods (as implicit negative evidences). They also describetwo annealing techniques for
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better initialization (Smith and Eisner, 2006). Headden III et al. (2009) introduce lex-

ical information into DMV and show how it can be leveraged viasmoothing. Cohen

and Smith (2009) propose a Bayesian model for DMV with shared logistic normal prior

distributions.Spitkovsky et al. (2010a) andSpitkovsky et al. (2010b) compare the per-

formance of the traditional full EM and the Viterbi EM, and find that the Viterbi EM

with good smoothing values can achieve better performance than full EM. Naseem et

al. (2010) uses manually-specified linguistic-motivated rules in dependency grammar in-

duction. Variational Bayesian method is used to estimate the parameters.

The constituency grammars and dependency grammars capturedifferent aspects of

language.Klein and Manning (2004) propose a combined model of CCM and DMV,

which outperforms each component in most experiment settings. Blunsom and Cohn

(2010) andCohn et al. (2010) describe methods to represent dependency grammar in

the tree substitution grammar formalism and use Bayesian TSG induction to perform

dependency grammar induction.

2.3.2 Combinatory Categorial Grammars

As described in Section1.5, the Combinatory Categorial Grammar (CCG) encodes

dependency relations and functor arity into the syntactic categories. CCG formalisms

provide a more syntax-meaningful representation, especially for long-range dependen-

cies (Steedman, 2000).

The first type of CCG induction system is the fully unsupervised models, in which no

linguistic heuristics are assumed.Osborne and Briscoe (1997) propose an unsupervised

learning model for CCG induction. They consider part-of-speech tags as atomic cat-

egories, and construct more complex categories using slashes. The first step of their

method is to create a labeled binary tree for each part-of-speech tag sequences in a

greedy, bottom-up, incremental manner. The label of each inner node is the label of ei-

ther the left or right sub-node. To avoid overfitting, they apply the Minimum Description



26

Length (MDL) principle to learn compact grammars with minimal length of hypothesis

and minimal length of data encoded in the hypothesis. In the second step, the categories

and grammar rules are read off the built trees with frequencycounts for further usage.

They do not consider the coordination structure or punctuations in their model. Experi-

mental results of their proposed model are not as great as they might be, although they

outperform the EM baseline.Ponvert (2007) presents a genetic algorithm to learn CCG

categories and grammars. However, their experiments do notshow promising results.

Since it is difficult to infer syntactic categories from plain strings, many researches

introduce manually written rules to guide the induction procedures.Watkinson and Man-

andhar (1999) describe an unsupervised approach to learn CCG lexicons. At beginning,

the learner is provided with a set of manually defined CCG lexicons. In each step, the

parser with current lexicon and rules is used to parse training sentences. Thenk-best

parses are selected and used to modify lexicons. Experiments on small datasets show the

effectiveness of their method.Boonkwan and Steedman (2011) create a framework to

describe language characteristics using30 questions, such as the order of subject, verb,

direct object and indirect object, etc. For each language, they encode the answers to

those questions into CCG categories and use them to prune search spaces. Their meth-

ods achieve the state-of-the-art results on different languages.

Another successful approach that achieves good results without specifying too much

linguistic knowledge is the model proposed in (Bisk and Hockenmaier, 2012b). In their

grammar, there are only two atomic categories allowed,N (nouns or noun phrases) and

S (sentences), together with a special conjunction categoryconj. The first stage is the

lexicon and grammar generation stage. They specify atomic categories to part-of-speech

tags initially, and use an iterative algorithm to create more complex lexical categories.

Then, the training sentences are parsed using the created lexicons and CCG rules. The

basic probabilistic model described in (Hockenmaier and Steedman, 2002) is used in

their experiments. They compare various EM settings (full EM, Viterbi EM, andk-best
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EM) and find that thek-best EM could achieve best performance. They report the state-

of-the-art results for unsupervised dependency grammar induction. In Section5.1, we

give a detailed description of their lexicon and grammar generation method. We propose

to use boundary words and Bayesian learning to improve theirmodels, which will be

presented in Chapter5.

2.4 Summary

In this chapter, we have reviewed some existing approaches on three unsupervised

structure induction tasks: the transliteration equivalence learning, the constituency gram-

mar induction and the dependency grammar induction. For thetransliteration task, we ex-

plore the joint source channel model and propose the nonparametric Bayesian extension

based on synchronous adaptor grammars in Chapter3. For the constituency grammar in-

duction, we focus on the simple CCM and present the feature-based CCM in Chapter4.

For the dependency grammar induction, we propose to use boundary word and Bayesian

learning for the CCG induction in Chapter5.
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Chapter 3

Synchronous Adaptor Grammars for

Transliteration

We focus on the joint source-channel model (Li et al., 2004) for transliteration in

this chapter, since it is one of the state-of-the-art modelsfor English-Chinese translitera-

tion (Li et al., 2009a).

As mentioned in previous chapters, this model aims to maximize the likelihood of

training data by the Expectation-Maximization (EM) algorithm. However, the EM al-

gorithm may overfit the training data by memorizing the wholetraining instances. As a

result, only single Chinese character is allowed in the syllable mappings in their English-

Chinese transliteration experiments. However, the single-character restriction is not al-

ways true for other language pairs.

In this chapter, we propose Synchronous Adaptor Grammar (SAG), a novel nonpara-

metric Bayesian learning approach based on the Pitman-Yor process (Pitman and Yor,

1997), for machine transliteration. This model provides a general framework to automat-

ically learn syllable equivalents without heuristics or restrictions. The proposed model

outperforms the EM-based model in the transliteration tasks of four language pairs.
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3.1 Background

3.1.1 Synchronous Context-Free Grammar

Synchronous Context-Free Grammar (SCFG) generalizes context-free grammar to

generate strings concurrently in two languages (Lewis II and Stearns, 1968). Formally, a

probabilistic SCFG is a tupleG = (N , Ts, Tt,R, S,Θ), whereN is a set of nonterminal

symbols,Ts andTt are terminal symbols in the source side and target side respectively,R

is a set of synchronous rewrite rules,S ∈ N is the start symbol, andΘ is the distribution

of rule probabilities. The rules in SCFGs are in the formA→ 〈β / γ / a〉, whereA ∈ N

is the parent nonterminal,β ∈ (N ∪ Ts)∗ andγ ∈ (N ∪ Tt)∗ are strings of terminals

and nonterminals in the source and target languages respectively, anda is the one-to-

one alignment between nonterminals inβ andγ. Since we only discuss transliteration

in this chapter, the nonterminals are always linked one-to-one from left to right without

reordering, so we can omit the alignment and just write the rule asA → 〈β / γ〉. For

each nonterminalA ∈ N , we denoteRA as the set of rules withA as parent. The rule

probabilities for each ruler ∈ RA must satisfy:
∑

r∈RA
θr = 1.

To generate a string pair consisting of only terminals, we begin with the start symbol

S, then repeat applying rules to expand nonterminals on both sides, until the terminal

string pair is generated. The whole generating process is named aderivation. The gener-

ating process forms a synchronous tree, in which leaf nodes corresponds to the terminal

string pair, and internal nodes corresponds to nonterminalused in the derivation. The

probability of a synchronous tree is the product of the probabilities of rules used in the

derivation. LetT be a synchronous tree set, andfr be the number of times that ruler is

observed inT , then the probability ofT is

P (T |Θ) =
∏

A∈N

Multi(T |θA) =
∏

A∈N

∏

r∈RA

θfr(T )
r (3.1)

whereMulti(T |θA) is the multinomial distribution for nonterminalA.
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The above probability model defines the probability of synchronous tree as the prod-

uct of multinomial distributions withΘ as parameters. In Bayesian learning, we could

treatΘ as random variables rather than parameters and define prior distributions on them.

The conjugate prior of multinomial distribution is the Dirichlet distribution

Dir(θA|αA) =
1

Beta(αA)

∏

r∈RA

θ αr−1
r , (3.2)

where the concentration parametersα control the shape of the Dirichlet distribution, and

Beta is the multinomial Beta distribution defined as

Beta(α) =
Γ(α1) . . .Γ(αK)

Γ(
∑K

k=1 αk)
(3.3)

in whichΓ(x) =
∫∞

0
ux−1e−u du is the generalized factorial function1. In this Bayesian

model, the posterior distribution onθ is

P (Θ|T ,α) ∝
∏

A∈N

P (T |θA)P (θA|αA) ∝
∏

A∈N

∏

r∈RA

θfr(T )+αr−1
r (3.4)

which is the product of unnormalized Dirichlet distributions with parameter(fr(T ) +

αA). Thus we can write the posterior probability as product of Dirichlet distributions

P (Θ|T ,α) =
∏

A∈N

Dir(θA|fA(T ) +αA) (3.5)

The described SCFG models are parametric models since each of them has a fixed

number of rules, each of which has a numerical parameter associated with it. For mono-

lingual probabilistic context-free grammar (PCFG), thereare two ways to construct non-

parametric models: (1) Let the number of nonterminals grow unboundedly, as the infinite

CFG models described in (Finkel et al., 2007; Liang et al., 2007); (2) Permit the number

of rules to grow unboundedly, leading to adaptor grammars presented in (Johnson et al.,

2007b). We follow the second one and extend it to synchronous adaptor grammar to

model machine transliteration (see Section3.2).

1For positive integers,Γ(n) = (n− 1)!
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3.1.2 Pitman-Yor Process

In probability theory, thePitman-Yor Process (PYP)is a stochastic process that gen-

erates partitions of integers (Pitman and Yor, 1997). The Pitman-Yor process is often

denoted asPYP(a, b,G0), wherea ∈ [0, 1] is a discount parameter,b ≥ 0 is a concentra-

tion parameter, andG0 is the base distribution (or thegenerator, see follows).

The PYP is an extension of the Chinese Restaurant Process (CRP), so it is intuitive to

describe the process using the restaurant metaphor. Assuming there are infinite number

of round tables in the restaurant, each of which accommodates an infinite number of

customers. Customers enter the restaurant sequentially and choose tables to sit around.

Let zi be the table number which theith customer chose. The first customer enters the

restaurant and picks the first table, i.e.z1 = 1. At a specific time, assuming there are

alreadym tables which have been assigned withn1, . . . , nm customers sitting around

respectively, and the total number of customers in the restaurant isn (i.e. n =
∑m

k=1 nk),

then the(n + 1)th customer may choose an assigned tablek ∈ {1, . . . , m} or choose a

new table with number(m+ 1) from the conditional distribution

P (zn+1|z1, . . . , zn) =











nk−a
n+b

, if zn+1 = k

ma+b
n+b

, if zn+1 = m+ 1

(3.6)

The joint probability of Pitman-Yor process for table indices is

PYP(z|a, b) =

∏m
k=1(a(k − 1) + b)

∏nk−1
j=1 (j − a)

∏n−1
i=0 (i+ b)

. (3.7)

It is easy to verify that any permutation ofz1, . . . , zn has the same probability in the

Pitman-Yor process, so the Pitman-Yor process isexchangeable. This property results in

efficient sampling procedure (see Section3.2.2).

The above stochastic process generates sequences of integer table indices. If there is

a valuexk (drawn from the base distributionG0) placed on thekth table and customers

yell out the value on the table which they choose, then we can obtain a value sequencey

drawn from the Pitman-Yor process, withyi = xzi (for i = 1, . . . , n).
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In the first branch (zn+1 = k) in Equation (3.6), we can see that the table with more

customers already sitting around (with bignk) will be more likely be chosen again (with

higherP (zn+1 = k|z1, . . . , zn)). This demonstrates a kind of “rich get richer” dynamics,

i.e. previous sampled values would be more likely sampled again in following sampling

procedures. This dynamic is suitable for many machine learning tasks since they prefer

sparse solutions to avoid the over-fitting problem.

Two special cases of Pitman-Yor process are interesting: (1) if a = 1, every customer

would sit around a new table, so the values in sequencey are drawn independently from

G0; (2) if a = 0, the Pitman-Yor process degenerates to the Dirichlet process (Pitman,

1995; Teh et al., 2006) with b as the concentration parameter. In this point of view, the

Pitman-Yor process is an interpolation between the Dirichlet process and the base distri-

bution. The discount parametera provides more flexibility to control the tail behavior

than the Dirichlet process. This makes the Pitman-Yor process useful for modeling data

with power-law tails, e.g. word frequencies in natural language.

3.2 Synchronous Adaptor Grammars

3.2.1 Model

We extend the monolingual adaptor grammars to bilingual cases and propose the

Synchronous Adaptor Grammarsbased on the Pitman-Yor process to learn bilingual

tree structures. A Pitman-Yor Synchronous Adaptor Grammar(PYSAG) is a tupleG =

(Gs,Na,a, b), whereGs = (N , Ts, Tt,R, S,Θ,α) is a Synchronous Context-Free Gram-

mar (SCFG) (Lewis II and Stearns, 1968), N is a set of nonterminal symbols,Ts / Tt

are source/target terminal symbols,R is a set of synchronous rewrite rules,S ∈ N is the

start symbol,Θ is the distribution of rule probabilities,Na ⊆ N is the set of adapted

nonterminals,a ∈ [0, 1], b ≥ 0 are vectors of discount and concentration parameters

both indexed by adapted nonterminals, andα are Dirichlet prior parameters.
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Algorithm 1 Generative Process of PYSAG
1: drawθA ∼ Dir(αA) for all A ∈ N
2: for each yield pair〈s / t〉 do
3: SAMPLE(S) ⊲ Sample from root

4: return

5: function SAMPLE(A) ⊲ ForA ∈ N
6: if A ∈ Na then
7: return SAMPLESAG(A)
8: else
9: return SAMPLESCFG(A)

10: function SAMPLESCFG(A) ⊲ ForA /∈ Na

11: draw synchronous ruler = 〈β / γ〉 ∼ Multi(θA)
12: for all nonterminalB ∈ (β ∪ γ) do
13: synchronous treetBi ←SAMPLE(B)

14: return BUILD TREE(r, tB1 , tB2, . . .)

15: function SAMPLESAG(A) ⊲ ForA ∈ Na

16: draw cache indexzn+1 ∼ P (z|zi<n), where

17: P (z|zi<n) =

{

ma+b
n+b

, if zn+1 = m+ 1
nk−a
n+b

, if zn+1 = k ∈ {1, · · · , m}

18: if zn+1 = m+ 1 then ⊲ New entry
19: synchronous treet← SAMPLESCFG(A)
20: m← m+ 1 ⊲ Update counts
21: nm = 1 ⊲ Update counts
22: INSERTTOCACHE(CA , t).
23: else ⊲ Old entry
24: nk ← nk + 1
25: synchronous treet← FIND INCACHE(CA , zn+1)

26: return t

The generative process of a synchronous tree setT is described in Algorithm1.

