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Abstract

Many Natural Language Processing (NLP) tasks involve sameedf structure anal-
ysis, such as word alignment for machine translation, syit@arsing for coreference
resolution, semantic parsing for question answering, letaditional supervised learning
methods rely on manually labeled structures for trainingtdctunately, manual annota-
tions are often expensive and time-consuming for large autsoaf rich text. It has great

value to induce structures automatically from unannotagedences for NLP research.

In this thesis, | first introduce and analyze the existinghods in structure induc-
tion, then present our explorations on three unsupervisadtare induction tasks: the
transliteration equivalence learning, the constituerreyrgnar induction and the depen-

dency grammar induction.

In transliteration equivalence learning, transliteravdochgual word pairs are given
without internal syllable alignments. The task is to autboadly infer the mapping be-
tween syllables in source and target languages. This th$ser addresses problems
of the state-of-the-art grapheme-based joint sourceraanodel, and proposes Syn-
chronous Adaptor Grammar (SAG), a novel nonparametric 8lapdearning approach
for machine transliteration. This model provides a gengeshework to automatically

learn syllable equivalents without heuristics or resioics.

The constituency grammar induction is useful since anadtéteebanks are only
available for a few languages. This dissertation focusethereffective Constituent-

Context Model (CCM) and proposes to enrich this model witiguiistic features. The

Xiii



features are defined in log-linear form with local normdi@a, in which the efficient
Expectation-Maximization (EM) algorithm is still applicke. Moreover, we advocate
using a separated development set (a.k.a. the validatipriosperform model selec-
tion, and measure trained model on an additional test setletJthis framework, we
could automatically select suitable model and parametgh®ut setting them manually.
Empirical results demonstrate the feature-based modédl cvercome the data sparsity
problem of original CCM and achieve better performancegisompact representations.

Dependency grammars could model the word-word dependentieh is suitable
for other high-level tasks such as relation extraction ameference resolution. This
dissertation investigates Combinatory Categorial Gram@&G), an expressive lexi-
calized grammar formalism which is able to capture longgeadependencies. We in-
troduce boundary part-of-speech (POS) tags into the eselodel Bisk and Hocken-
maier, 2012pto capture lexical information. For learning, we propo&agesian model
to learn CCG grammars, and the full EM aindbest EM algorithms are also implemented
and compared. Experiments show the boundary model imptbeedependency accu-
racy for all these three learning algorithms. The proposageBian model outperforms
the full EM algorithm, but underperforms tikebest EM learning algorithm.

In summary, this dissertation investigates unsupervisathing methods including
Bayesian learning models and feature-based models, an@tlpsossome novel ideas of
unsupervised structure induction for natural languagegssing. The automatically in-

duced structures may help on subsequent NLP applications.

Xiv
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Chapter 1

Introduction

1.1 Background

In many Natural Language Processing (NLP) tasks, the careeps involves some
kind of structure analysis. For example, in phrase-basedhma translation, the training
process would first induce word alignment structures batvadangual sentences. Ques-
tion answering is another example, in which the knowledgsbtsained from the parsed
semantic structures. Unfortunately, there are limitedueses of annotated structures for
NLP. For example, the Penn Treebahkafcus et al., 1993has only tens of thousands
annotated trees. As a comparison, we can easily obtaionsllof sentences from the
web. To make things worse, the annotated structures areawailable for small number
of widely used languages, which limits the NLP researchestbar languages. How to

induce structures automatically from unannotated seetehas great values.

In this thesis, we investigate and propose new ideas foe stracture induction tasks:
the transliteration equivalence learning, constituemayrgnar induction and dependency
grammar induction. Evaluation results on annotated tassismwv effectiveness of our

methods.



1.2 Transliteration Equivalence

Proper names are one source of out-of-vocabulary words imym&P tasks, such
as machine translation and cross-lingual informationeesit. They are often translated
through transliteration, i.e. translation by preserviog/hvords sound in both languages.
For some language pairs with similar alphabets, the ti@nation task is relatively easy.
However, for languages with different alphabets and sowystems (such as English-

Chinese), the task is more challenging.

S m I 0 s m i t h
sh i m i s i O )
(a) phoneme representation (b) grapheme representation

Figure 1.1: Transliteration alignments ¢mith/% [shi1%[mil#i[sil]). (a) the
phoneme representation, in which Chinese characters axerted to Pinyin and En-
glish word is represented as phonetic symbols; (b) the graghrepresentation, in which
literal characters are directly aligned.

Since enumeration of all transliteration pairs is impossilve have to break word
pairs into small transliterated substrings. Syllable egjeints acquisition is a critical
phase for all transliteration models. General speakirggethre two kinds of alignments
at different representations: phoneme-based and graphassel. In the phoneme repre-
sentations, words are first converted into the phonemialsigs and then the phonemes
are aligned. The phoneme systems may be different for samd¢arget languages, e.g.
Pinyin for Chinese and phonetic symbols for English. In thegpbeme representations,
the literal characters in each language are directly atignéigurel.1 illustrates the
two representations for aligned transliterated exampleteNXhat the alignments could
be one-to-one, one-to-many, many-to-one, and many-tos#dthough many-to-many
alignments may be excluded for English-Chinese tranahlin, they can be found in

other language pairs, e.g. the English-Japanese Kasght and Graehl, 1998
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Due to the lack of annotated data, inferring the alignments equivalence map-
pings for transliteration is often considered as unsugerviearning problems. Simple
rule-based models may be used to acquire transliteratadadepces. For instance, for
the English-Chinese transliteration task, we may applgsib find the corresponding
character in English word according to the consonants im&@ Pinyin, and split the
English word into substrings. However, rule-based systeiftes require expert knowl-
edge to specify language-dependent rules, making themtbdrdndle instances with
exceptions or be applied to other language pairs.

Another formalism is the statistical model, which autoraity infers alignment
structures from given transliterated instances. If theeeenough training data, sta-
tistical models often perform better than rule-based syste Furthermore, statistical
models could be easily trained for different language pdioshandle ambiguities, prob-
abilities are assigned to different transliteration atigmts in statistical models. The
Expectation-Maximization (EM) algorithm is often used stimate model parameters
SO as to maximize the data likelihood. One problem of EM igfit@g. In many mod-
els (we will see in Sectio.1), if EM is performed without any restriction, the system
would memorize all training examples without any meanihgtibstrings. We propose
our Bayesian solution to this problem in Chager

There are some issues needing to be concerned in trarnshiteréhe first one is that
there may be many correct transliteration candidates éséme source word. For exam-
ple, the namedbare” in English could be transliterated t¢#[a]ll[bei]l/R[er]” or
“Bif[a]E [bal/R[er]”in Chinese, and the Chinese transliterati@i['a]l [bei1/R[er]”
corresponds todbare” or “abbel” in English. Secondly, name origin may affect the
transliteration results. For example, the correct trémslted correspondence of the
Japanese-origin naméH{ tian]™ [zhong]” is “ tanaka”, where the two words have

quite different sounds. In this thesis, we ignore this nangiroproblem.



1.3 Constituency Grammars

In linguistics, aconstituents a word or a group of words that represents some lin-
guistic function as a single unit. For example, in the follegvEnglish sentences, the

noun phrased pair of shoes is a constituent acting as a single noun.