First, rule probabilities are sampled for each nonterminalA ∈ N (line 1) according to

the Dirichlet distribution. Then synchronous trees are generated in the top-down fash-

ion from the start symbolS (line 3) for each yield pair. For nonterminals that are not

adapted, the grammar expands it just as the original synchronous grammar (function
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SAMPLESCFG, line10-14). For each adapted nonterminalA ∈ Na, the grammar main-

tains a cacheCA to store previously generated subtrees underA. Let zi be the subtree

index in CA, denoting the synchronous subtree generated at theith expansion ofA. At

some particular time, assumingn subtrees rooted atA have been generated withm dif-

ferent types in the cache ofA, each of which has been generated forn1, . . . , nm times

respectively2. Then the grammar either generates the(n + 1)th synchronous subtree as

SCFG (line19) or chooses an existing subtree from the cache (line25), according to

the conditional probabilityP (z|zi<n) defined in Equation (3.6). The process is shown in

function SAMPLESAG, line15-26.

The base distribution of the PYSAG is the Bayesian synchronous context-free gram-

mar (described in Section3.1.1). Since the rule probabilitiesΘ in the Bayesian SCFG

are used as hidden variables (sampled from hyperparametersα and used to evaluate syn-

chronous tree probabilities), we could integrate rule probabilitiesΘ and directly obtain

the joint probability of a particular sequence of synchronous trees:

P (T |α,a, b) =
∏

A∈N

Beta(αA + fA)

Beta(αA)

∏

A∈Na

PYP(z(T )|aA, bA) (3.8)

wherefA is the vector containing the number of times that rulesr ∈ RA are used in the

synchronous tree set, parameterαA is the vector of Dirichlet hyperparameters for non-

terminalA, parametersaA andbA are vectors of discount and concentration parameters

of the Pitman-Yor process, andz(T ) are the indices of synchronous subtrees collected

under adapted nonterminals.

The SAGs are synchronous extension of (monolingual) adaptor grammars (Johnson

et al., 2007b). Differing from monolingual counterpart, the grammars and trees are both

in the synchronous form in our model.

2Obviously,n =
∑m

k=1
nk.



36

3.2.2 Inference

For the synchronous adaptor grammars based on the nonparametric Pitman-Yor pro-

cess for machine transliteration, only raw name pairs are given, and we have to infer the

hidden structure (synchronous trees) and estimate model parameters. As the caching na-

ture of Pitman-Yor process, synchronous trees of differentstring pairs become depending

on each other, so the joint probability of synchronous tree set can not be simply decom-

posed into the product of individual synchronous tree probabilities. Mathematically,

given the set of string pairsy = 〈s / t〉, the posterior distribution onT is

P (T |y) =
P (y|T )P (T )

∑

T ′ P (y|T ′)P (T ′)
(3.9)

in which P (y|T ) = 1 if yield(T ) = y, and0 otherwise, andP (T ) is the joint prob-

ability defined in Equation (3.8). Since synchronous trees of different string pairs are

dependent on each other in PYSAGs, we have to enumerate all possible combinations

to calculate the normalization constant in Equation (3.9), which is intractable. Fortu-

nately, we are able to evaluate the (unnormalized) probability of a particular collection

of synchronous trees, so we could estimate parameters of thePitman-Yor processes using

sampling techniques.

There is no obvious sampling method known to draw samples from Equation (3.8),

so we extend the component-wise Metropolis-Hastings algorithm (Johnson et al., 2007b)

to the synchronous case. LetT−i be the set of sampled trees except theith one. As the

Pitman-Yor process is exchangeable, we can always treat theith sample as the final sam-

ple after samplingT−i. In the Metropolis-Hastings sampling algorithm for PYSAG,we

draw the synchronous treet′i from some proposal distributionQ(ti|yi, T−i), then accept

the new samplet′i with probability

A(ti, t
′
i) = min

{

1,
P (T ′|y,α,a, b)Q(ti|yi, T−i)

P (T |y,α,a, b)Q(t′i|yi, T−i)

}

= min

{

1,
P (t′i|yi, T−i,α,a, b) Q(ti|yi, T−i)

P (ti|yi, T−i,α,a, b) Q(t′i|yi, T−i)

}

(3.10)
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whereT ′ = {t′i} ∪ T−i andT = {ti} ∪ T−i represents the whole synchronous tree set

including the new sample and old sample respectively. The art of Metropolis-Hastings

algorithm is that the acceptance probability is a ratio of probabilities, so the evaluation

difficulty of normalization becomes a common factor betweenthe probabilities of both

old samples and new samples, which can be cancelled.

In theory, the proposal distributionQ could be any distribution if it never assigns

zero probability. In practice, the proposal distributionQ should be close enough to the

true distributionP to avoid high rejection rate. In monolingual adaptor grammars,John-

son et al. (2007b) use the PCFG Approximation as the proposal distribution and report

very small rejecting rate. However, this proposal modifies the SCFG grammars in each

sampling step, so the parse forest has to be reconstructed each time. This parsing step

is time-consuming, especially in the synchronous situation3. Therefore, we do not im-

plement the PCFG approximation method for synchronous adaptor grammar due to ef-

ficiency reason. Instead, we choose the probabilistic SCFG as the proposal distribution

(similar to the PCFG (Johnson et al., 2007a)). During inference, we collect statistics of

rules as well as the subtrees rooted at adapted nonterminals. One instance is considered

at a time. To draw a tree from yield pairyi = 〈si / ti〉, we exclude the counts of its rule

usage and then estimate the probability of ruler ∈ RA in Q by relative frequency4

θr =
[fr]−i + αr

∑

r′∈RA
[fr′ ]−i + αr′

(3.11)

whereRA is the set of rules rooted atA, and[fr]−i is the number of times that ruler is

used in the tree setT−i. We pre-parse the training instances before inference and save

the structure of synchronous parse forests. During the inference, we only change rule

probabilities in parse forests without changing the foreststructures. We use the sampling

algorithm described in (Blunsom and Osborne, 2008) to draw a synchronous tree from

the parse forest according to the proposalQ.

3We implement the synchronous CKY-like parsing algorithm (Wu, 1997), withO(|s|3 |t|3) complexity.
4There is a typo in our original paper (Huang et al., 2011), which is fixed here.
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3.3 Machine Transliteration

3.3.1 Grammars

To verify the usefulness of the proposed synchronous adaptor grammars, we conduct

experiments on the machine transliteration task. We demonstrate how machine translit-

eration could be modeled as the synchronous adaptor grammars in this section.

For machine transliteration, we use an adapted nonterminalSyl to capture the syl-

lable equivalents between two languages. There may be multiple characters on both the

source and target sides in a syllable. One possible way to model the many-to-many syl-

lable mappings is to enumerate all possible subsequence pairs on the source and target

sides. However, assuming the source name has|s| characters and the target name has|t|

characters, the number of rules hasO(|s|2 |t|2) complexity, which is large especially for

long name pairs.

To reduce the grammar size, we use an alternative representation, in which we re-

strict the leftmost characters on both sides to be aligned one-by-one and introduce a

special empty characterε to link unaligned characters. For instance, we do not di-

rectly allow Syl → 〈a a l l / 阿 尔〉 or Syl → 〈x / 克 斯〉. Instead, we link

the bilingual characters (including empty ones) in sequence from left to right, such as

Syl
∗
−→ 〈a a l l /阿 尔 ε ε〉 andSyl

∗
−→ 〈x ε /克 斯〉. In addition, we use nonter-

minalNEC to represent single character pair without any empty character (e.g.〈a /阿〉),

nonterminalSEC represents single character pair of empty source and non-empty target

(e.g.〈ε /斯〉), and nonterminalTEC represents single character pair of non-empty source

and empty target (e.g.〈l / ε〉). We also use three nonterminalsNECs, SECs andTECs to

represent corresponding pairs of one or more characters, e.g. NECs
∗
−→ 〈a a / 阿 尔〉,

SECs
∗
−→ 〈ε /斯〉, andTECs

∗
−→ 〈l l / ε ε〉. Although the above design introduces some

useless character pairs, our goal is to learn the syllable equivalents which are captured

by the adaptorSyl, so we are not interested in the subtree structure inside syllables.
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In detail, we design following grammar5 to learn syllable mappings:

Name→ 〈Syl / Syl〉+

Syl→ 〈NECs / NECs〉 (3.12)

Syl→ 〈NECs SECs / NECs SECs〉 (3.13)

Syl→ 〈NECs TECs / NECs TECs〉 (3.14)

NECs→ 〈NEC / NEC〉+

SECs→ 〈SEC / SEC〉+

TECs→ 〈TEC / TEC〉+

NEC→ 〈si / tj〉

SEC→ 〈ε / tj〉

TEC→ 〈si / ε〉

where the start symbolName represents the transliteration name pair, the adapted nonter-

minalSylmay be expanded to the pair of syllables with the same length (rule3.12), with

less source length (rule3.13), or with less target length (rule3.14), andsi andtj enumer-

ate over the source and target character set respectively. We refer this grammar as the

syllable grammar. Figure3.1shows an example for the English-Chinese transliteration.

The above syllable grammar is able to learn inner-syllable dependencies. However,

the selection of the target characters also depend on the context. For example, the fol-

lowing three instances are found in the training set:

〈a a b y e /奥[ao] 比[bi]〉

〈a a g a a r d /埃[ai] 格[ge] 德[de]〉

〈a a l t o /阿[a] 尔[er] 托[tuo]〉

where the same English syllable〈a a〉 are transliterated to〈奥[ao]〉, 〈埃[ai]〉 and

5Similar to (Johnson, 2008), the adapted nonterminal are underlined. Similarly, we also use rules in
the regular expression styleX→ 〈A / A〉+ to denote the following three rules:

X→ 〈As / As〉
As→ 〈A / A〉
As→ 〈A As / A As〉
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Name

Syls

Syl

NECs

NEC

TECs

TEC

Syls

Syl

NECs

NEC

SECs

SEC

m/麦麦麦 a/ε x/克克克 ε/斯斯斯

Figure 3.1: A parse tree of syllable grammar forEn-Ch transliteration.

〈阿[a]〉 respectively, depending on the following syllables. To model these contextual

dependencies, we propose the hierarchical synchronous adaptor grammar. The two-layer

word grammaris obtained by adding following rules:

Name→ 〈Word / Word〉+

Word→ 〈Syl / Syl〉+

where a new adapted nonterminalWord is introduced to capture the inter-syllable depen-

dencies. Figure3.2shows an example for the English-Japanese transliteration, where the

syllable combinations between English transcript and Japanese Katakana are captured by

the adapted nonterminalWord (e.g.〈s e n /セ ン〉).

Following (Johnson, 2008), we might further add a new adapted nonterminalCol to

learn the word collocations. The following rules appear in thecollocation grammar:

Name→ 〈Col / Col〉+

Col→ 〈Word / Word〉+

Word→ 〈Syl / Syl〉+

Figure 3.3 shows a synchronous tree example of the collocation grammar, where the

whole name is captured by the adapted nonterminalCol.



41

Name

Words

Word

Syls

Syl

NECs

NEC

NECs

NEC

Words

Word

Syls

Syl

NECs

NEC

TECs

TEC

Syls

Syl

NECs

NEC

a/オオオ a/ーーー s/セセセ e/ε n/ンンン

Figure 3.2: A parse tree of word grammar forEn-Ja transliteration.

Name

Cols

Col

Words

Word

Syls

Syl

NECs

NEC

TECs

TEC

Syls

Syl

NECs

NEC

TECs

TEC

Words

Word

Syls

Syl

NECs

NEC

TECs

TEC

TECs

TEC

TECs

TEC

TECs

TEC

Syls

Syl

NECs

NEC

TECs

TEC

f/富富富 u/ε j/士士士 i/ε y/吉吉吉 o/ε s/ε h/ε i/ε d/田田田 a/ε

Figure 3.3: A parse tree of collocation grammar forJn-Jk transliteration.



42

3.3.2 Transliteration Model

We use the n-gram translation model (Li et al., 2004) as the transliteration model in

our experiments. Denote the bilingual pair asy = 〈s / t〉, and it could be split into bilin-

gual syllable sequences(y1, . . . , yK) = (〈s1 / t1〉, . . . , 〈sK / tK〉). This transliteration

model factorizes the probability ofP (y) into n-gram probabilities

P (y) = P (yK1 ) =

K
∏

k=1

P (yk|y
k−1
1 ) ≈

K
∏

k=1

P (yk|y
k−1
k−n+1). (3.15)

After the inference step for synchronous adaptor grammar described in Section3.2.2,

we construct joint segmentation lattice for each training instance. We first generate a

merged grammarG′ using collected subtrees under adapted nonterminals, thenuse syn-

chronous parsing to obtain probabilities in the segmentation lattice. Specifically, we

flattenthe collected subtrees underSyl, i.e. removing internal nodes, to construct new

synchronous rules. For example, we could get two rules from the tree in Figure3.1:

Syl→ 〈m a /麦〉

Syl→ 〈x /克 斯〉

If multiple subtrees are flattened to the same synchronous rule, we sum up the counts of

these subtrees. For rules with non-adapted nonterminal as parent, we assign the prob-

ability as the same of the sampled rule probability, i.e. letθ′r = θr. For the adapted

nonterminalSyl, there are two kinds of rules: (1) the rules in the original probabilistic

SCFG, and (2) the rules flattened from subtrees. We assign therule probability as

θ′r =











ma+b
n+b
· θr, if r is original SCFG rule

nr−a
n+b

, if r is flatten from subtree
(3.16)

wherea and b are the parameters associated withSyl, m is the number of types of

different rules flatten from subtrees,nr is the count of ruler, andn is the total num-

ber of flatten rules. One may verify that the rule probabilities are well normalized.

Based on this merged grammarG′, we parse the training string pairs, then encode the
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parsed forest into the lattice. Figure3.4 show a lattice example for the string pair

〈a a l t o /阿[a] 尔[er] 托[tuo]〉. The transition probabilities in the lattice are

the inside probabilities of correspondingSyl node in the parse forest. After building the

segmentation lattice, we train language model for bilingual syllables from the lattice.

start

a/阿

aa/阿

aal/阿尔

aalto/阿尔托

〈 a/阿〉

〈 aa/阿〉

〈 al/尔〉

〈 l/尔〉

〈 lto/尔托〉

〈 to/托〉

Figure 3.4: An example of decoding lattice for SAG.