She bougha pair of shoes
It wasa pair of shoesthat she bought.

A pair of shoesis what she bought.

There are many kinds of constituents according to theiulistgc functions, such as noun
phrase [[P), verb phraseWP), sentencey), prepositional phraseP®), etc. Usually, the
constituents with the same type are syntactically intargkable. For instance, we may
replace the singular noun phrasegair of shoes$ with “ a watch’ without changing the

syntactic structure in above examples.

DT JJ JJ NN IN NNP MD VB CD

full four-color page in newsweek will cost 100,980
0 1 2 3 4 5 6 7 8

[ —

Figure 1.2: A constituency tree example.

The hierarchical structure of constituents forms a camstity tree. Figuré.2shows
an example, in which the special lal#IP indicates the root of the tree. Each labeled
tree node represents some kind of constitue¥s\P . .. ), and the leaf nodes represent
the words. The labels of non-leaf nodes are often call@uterminalssince they could
be expanded in some way, and the words in leaf nodetearenalsbecause the expan-

sion process terminates at these nodes. From this comstjtiieee, we can extract the
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following context-free transformation rules (rules thahgrate terminals are ignored to

save spaces):

0P — S
S — NP VP
NP — NP PP
NP — DT JJ JJ NN
PP — IN NP
NP — NNP
VP — MD VP
VP — VB NP
NP — CD

Each rule rewrites (or expands) its left non-terminal (taeept) to the sequence of ter-
minals or non-terminals on the right (the children). Thereontext-free means that

rule applications are independent of contexts and history.

A constituency grammas defined as the tuple of terminals, non-terminals, the spe-
cial starting symbol, and the set of context-free rewritesuHopcroft et al., 200B
Given constituency grammar, the process of finding granmalastructure from plain
string is calledparsing Due to the context-free property, dynamic programming-alg
rithms exist for efficient parsing, either from root down &rhinals, e.g. the Earley
algorithm Earley, 1983, or in the bottom-up fashion, e.g. the CKY algorith@ocke

and Schwartz, 197dor binarized grammars.

To facilitate syntactic analysis, many constituency traalkds have been created in
various languages, such as the Penn English Treeldakc(s et al., 1993 the Penn
Chinese treebankX(ie et al., 2005 the German NEGRA corpuskut et al., 1998
etc. However, manually creating tree structures is experasid time-consuming. In this
thesis, we are interested in inducing constituency grammgaad trees from plain strings.

We will review related work in Sectiof.2 and propose our model in Chapter



1.4 Dependency Grammars

Constituency grammars perform well for languages withtreddy strict word order
(e.g. English). However, some free word order languages @zech, Turkish) lack a
finite verb phrase constituent, making constituency pgrdifficult. In contrast, depen-
dency grammars model the word-to-word dependency regtwhich is more suitable

for languages with free word order.

ROOT DT JJ JJ NN IN NNP MD VB CD

a full four-color Page in newsweek will cost 100,980

Figure 1.3: A dependency tree example.

In dependency grammar, each word in sentence has exactliieateworddomi-
nating it in the structure. Figure.3 shows a dependency tree in the arc form. Arrows
pointing from head to dependents represent dependendiorsa The special symbol
ROOT demonstrates the root of dependency tree that always poitite head word of
the sentence (usually the main verb). Arcs may be assoamatedabels to indicate the
relations between the two words, which we omit here for siaityl

In general, there are two types of relations: fhector-argument relatiorand the
content-modifier relationIn the functor-argument relation, functor itself is not@re
pleted syntactic category, unless it takes other word(grgsments. For example in
Figure 1.3, if we remove the word with POS tagd” from the sentence, the sentence
becomes incomplete, since the transitive verb with POS tay rust first take an ar-
gument as the object. In contrast, if we remove the adjextivigh the POS tagJJ”
in above example, the sentence remains completed, sincothe*NN” could act as a

meaningful syntactic category without taking any argureelnt this case, we say that the
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adjectives “modify” the noun, which forms the content-nfeairelation. We will revisit
these concepts in the context of Combinatory Categoriain@rar (CCG) described in
Sectionl.5. Compared to constituency grammar, lexical informatiod aord order is

naturally encoded within dependency grammar.

ROOT WP VBZ PRP VBN VBG

who has he been seeking

Figure 1.4: A non-projective dependency tree example.

For efficient parsing, many dependency grammars requirddpendency trees to be
projective, i.e. the arcs can not be crossed. However, #ssmaption may be violated
for languages with free word order. Even for some specialkctiires of English, the
projectivity property is not preserved for dependencycitie. Figurel.4gives example
of non-projective dependency structures for the wh-moversieucture in English.

Instead of dependency grammar induction, we focus on thectiah task of Com-
binatory Categorial Grammar (CCG) in this thesis. CCG is aen@xpressive grammar
formalism, in which the coordination and the above wh-mosetrstructures are dealt
with in an elegant way. We introduce CCG in next section ardgnt models to induce

CCG trees in Chaptés.

1.5 Combinatory Categorial Grammars

Combinatory Categorial Grammar (CCG) is a linguisticabypressive lexicalized
grammar formalism$teedman, 2000 Compared to dependency grammars in which
words directly act as heads, CCG tree nodes are associdtedaki syntactic categories

which capture the basic word order and subcategorizatigrecifically, the CCG cat-
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egories are defined recursively: (1) There are some atongaeaes, e.9.S, N; (2)
Complex categories either take the foxrY or X\Y, representing the category that takes
categoryy as input and outputs the result categbryl he forward slash (/) and the back-
ward slash (\) indicate the input categafyfollows or precedes the complex category
respectively. Note that andY themselves may be complex categories too. Parentheses
can be used to specify the order of function applicationsdded. By default, the slashes
are left-associated, e.gx\Y/Z” is the shorthand of *X\Y)/Z". If the order of categories is

not important in some cases, we use symbol

to represémtreihe forward slash or
the backward slash. The following examples show some conuatagories in English
grammars:N for nouns,NP for noun phrasess for sentences,S{NP)/NP for transitive
verbs,NP/N for determiners, etc.

The derivationof CCG is the sequence of CCG rule applications. There argva fe
kinds of rule templates defined in CCG. The simplest rulestegdorward application
(>) and the backward applicatior)( where the complex category functors take atomic
categories as input:

X/Y Y = X (>)
Y X\Y = X (<)
The input categories could be complex too, which forms threpasition rules:
X/Y Y|Z = X|Z (>BY)
Y|Z X\Y = X|Z (<BY)
Higher order composition rules can be defined similarly:
X/Y Y|Z4]...|Z, = X|Z4|...|Z, (>B")
Y|Z4]...|Z, X\Y = X|Z4|...|Z, (<B™)
In a sense, the application rulesgnd<) can be regarded as the zero-order case of com-
position rules ¥B° and<B’). Examplel.1 shows the CCG derivations of a declarative
sentence. In this example, the lexical categ@®W¥)/NP for transitive verb saw” re-

stricts that the verb must first consume a object noun pht&eof the right to obtain
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the intransitive verb categos)\NP, then take another noun phrag@) on the left as the
subject to form sentence. Note that the categoof noun “John” is changed to the
categoryNP using the unary type-changing rufg)( We can see that the CCG lexicons

encode rich lexical information as well as the syntactitrietson.

John saw the man (1.1)
N  (S\NP)/NP NP/N N
—T _—
NP NP
S\NP
<
S

For coordination, CCG assumes that only the same categmrebe conjuncted to
yield a single category of the same type. In detail, CCG ietua ternary conjunction
rule &). For parsing algorithms (e.g. bottom-up CKY algorithmattihequire binary

rules, we often use the binarized conjunction rulgsdnd<g).

X conj X = X (&)
X X[conj] = X (>&)
conj X = X[conj] (<&)

CCG also includes type-raising rules, which turn argumiemdsfunctions over functions-

over-such-arguments.

X = T/(T\X) (>T)

X = T\(T/X) (<T)
These rules are needed to form some unusual constituecisasthe constituengéhn saw”
in Examplel.2 In this example, there is no argument on the right to travesierb “saw”
due to the clause structure, so the nodnakn” has to be type-raised. Another example
of type-raising is the uncommon coordination case (seeN)eln which two categories

of the typeS/N are conjuncted.
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the man that John saw 1.2
N/NONC (M\N)/(S/N) N (S\N)/N
> —>T
N S/(8\N)
— B!
S/N §
N\N §
N
I dislike and Mary likes opera (1.3)
N (S\N)/N conj N . (S\N)/N N
5/(S\W) I
- B ——FF F >B
S/N S/N i
S/N -
>
S

From example.1) and exampleX.2), it should be emphasised that the same words
have the same lexical categories, although the sentenaests are totally different.
This elegant and semantically transparent capture of auatidn and extraction of CCG
allows recovery of the long-range dependencies and setsanti

Following (Bisk and Hockenmaier, 201%bwve define categor¥|Y asfunctorif X is
different fromY, and category in the form &f|X asmodifier In dependency terminol-
ogy, the functoX|y corresponds to the head of its argumg&ntvhile the modifierx|x
corresponds to the argumentiof

In the formal grammar theory, Combinatory Categorial Grarsrare known to be
able to generate the langua§e&'b”c"d” : n > 0}, and weekly equivalent to Linear
Indexed Grammars, Tree-adjoining Grammars, and Head Gaasnfjay-Shanker and
Weir, 1999. As a mildly context-sensitive grammar, CCG models can flieiently
parsed in polynomial time with respect to the sentence kergtich makes CCG prac-
tical in real tasks. In practice, the “spurious ambiguity’QCG derivations may lead to
an exponential number of derivations for a given constitu€he normal forms of CCG

are described inHisner, 199%and Hockenmaier and Bisk, 20).0
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1.6 Structure of the Thesis

The rest of this thesis is structured as follows.

Chapter 2 provides a review of the related unsupervised structuredtion ap-
proaches, specifically on three induction tasks: transliten equivalence learning, con-
stituency grammar induction, and dependency grammar traduc

Chapter 3 proposes synchronous adaptor grammar, a general langnaéemendent
framework based on nonparametric Bayesian inference, &ohine transliteration. The
nonparametric priors illustrate the “rich get richer” dymas, leading to compact translit-
eration equivalences. The experimental results showltlegbtoposed methods perform
better than the EM-based joint source channel model onlienagion tasks for four
language pairs.

Chapter 4 presents our explorations on constituency grammar inoluctiVe intro-
duce features to the context-constituent model (CCM), iithviarious linguistic knowl-
edge could be encoded. Experiments show the proposed miguiéicseintly outperforms
the CCM, especially on long sentences.

Chapter 5 discusses some improvements on combinatory categoriaigea (CCG)
induction. We propose the boundary model and Bayesianiteaframework for better
CCG induction. The boundary models outperform basic mddeltll EM, k-best EM
and Bayesian inference. Bayesian models achieve bettiarmance than the full EM.

Chapter 6 summarizes contributions of our work and describes somedutsearch

directions on these topics.
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Chapter 2

Related Work

The rising amount of available rich texts on the web givesgwootunity to improve
the performance of many natural language processing taskertunately, manual an-
notations are often expensive and time-consuming. To makgg worse, annotated
structure corpora are only available for wildly used largps such as English and Chi-
nese. There are very limited annotated corpora for undsureed languages. There-
fore, it has great value to induce structures automati¢adiy unannotated sentences for

NLP research.

Although structure induction remains a challenging probtiie to the unsupervised
setting, great progress has been made during past twenty. yéa this chapter, we
first give a quick glance at existing approaches on the ttarafion equivalence learn-
ing problems, including the monotonic machine translatrodel and the joint source-
channel model. In the second part, we focus on the constyugnammar induction and
introduce the constituent-context model, tree-subsditunodel, and adaptor grammars.
Finally, we review the existing approaches on dependenagngrar induction, includ-
ing the dependency model with valence and induction modelsdmbinatory categorial

grammars.
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2.1 Transliteration Equivalence Learning

Transliteration is defined as phonetic translation acrdent language pair&pight
and Graehl, 1998 In the training stage of a transliteration system, findimgalignment
between transliterated source and target substrings playsportant role. We give a

brief overview of existing models of transliteration ecalence learning in this section.

2.1.1 Transliteration as monotonic translation

Transliteration can be regarded as the monotonic translptoblem. Machine translit-
eration differs from machine translation in two folds: (bwwords sound is preserved
during transliteration, while meanings are preservedndutianslation; (2) there is no
reordering problems in transliteration, i.e. the traeséted equivalences are in the same
order in both source and target languages. In this view, trel &lignment step in Sta-
tistical Machine Translation (SMTBfown et al., 199Bis adopted to align the translit-
erated substrings. Similar to SMT, missing sounds are nthfipa special tokeNULL.

In SMT, how to derived the internal structure mapping is tbg groblem of SMT sys-
tems. In general, the alignment problem could be categbtigedifferent types of the
structures. The simple word-based SMT models using theceand target word pairs
as translational equivalencedrown et al., 1993Vogel et al., 1996Moore, 2004 Liu
et al., 2009. Advanced word alignment models include: log-linear msdkeiu et al.,
2005 Moore et al., 2008Dyer et al., 201}, agreement-based modelsang et al., 2006
Huang, 2009 Bayesian modelddeNero et al., 2008hao and Gildea, 201Mermer
and Saraclar, 20} letc.

Since there is no reordering problem, most of these appesagke simple phrase-
based translation models with the word-word alignment. Gln&racters in source and

target languages are often aligned using the standard GiZ#lignment tool. The

lhttp://code. googl e. cont p/ gi za- pp/
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toolkit runs in source-to-target and target-to-sourcedaions to obtain one-to-many
and many-to-one alignments. Then the alignments of twatimes are combined with
heuristics. Finally, the equivalents are extracted ushegdtandard phrase extraction
algorithm Koehn et al., 2008

Finch and Sumita (2008&nd Rama and Gali (20Q%pply the SMT technique for
Japanese-English transliteration tadia et al. (2009first use GIZA++ to align charac-
ters and then use Moseas decoder to perform transliteration. Another wdfka¢h and
Sumita, 2010puse a joint multigram model to rescore the output of MT gyste

Reddy and Waxmonsky (20ppropose a substring-based transliteration model with
Conditional Random Fields (CRFs). In their model, the sulgs are first aligned using
GIZA++, then the CRF is trained on the aligned substring eages with the target-
side substrings as tags. The similar techniques are alsbing8hishtla et al., 2009
Aramaki and Abekawa (20Q@ropose to perform monolingual chunking using CRF and
then align the bilingual using GIZA++. This model is fast aabsy to implement and

test, but the performance is not so good.