In transliteration step, given the source strings and grammarG, we want to find a

translation̂t that maximizes the conditional probability:

t̂ = arg max
t

P (t|s,G)

= arg max
t

P (s, t|G)

P (s|G)

= arg max
t

P (s, t|G)

= arg max
t

∑

d

δ(s, t|d,G)P (d|G) (3.17)

whereP (d|G) is the probability of derivationd under grammarG, andδ(s, t|d,G) = 1 if

the yield pair ofd is 〈s, t〉 andδ(s, t|d,G) = 0 otherwise. However, there are exponential

number of derivations, so the above optimaltranslation decodingis often approximated

by the optimalderivation decoding, i.e. we find the derivation̂d in

d̂ = arg max
d

P (d|G) (3.18)

s.t. yield(d) = 〈s,−〉

We use the Viterbi algorithm with beam search (Li et al., 2004) to find the best derivation

d instead of summing up (exponential number of) derivations.
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3.4 Experiments

3.4.1 Data and Settings

We conduct experiments on the following four language pairsfrom the ACL Named

Entities Workshop (NEWS 2009) datasets6:

En-Ch: English name to Chinese name;

En-Ja: English name to Japanese Katakana;

En-Ko: English name to Korean Hangul;

Jn-Jk: Japanese name (written in English) to Japanese Kanji.

Lang Data #Entry #Src Char #Tgt Char #Tgt Voc

Train 31961 218073 101205
En-Ch Dev 2896 19755 9160 374

Test 2896 19864 9246
Train 27993 188941 131275

En-Ja Dev 1818 12105 8358 81
Test 1788 11961 8293
Train 4840 32150 15128

En-Ko Dev 998 6656 3134 713
Test 993 6606 3121
Train 16352 105916 34231

Jn-Jk Dev 3539 23248 7462 1600
Test 3868 25668 8020

Table 3.1: Transliteration data statistics.

In the data preparation step, we remove spaces and the apostrophe symbol (’) within

names. For example, the Japanese name “Kan’ichi” would be converted to “Kanichi”.

These removals confuse syllable boundaries and may hurt theperformance. Note that this

preprocessing step is the same for both the baseline model and proposed model, so they

6http://www.acl-ijcnlp-2009.org/workshops/NEWS2009/

http://www.acl-ijcnlp-2009.org/workshops/NEWS2009/
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are used in experiments for simplicity. Table3.1gives some statistics of the datasets. For

En-Ch, there is only one Chinese reference per English name;while for other language

pairs, there may be multiple references for the same Englishname.

We implement the joint source-channel model (Li et al., 2004) as the baseline system,

in which the orthographic syllable alignment is automatically derived by the Expectation-

Maximization (EM) algorithm. Since EM tends to memorize thetraining instance as a

whole,Li et al. (2004) restrict the target side to be single character in syllableequivalents

for English-Chinese experiments. We follow their work and apply the single-character

restriction to other language pairs.

Our method can be viewed as the Bayesian extension of the EM-based baseline.

Since PYSAGs could learn accurate and compact transliteration units, we do not need

the single-character restriction any more. In the inference step of PYSAGs, we first run

the sampler through the whole training corpus for10 iterations (burn-in), then collect

adapted subtree statistics for every10 iterations, and finally stop after20 collections.

In general, we have no idea which values should be assigned tothe hyperparameters

a andb. Following (Johnson and Goldwater, 2009), we put aBeta(α, β) prior ona and

a “vague”Gamma(10, 0.1) prior onb to model the uncertainty of hyperparameters. We

tuneα andβ from {0.3, 1, 3}, and choose the parameters with highest word accuracy on

the development set. After each iteration, we resample eachof hyperparameters from the

posterior distribution of hyperparameters using a slice sampler (Neal, 2003). We modify

the open-source implementation of slice sampler provided by Mark Johnson7.

For both the baseline model and our proposed models, we buildthe segmentation lat-

tice after training. Then we train a3-order language model with the Witten-Bell smooth-

ing (Witten and Bell, 1991) from the lattice using the SRI language model toolkit8. After

that, the Viterbi algorithm with beam search (Li et al., 2004) is used in decoding for both

the EM-based model and the proposed Bayesian models.

7http://web.science.mq.edu.au/~mjohnson/Software.htm
8http://www.speech.sri.com/projects/srilm/

http://web.science.mq.edu.au/~mjohnson/Software.htm
http://www.speech.sri.com/projects/srilm/
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3.4.2 Evaluation Metrics

For evaluation, we report the standard evaluation metrics defined in (Li et al., 2009a),

and report theword accuracyandmean F-scoremetrics. Following notations used in (Li

et al., 2009a), we denote:

N as the total number of names (source words) in the test set;

ni as the number of reference transliterations forith name;

ri,j as thejth reference transliteration for theith name;

ci,k as thekth candidate transliteration output by transliteration system for ith name.

Then the word accuracy and mean F-score metrics can be definedas follows:

• Word Accuracy in Top-1 (Acc)

The word accuracy is also known as the word error rate, it measures the correctness

of the first transliteration candidate in the candidate listproduced by a translit-

eration system. If the first transliteration candidate matches at least one of the

references, the result is considered correct. Otherwise, if the first transliteration

candidate matches none of the references, the transliteration is measured as the

wrong one. The overall word accuracy is defined as the correctword percentage

over the whole test set:

Acc =
1

N

N
∑

i=1







1 if ∃ri,j : ri,j = ci,1;

0 otherwise







(3.19)

• Fuzziness in Top-1 (Mean F-scoreF1)

The mean F-score measures how different the top transliteration candidate is from

its closest reference. First, the Edit Distance (ED) and the Longest Common Sub-

sequence (LCS) between the candidate word and each reference are calculated

using dynamic programming. The edit distance measures the minimum number

of single-character editing operations, including insertions and deletions (no re-

placements in calculation). For example, the edit distancebetween “abcdef” and
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“afcdg” is 5, including deletions ofb, e, f from the first string, and insertions of

f, g into the second string. The longest common subsequence is defined as the

longest subsequence (not substring) common in the two sequences. For example,

the longest common subsequence between “abcdef” and “afcdg” is “ acd”. Then

for each name in the test set, we define the best matching reference as the reference

with the minimal edit distance from the candidate:

ri,m = arg min
j

ED(ci,1, ri,j) (3.20)

Finally, the best matching reference is used to calculated the Precision (P ), the

Recall (R) and their harmonic mean (F1) for theith word:

P =
LCS(ci,1, ri,m)

|ci,1|
(3.21)

R =
LCS(ci,1, ri,m)

|ri,m|
(3.22)

F1 =
2P R

P +R
(3.23)

The overall mean F-score is the average F-score over the whole test set.

The above two metrics are both defined over the top-1 candidates. One may argue

that multiple grapheme may have the same pronunciations in transliteration. Actually,

Li et al. (2009a) also define other metrics to evaluate other transliteratedname in the

candidate list, such as theMAP10. However, according to some national standards (e.g.

The Chinese Phonetic Alphabet Spelling Rules for Chinese Names9), there are usually

only one grapheme representation is considered correct. Asa result, we only adopt the

above two metrics to evaluate top-1 candidates. The evaluation script can be downloaded

from the website of the NEWS 200910.

9http://www.njqb.gov.cn/qwdt/ggl/201209/W020120911597707484864.pdf
10https://translit.i2r.a-star.edu.sg/news2009/evaluation/

http://www.njqb.gov.cn/qwdt/ggl/201209/W020120911597707484864.pdf
https://translit.i2r.a-star.edu.sg/news2009/evaluation/
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3.4.3 Results

Language Model Dev(%) Test(%)

En-Ch

(Li et al., 2004) 66.8 / 87.1 66.8 / 86.7
Syl 66.6 / 87.0 66.6 / 86.6

Word 67.1 / 87.2 67.0 / 86.7
Col 67.2 / 87.1 66.9 / 86.7

En-Ja

(Li et al., 2004) 43.7 / 82.2 44.7 / 82.2
Syl 43.7 / 81.8 44.9 / 82.4

Word 44.0 / 82.5 45.9 / 82.6
Col 44.0 / 81.8 44.5 / 82.2

En-Ko

(Li et al., 2004) 28.1 / 63.1 27.7 / 63.3
Syl 33.6 / 66.8 32.0 / 65.4

Word 33.9 / 66.2 34.0 / 65.6
Col 33.8 / 66.1 33.9 / 66.0

Jn-Jk

(Li et al., 2004) 57.5 / 73.3 58.5 / 73.7
Syl 60.7 / 75.5 61.7 / 75.9

Word 60.5 / 75.4 61.5 / 75.8
Col 60.9 / 75.5 61.7 / 76.1

Table 3.2: Transliteration results, in the format ofword accuracy / mean F-score.
“Syl”,“Word” and “Col” denote the syllable, word and collocation grammar respectively.

Table3.2 presents the transliteration results of all experiments. From this table, we

draw following conclusions:

1. The proposes Bayesian models achieve better performanceor at least comparable

performance than the baseline EM-based model on both the development set and

the test set for all language pairs. We conclude that the PYSAGs could find good

syllable mappings from the raw name pairs without any heuristics or restrictions.

In this point of view, the proposed method is language independent.

2. If we sort the improvements on the test set (Acc%) from the highest to the lowest,

we can get:En-Ko(6.3) > Jn-Jk(3.2) > En-Ja(1.2) > En-Ch(0.1). We also observe

from Table3.1 that the number of training instances are exactly in the reversed

order: En-Ko(4.8K) < Jn-Jk(16K) < En-Ja(28K) < En-Ch(32K). These facts
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may be explained that the prior knowledge play a more important role for small

data than large-scale data. For sufficient large-scale data, we can just let “data

speak themselves”, since EM could already learn good syllable alignments.

3. Comparing among the best (absolute) accuracy values for different language pairs,

we have:En-Ch(67.0) > Jn-Jk(61.7) > En-Ja(45.9) > En-Ko(34.0). In general,

higher performance could be achieved with more training data. One exception is

that the result ofJn-Jk (with smaller training set) is higher thanEn-Ja. The rea-

son might because Japanese Kanji has relative small (maybe fixed) set of English

correspondences and it is easy to split the source English name into syllable parts.

For example, “chiyako/千夜子” can be easily split into “chi-ya-ko/千-夜-子”

without ambiguity. To transliterate from western names to Japanese, however,

there may be difficult to find the corresponding Katakana in Japanese.

4. The word and collocation grammars achieve slightly better performance than the

syllable grammars, although the improvements are not significant. These facts do

not give strong evidences to support the assumption that thecontext information

are helpful. We guess the reason is that the instances in transliteration are very

short, so syllable grammars are good enough while the word and collocation rules

become very sparse, which results in unreliable probability estimation.

For theEn-Ch experiments, the only syllable pair that violates the single-character

restriction is〈x / 克 斯〉. We perform additionalEn-Ch baseline experiments by re-

placing the single English character〈x〉 with two characters〈K S〉 and run the baseline

experiments. The results of replacement have been reportedin our previous work (Huang

et al., 2011) as {Dev67.8/86.9}, which improve the baseline results {Dev (66.8/87.1)}

in Table3.2. We can conclude that the single-character restriction hurts the performance.

Furthermore, for other language pairs, there may not exist simple replacements. Com-

pared with EM, the proposed PYSAGs automatically learn syllable equivalents without

restrictions and achieve better performance.
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3.4.4 Discussion

We examine the learned syllable mappings in PYSAGs. Table3.3 showsEn-Ch

examples of learned syllable equivalents with largest collected counts in the final sampled

tree of the syllable grammar. As comparison, Table3.4 shows the syllable equivalents

collected from the1-best output of the baseline EM algorithm.

s/斯[si]/1669 ro/罗[luo]/531 la/拉[la]/382
t/特[te]/728 son/森[sen]/442 tt/特[te]/380

man/曼[man]/703 k/克[ke]/408 l/尔[er]/367
d/德[de]/579 ma/马[ma]/390 ton/顿[dun]/360
ck/克[ke]/564 co/科[ke]/387 ri/里[li]/342
de/德[de]/564 ll/尔[er]/383 ra/拉[la]/339

x/克[ke] 斯[si]/40 x/克[ke]/3 x/斯[si]/1

Table 3.3: Examples of sampledEn-Ch syllable mappings (total 79141, type 6880) in
the final sampled tree. Chinese Pinyin (in square brackets) and the counts of syllable
equivalents are given.

s/斯[si]/6186 ri/里[li]/1114 ll/尔[er]/924
l/尔[er]/3172 ro/罗[luo]/1093 p/普[pu]/841
t/特[te]/2434 c/克[ke]/1062 m/姆[mu]/800
d/德[de]/2355 k/克[ke]/1048 ra/拉[la]/759
g/格[ge]/1582 ck/克[ke]/971 le/尔[er]/750
b/布[bu]/1497 man/曼[man]/933 de/德[de]/718

x/克[ke] 斯[si]/0 x/克[ke]/90 x/斯[si]/139

Table 3.4: Examples of learnedEn-Ch syllable mappings (total 101205, type 5466) in
the1-best alignment output by EM baseline. Chinese Pinyin (in square brackets) and the
counts of syllable equivalents are given.

From these tables, we can see that the PYSAGs and baseline model find slightly dif-

ferent syllable mappings from raw name pairs. Note that the EM baseline restricts only

one character in the Chinese side, while PYSAGs do not have any heuristics or restric-

tions. Specifically, we are interested in the English token〈x〉, which is the only one that
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has two corresponding Chinese characters〈克[ke] 斯[si]〉. Table3.3 demonstrates

that many of these correct mappings are discovered by PYSAGs, while these equivalents

can not be found if we restrict the Chinese side to be only one character (Li et al., 2004),

as shown in Table3.4.