2.1.2 Joint source-channel models

Li et al. (2009 propose a grapheme-based joint source-channel traasite model
for English-Chinese transliteration, in which the striragyp are generated synchronously.
Assuming there ar& aligned transliteration units, the probability of stringip(C, E)

is decomposed as:

PG, E))

<C1,.-.,CK,€1,..-,€K>)

<76>17"'7<7 >K)

B
P({c c,e
[T PCe el enn™) (2.1)

2htt p: // www. st at nt . or g/ noses/
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To reduce the number of free parameters, they assume thsditeeation pair only de-
pends on the preceding— 1 transliteration pairs. This is similar to theegram language

model. Then the conditional probability can be approxirdate

P({c,e)xl{e,e)i™) = P({e, ehil{c €)ipin) (2.2)

Since the transliteration equivalents are not annotaterhining corpus, they perform
Expectation-Maximization (EM) learning to infer the suirs boundaries. If EM algo-
rithm is performed without restriction, then the model wbolerfit training data, i.e.
each training string pair is memorized without any subgtafignments. To overcome
this, they restrict that the Chinese side of aligned unitinmesone Chinese character.
The joint source-channel model shows the state-of-th&aglish-Chinese translitera-
tion performance on the standard run of the ACL Named Estitverkshop Shared Task
on Transliterationl(i et al., 2009)).

Although the joint source channel models achieve promisesglts, the overfitting
problem of EM needs to be solved carefully. For some langpags, the one-character
restriction is correct in most cases. However, for othegleage pairs such as Japanese-
English, the many-to-many character mappings are commaramsliteration equiva-
lents. We show some examples in sectiofh

To overcome the overfitting problerinch and Sumita (201)aescribe a Bayesian
model for joint source-channel transliteration model. yf@mulate the equivalents
generating process as the Chinese Restaurant Process {CRR)n compact models.
(Jansche and Sproat, 2008nd (Nabende, 2009propose to align syllables based on
the weighted finite-state transducgelenko (2009 combine the Minimum Description
Length (MDL) training with discriminative modeling for tnaliteration. Varadarajan
and Rao (200pextend the hidden Markov models and weighted transducéls ew
extension for transliteration. We propose the synchroramlaptor grammar, a general
nonparametric Bayesian learning framework based on theaBiYor Process (PYP) for

transliteration, which we will describe in Chapter
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2.1.3 Other transliteration models

System combination often outperforms individual systefang et al. (200pcom-
bine the Conditional Random Field (CRF) model and joint sewchannel model for
transliteration.Finch and Sumita (20Q09ropose to transliterate left-to-right and right-
to-left, and finally combine the bi-directional translaézd results. Similar bi-directional
transliteration model is also describe Fré¢itag and Wang, 20090h et al. (200ptest

different strategies to combine the outputs of multipl@staeration engines.

External (monolingual or bilingual) data usually help oe thansliteration models.
Hong et al. (200putilize additional pronouncing dictionary and web-basath to im-
prove the baseline modeliang et al. (200Ruse manually written rules to convert be-

tween grapheme characters and phonetic symbols for tienasion.

Usually, we use the evaluation metrics on the developmenbsane model param-
eters.Pervouchine et al. (200®ropose the alignment entropy, a new evaluation metric

without the need for the gold standard reference, to guédransliteration learning.

Name origin is also an important factor for name translttera For example, the
written form “HH” is usually transliterated totanaka” due to its Japanese origin,
while it would be transliterated totian zhong” if treated as a Chinese naméi et
al. (2007 propose a semantic transliteration approach for perswaraks, in which the
name origin and gender are encoded in the probabilistic m&ienilarity, Khapra and
Bhattacharyya (20Q9mprove transliteration accuracy using word-origin @éten and

lexicon lookup.

Usually, the training set of transliterated word pairs assuaned to be available.
For some language pairs, however, there are no or smalkg@kable training datasets.
(Zhang et al., 2010and ¢hang et al., 201)lpresent three pivot strategies for ma-
chine transliteration which improve the transliterati@sults for under-resource lan-

guage pairs.
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2.2 Constituency Grammar Induction

In grammar induction, we want to learn constituency or depeoy tree structures
from plain strings (words or part-of-speech tags). The asdligrammars can be used
to construct large treebanksafn Zaanen, 2000 study language acquisitioddnes et
al., 2010, improve machine translatiomdéNero and Uszkoreit, 20},1and so on. We

describe the main approaches on constituency grammartioduie this section.

2.2.1 Distributional Clustering and Constituent-ContextModels

From the linguistic point of view, the syntactic categoriggch asiP, VP) represent
constituents that are syntactically interchangeable. eRasthis fact, early induction
approaches are based on the distributional clusteringoAfgh clustering methods show
good performance on unsupervised part-of-speech indu¢dichitze, 1995Merialdo,
1994 Clark, 2003, distributional similarities do not achieve satisfagtogsults Clark,
200Z% Klein and Manning, 200)lon unsupervised tree structure induction.

The Constituent-Context Model (CCMKIgin and Manning, 200@s the first model
achieving better performance than the trivial right-btang baseline in the unsupervised
English grammar induction task. Unlike many models thay a@al with constituent
spans, the CCM defines generative probabilistic modelsseguences and contexts for
both constituent spans and non-constitudrigt{tuen) spans.

In particular, letB be a boolean matrix with entries indicating whether the esorr
sponding span encloses constituent or distituent. Eaelctald be represented by one
and only one bracketing, but some bracketings are not gjaa:dent, since they may
miss the full sentence span or have crossing spans. Defingetheencer to be the
substring enclosed by span, and the contex be the pair of preceding and follow-

ing terminals. The CCM generates senten§en two steps: first chooses bracketing

3For example, in sequencgRB;DT,NN3", we haveo(; 5y = (DT NN), and~; 3y = (RB,©). Since
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B according to prior distributior”(B), then generates the sentence given the chosen

bracketing:
P(S,B) = P(B)P(S|B).

The prior P(B) uniformly distributes its probability mass over all podsibinary trees
of the given sentence, and zero for non-tree-equivalerdkbtangs. The conditional
probability P(S|B) is further decomposed to the product of generative proialuf

sequence and contexty for each sparii, j):
P(S|B) = [ P(0p v Biiy)
(4,5)

= || Plowun|Biij) PVl Big)-
)

(6,3
From the above decomposition, we can see that gi¥erthe CCM fills each span
independently and generates yield and context indepelydefthe Expectation Max-
imization (EM) algorithm is used to estimate the multinohparametersd. In the
E-step, a cubic-time dynamic programming algorithm (medifinside-Outside algo-
rithm (Lari and Young, 199)) is used to calculate the expected counts for each se-
guence and context for both constituents and distituentsrdmg to the currend.
In the M-Step, the model finds ne®¥ to maximize the expected completed likelihood
S5 P(B|S, 6°%) 1og P(S, B|@') by normalizing relative frequencies. The detailed deriva-
tion can be found inKlein, 20095.

Although the CCM achieves promising results in short sergenits performance
drops for longer sentences. There are two reasons: (1) CCdiélsall constituents un-
der only single multinomial distributions, which cannoptare the detailed information
of span contents; and (2) long sequences only occur a feve timiae training corpus,

so the probability estimation highly depends on smoothigalleviate these problems,

CCM works on part-of-speech (POS) tags, only POS tags arershere. The special symbelrepresents
the sentence boundary.
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Smith and Eisner (20Q4roposes to generate sequences depending on the length of t
spans.Mirroshandel and Ghassem-Sani (2pd8scribes a parent-based CCM in which
the parent spans are also modelédlland et al. (201papplies the local logistic feature
based generative mod@&érg-Kirkpatrick et al., 2010to CCM.

In short, distributional clustering and variants of CCM mabtthe distribution of sub-

strings. Next, we introduce models that define distribigiover sub-trees.

2.2.2 Tree Substitution Grammars and Data-Oriented Parsig

The Tree Substitution Grammars (TSG) are special caseseofitbe Adjoining
Grammar (TAG) Joshi and Schabes, 1996rmalisms without the adjunction opera-
tor. The TSG can somewhat be considered as an extension téxtémee Grammars
(CFG) in which the rewriting rules in TSG expand non-ternsn@a elementary trees
rather than symbol strings in CFG. The substitutions hagetine non-terminal leaves
in elementary trees. Aerivationof TSG is a consecutive application of rewriting rules
that rewrites (substitutes) the root symbol to terminalsliké CFG, the same syntax tree
may have more than one derivations in TSG, as illustratedtgurE2.1 Similar to prob-
abilistic CFG, the probabilistic TSG assigns a probabiiidtyeach rule in the grammarr,
and the probability of a derivation is the product of the @ioitities of rewriting rules in
it. The probability of a syntax tree is the sum of the proliaibs of its derivations. Since
there exist few annotated TSG corpora, TSG models are ysiefihed in the unsuper-
vised fashion and derivations are inferred from tree stmest, or more challenging from
the plain strings.

Data-Oriented Parsing (DOP) is a series of models for tréstgution grammar
inference. In the simplest version of DOP (the DOP1 desdr{Bed, 199§), tree struc-
tures are assumed to be given. Each occurrence of posshileasiin the treebank is
counted ad. The final probability of a subtreeis computed by normalizing its counts

respect to all subtrees with the same parent label. Furéssarches extend DOP1 to
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S S
VP VP
/\
NP NP VBZ NP
t t t |
NP VBZ NP NP VBZ NP
I | | | | |
Mary hates opera Mary hates opera
3
S — NP (VP (VBZ hates ) NP" ) S — (NP Mary ) (VP VBZ' (NP opera ))
NP — Mary
VBZ — hates
NP — opera

Figure 2.1: Two TSG derivations for the same tree. Arrowscat the substitution
points. The elementary trees used in these two derivatienstewn below.

unsupervised parsing and propose the U-DOP mdrtad (2006b, in which derivations
are inferred directly from plain strings rather than tremictures. The key idea of U-
DOP is to assign all (unlabeled) binary trees to trainingesgces and then extract all
subtrees from these binary trees. However, the estimatithad of DOP1 and other
models based on it is biased and inconsistent, which mebaese&timated distribution
does not in general converge on the true distribution asi#eed the training corpus
increases” Johnson, 2002 Following approaches address this problem and propose to
use the statistically consistent Maximum Likelihood Estion (MLE) to learn model
parametersiod, 2006aBod, 2007. Explicitly enumeration of all possible subtrees is
intractable, since there are exponential numbers of sedbgiven tree structure. Things
are even worse if only plain string are given. Most DOP apghnea use the method
described in Goodman, 1996Bod, 2003 to reduce the inference of tree substitution
grammar to the inference problem of context-free grammaotder to avoid the explicit

enumeration of subtrees.

The MLE tends to overfit the training data, e.g. each treefesiaed to be generated

by single big subtree fragmer8angati and Zuidema (20)Lfiropose the double-DOP in
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which only subtrees occur at least twice in training corpiesraodeled. This criterion
excludes a large amount of “big” subtree fragments whicliced computation cost and
alleviates the overfitting problem as well. Bayesian mod@sTSG provide systemic
solutions to the overfitting problem of MLEPst and Gildea, 200Zohn et al., 2009
Cohn and Blunsom, 201@ohn et al., 2010 In Bayesian models, sparse priors (usually
the nonparametric Pitman-Yor Process (PYP) priors) amgmated into the model to
enforce simple models and encourage common linguistictagi®ns. Inferences are
usually based on sampling, in which only a small fractionuidtsees are stored in cache
which avoids the exponential enumeration problem. Thesdets@achieve the state-of-
the-art grammar induction results.

Tree substitution grammars encode rich information aboeitiee structures. Com-
pared to CCM with constituents modeled, TSG is more expresbat both contiguous
and non-contiguous phrases are modeled. However, oneshong of TSG models is
the high model complexity with high computation cost, aslwaslthe implementation

difficulty for such models.

2.2.3 Adaptor grammars

Adaptor Grammars (AGs) provide a general framework for defimonparamet-
ric Bayesian models based on probabilistic CFGshfson et al., 200Fb In adaptor
grammars, additional stochastic processes (named adppterintroduced to allow the
expansion of an adapted symbol to depend on the expansiomhis

In practice, adaptor grammars based on the Pitman-Yor gso&&yP) Pitman and
Yor, 1997 are often used in inference. The nonparametric priorshieteixpansion of
nonterminals depend on the number of subtrees stored ire chaing sampling. With
suitable choose of parameters, the PYP demonstrates afindroget richer” dynam-
ics, I.e. previous sampled values would be more likely sachplgain in following sam-

pling procedures. This dynamic is suitable for many mackeaening tasks since they
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prefer sparse solutions to avoid the over-fitting problermc& many existing models
could be viewed as special kinds of probabilistic CFG, anlagtammars give general
Bayesian extension to them.

One limitation of adaptor grammars is that the nontermimaladaptor grammars
cannot be recursively defined (i.BP cannot be expended to anothirin one or more
induction steps), which restricts the usability of adag@mmars for inducing natural
recursive tree structures. Even so, adaptor grammars femrevidely used in various
NLP tasks such as topic modelingofinson, 2010 perspective modelingHardisty et
al., 2010, morphology analysis and word segmentatidohijnson, 20G8Johnson and
Goldwater, 2009Johnson and Demuth, 20)1@nd native language identificatiow¢ng

et al., 2012. We will revisit the adaptor grammar and propose exterssioiChaptes.

2.2.4 Other Models

Seginer (200ydescribes a novel structure named the Common Cover Lin€s)C
and an unsupervised incremental learning algorithm todadtonstituency trees from
plain text. Compared to dependency structure, the CCL parser is imtr&hand ex-
tremely fast for both learning and parsing. However, CCLnsalel based on heuristics
instead of probabilistic algorithm, which makes it hard xteed.

Ponvert et al. (20)Ifocus on the simpler unsupervised chunking task and pexpos
a cascaded finite-state motleThey use Hidden Markov Model (HMM) and a general-
ization named Probabilistic Right Linear Grammar (PRLGn{th and Johnson, 20p7
to label words with{B, I, 0, S} tags (standing foBeginningword, Insideword, Outside
word, andSingleword of chunks). After determining the phrase boundartesy thoose
the most frequent word in each phrase to represent that chepdat the induction steps,

and finally obtain the hierarchical structures.