Another interesting example is the Japanese Katakana symbol “ー”, which is used

to indicate the preceding vowel is a long vowel. As the original joint source-channel

model restricts that the Japanese side of syllable mappingsto be a single Katakana, the

symbol “ー” has many correspondences in English, such as〈r〉, 〈er〉, 〈e〉, 〈a〉, 〈o〉,

〈y〉, depending on the previous syllables. In contrast, the proposed SAG model could

recognize the symbol “ー” should not be split from its previous syllable, and learn many-

to-many syllable mappings. Some learned examples are shownas follows:

〈ner/ナ[na] ー[-]〉 〈ley/リ[li] ー[-]〉 〈mar/マ[ma] ー[-]〉

Besides the above unbreakable syllable mappings, our PYSAGmodel could also

learn big breakable syllable equivalents. For example, thefollowing syllable equivalents

(with separated form) can be found in sampled trees for several times:

〈ski/斯[si] 基[ji]〉 ⇒ 〈s/斯[si]〉 〈ki/基[ji]〉

〈mc/麦[mai] 克[ke]〉 ⇒ 〈m/麦[mai]〉 〈c/克[ke]〉

〈man/マ[ma] ン[n]〉 ⇒ 〈ma/マ[ma]〉 〈n/ン[n]〉

〈ber/ベ[be] ル[ru]〉 ⇒ 〈be/ベ[be]〉 〈r/ル[ru]〉

In general, these big syllable equivalents may be separatedinto small syllable mappings.

They are considered as a whole since the PYSAGs give higher probabilities to the whole

syllable equivalents than the separated ones due to their high-frequency appearance. This

observation explains why the PYSAG sampled less syllable equivalents in total (with

more types) in Table3.3 than those equivalents learned by EM in Table3.4 (with less

types), and the frequencies of sampled syllable equivalents is smaller than the corre-

sponding ones learned by EM. Similar results could be found for other language pairs.
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3.5 Summary

In this chapter, we propose synchronous adaptor grammars for machine translitera-

tion. Based on the sampling, the PYSAGs could automaticallydiscover syllable equiv-

alents without any heuristics or restrictions. In this point of view, the proposed model

is language independent. The joint source-channel model isthen used for training and

decoding. Experimental results on the transliteration tasks of four language pairs show

that the proposed method outperforms the EM-based baselinesystem. We also com-

pare grammars in different layers and find that the two-layergrammars are suitable for

the transliteration task, although the performance difference between grammar layers are

not significant.
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Chapter 4

Feature-based Constituent-Context

Model

The basic Constituent Context Model (CCM) (Klein and Manning, 2002) has been

described in Section2.2.1. Although CCM achieves promising results in short sentences,

its performance drops for longer sentences. In this chapter, we propose a general feature-

based framework for CCM in which various overlapping features could be easily added.

Features take the log-linear form with local normalization, where we can still use the EM

algorithm to estimate model parameters with minor change inthe maximization step.

To avoid overfitting, we useℓ1-norm regularization to control the model complexity.

Furthermore, previous induction models (Klein and Manning, 2002; Smith and Eisner,

2004; Mirroshandel and Ghassem-Sani, 2008; Golland et al., 2012) train and evaluate

models on the same dataset, so there is no reasonable way to choose model parameters.

We advocate using a separated validation set to perform model selection, and measure

the trained model on additional test set. Under this framework, we could automatically

choose suitable model parameters instead of setting them empirically. We also examine

the sparse model issues in this chapter.
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4.1 Feature-based CCM

4.1.1 Model Definition

Motivated by (Berg-Kirkpatrick et al., 2010; Li et al., 2012), the basic idea behind

the feature-based CCM is to factorize the multinomial distribution over sequences into

small factors that describe overlapped aspects of constituents and distituents (a.k.a. non-

constituents).

Formally, letB be a boolean matrix with entries indicating whether the corresponding

span encloses constituent or distituent. As explained in Section 2.2.1, some bracketing

B may not corresponds to parse tree. We just ignore those bracketings in probability

calculation, i.e. letP (B) = 0. We denoteBT as the set of bracketings with tree rep-

resentations. For tree-equivalent bracketingB ∈ BT , denoteTB as the corresponding

tree representation. We define factors in the log-linear form with local normalization.

Let Fk(k = 1, . . . , K) be K different factors. Each factorFk corresponds to ank-

dimensional feature vectorfk. For each feature vector, there is ank-dimensional weight

vectorwk measuring the importance for each dimension. Note for thekth factorFk, the

corresponding multinomial parameter in traditional CCM isnow treated as a function of

weightswk. Using these notations, we define the log-linear factorFk for span〈i, j〉 in

some bracketingB for sentenceS as

Fk(S〈i,j〉|wk) = Pk(S〈i,j〉|B〈i,j〉,wk)

=
exp(wk · fk(S〈i,j〉))
∑

v
exp(wk · fk(v))

(4.1)

wherefk returns a feature vector,wk is the corresponding weight vector, and(·) denotes

the inner product of vectors. The denominator sums over the unnormalized probabilities

(as defined in the numerator) for all possible factor values of fk(v). Since there are

exponential valuesv respect to the dimension number, we approximately calculate this

summation only over values that appear in the training corpus.
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Similar to CCM, there are constituent factors and distituent factors in the feature-

based model. Constituent and distituent factors only defineprobabilities over constituent

and distituent spans respectively. To distinguish constituent and distituent factors, we

define a factor category functionδk as

δk =











+1, if Fk is constituent factor

−1, if Fk is distituent factor
(4.2)

Then the joint probability ofP (S,B|w) can be defined:

P (S,B|w) = P (B|w)P (S|B,w) (4.3)

= P (B|w)
∏

〈i,j〉

P (S〈i,j〉|B〈i,j〉) (4.4)

= P (B|w)
∏

〈i,j〉/∈TB

∏

k:δk=−1

Fk(S〈i,j〉|wk)×
∏

〈i,j〉∈TB

∏

k:δk=+1

Fk(S〈i,j〉|wk)

(4.5)

= P (B|w)
∏

〈i,j〉/∈TB

∏

k:δk=−1

Fk(S〈i,j〉|wk)×
∏

〈i,j〉∈TB

∏

k:δk=−1

Fk(S〈i,j〉|wk)

×
∏

〈i,j〉∈TB

∏

k:δk=+1 Fk(S〈i,j〉|wk)
∏

k:δk=−1 Fk(S〈i,j〉|wk)
(4.6)

= P (B|w)
∏

〈i,j〉

∏

k:δk=−1

Fk(S〈i,j〉|wk)×
∏

〈i,j〉∈TB

∏

k

F δk
k (S〈i,j〉|wk) (4.7)

= K(S|w)
∏

〈i,j〉∈TB

∏

k

F δk
k (S〈i,j〉|wk) (4.8)

The joint probability is factorized first by the chain rule (4.3), then over factors defined

for each active span (4.4 and4.5). In Equation (4.6), we introduce an additional term

representing the product of distituent factors (fork : δk = −1) over constituent spans

(for 〈i, j〉 ∈ TB). We first multiply the additional term in the first part of theequation,

then divide this term in the second part. Since span〈i, j〉 either belongs to the tree span

setTB or not belongs toTB, we can combine the two parts in Equation (4.6) to get the

first term in Equation (4.7). Finally in Equation (4.8), we define the termK(S|w) to
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represent those products independent ofB as

K(S|w) = P (B|w)
∏

〈i,j〉

∏

k:δk=−1

Fk(S〈i,j〉|wk) (4.9)

The rest products in Equation (4.8) are defined only over tree spans. In this way, we have

reduced the complexity to evaluate the joint probability from all O(n2) spans toO(n)

tree spans for sentence with lengthn. The same trick can be found in the Appendix A.1

in (Klein, 2005).

As defined in Equation (4.1), factors are normalized locally over spans. One advan-

tage of the locally normalized model is that the EM algorithmcould be still used to learn

the model parameters. The constantK(S|w) in Equation (4.8) would be cancelled in the

EM algorithm, which we will describe in the Section (4.1.2).

4.1.2 Parameter Estimation

In this section, we present the algorithm to estimate parameters for the feature-based

CCM. LetS be the set of training sentences. As described in Section2.2.1, we assign

P (B) = 0 for B /∈ BT . Under the maximum likelihood estimation, we want to findw to

maximize the data log likelihood (ignoring non-tree-equivalent bracketings):

L(S|w) =
∑

S∈S

log
∑

B∈BT (S)

P (S,B|w) (4.10)

However, the summation of hidden variableB is inside the logarithm operator, resulting

in the complicated expressions for the analytical solution. Instead, we use the Expectation-

Maximization (EM) algorithm to solve the problem approximately.

Given current model parameterswold in each iteration of EM, we seek new parameter

w to maximize the expectation of the completed-data log likelihood:

Q(w,wold) =
∑

S∈S

∑

B∈BT (S)

P (B|S,wold) logP (S,B|w) (4.11)
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E-Step

The E-step evaluates the posterior probabilityP (B|S,wold) given fixedwold. We

can use the (modified) inside-outside algorithm (Lari and Young, 1990) to efficiently

calculate the expected counts for each factor. To simplify derivations, we define

φ〈i,j〉 =
∏

k

F δk
k (S〈i,j〉|w

old
k ) (4.12)

For sentenceS with lengthl, the inside probability IN can be calculated bottom-up

recursively

IN〈i,j〉 =















φ〈i,j〉, if j − i = 1
j−1
∑

k=i+1

φ〈i,j〉 IN〈i,k〉 IN〈k,j〉, if j − i > 1

The outside probability OUT can be calculated top-down recursively

OUT〈i,j〉 =















1, if j − i = l
i−1
∑

k=0

φ〈k,j〉 OUT〈k,j〉 IN〈k,i〉+
l
∑

k=j+1

φ〈i,k〉 OUT〈i,k〉 IN〈j,k〉, if j − i < l

The fraction of trees that contain the span〈i, j〉 as a constituent can be calculated as1:

r[φ〈i,j〉] = IN〈i,j〉×OUT〈i,j〉 / IN〈0,l〉 (4.13)

For each span〈i, j〉, assuming the feature vector for factorFk(S〈i,j〉) isv, we accumulate

the following expected counts for factorFk:

e[Fk(v), S〈i,j〉] =











r[φ〈i,j〉], if δk = +1

1− r[φ〈i,j〉], if δk = −1
(4.14)

We denotee[Fk(v)] as the accumulated expected counts for factorFk over training set.

We do not consider empty spans in the above calculation of inside/outside probabili-

ties. Since the empty spans do not depend on tree structures,we just add expected count

1 for each distituent factor and0 for each constituent factor over empty spans.

1There is a notation error in our previous paper (Huang et al., 2012), which is fixed here.
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M-Step

The objective in M-step is to tunew to maximize the expected complicated-data log

likelihood together with the regularization terms:

Q(w,wold)− λ‖w‖1 (4.15)

whereλ is a non-negative coefficient for theℓ1-norm ofw. Because of the high-dimensional

feature space, we useℓ1-norm of weight vectorw as regularization terms to control the

model complexity. The regularization terms can serve as automatic feature selector, lead-

ing to learn compact models. Theℓ1-norm is preferred than theℓ2-norm since the former

norm leads to much sparser model (Zou and Hastie, 2005).

In traditional CCM, model parameters (multinomial distribution probabilities) are es-

timated by normalizing relative frequencies in the M-step.In the feature-based model,

we use gradient-based search algorithm to optimize the above objective function nu-

merically. For differentiable objective functions, we mayapply the Limited-memory

BFGS (Nocedal, 1980) algorithm to optimize. Due to theℓ1 regularization term, how-

ever, the objective in Equation (4.15) is not differentiable atw = 0. So we use the

Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method (Andrew and Gao,

2007) to deal withℓ1-norm optimization. We use the open-source C++ implementation

libLBFGS2 in experiments.

The optimization process needs to calculate the gradient ofQ(w,wold) (without the

regularization terms) respect to the weight vectorw. Mathematically, considering Equa-

tion (4.8) and (4.12), we have

P (B|S,wold) =
P (S,B|wold)

∑

B′∈TB(S)
P (S,B′|wold)

=
K(S|wold)

∏

〈i,j〉∈TB

∏

k F
δk
k (S〈i,j〉|w

old
k )

∑

B′∈BT (S)K(S|wold)
∏

〈i,j〉∈TB

∏

k F
δk
k (S〈i,j〉|wold

k )

=

∏

〈i,j〉∈TB
φ〈i,j〉

∑

B′∈BT (S)

∏

〈i,j〉∈TB
φ〈i,j〉

(4.16)

2http://www.chokkan.org/software/liblbfgs/

http://www.chokkan.org/software/liblbfgs/
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in which the constantK(S|wold) could be cancelled in derivation. We can substitute

Equation (4.9) into the definition ofQ (Equation (4.11)) and expandQ as

Q(w,wold) =
∑

S

∑

B∈BT (S)

P (B|S,wold) logP (S,B|w)

=
∑

S

∑

B∈BT (S)

P (B|S,wold) log

[

K(S|w)
∏

〈i,j〉∈TB

∏

k

F δk
k (S〈i,j〉|wk)

]

=
∑

S

∑

B∈BT (S)

P (B|S,wold)

[

logP (B|w) +
∑

〈i,j〉

∑

k:δk=−1

logFk(S〈i,j〉|wk)

+
∑

〈i,j〉∈TB

∑

k

δk logFk(S〈i,j〉|wk)

]

= C +
∑

k:δk=+1

Q
(c)
k (w,wold) +

∑

k:δk=−1

Q
(d)
k (w,wold) (4.17)

whereC is a constant value independent ofw, andQ(c)
k andQ(d)

k represent the corre-

sponding quantities for the constituent and distituent factors, which are defined as:

Q
(c)
k (w,wold) =

∑

S

∑

B∈BT (S)

P (B|S,wold)
∑

〈i,j〉∈TB

logFk(S〈i,j〉|wk) (4.18)

=
∑

S

∑

B∈BT (S)

∑

〈i,j〉∈TB

r[φ〈i,j〉] logFk(S〈i,j〉|wk) (4.19)

=
∑

v∈Vk

e[Fk(v)] logFk(S〈i,j〉|wk) (4.20)

Q
(d)
k (w,wold) =

∑

S

∑

B∈BT (S)

P (B|S,wold)

[

∑

〈i,j〉

logFk(S〈i,j〉|wk)

−
∑

〈i,j〉∈TB

logFk(S〈i,j〉|wk)

]

(4.21)

=
∑

S

∑

B∈BT (S)

∑

〈i,j〉∈TB

(1− r[φ〈i,j〉]) logFk(S〈i,j〉|wk) (4.22)

=
∑

v∈Vk

e[Fk(v)] logFk(S〈i,j〉|wk) (4.23)

in which the setVk contains all appeared values in the training set of thekth factorFk,

ande[Fk(v)] is the accumulated expected counts for factorFk.
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Therefore, the expansion ofQ in Equation (4.17) can be written as

Q(w,wold) = C +
∑

k

Qk(w,wold) (4.24)

where Qk(w,wold) =
∑

v∈Vk

e[Fk(v)] logFk(S〈i,j〉|wk) (4.25)

in which Qk is the corresponding component for thekth factor. The probabilities of

factors are multiplied together, so the logarithm term in the above equation can be de-

composed into the sum of the logarithm of each factor probability. Furthermore, the

ℓ1-norm term in Equation (4.15) can be also written as the sum ofℓ1-norm of the corre-

sponding weights for each factor. As a result, optimizing the overall objective function

is equivalent to optimize objective functions for each factor. This does not only allow us

to simplify the derivations and computation of the gradient, but also makes it possible to

use different regularization parameterλk for different factorsFk. Since different factors

have different feature numbers and feature spaces, individual regularization may improve

the overall performance.