“ht t p: / / www. seggu. net/ ccl /
Shttp://elias.ponvert.net/upparse
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2.3 Dependency Grammar Induction

Lexical information is useful for supervised constituepeyser Collins, 1997 Char-
niak, 2000, which may also show benefits in unsupervised grammar ti@uc The
lexical dependencies, such as the head-argument funatiadification relation and co-
ordination structures, are directly modeled in dependgnagnmars. In this section, we

review the popular unsupervised dependency grammar ilcuciodels.

2.3.1 Dependency Model with Valence

Klein and Manning (200¢propose a simple head-outward dependency model, named
Dependency Model with Valence (DMV), where the valence isleted using a special
STOP token. The generative process begins aRtaT of the dependency tree. Each head
generates its dependents on left side and right side indepéy. On each side, words
are generated in sequence, and final§T@P is generated. The above generative step re-
peats until the whole sentence is covered. Specificallynvgemerating a word, the deci-
sion whether to terminate (gener&te0P) is made according t&srop(STOP |, dir, adj),
whererh is the head word{ir is the direction (left or right), anddj is a binary variable
indicating whether or not an argument on current side haadyr been generated. If we
decide to generat&T0OP, then no more symbols are generated on that side. Otherwise,
the dependent is chosen according t&cunose(alh, dir), which is independent of the
variableadj. Expectation-Maximization (EM) algorithm is used to esatenthe model
parameters. With a smart initialization (the ad-hoc “hammbcompletion), the DMV
outperforms the trivial right-branching baselindgin and Manning, 2004

Following models based on DMV mainly improve the estimapooceduresSmith
and Eisner (2005propose the contrastive estimation for DMV, in which thelmabilities
of observed sentences are estimated, conditioned on tieallisconstructed neighbor-

hoods (as implicit negative evidences). They also destwbeannealing techniques for
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better initialization §mith and Eisner, 2006 Headden 1l et al. (2009introduce lex-
ical information into DMV and show how it can be leveraged smaoothing. Cohen
and Smith (200Ppropose a Bayesian model for DMV with shared logistic ndrpmir
distributions. Spitkovsky et al. (2010aand Spitkovsky et al. (2010bcompare the per-
formance of the traditional full EM and the Viterbi EM, anddithat the Viterbi EM
with good smoothing values can achieve better performamae full EM. Naseem et
al. (2010 uses manually-specified linguistic-motivated rules ipeleency grammar in-
duction. Variational Bayesian method is used to estimatg#drameters.

The constituency grammars and dependency grammars cajitfierent aspects of
language.Klein and Manning (200¢propose a combined model of CCM and DMV,
which outperforms each component in most experiment gattiBlunsom and Cohn
(2010 and Cohn et al. (2010describe methods to represent dependency grammar in
the tree substitution grammar formalism and use Bayesida iR8uction to perform

dependency grammar induction.

2.3.2 Combinatory Categorial Grammars

As described in Sectioh.5, the Combinatory Categorial Grammar (CCG) encodes
dependency relations and functor arity into the syntacitegories. CCG formalisms
provide a more syntax-meaningful representation, esiheéoa long-range dependen-
cies Steedman, 20090

The first type of CCG induction system is the fully unsupesdisnodels, in which no
linguistic heuristics are assume@sborne and Briscoe (19P@ropose an unsupervised
learning model for CCG induction. They consider part-ofegh tags as atomic cat-
egories, and construct more complex categories usingesdashhe first step of their
method is to create a labeled binary tree for each part-eédp tag sequences in a
greedy, bottom-up, incremental manner. The label of eagérinode is the label of ei-

ther the left or right sub-node. To avoid overfitting, theplhe Minimum Description
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Length (MDL) principle to learn compact grammars with miminfength of hypothesis
and minimal length of data encoded in the hypothesis. In¢lcersd step, the categories
and grammar rules are read off the built trees with frequernynts for further usage.
They do not consider the coordination structure or puncinatin their model. Experi-
mental results of their proposed model are not as great ggight be, although they
outperform the EM baselind2onvert (200Y presents a genetic algorithm to learn CCG

categories and grammars. However, their experiments dshoet promising results.

Since it is difficult to infer syntactic categories from piastrings, many researches
introduce manually written rules to guide the inductionqa@uresWatkinson and Man-
andhar (199pdescribe an unsupervised approach to learn CCG lexicansedinning,
the learner is provided with a set of manually defined CCCclaxs. In each step, the
parser with current lexicon and rules is used to parse trgisentences. Therbest
parses are selected and used to modify lexicons. Expersmargmall datasets show the
effectiveness of their methodBBoonkwan and Steedman (2Q1dreate a framework to
describe language characteristics usifigjuestions, such as the order of subject, verb,
direct object and indirect object, etc. For each langudgey encode the answers to
those questions into CCG categories and use them to prurghsgzaces. Their meth-

ods achieve the state-of-the-art results on differentdaggs.

Another successful approach that achieves good resuhsutispecifying too much
linguistic knowledge is the model proposed Bigk and Hockenmaier, 2012bin their
grammar, there are only two atomic categories alloweghouns or noun phrases) and
S (sentences), together with a special conjunction categaty. The first stage is the
lexicon and grammar generation stage. They specify atoatégories to part-of-speech
tags initially, and use an iterative algorithm to create encomplex lexical categories.
Then, the training sentences are parsed using the creaiedrie and CCG rules. The
basic probabilistic model described iRldckenmaier and Steedman, 2002 used in

their experiments. They compare various EM settings (fM|, Kiterbi EM, andk-best
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EM) and find that thé:-best EM could achieve best performance. They report the-sta
of-the-art results for unsupervised dependency gramnarciion. In Sectiorb.1, we
give a detailed description of their lexicon and grammaregation method. We propose
to use boundary words and Bayesian learning to improve thedels, which will be

presented in Chaptéx

2.4 Summary

In this chapter, we have reviewed some existing approachélree unsupervised
structure induction tasks: the transliteration equiveédiearning, the constituency gram-
mar induction and the dependency grammar induction. Fdrahnsliteration task, we ex-
plore the joint source channel model and propose the nomedria Bayesian extension
based on synchronous adaptor grammars in Ch8ptewr the constituency grammar in-
duction, we focus on the simple CCM and present the featased CCM in Chaptet.
For the dependency grammar induction, we propose to usedaopiword and Bayesian

learning for the CCG induction in Chapter
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Chapter 3

Synchronous Adaptor Grammars for

Transliteration

We focus on the joint source-channel model €t al., 2004 for transliteration in
this chapter, since it is one of the state-of-the-art mofielEnglish-Chinese translitera-

tion (Li et al., 2009

As mentioned in previous chapters, this model aims to maarnthe likelihood of
training data by the Expectation-Maximization (EM) algbm. However, the EM al-
gorithm may overfit the training data by memorizing the whoéning instances. As a
result, only single Chinese character is allowed in theakyd mappings in their English-
Chinese transliteration experiments. However, the siogbgacter restriction is not al-

ways true for other language pairs.

In this chapter, we propose Synchronous Adaptor GrammagjSAnovel nonpara-
metric Bayesian learning approach based on the Pitman+dmeps Pitman and Yor,
1997, for machine transliteration. This model provides a gahieamework to automat-
ically learn syllable equivalents without heuristics ostrections. The proposed model

outperforms the EM-based model in the transliterationgaskour language pairs.