Finally, the gradient ofQk respect to the corresponding feature weight vectorwk for

factorFk can be computed as follows:

∇wk
(Qk) =

∑

v∈Vk

e[Fk(v)]×∆v(wk) (4.26)

∆v(wk) = fk(v)−
∑

v
′∈Vk

Fk(v
′)fk(v

′) (4.27)

wheree[Fk(v)] is the expected counts accumulated in the E-step. The similar derivation

can be found in (Berg-Kirkpatrick et al., 2010).

Rich features can be easily incorporated in this feature-based model. In next section,

we show the feature templates used our experiments.
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4.2 Feature Templates

4.2.1 Basic features

There are two kinds of features: constituent features, withprefix {c:}; and distituent

features, with prefix {d:}. Features in the two categories are active only if the span en-

close constituent or distituent respectively. The basic feature templates are listed as fol-

lows with their names and descriptions. A running example, span〈1, 3〉 in “ 0RB1DT2NN3”,

is also shown for each feature template.

• const: This constant feature always takes value1 for any given span. We use this

feature to measure the number of spans.

• seq[n]: This indicating feature is active for sequence enclosed byspan with sizen.

If n = 0, then sequences with any length are considered.

seq2 . . . DT_JJ DT_NN RB_DT . . .

value . . . 0 1 0 . . .

• lx[n]/rx[n]: The indicating feature for the preceding/followingn terminals (left/right

context), where⋄ represents sentence boundary.

lx2 . . . ⋄_⋄ ⋄_RB RB_DT . . .

value . . . 0 1 0 . . .

rx2 . . . DT_NN NN_⋄ ⋄_⋄ . . .

value . . . 0 0 1 . . .

• lb[n]/rb[n]: The left/rightn boundary terminals inside given span. If the length

of span is less thann, then this feature template is not activated.

lb2 . . . RB_DT DT_NN TO_VB . . .

value . . . 0 1 0 . . .

rb1 . . . RB DT NN . . .

value . . . 0 0 1 . . .
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4.2.2 Composite features

Basic features can be composited to more complicated features. We define two com-

position operators: join (.), and concatenation (+). For the join operator, the compos-

ited feature space is the Cartesian product of the feature spaces of the two operands.

For the concatenation operator, the composited feature space is the concatenation of the

operands’ feature spaces.

Here we use an example to demonstrate the difference betweenjoin operator and

concatenation operator. Assume there are3 possible values (⋄, RB, DT) for featurelx1,

and3 possible values (DT, NN, ⋄) for featurerx1. We consider feature vectors of the

two operators for span〈1, 3〉 in “ 0RB1DT2NN3”. The joined feature space has3 × 3 = 9

dimensions:

lx1.rx1 ⋄.{DT,NN,⋄} RB.{DT,NN,⋄} DT.{DT,NN,⋄}

value 0 0 0 0 0 1 0 0 0

The concatenated feature space has3 + 3 = 6 dimensions:

lx1+rx1 ⋄ RB DT DT NN ⋄

value 0 1 0 0 0 1

We only allow compositions with join operators followed by concatenation opera-

tors. In this representation, the original CCM could be represented as: {c:seq0, d:seq0,

c:lx1.rx1, d:lx1.rx1}. We show templates used in experiments in next subsection.

4.2.3 Templates in Experiments

Various knowledge can be incorporated into the feature-based model. However, since

there are huge feature combinations, we can not enumerate them in experiments. In

experiments, we use a restricted set of features described as follows.
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The first feature set used in experiments is the sequence withlength up to5: { seq1,

seq2, seq3, seq4, seq5}. Note that the original CCM consider sequences with arbitrary

lengths, while we restrict the maximal sequence length to be5. Since most of the longer

sequences occurs only once or twice in the training set, we discard them to reduce the

memory usage and disk spaces. For long sentences, we find the following boundary

features, which appear much more frequently than sequence features, play important

role in experiments (see subsection4.3.5).

Boundary words have been proven useful for detecting phraseboundaries in super-

vised setting (Xiong et al., 2010; He et al., 2010). We introduce this idea to unsupervised

grammar induction. The features used in experiments are combinations of left boundary

and right boundary words with lengths up to2: { lb1, lb2, rb1, rb2, lb1.rb1, lb1.rb2,

lb2.rb1, lb2.rb2}.

The original CCM also consider the pair of preceding one wordand following one

word as contexts. We consider combinations of left context and right context words with

lengths up to2: { lx1, lx2, rx1, rx2, lx1.rx1, lx1.rx2, lx2.rx1, lx2.rx2}. The special

sentence boundary token⋄ is introduced when needed.

The last feature used is the constant feature {const}. The constant feature always

takes value1 for each span.

Overall, we define2 constituent and2 distituent factors in the feature-based model.

The first constituent (distituent) factor is the concatenation of the sequence features, the

boundary features, and the constant feature: {seq1+. . . +seq5+lb1+. . . +lb2.rb2+const}.

These two factors are denoted asFc:s andFd:s respectively. The second constituent

(distituent) factor is the concatenation of the context features and the constant feature:

{ lx1+. . . +lx2.rx2+const}. These two factors are represented asFc:x andFd:x re-

spectively.
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4.3 Experiments

4.3.1 Datasets and Settings

We carry out experiments on the Wall Street Journal portion of the Penn English Tree-

bank (Marcus et al., 1993), in which sections02-21 are used as the training set, section

00 is used as the development set, and section23 is used as the test set. We remove null

elements (such as “*-1” and “-NONE-”) in treebank, since they are only for linguistic

purposes and not readable for human learner. In addition, weremove words acting as

punctuations in sentences if the part-of-speech (POS) tag is one of the follows:

, . : “ ” $ # -LRB- -RRB-

where the last two POS tags represent the left brackets and right brackets respectively.

We follow previous practices (Klein and Manning, 2002; Klein, 2005) and remove punc-

tuations for simplicity. Finally, tree nodes dominating noelements are pruned. The

detailed preprocessing step could be seen in (Klein, 2005). For comparison, we build

various datasets with sentences lengths no more than10, 20, 30, 40 words after removing

null elements and punctuations. Table4.1gives the statistics for each dataset. Figure4.1

shows an example of the parse tree found in the training set.

Dataset
Train Dev Test

# sent # word # sent # word # sent # word

PTB10 5899 41701 265 1875 398 2649
PTB20 20243 266785 992 13309 1286 16591
PTB30 32712 579241 1573 27929 2028 35148
PTB40 37561 746844 1809 35999 2338 45813

Table 4.1: Penn treebank data statistics.

The baseline system is the original EM-based constituent-context model (Klein and

Manning, 2002; Klein, 2005). EM algorithm is sensitive to the initial condition, so we

adopt the same uniform-split initialization. Following previous work, we use the part-of-



65

S

NP

DT NN

VP

MD

VP

VB

NP

DT JJ NN

the exchange should take a pro-active position
0 1 2 3 4 5 6 7

Figure 4.1: An example of reference tree.

speech tag sequences instead of raw words as the input of the baseline system and our

induction system. We also report performance of other trivial baselines for comparison,

including the left-branching baseline and the right-branching baseline. Figure4.2 and

4.3 show the corresponding left-branching tree and right-branching tree of the above

reference tree (Figure4.1), where the special nonterminalCon represents the constituent

placeholder in the tree node. For English, right-branchinghappens to be a strong baseline

(e.g. we can see from the figures that the right-branching tree has similar structures to

the reference tree). However, other languages may have other branching biases (Klein,

2005). We also evaluate the performance of the binarized treebank, as the upper bound of

any binary-tree induction system. Figure4.4 shows the binarized tree of the mentioned

reference tree (shown in Figure4.1), in which the new introduced nonterminalNP-DT

binarized the original flat span〈4, 7〉 into small ones.

For both the baseline CCM and proposed feature-based CCM, wetune smoothing

values on the development set for constituent factors from{2, 8, 20}, and those for dis-

tituent factors from{8, 20, 40, 80, 160}. There are many parameter combinations, so we

first fix the distituent smoothing value to be80 and tune constituent smoothing values,

then tune distituent smoothing values with the tuned constituent smoothing value. The

results reported in this thesis are the best tuned ones.



66

Con

Con

Con

Con

Con

Con

DT NN MD VB DT JJ NN

the exchange should take a pro-active position
0 1 2 3 4 5 6 7

Figure 4.2: An example of left branching tree.

Con

DT

Con

NN

Con

MD

Con

VB

Con

DT

Con

JJ NN

the exchange should take a pro-active position
0 1 2 3 4 5 6 7

Figure 4.3: An example of right branching tree.
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S

NP

DT NN

VP

MD

NP

VB

NP

DT

NP-DT

JJ NN

the exchange should take a pro-active position
0 1 2 3 4 5 6 7

Figure 4.4: An example of binarized reference tree, the upper bound of any binary in-
duction system.

For feature-based model (F-CCM), we still use uniform-split strategy to initialize

probabilities in the first E-step, and set all weights to zeroas the initial point of the

gradient-based search algorithm in the M-step. As the standard machine learning pipeline,

for both baseline models and the proposed models, we performlearning on the training

set, select the model with the best performance on the development set, and report the

final result of selected model on the test set. After trainingthe feature-based models on

the training set, we obtain the weights for each feature dimensions. We then use these

weights to parse and induce trees on the development and testdatasets.

For the four factors used in feature-based CCM, we select regularization parametersλ

from set {0.03, 0.1, 0.3, 1, 3, 10, 30}3. The use of development for tuning is a reasonable

way for selecting model parameters. We choose the parameters that achieve the highest

development score as final regularization values and reportthe corresponding evaluation

metrics on the test datasets.

3In our previous work (Huang et al., 2012), we did not regularize factorsFc:x andFd:x. In this
thesis, we perform regularization for these two factors as well and rerun some experiments, so some of the
results in this thesis are different from our previous reported ones.
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4.3.2 Evaluation Metrics

The evaluation objective is sometimes unclear for unsupervised grammar learning

tasks, which depends the following processing tasks. Moreover, the objective function

that unsupervised models try to optimize may differ from theevaluation metrics (Liang

and Klein, 2008). We follow previous unsupervised constituency tree induction ap-

proaches (Klein, 2005; Smith and Eisner, 2004; Golland et al., 2012) and evaluate the

induced trees from our system against the annotated treebank. Since our models only

induce the set of bracketings for raw strings without annotated labels, we report the unla-

beled precision (P ), unlabeled recall (R), and their harmonic mean (F1). These metrics

differ from the standard PARSEVAL metric (Black et al., 1991) in following ways: con-

stituent spans contain single words are discarded and multiplicity of brackets is ignored

in evaluation.

Con

Con

DT NN

Con

Con

MD VB

Con

DT

Con

JJ NN

the exchange should take a pro-active position
0 1 2 3 4 5 6 7

Figure 4.5: An example of candidate tree.

In detail, we represent a parse treeT to be a set of unlabeled constituent brackets.

Each tree node corresponds to one span〈i, j〉 over the constituent that the node covers.

Terminal (word) and preterminal (POS tag) nodes are excluded, as are nonterminal nodes

which dominate only a single terminal. LetG = {Gi} andC = {Ci} denote the set of

span representations for the golden tree bank and the systemoutput respectively, and
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M = {Mi} = {Gi ∩ Ci} denote the matched span set, then the unlabeled precision,

recall andF1 could be calculated as follows

P =

∑

i|Mi|
∑

i|Ci|
=

∑

i|Ci ∩ Gi|
∑

i|Ci|
(4.28)

R =

∑

i|Mi|
∑

i|Gi|
=

∑

i|Ci ∩ Gi|
∑

i|Gi|
(4.29)

F1 =
2P R

P +R
(4.30)

Note that the aboveP/R/F1 are calculated over all sentences in the tree bank.

We use examples to show how to evaluate these metrics. The reference tree in Figure

4.1and the candidate tree in Figure4.5can be represented as following span sets

Constituent Ref Cand Matched

DT NN 〈0, 2〉 〈0, 2〉 〈0, 2〉

MD VB - 〈2, 4〉 -

JJ NN - 〈5, 7〉 -

DT JJ NN 〈4, 7〉 〈4, 7〉 〈4, 7〉

VB DT JJ NN 〈3, 7〉 - -

MD VB DT JJ NN 〈2, 7〉 〈2, 7〉 〈2, 7〉

DT NN MD VB DT JJ NN 〈0, 7〉 〈0, 7〉 〈0, 7〉

Total |G| = 5 |C| = 6 |M| = 4

As a result, the precision and recall for this example areP = 4
6

andR = 4
5

respectively.

In the similar way, the number of matched spans, total spans and the precision and recall

are (1)|Ml| = 2, |Cl| = 6, Pl =
2
6
, Rl =

2
5
, for the left-branching tree (Figure4.2);

(2) |Mr| = 4, |Cr| = 6, Pr = 4
6
, Rr = 4

5
, for the right-branching tree (Figure4.3);

(3) |Mu| = 5, |Cu| = 6, Pu = 5
6
, Ru = 5

5
, for the binarized reference tree (Figure4.4).

From this example, we can see that the left-branching tree has badP/R. In contrast, the

right-branching baseline matches the reference tree well (as good as the induced tree in

this example). For any binarized reference tree, the recallis always100% since it never

misses any span in the reference.
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4.3.3 Induction Results

Table4.2 shows the experimental results on the Penn English Treebankdatasets of

different length limits (PTB10, PTB20, PTB30, PTB40). LBranch and RBranch rows

show the left branching and right branching baselines. UBound rows show the results

of binarized treebank, which is the upper bound of any grammar induction systems that

output binary-trees. We reimplement the baseline CCM, which achieves comparable

performance compared to previous reported results (Klein, 2005). The results of feature-

based CCM are presented in the F-CCM rows.