30
3.1 Background

3.1.1 Synchronous Context-Free Grammar

Synchronous Context-Free Grammar (SCFG) generalizegxieinee grammar to
generate strings concurrently in two languadesa(s Il and Stearns, 19¢8Formally, a
probabilistic SCFG is atuplé = (N, T;, T;, R, S, ©), where\ is a set of nonterminal
symbols,7,; and7; are terminal symbols in the source side and target sidectgply, R
is a set of synchronous rewrite rul€se N is the start symbol, an@ is the distribution
of rule probabilities. The rules in SCFGs are in the farms (5 / v / a), whereA € N
is the parent nonterminall € (N U 7;)* andy € (N U T;)* are strings of terminals
and nonterminals in the source and target languages resggcanda is the one-to-
one alignment between nonterminalsdrand~. Since we only discuss transliteration
in this chapter, the nonterminals are always linked onerte{from left to right without
reordering, so we can omit the alignment and just write the asA — (3 / v). For
each nonterminal € N, we denoteR, as the set of rules with as parent. The rule
probabilities for each rule € R, must satisfy:zrem 0, =1.

To generate a string pair consisting of only terminals, wgibwith the start symbol
S, then repeat applying rules to expand nonterminals on khd#ssuntil the terminal
string pair is generated. The whole generating processnedaderivation The gener-
ating process forms a synchronous tree, in which leaf noolessponds to the terminal
string pair, and internal nodes corresponds to nontermisedl in the derivation. The
probability of a synchronous tree is the product of the pbdiiges of rules used in the
derivation. Let7 be a synchronous tree set, aficbe the number of times that rutas
observed i, then the probability of is

P(T|©) = [ Multi(T164) = [T ] 6/ (3.1)
AEN AEN rERy

whereMulti(76,) is the multinomial distribution for nonterminal
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The above probability model defines the probability of synalous tree as the prod-
uct of multinomial distributions witt® as parameters. In Bayesian learning, we could
treat® as random variables rather than parameters and define @tiobdtions on them.
The conjugate prior of multinomial distribution is the [Rinlet distribution

1
Dir(0 = g ar—t 3.2
ll"( A|aA) Beta(aA) T!;[A r ) ( )

where the concentration parametarsontrol the shape of the Dirichlet distribution, and
Beta is the multinomial Beta distribution defined as
I'(aq)...I(ak)
K
(> ax)

inwhichT'(z) = [~ u"~'e~" du is the generalized factorial functiénin this Bayesian

Beta(a) = (3.3)

model, the posterior distribution dhis

P(O|T, ) o [[ P(T104)P(Oulus) o [ T 64+ (3.4)

AN AEN rERY
which is the product of unnormalized Dirichlet distribut®with paramete(f,.(7) +

a4). Thus we can write the posterior probability as product afdbiet distributions

P(OIT,a) = [ | Dir(0ul £o(T) + cua) (3.5)
AeN

The described SCFG models are parametric models since é€dobno has a fixed
number of rules, each of which has a numerical parametecia$sd with it. For mono-
lingual probabilistic context-free grammar (PCFG), thare two ways to construct non-
parametric models: (1) Let the number of nonterminals grolowndedly, as the infinite
CFG models described ifrinkel et al., 2007Liang et al., 200, (2) Permit the number
of rules to grow unboundedly, leading to adaptor grammagseuted inJohnson et al.,
20070H. We follow the second one and extend it to synchronous ad@pammar to

model machine transliteration (see Sectiod).

IFor positive integerd;(n) = (n — 1)!
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3.1.2 Pitman-Yor Process

In probability theory, thd?itman-Yor Process (PYRJ a stochastic process that gen-
erates partitions of integer®ifman and Yor, 1997 The Pitman-Yor process is often
denoted a®YP(a,b,Gy), wherea € [0, 1] is a discount parametér.> 0 is a concentra-
tion parameter, and, is the base distribution (or thgenerator see follows).

The PYP is an extension of the Chinese Restaurant Proce$y (8d&it is intuitive to
describe the process using the restaurant metaphor. Asguhare are infinite number
of round tables in the restaurant, each of which accommedatenfinite number of
customers. Customers enter the restaurant sequentiallgheose tables to sit around.
Let z; be the table number which th® customer chose. The first customer enters the
restaurant and picks the first table, ig. = 1. At a specific time, assuming there are
alreadym tables which have been assigned with. .., n,, customers sitting around
respectively, and the total number of customers in the uestaisn (i.e.n = >, ny),
then the(n + 1) customer may choose an assigned tabke {1,...,m} or choose a

new table with numbefm + 1) from the conditional distribution

ne—aif o=k
n+b? n+1

P(znitlz1, - zm) =4 " (3.6)
%@b, if z,p1=m+1

The joint probability of Pitman-Yor process for table inekcis
I (atk = D) + D) [T7E (G — a)
[T (i +b) |

It is easy to verify that any permutation of, ..., z, has the same probability in the

PYP(z|a,b) (3.7)

Pitman-Yor process, so the Pitman-Yor procesxishangeableThis property results in
efficient sampling procedure (see Secti.?).

The above stochastic process generates sequences of tatelgendices. If there is
a valuez;, (drawn from the base distributiaf,) placed on the!" table and customers
yell out the value on the table which they choose, then we btaima value sequengge

drawn from the Pitman-Yor process, wigh= z,. (fori =1,...,n).
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In the first branch4,,, = k) in Equation 8.6), we can see that the table with more
customers already sitting around (with big) will be more likely be chosen again (with
higherP(z,.1 = k|21, ..., 2,)). This demonstrates a kind of “rich get richer” dynamics,
i.e. previous sampled values would be more likely sampledhag following sampling
procedures. This dynamic is suitable for many machine iegrasks since they prefer
sparse solutions to avoid the over-fitting problem.

Two special cases of Pitman-Yor process are interestingt 1= 1, every customer
would sit around a new table, so the values in sequgrexe drawn independently from
Go; (2) if a = 0, the Pitman-Yor process degenerates to the Dirichlet ggog8tman,
1995 Teh et al., 200pwith b as the concentration parameter. In this point of view, the
Pitman-Yor process is an interpolation between the Dietptocess and the base distri-
bution. The discount parameterprovides more flexibility to control the tail behavior
than the Dirichlet process. This makes the Pitman-Yor meceseful for modeling data

with power-law tails, e.g. word frequencies in natural laage.