From these results, we observe that the left branching baseline are bad for English

language, while the right branching baseline achieves relative good performance for var-

ious datasets. The upper boundF1 metrics range from about85% to 89%, which is lower

than expected. The annotation guild line of Penn Treebank forces trees to be relative flat

trees with big phrase structure (usually the noun phrases).The binarized treebank gets

low precisions for these cases, especially for long sentences.

The original CCM performs much better than the right branching baseline on short

sentences while the performance decreases dramatically onlonger sentences (even worse

than than the right branching baseline). These evidences show that the single multino-

mial distributions for constituents and distituents are not able to capture complicated tree

structures appeared in long sentences. In contrast, our proposed F-CCM achieves much

better performance than the CCM on long sentences. The precision, recall andF1 metrics

of F-CCM all outperform CCM and the right branching baselinein a large gap on large

datasets. These results demonstrate the effectiveness of the feature-based models.

The performance of F-CCM is slightly worse than CCM on PTB10.The reason might

be that we use shorter sequences (maximal5). We have carried out experiments of F-

CCM with exactly the same features as CCM, the performance ofF-CCM is almost the

same as CCM on all datasets (less than%3 F1 differences). The feature templates used

to report the final results in Table4.2are those described in subsection4.2.3.
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Dataset Train Dev Test

PTB10 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
LBranch 25.60 32.46 28.62 25.65 32.42 28.64 27.01 35.23 30.58
RBranch 55.08 69.83 61.58 56.96 71.98 63.59 53.89 70.28 61.00
UBound 78.88 100.0 88.20 79.13 100.0 88.35 76.68 100.0 86.80
CCM 64.85 82.21 72.50 65.90 83.28 73.58 62.11 81.00 70.30
F-CCM 64.32 81.53 71.91 65.53 82.81 73.16 61.66 80.42 69.80

PTB20 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
LBranch 15.16 19.95 17.22 15.33 20.21 17.43 15.13 19.97 17.21
RBranch 42.57 56.04 48.39 42.07 55.47 47.85 42.14 55.64 47.96
UBound 75.97 100.0 86.35 75.85 100.0 86.26 75.74 100.0 86.20
CCM 43.08 56.71 48.96 42.61 56.18 48.46 42.25 55.78 48.08
F-CCM 52.67 69.33 59.86 52.63 69.39 59.86 51.93 68.56 59.10

PTB30 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
LBranch 11.70 15.60 13.37 11.94 15.82 13.61 11.68 15.52 13.33
RBranch 37.37 49.82 42.70 37.51 49.71 42.76 37.30 49.57 42.57
UBound 75.01 100.0 85.72 75.47 100.0 86.02 75.25 100.0 85.88
CCM 37.63 50.17 43.01 37.96 50.30 43.27 37.32 49.59 42.59
F-CCM 42.77 57.01 48.87 42.83 56.75 48.82 42.20 56.07 48.15

PTB40 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
LBranch 10.56 14.12 12.08 10.78 14.35 12.31 10.45 13.95 11.95
RBranch 35.46 47.45 40.59 35.49 47.26 40.54 35.63 47.54 40.73
UBound 74.74 100.0 85.54 75.09 100.0 85.77 74.96 100.0 85.69
CCM 29.22 39.10 33.44 29.43 39.19 33.62 28.95 38.62 33.10
F-CCM 39.70 53.12 45.44 39.80 53.00 45.46 39.46 52.64 45.10

Table 4.2: Induction results of feature-based CCM.
[Data] PTB10, PTB20, PTB30, PTB40.
[Rows] LBranch: left branching tree; RBranch: right branching tree; UBound: bina-
rized treebank, which is the upper bound of any grammar induction systems that out-
put binary trees; CCM: the original constituent-context model; F-CCM: the proposed
feature-based CCM.
[Columns] P : overall precision;R: overall recall;F1: overall F-score.
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4.3.4 Grammar sparsity

The regularization terms can serve as the feature selector.In this section, we compare

the sparsity of learned grammars between various regularization coefficients on PTB10.

As mentioned in Section4.1.2, we use different regularization coefficients for different

factors. Since there are too many results of parameter combinations to show here, we

only show the results that all factors use the same regularization coefficients in Table4.3.

The dimension of the sequence factors (Fc:s andFd:s) is 72289, and the dimension of

the context factors (Fc:x andFd:x) is 54439. We report the number of weights with

non-zero values as the measurement of grammar sparsity.

λ Fc:s Fd:s Fc:x Fd:x DevF1 TestF1

0.03 68963 71622 52806 54199 72.33 68.19
0.1 57907 69683 47240 52672 73.16 69.80
0.3 34954 57316 32120 46828 72.40 68.85
1 11738 27735 13713 24113 72.82 69.70
3 4125 10064 5621 10228 72.75 70.15
10 1498 3325 2345 4323 70.46 67.44
30 630 1231 1002 1874 67.20 62.36

Table 4.3: Sparsity of the induced grammars. Theλ column gives the regularization
coefficients, the middle four columns show the number of non-zero weights of each
factor, and the last two columns show the correspondingF1 value on the development set
and test set respectively.

From this table, we can see that theℓ1-norm with largerλ leads to sparser model with

less non-zero dimensions. However, if the non-zero weightsare penalized too heavy,

the feature-based model would underfit the training data andends with bad development

F1. The suitable value of regularization coefficient (λ = 0.1) can be selected by the de-

velopment set. Another interesting observation is that thenumber of non-zero distituent

factors (Fd:s andFd:x) is much greater than constituent factors (Fc:s andFc:x). For

tree with yield lengthn, there areO(n) constituent spans andO(n2) distituent spans, so

the feature-based model needs more distituents to encode the probability distributions.
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4.3.5 Feature Analysis

In subsection4.2, we designed (1) constant feature, (2) boundary features, (3) se-

quence features, and (4) context features for the feature-based CCM. We examine which

kind of features works well for F-CCM in this subsection. We subtract each feature set

from the final feature set and rerun the experiments. The experimental results are shown

in Table4.4. The CCM and F-CCM results are also given for comparison.

If the constant feature is excluded from the feature set, theperformances slightly de-

crease on all datasets. We have checked the weight of the constant feature and found that

the weight is quite small (less than10−6), so this feature does not show much discrimi-

nating ability.

The boundary features affect F-CCM very much, especially for short sentences. For

short spans, usually the boundary words can determine the phrase category, such as the

noun phrases usually begin with articles and end with nouns.For long sentences, the

boundary features still has significant impact, so we conclude the boundary words could

help for unsupervised grammar induction. Note that we use more complex context fea-

tures than CCM, so the performances without boundary features are still better than the

original CCM on long sentences.

One interesting observation is that excluding the sequencefeatures does not hurt per-

formance much, and even slightly improve the performance onlong sentences. Since we

design boundary features to capture constituent contents,the sequence features may be

duplicated. In addition, as long sequences occur a few timesin the training corpus, the

parameter estimation may be unreliable.

The context features play the most important role in feature-based CCM, since the

performances drops most if the context features are excluded from the feature set. This

gives evidence to the claim that constituents appear in constituent contexts, which is the

motivation of distributional clustering.

In summary, the boundary and context features are the most important features.
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Dataset Train Dev Test

PTB10 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
CCM 64.85 82.21 72.50 65.90 83.28 73.58 62.11 81.00 70.30
F-CCM 64.32 81.53 71.91 65.53 82.81 73.16 61.66 80.42 69.80

-const 63.82 80.90 71.35 65.16 82.34 72.75 60.95 79.49 69.00
-bdr 50.18 63.61 56.10 50.31 63.58 56.17 48.96 63.85 55.42
-seq 63.39 80.36 70.88 65.28 82.50 72.88 61.35 80.01 69.45
-ctx 42.43 53.79 47.44 41.86 52.90 46.74 41.94 54.69 47.47

PTB20 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
CCM 43.08 56.71 48.96 42.61 56.18 48.46 42.25 55.78 48.08
F-CCM 52.67 69.33 59.86 52.63 69.39 59.86 51.93 68.56 59.10

-const 52.49 69.09 59.65 52.41 69.10 59.61 51.62 68.15 58.74
-bdr 41.15 54.17 46.77 41.43 54.62 47.12 40.82 53.90 46.46
-seq 51.56 67.86 58.60 51.49 67.89 58.56 50.76 67.02 57.77
-ctx 36.55 48.11 41.54 36.01 47.47 40.95 36.16 47.75 41.16

PTB30 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
CCM 37.63 50.17 43.01 37.96 50.30 43.27 37.32 49.59 42.59
F-CCM 42.77 57.01 48.87 42.83 56.75 48.82 42.20 56.07 48.15

-const 42.49 56.64 48.55 42.64 56.50 48.60 41.86 55.63 47.77
-bdr 37.87 50.49 43.28 38.36 50.83 43.73 37.66 50.05 42.98
-seq 43.38 57.83 49.57 43.74 57.96 49.86 42.91 57.03 48.97
-ctx 32.06 42.73 36.63 31.95 42.33 36.41 32.77 43.56 37.40

PTB40 P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%)
CCM 29.22 39.10 33.44 29.43 39.19 33.62 28.95 38.62 33.10
F-CCM 39.70 53.12 45.44 39.80 53.00 45.46 39.46 52.64 45.10

-const 39.62 53.01 45.35 40.01 53.28 45.70 39.22 52.33 44.84
-bdr 37.06 49.58 42.41 37.55 50.00 42.89 36.83 49.13 42.10
-seq 40.82 54.62 46.72 41.18 54.84 47.04 40.31 53.78 46.08
-ctx 30.73 41.11 35.17 30.92 41.18 35.32 30.86 41.17 35.28

Table 4.4: Induction results of feature-based CCM for feature subtraction experiments.
[Data] PTB10, PTB20, PTB30, PTB40.
[Rows] CCM: the original constituent-context model; F-CCM: the proposed feature-
based CCM; -const: all feature sets except constant feature; -bdr: all feature sets except
boundary features; -seq: all feature sets except sequence features; -ctx: all feature sets
except context features.
[Columns] P : overall precision;R: overall recall;F1: overall F-score.
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4.3.6 Discussion

Experiments show that we achieve better performance with traditional CCM while

using much compact grammars. There are some issues we want todiscuss here.

1. There are too many feature templates to explore, and we only test a few of them.

Other kinds of features may improve the induction performance, such as words

and stems (Headden III et al., 2009), and punctuations (Spitkovsky et al., 2011b;

Ponvert et al., 2011). They can be easily added as features, although we have not

tested them. In addition, we can also design manually rules as features to precisely

control the induced tree and may further improve performances for particular an-

notation guild lines.

2. In previous approaches for unsupervised constituency grammar induction (Klein,

2005; Smith and Eisner, 2004; Golland et al., 2012), they tune parameters and eval-

uate metrics on the same dataset, which is problematic. As a result, we advocate

using a separated development set to perform model selection.

3. The EM algorithm only find the sub-optima in the parameter space. Online EM

algorithms have shown improvements over full EM on some unsupervised learning

tasks (Liang and Klein, 2009; Spitkovsky et al., 2010a; Spitkovsky et al., 2010b).

These ideas can be easily incorporated into our feature-based EM, with minor

modification of the expected count calculation in the E-step. Another learning

algorithm is theLateen EM(Spitkovsky et al., 2011a), in which multiple objective

functions are alternative optimized. We may simulate multiple objective functions

using different regularization coefficients and alternatively optimize them.

4. ℓ1-norm regularization is used to learn sparse and compact model. Bayesian learn-

ing methods are alternatively frameworks to learn compact grammars, which can

be also applied for CCM inference.
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4.4 Summary

In this chapter, we presented a feature-based model for CCM,in which various

knowledge can be integrated as features. The local normalization nature makes it suitable

to fit in the EM algorithm. The use ofℓ1-norm regularization leads to compact grammars.

We also proposed a reasonable model selection and evaluation framework. Experimental

results demonstrated the proposed model achieved better performance compared to the

CCM baseline especially on long sentences.
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Chapter 5

Improved Combinatory Categorial

Grammar Induction

Combinatory Categorial Grammar (CCG) is an expressive lexicalized grammar for-

malism which is able to capture long-range dependencies.Bisk and Hockenmaier (2012b)

propose a simple robust CCG induction method, in which lexicons for each part-of-

speech tags are generated first, then the Expectation-Maximization (EM) is used to esti-

mate model parameters. They compare the full EM, the ViterbiEM and thek-best EM

schemes and find that thek-best EM algorithm performs best.

In this chapter, we focus on the above approach and propose extensions and improve-

ments. Specifically, we introduce boundary part-of-speech(POS) tags into the baseline

model to capture lexical information of language. The boundary model and the basic

model are combined together. We also perform nonparametricBayesian inference based

on the Pitman-Yor process to learn compact grammars. Experimental results demon-

strate that the boundary models consistently improve the baseline models for all learning

algorithms (full EM,k-best EM, and Bayesian inference). The Bayesian inference out-

performs the full EM, but underperforms thek-best EM.
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5.1 Grammar Generation

Bisk and Hockenmaier (2012b) propose a simple iterative lexicon generation algo-

rithm from the golden part-of-speech (POS) tags. Due to the simplicity and effectiveness

of this method, we also adopt it to generate lexicons in our method. We rephrase their

algorithm with minor modifications in this section.

Only two atomic categories,N (nouns or noun phrases)1, andS (sentences) are al-

lowed in grammar. Conjunction words are expanded from a special conjunction category

conj. Trees are all generated from a special start symbolTOP. In assumption, all strings

are either nouns or sentences, i.e. they are generated from one of the two unary rules:

TOP→ N TOP→ S

In addition, we restrict that: (1) strings containing at least one verb must be parsed with

theTOP-S rule; and (2) strings without any verb must be parsed with theTOP-N rule2.

The initial CCG lexiconL(0) is created manually by assigning atomic categoryN to

nouns,S to verbs, andconj to conjunctions for fixed POS tags. The following is an

example of initial lexicon for the English Penn Treebank tagset (Marcus et al., 1993):

N : {DT, NN, NNS, NNP, NNPS, PRP}

S : {MD, VB, VBD, VBG, VBN, VBP, VBZ}

conj : {CC}

Note that the tagNNPS (representing plural proper noun) and the tagVBP (representing

verb of non-3rd person singular and in present tense) are missing in (Bisk and Hocken-

maier, 2012b) but they are included in the treebank tag set.

The lexicon for atomic categories remains fixed after the initial lexiconL(0) has been

created. However, the categories that POS tags may acquire are updated iteratively during

1In formal English grammars,NP is often used to represent noun phrases(Hockenmaier and Steedman,
2007). Following (Bisk and Hockenmaier, 2012b), we do not distinguish noun phrase from nouns for
efficiency. This simple treatment causes some problems, e.g. the determiners would be treated as adjuncts
and then regarded optional, but actually they are needed forsingular count nouns.

2Bisk and Hockenmaier (2012b) only make the first restriction.
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induction. In each step, we create new category candidates for adjacent words, including:

(a) modifiers, in the form ofX|X; and (b) functors, in the form ofX|Y for different cate-

goriesX andY. The motivation of modifiers and functions has been described in Section

1.4. If new candidates satisfy at least one of conditions and violate none of restrictions,

they are inserted to the lexicon of corresponding POS tag. The conditions (items with

[c]) and restrictions (items with [r]) of modifiers and functions are listed as follows.

Modifier For each POS tag with some categoryX, we insert new modifier candidateX/X

(and correspondingX\X) to the right- (and corresponding left-) adjacent POS tag, if:

[c] X is an atomic category;

[c] X is a modifier itself.

Functor For adjacent POS tags with categoriesX andY, we consider thatX may takeY

as argument to form the functor categoryX/Y, andY may also takeX as argument result

in the functorY\X. The new category is valid if the headH and argumentA pass the fol-

lowing tests:

[c] H is modifier or in the form of (S|. . . ), andA is atomic categoryN or S;

[c] H is S andA is N, i.e. categoriesS/N andS\N are allowed;

[c] A is not modifier, i.e. any non-modifier (atoms and functors) may be argument;

[r] H is different fromA, otherwise the result category is modifier rather than functor;

[r] H is notN, since we assume that atomicN can not take any arguments.

After creating lexicon, we parse the sentences with CCG and remove categories that

can not lead to a parse. The rest categories for POS tags are used to update the lexicon

for each step. We perform this induction step twice to obtainthe final lexiconL(2).

The above induction procedure is almost the same as the algorithm described in (Bisk

and Hockenmaier, 2012b). They also introduced an additional induction step to combine

adjacent constituents that can be derived from the existinglexicon. However, their exper-

iments did not show significant improvement of this “derived” lexicon generation step,

so we omit this step in our experiments.
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5.2 Improved CCG Induction Models

5.2.1 Basic Probabilistic Model

The basicmodel is the baseline model described in (Hockenmaier and Steedman,

2002), which is also used in (Bisk and Hockenmaier, 2012b). There are four types of

rules in CCG: lexical (W) rules generate terminal words; unary (U) rules which could be

root rules or type-raising rules; left-headed (L) rules with the first symbol as functor,

e.g. the forward composition rules; and right-headed (R) rules with the second symbol

as functor, e.g. the backward composition rules. Binary trees are generated top-down

recursively from the special start symbolTOP. For each unexpanded nonterminalP, the

basic model first generates the expansion typeexp ∈ {W, U, L, R} according toPe(exp|P).

Then for each expansion type, the model generates either terminal wordw or head child

H and possible non-head childN:

Lexical: Pe(exp = W|P)Pw(w|P, exp = W)

Unary: Pe(exp = U|P)PU(H|P, exp = U)

Left: Pe(exp = L|P)PL(H|P, exp = L)Pl(N|P, H, exp = L)

Right: Pe(exp = R|P)PR(H|P, exp = R)Pr(N|P, H, exp = R)

where the subscripts{e, w, U, L, l, R, r} represent different probability distributions.

After the lexicon generation step (presented in Section5.1), each POS tag acquires a

lexicon of CCG categories. These lexicons are used to parse the training corpus and CCG

rules are created. For parameter estimation, we implement the Expectation Maximization

(EM) algorithm is used to learn probabilities in the basic model. In the full EM, the

Inside-Outside algorithm (Lari and Young, 1990) is used to collect the expected counts

in the E-step of EM algorithm. We also implement thek-best EM described in (Bisk and

Hockenmaier, 2012b), in which the expected counts are collected fromk best parse trees.
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5.2.2 Boundary Models

Boundary part-of-speech (POS) tags have been proven usefulfor detecting phrase

boundaries in supervised setting (Xiong et al., 2010; He et al., 2010) and in unsupervised

grammar induction (Golland et al., 2012; Huang et al., 2012). We introduce this idea to

unsupervised combinatory categorial grammar induction. Since the POS tags are used

as input of the induction system, we use the terms “boundary word” and “boundary POS

tag” interchangeably in this chapter.

TOP

S[<]

N[>]

N/N N

S\N[<B1]

S\N S\S

DT[The] NNS[man] VBD[ate] RB[quickly]
0 1 2 3 4

Figure 5.1: Illustration of the boundary probability calculation. The CCG rule types
are given in the square brackets next to each nonterminal. Although only POS tags are
considered in induction model, we also show the words for clarity.

Particularly, the boundary words of a given span are defined as the ordered pair of the

leftmost and the rightmost POS tag of the constituent covered by the span. Given parse

treeT , we define the new probabilistic model as

P (T ) =

(

∏

rule:r∈T

PCCG(r)

)





∏

span:〈i,j〉∈T

PBDR(σ〈i,j〉|B)



 (5.1)

where distributionPCCG is the basic CCG model defined in Section5.2.1, PBDR is the

proposed boundary model,σ〈i,j〉 means the boundary POS tags of the constituent covered
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by span〈i, j〉, andB is a special nonterminal representing the constituent spans. Note the

basic modelPCCG is defined over tree rules, and the boundary modelPBDR is defined

over tree spans. This model is named as thebasic+bdr model in experiments. The

boundary modelPBDR could be learned by full EM and k-best EM, similar to the basic

CCG model (subsection5.2.1). We also propose Bayesian inference for both the baseline

and boundary models (see next subsection).

Figure5.1shows an example of induced CCG tree. The probability of thisparse tree

under the boundary model is:

PBDR(T ) = P (DT_DT|B)× P (NNS_NNS|B)× P (VBD_VBD|B)

× P (RB_RB|B)× P (DT_NNS|B)× P (VBD_RB|B)

× P (DT_RB|B)× P (DT_RB|B)

Note that the boundary probabilities are defined over the spans for each tree node, so for

unary rules (e.g. the root rules and type-raising rules), the boundary probabilities may

be calculated multiple times for the same span, e.g. the termP (DT_RB|B) appears twice

in the above example. This model is slightly different from the probability model of the

constituent context model described in Section4.1, in which the probabilities are defined

over unique span set.

Currently, we use a single nonterminalB to represent all boundary tag pairs. We have

also tried to let the boundary pairs depend on the category ofcorresponding tree nodes.

For instance, the new boundary probability for the tree in Figure5.1becomes

PBDR(T ) = P (DT_DT|N/N)× P (NNS_NNS|N)× P (VBD_VBD|S\N)

× P (RB_RB|S\S)× P (DT_NNS|N)× P (VBD_RB|S\N)

× P (DT_RB|S)× P (DT_RB|TOP)

However, this category-dependent boundary model performspoor in experiments (not

reported). The reason might be the data sparsity problem, since there are quite a lot of

categories in the induced combinatory categorial grammar.
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5.2.3 Bayesian Models

The EM algorithm may overfit the training data, so we propose the Bayesian model to

infer grammars and tree structures. In Bayesian models, thegenerative process is often

formulated as the Chinese Restaurant process (CRP) or the Pitman-Yor process (PYP) to

encourage rule reuse and learn compact models (Teh et al., 2006; Pitman and Yor, 1997).

Since PYP is a generation of CRP and has more elegant and controllable behaviour over

the “long tail” of probability distributions, we focus on PYP in our approach.

The detailed PYP has been given in Section3.1.2, and we apply the PYP into CCG

induction. For each nonterminalA in CCG, we maintain a cache to store the total number

n of rules expanded withA as parent, the total different rule typesm, and the countsnk

of each rule that has been generated, fork = 1, . . . , m. Initially, all caches are empty,

i.e. withn = m = 0 and parse trees are generated in sequence. For each sentence, the

PYP generates trees in top-down fashion. For each nonterminal label to be expanded, we

consult the cache associated with that nonterminal and decide whether to choose thekth

rule in the cache, or generate a new rule. The probability of these two cases is

Pt(z|zi<n) =











ma+b
n+b

, if zn+1 = m+ 1

nk−a
n+b

, if zn+1 = k, k ∈ {1, · · · , m}
(5.2)

wherezi is the cache index of theith generated rule,a ∈ [0, 1] andb ≥ 0 are two label-

associated parameters naming the discount and concentration parameters respectively.

Note that different labels may have different values ofa andb. If we decide to gener-

ate a new rule, then the new rule is sampled from the base multinomial distributionP0.

We also put a Dirichlet prior on the base distribution and sample the base rule proba-

bilities θ ∼ Dir(θ|α). The above sampling procedures are performed recursively down

until all frontier labels are terminals. For CCG induction models described in previous

sections, PYP priors are put on all factored models, although they may have different

hyperparameters.
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To infer trees and parameters of PYP model, we apply the collapsed Metropolis-

Hastings algorithm (Hastings, 1970; Johnson et al., 2007b) to sample trees from parse

forest. In detail, we iteratively draw samples for each yield in training corpus in sequence

or in random order. Assuming the current tree of theith POS tag sequence isTi, we first

remove this tree from the whole tree set to obtainT−i, the set of sampled trees except

the ith one. Then we draw new treeT ′
i from some proposal distributionQ(T ′

i |T−i), and

accept the new sampled tree with probability

A(Ti, T
′
i ) = min

{

1,
P (T ′|α,a, b) Q(Ti|T−i)

P (T |α,a, b)Q(T ′
i |T−i)

}

. (5.3)

In theory,Q could be any distribution if it never assigns zero probability. In practice,

the proposal distribution should be close enough to the truedistribution to avoid high

rejection rate. We use following proposal distribution in experiments:

Q(Ti|T−i) =
1

Z(T−i)

∏

rule:r∈Ti

Pt(zr|zT−i
) P0(r|α)

δ(r /∈T−i) (5.4)

in whichPt is the conditional index probability in Equation (5.2), and the model needs

to consult the base distributionP0 if it encounters a new rule (δ(r /∈ T−i) = 1). We do

not need to calculate the normalization constantZ(T−i) since it would be cancelled in

Equation (5.3). The proposal distribution differs from true distribution in the sense that

caches are updated immediately after calculating probabilities of each rule inTi under

the true distribution, while the caches stay fixed in proposal distribution evaluation. In

experiments, we observe that only a tiny fraction (less than1%) of proposals are rejected.

This provides evidence that the proposal distribution works well enough. We use the

sampling algorithm described in (Blunsom and Osborne, 2008) to draw a parse tree from

the parse forest according to the proposal distributionQ.
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5.3 Experiments

5.3.1 Datasets and Settings

We carry out experiments on the Wall Street Journal portion of the Penn English

Treebank (Marcus et al., 1993). As the standard data split, we use sections02-21 as the

training set, section00 as the development set, and section23 as the final test set. We

remove punctuations and null elements in treebank, as the standard preprocessing step in

previous unsupervised grammar induction approaches (Klein and Manning, 2002; Cohn

et al., 2010; Bisk and Hockenmaier, 2012b). For comparison, we build datasets with

sentence lengths no more than10, 20, 30 and40 words after removing punctuations.

Dataset
Train Dev Test

# sent # word # sent # word # sent # word

PTB10 5899 41701 265 1875 398 2649
PTB20 - - - - 1286 16591
PTB30 - - - - 2028 35148
PTB40 - - - - 2338 45813

Table 5.1: Penn treebank data statistics.

As the standard machine learning pipeline, we perform learning and inference on the

training set, select model with best performance on the development set, and report the

result of selected model on the test set. Theoretically, we should tune and test parameters

on corpora with the same length. However, the number of CCG categories obtained is

huge, so it takes quite a long time on tuning parameters on long sentences. As a result,

following previous approach (Bisk and Hockenmaier, 2012b), we only train and tune

parameters on sentences with length no more than10, but report performance on longer

sentences as well. Table5.1gives the statistics for each dataset.

The original Penn treebank only has constituency trees, butwe evaluate the perfor-

mance of dependency trees. Converting constituency trees to dependency trees is not
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a trivial process, in which the head word of each constituenttree node must be identi-

fied. This is usually done using manually written convertingrules (Collins, 1999). To be

consistent with previous work, we use (Johansson and Nugues, 2007)’s code3 to convert

treebank to dependency structures. Figure5.2and5.3show a constituency tree and the

corresponding converted dependency tree.

S

NP

DT NN

VP

MD

VP

VB

NP

DT JJ NN

the exchange should take a pro-active position
0 1 2 3 4 5 6 7

Figure 5.2: An example of constituency reference tree.

ROOTROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.3: An example of converted reference dependency structure.

For natural languages, most dependencies are between adjacent words, such as the

adjacent adjectives and nouns. Similar to the trivial left-and right-branching baseline

in constituency grammar induction (Section4.3), we also investigate two trivial base-

line, named backward linked tree and forward linked tree, for dependency induction

system. Figure5.4 shows the backward linked dependency structure (corresponding to

the left-branching constituency tree), in which each word takes the preceding word as an

argument and the last word acts as the head of the whole sentence. Figure5.5shows the

3http://nlp.cs.lth.se/software/treebank_converter

http://nlp.cs.lth.se/software/treebank_converter
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forward linked dependency structure (corresponds to the right-branching constituency

tree), where each word is the head of the succeeding word and the first word links to the

root. We report evaluation results for these trivial baselines in experiments as well.

ROOTROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.4: An example of backward-linked dependency structure.

ROOTROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.5: An example of forward-linked dependency structure.

To reduce model complexity, we restrict that the maximal order of composition rule

is 2. The rule probabilities are initialized uniformly. For full EM models, we add fixed

value to expected counts in each E-step as smoothing. We perform maximal40 EM iter-

ations while stop earlier if the development score starts todrop. Fork-best EM models,

we interpolate thek-best probabilities and the full probabilities as described in the foot-

note in (Bisk and Hockenmaier, 2012b). We test differentk (number of best trees) and

select the best one that achieving the best UAS in the development set. In the Bayesian

inference, we run sampler through the whole training sentences for400 iterations and use

the last sampled grammars to parse fresh sentences. Following (Johnson and Goldwater,

2009; Huang et al., 2011), we put an uninformativeBeta(1, 1) prior ona and a “vague”

Gamma(10, 0.1) prior on b to model the uncertainty of these hyperparameters. After

each iteration, we resample each of hyperparameters from the posterior distribution of

hyperparameters using a slice sampler (Neal, 2003).
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5.3.2 Evaluation Metrics

For the induced CCG trees, we follow (Bisk and Hockenmaier, 2012b; Bisk and

Hockenmaier, 2012a) to convert CCG trees to dependency trees: (1) modifiers are treated

as dependents of their heads; (2) the head of the sentence is treated as a dependent of a

special root node at position0; (3) the left part of conjunction is treated as the head of

conj, andconj is treated as the head of right part. Figure5.6and5.7show an example

of the induced tree of combinatory categorial grammar and the corresponding converted

dependency structure. The dependency links (represented as arrows) are pointed from

the head word to its arguments. Note that the dependencies are unlabeled, since we do

not have label information in unsupervised induction.

S

S/N

S

N

N/N

DT

N

NN

S\N

MD

{S/N}\S

VB

N

N/N

DT

N

N/N

JJ

N

NN

the exchange should take a pro-active position
0 1 2 3 4 5 6 7

Figure 5.6: An example of constituency candidate tree.

ROOTROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.7: An example of converted candidate dependency structures.
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For evaluation, we represent a dependency tree as a set of dependency links. There are

alwaysn dependency links for sentences with lengthn . Therefore, there is no difference

between precision and recall, and we measure dependency accuracy straightforwardly

by comparing the two dependency link sets of reference and candidate dependency trees.

The accuracy can be evaluated for the directed or undirectedlinks, in which the former

one consider the link directions but the latter one ignore the link directions. We adopt the

directed accuracy and use the script of CoNLL 2008 shared task4 to calculate the Unla-

beled Attachment Score (UAS) . Note that the UAS is calculated over the whole dataset

rather than individual sentences. We perform the McNemar’ssignificant test (McNemar,

1947) to compare the proposed models with the baseline models.

We show an evaluation example here. The reference tree in Figure5.3and the candi-

date tree in Figure5.7can be represented as following directed link sets

Ref Cand Matched

〈[0]ROOT, [3]MD,→〉 - -

〈[1]DT, [2]NN,←〉 〈[1]DT, [2]NN,←〉 〈[1]DT, [2]NN,←〉

〈[2]NN, [3]MD,←〉 〈[2]NN, [3]MD,←〉 〈[2]NN, [3]MD,←〉

〈[3]MD, [4]VB,→〉 - -

〈[4]VB, [7]NN,→〉 〈[4]VB, [7]NN,→〉 〈[4]VB, [7]NN,→〉

〈[5]DT, [7]NN,←〉 〈[5]DT, [7]NN,←〉 〈[5]DT, [7]NN,←〉

〈[6]JJ, [7]NN,←〉 〈[6]JJ, [7]NN,←〉 〈[6]JJ, [7]NN,←〉

- 〈[0]ROOT, [4]VB,→〉 -

- 〈[3]MD, [4]VB,←〉 -

|G| = |C| = 7 |M| = 5

As a result, the unlabeled attach score for this example are5
7
. In the similar way, the UAS

of the corresponding backward linked tree (Figure5.4) and forward linked tree (Figure

5.5) are 3
7

and 1
7

respectively.

4http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:software

http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:software
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5.3.3 Smoothing Effects in Full EM Models

We first carry out experiments to examine the effect of smoothing values for full

EM models. We test smoothing values from {1,10,20,30,40,50,60,70,80,90,100} and

evaluate the unlabeled attachment scores (UAS) of basic model and basic+bdr model

on the development set and the PTB10 test set. Note that the final smoothing value is

selected as the one with best performance on the developmentset (not related to the test

set), and the results on the PTB10 test set are only given as a reference.
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Figure 5.8: Impact of smoothing values on full EM learning for CCG induction. The
dependency accuracy values on the development and test set of PTB10 are plotted.

The experimental results are plotted in Figure5.8. The accuracy scores on the devel-

opment set first increase then decrease with the increment ofsmoothing value. We can

easily find that the best smoothing value (with highest dev-score) is20 for both the ba-

sic model and basic+bdr model. The basic+bdr model achievessignificant better results

(dev:66.3, tst:66.7) than the basic model (dev:63.3, tst: 62.9) atp < 10−3 level on both

development and test set when optimal smoothing values are selected.
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5.3.4 K-best EM vs. Full EM

In k-best EM, we selectk from {1, 10, (step 10), 200, (step 20), 300, (step 100),

1000}. Note that whenk = 1, the 1-best learning is known as the Viterbi learning

algorithm. The unlabeled attachment scores ofk-best EM on the development set of

basic and basic+bdr models for different values ofk are plotted in Figure5.9. The best

results of full EM are also shown for comparison.
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Figure 5.9: Impact ofk on k-best EM learning for CCG induction. The dependency
accuracy values on the development set of PTB10 are plotted.

From this figure, we can see that the accuracy scores ofk-best models increase

quickly with the increment ofk, then decrease slowly and finally converge to some steady

points. Secondly, the best results ofk-best EM exceed the full EM, proved the conclusion

in (Bisk and Hockenmaier, 2012b). Thirdly, the basic+bdr models outperform the basic

models, which demonstrates the effectiveness of boundary words. Finally, the Viterbi

results are lower than both the results of full EM andk-best EM, which is consistent

with (Bisk and Hockenmaier, 2012b), but opposite to (Spitkovsky et al., 2010b).
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5.3.5 Induction Results

The final results over all datasets are shown in Table5.2 for comparison. We report

the unlabeled attachment scores for the basic and basic+bdrmodels using full EM,k-

best EM and Pitman-Yor process (PYP) as learning methods. Some results of existing

approaches are included in this table as well.

Model PTB10 PTB20 PTB30 PTB40

(Klein and Manning, 2004) 47.5 - - -
(Headden III et al., 2009) 68.8 - - -
(Spitkovsky et al., 2010b) 65.3* 53.8* - -

(Cohn et al., 2010) 65.9 58.3 - -
(Bisk and Hockenmaier, 2012b) 71.5 60.3 - -

(Naseem et al., 2010) 71.9 50.4* - -

Trivial
backward linked 32.7 28.8 27.7 27.2
forward linked 25.4 25.7 26.3 26.4

Viterbi EM
basic 39.2 23.2 18.5 16.8

basic+bdr 39.0 27.0 23.2 22.0

k-best EM
basic 67.3 56.0 52.0 50.4

basic+bdr 68.1 56.6 52.8 51.4

full EM
basic 62.9 49.9 46.0 44.6

basic+bdr 66.7 54.0 49.4 48.2

PYP
basic 66.0 53.9 50.5 48.8

basic+bdr 66.7 55.1 51.0 49.0

Table 5.2: Induction results of improved CCG models. Results of existing approaches
are copied from (Bisk and Hockenmaier, 2012b). Starred results were obtained with
additional training data.

From this table, we can see that both the trivial backward linked and forward linked

baselines perform poor at the evaluation of dependency accuracy. These results are quite

different from the constituency grammar induction results(shown in Section4.3.3), in

which the trivial right-branching constituency trees achieve good performance. This

could be explained that although the constituency trees areright-branching preferable,

the head words of constituents have not left or right position preference.
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Viterbi EM can be seen as a special case ofk-best EM withk = 1. Although

Spitkovsky et al. (2010b) demonstrate the Viterbi training method improves the Depen-

dency Model with Valence (DMV), it does not perform well for our CCG induction

model. Experimental results show that with a suitable selection of k, the k-best EM

outperforms the full EM, which is consistent with (Bisk and Hockenmaier, 2012b).

With the introduction of Pitman-Yor prior distributions, the proposed Bayesian in-

ference improves the full EM induction results. This provides evidence that compact

models are preferred in unsupervised CCG induction. Lower than expected, however,

the PYP results are still lower than thek-best EM results. The reason might be thek-best

EM is more likely to escape from local optima, while the sampling procedure needs too

many iterations to converge and usually gets stuck in local optima in practice.

Boundary models (basic+bdr) consistently show better performance than the corre-

sponding baseline models (basic), for all the full EM,k-best EM and Bayesian learning

models. The improvements of boundary models under Bayesianinference is relatively

smaller than the full EM andk-best EM. The reason might be that both the bound-

ary models and Bayesian models give high probabilities to those parse trees with more

reused rules, so the combination of them only performs slightly better than individual

component. For longer sentences, the boundary methods still outperform baseline model,

demonstrating the robustness of our method.

Compared with existing approaches in Table5.2, our models stay in the interme-

diate level. The dependency accuracy scores of the Dependency Model with Valence

(DMV) (Klein and Manning, 2004) are much lower than ours.Headden III et al. (2009)

improve the basic DMV using rich contexts, words as well as POS tags, and sophisti-

cated smoothing techniques, which might explain their higher performance than ours on

short sentences.Spitkovsky et al. (2010b) propose to use the Viterbi learning for DMV,

but their results are lower than our reported ones.Cohn et al. (2010) propose compli-

cated Bayesian models for the tree-subsection grammars, which is difficult to implement
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and tune.Naseem et al. (2010) manually specify some dependency rules in experiments,

while we just use some coarse restrictions on lexicon and grammar generation.Bisk and

Hockenmaier (2012b) reports better results than our models on both short and long sen-

tences. Our basic models with full EM andk-best EM are the reimplementation of their

models. As their induction codes are not public available, however, we may miss some

details in implementation, and can not reproduce their results.

5.3.6 Discussion

Our method takes the golden part-of-speech tags as input. This practice may reduce

data sparsity problem caused by directly modeling words. However, this may also lose

useful lexical information. As reported in (Headden III et al., 2009), incorporating words

with high frequencies (greater than100 times in their experiments) as well as the POS

tags could improve the induction accuracy for dependency models. In CCG, words may

also help to distinguish lexical categories. For example, the transitive verbs are often

tagged as (S\N)/N and the intransitive verbs often have categoryS\N. However, these

syntactic differences are not encoded in the Penn treebank POS tags, in which they may

both have the POS tagVBx depending on the tenses. How to use rich lexical information

to help the CCG induction is one possible research directionof our work.

Although the simple additive smoothing methods could improve EM results (see

Figure 5.8), sophisticated smoothing schemes are also applicable (Headden III et al.,

2009). Currently, the final probability is the product of basic CCG model and boundary

model, which is motivated by the agreement measurement in word alignment (Liang et

al., 2006). Although this simple strategy has already shown effectiveness in our experi-

ments, other interpolation techniques could be also tested. In addition, the context POS

tags have been proved useful for constituency tree induction (Klein and Manning, 2002;

Golland et al., 2012; Huang et al., 2012). Using context information is another extension

of our current work.
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5.4 Summary

In this chapter, we have proposed to incorporate lexical information in unsupervised

CCG induction. Specifically, an additional boundary model is defined to capture com-

plex language aspects, in which boundary words are generated from a special symbol

independently for each span covered by tree nodes. Furthermore, we describe nonpara-

metric Pitman-Yor process to encourage rule reuse. Experimental results demonstrate

that the boundary models consistently improve the baselinemodels for all learning algo-

rithms and over all datasets. The Bayesian inference outperforms the full EM, but still

underperforms thek-best EM.
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Chapter 6

Conclusion

6.1 Summary of Achievements

In this dissertation, we focus on three unsupervised structure induction problems: the

transliteration equivalence learning, the constituency grammar induction and the depen-

dency grammar induction. We make following contributions:

• We review the overfitting problem of existing EM-based transliteration models and

propose a general nonparametric Bayesian learning framework for transliteration.

We demonstrate how to represent the syllable learning problem as the grammar

inference problem. The proposed synchronous adaptor grammars (SAGs) could

automatically discover syllable equivalents without any heuristics or restrictions.

The joint source-channel model is then used for training anddecoding. Experi-

mental results on transliteration task of four language pairs show that the proposed

method outperforms the EM-based baseline system. In this point of view, the new

model is language independent.

• We discuss the problems of constituent-context model (CCM)for constituency

grammar induction and present the feature-based CCM in which linguistic knowl-

edge could be easily incorporated. The EM algorithm is stillapplicable for this
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local normalization method. The use ofℓ1-norm regularization leads to compact

grammars. We also propose a reasonable model selection and evaluation strategy.

Experiments demonstrate that the presented model achievescomparable perfor-

mance on the short sentences but significant improvements onthe longer sentences.

• We investigate the state-of-the-art combinatory categorial grammar (CCG) induc-

tion approach and propose to use boundary part-of-speech tags and Bayesian learn-

ing to improve the EM baseline. Specifically, an additional boundary model is

defined to capture constituents, in which boundary words aregenerated from a

special symbol independently for each span covered by tree nodes. We also pro-

pose a Bayesian model based the Pitman-Yor process to encourage rule reuse. The

full EM andk-best EM learning algorithms are also implemented for comparison.

Experimental results demonstrate that the boundary modelsconsistently improve

the baseline models for all learning algorithms and over alldatasets. The Bayesian

inference outperforms the full EM, but thek-best EM performs the best.

6.2 Future Directions

In this dissertation, sampling techniques are used to infergrammars for Bayesian

models (see Chapter3 and5), since they are easy to implement. Although correct sam-

pling implementations guarantee to converge to the real probability distributions, the

converging speed is often slow in practice. An alternative approximating inference tech-

nique is the variational Bayesian inference, which casts the posterior inference as a de-

terministic optimization problem (Jordan et al., 1999; Cohen et al., 2010).

Currently, we use the joint source-channel model as the decoding model for transliter-

ation. Similar the probabilistic inference for machine translation (Blunsom and Osborne,

2008), we can also directly use the synchronous adaptor grammarsas decoding models,

instead of converting the inferred grammars to lattice and then using the joint source-
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channel model to decode.

For feature-based CCM, we only experiment a few feature templates. Other features

such as words, stems may improve the performance. Moreover,punctuations are useful

information in grammar induction (Spitkovsky et al., 2011b; Ponvert et al., 2011), while

currently punctuations are ignored in our model.

The lexicon generation step is very important for the CCG induction. In this thesis,

we just follow previous work (Bisk and Hockenmaier, 2012b) to automatically generate

lexicons for each part-of-speech tag from the basic categoriesS andN. We may assign

more linguistic-motivated initial categories (Watkinson and Manandhar, 1999) to the in-

duction system.

Another direction is to use induced structures in subsequent NLP tasks, e.g. machine

translation. One issue should be mentioned is that the evaluation metrics used in unsu-

pervised learning tasks are different from the final evaluation metrics used for application

tasks. For example, the treebankF1 score is used to evaluate the constituency tree in-

duction system, while the BLEU (Papineni et al., 2002) is commonly used to evaluate

machine translation. We may use the final evaluation metric to guide the induction task.
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