3.2 Synchronous Adaptor Grammars

3.2.1 Model

We extend the monolingual adaptor grammars to bilinguatsasd propose the
Synchronous Adaptor Grammabssed on the Pitman-Yor process to learn bilingual
tree structures. A Pitman-Yor Synchronous Adaptor GramiRESAG) is a tupleg =
(Gs, N, a,b), whereG, = (N, T,,T;,R,S, ©, a) is a Synchronous Context-Free Gram-
mar (SCFG) Iewis Il and Stearns, 1968\ is a set of nonterminal symbol$, / 7;
are source/target terminal symbdisjs a set of synchronous rewrite rul€sg N is the
start symbol® is the distribution of rule probabilitiesy, C N is the set of adapted
nonterminalsa € [0,1],b > 0 are vectors of discount and concentration parameters

both indexed by adapted nonterminals, andre Dirichlet prior parameters.
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Algorithm 1 Generative Process of PYSAG

1
2

w

10

11:
12:
13:

14:

15

16:

17:

18:
19:
20:
21:
22:
23:
24:
25:

26:

. draw@, ~ Dir(«,) forallA € N

. for each yield paifs / t) do
SAMPLE(S)

return

. function SAMPLE(A)
if A € NV, then

return SAMPLESAG(A)
else

return SAMPLESCFG@Q)

: function SAMPLESCFG@Q)

draw synchronous rule= (5 / ~v) ~ Multi(6,)

for all nonterminaB € (5 U~) do
synchronous treg,, <—SAMPLE(B)

return BUILD TREE(r, tg,, tg,, - - .)

. function SAMPLESAG(A)
draw cache index, .| ~ P(z|z;<,), where

{”;L‘f:l;b, if 2,01 =m-+1

P(z|zicn) =

e fzp=ke{l,- m}
if z,,1 =m+ 1then
synchronous tree< SAMPLESCFGQ)
m<+m+1
Ny = 1
INSERTTOCACHE(Cy, t).
else
synchronous tree<— FINDINCACHE(C,, 2z, 11)

return ¢

> Sample from root

>ForA e N/

> ForA ¢ N,

> ForA € N,

> New entry

> Update counts
> Update counts

> Old entry

The generative process of a synchronous tree7set described in Algorithml.

First, rule probabilities are sampled for each nontermina A (line 1) according to

the Dirichlet distribution. Then synchronous trees areegated in the top-down fash-

ion from the start symbdb (line 3) for each yield pair. For nonterminals that are not

adapted, the grammar expands it just as the original synoasggrammar (function
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SAMPLESCFG, linel0-14). For each adapted nontermima& N, the grammar main-
tains a cach€, to store previously generated subtrees undetet z; be the subtree
index inC,, denoting the synchronous subtree generated at’trexpansion ofa. At
some particular time, assumimgsubtrees rooted dt have been generated with dif-
ferent types in the cache af each of which has been generatedgr. .., n,, times
respectively. Then the grammar either generates the- 1)"* synchronous subtree as
SCFG (linel9) or chooses an existing subtree from the cache @ifle according to
the conditional probability”(z|z;~,,) defined in Equation3.6). The process is shown in
function SAMPLESAG, line15-26.

The base distribution of the PYSAG is the Bayesian synchusmmontext-free gram-
mar (described in SectioB1.]). Since the rule probabilitie® in the Bayesian SCFG
are used as hidden variables (sampled from hyperparanaeterd used to evaluate syn-
chronous tree probabilities), we could integrate rule phlities ® and directly obtain

the joint probability of a particular sequence of synchustrees:

P(Tlov,a,b) = J] 2ol "‘“f“ ] PYPG(Dlanb)  (38)

AEN Beta(a,) AEN,

where f, is the vector containing the number of times that rules R, are used in the
synchronous tree set, parametegris the vector of Dirichlet hyperparameters for non-
terminal A, parameters, andb, are vectors of discount and concentration parameters
of the Pitman-Yor process, and7 ) are the indices of synchronous subtrees collected

under adapted nonterminals.

The SAGs are synchronous extension of (monolingual) adgpsommars Johnson
et al., 2007l Differing from monolingual counterpart, the grammars &rees are both

in the synchronous form in our model.

2Obviously,n = 3", ng.
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3.2.2 Inference

For the synchronous adaptor grammars based on the nongecaRienan-Yor pro-
cess for machine transliteration, only raw name pairs arengiand we have to infer the
hidden structure (synchronous trees) and estimate motshaders. As the caching na-
ture of Pitman-Yor process, synchronous trees of diffestririg pairs become depending
on each other, so the joint probability of synchronous tegecan not be simply decom-
posed into the product of individual synchronous tree podliges. Mathematically,
given the set of string pairg = (s / t), the posterior distribution off is

___PwImPT)
T S WP &)

in which P(y|7) = 1if yield(T) = vy, and0 otherwise, and’(7) is the joint prob-

ability defined in Equation3.8). Since synchronous trees of different string pairs are
dependent on each other in PYSAGs, we have to enumeratesailop® combinations
to calculate the normalization constant in Equati8r®), which is intractable. Fortu-
nately, we are able to evaluate the (unnormalized) proityabil a particular collection

of synchronous trees, so we could estimate parameters Bftthan-Yor processes using
sampling techniques.

There is no obvious sampling method known to draw samples Equation 8.8),
so we extend the component-wise Metropolis-Hastings dhlgorJohnson et al., 200Jb
to the synchronous case. LEt; be the set of sampled trees except#fieone. As the
Pitman-Yor process is exchangeable, we can always treédtteample as the final sam-
ple after sampling_;. In the Metropolis-Hastings sampling algorithm for PYSAG
draw the synchronous tregfrom some proposal distributio(¢;|y;, 7_;), then accept

the new samplé with probability
/ : P(T'ly, a,a,b) Q(t:|yi, T-i) }
A(t;,t;) = min< 1, p
et = min {1 T

= 1 3.10
mm{ " P(tilys, T o, @, b) Q¢ |ys, T-:) (3.10)
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where7’ = {t;} UT_; andT = {t;} U T_; represents the whole synchronous tree set
including the new sample and old sample respectively. Thefavietropolis-Hastings
algorithm is that the acceptance probability is a ratio alyabilities, so the evaluation
difficulty of normalization becomes a common factor betwtenprobabilities of both
old samples and new samples, which can be cancelled.

In theory, the proposal distributioff could be any distribution if it never assigns
zero probability. In practice, the proposal distributi@rshould be close enough to the
true distributionP to avoid high rejection rate. In monolingual adaptor gramsniohn-
son et al. (2007puse the PCFG Approximation as the proposal distributiahraport
very small rejecting rate. However, this proposal modiflres$CFG grammars in each
sampling step, so the parse forest has to be reconstruatbdigee. This parsing step
is time-consuming, especially in the synchronous sitmdtidherefore, we do not im-
plement the PCFG approximation method for synchronoustadgpammar due to ef-
ficiency reason. Instead, we choose the probabilistic SCtBeaproposal distribution
(similar to the PCFGJohnson et al., 200))a During inference, we collect statistics of
rules as well as the subtrees rooted at adapted nontermiadsinstance is considered
at a time. To draw a tree from yield pair = (s; / t;), we exclude the counts of its rule
usage and then estimate the probability of nule R, in @ by relative frequency

[fr]fi + (078
Zr’eRA [fr’]—i + Qe

whereR, is the set of rules rooted at and|f,|_; is the number of times that ruleis

6, = (3.11)

used in the tree sét ;. We pre-parse the training instances before inference avel s
the structure of synchronous parse forests. During theents, we only change rule
probabilities in parse forests without changing the foséistctures. We use the sampling
algorithm described inBlunsom and Osborne, 20P® draw a synchronous tree from

the parse forest according to the propagal

3wWe implement the synchronous CKY-like parsing algoritivitu( 1997, with O(|s|? |¢|*) complexity.
4There is a typo in our original papdfgang et al., 201)l which is fixed here.
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3.3 Machine Transliteration

3.3.1 Grammars

To verify the usefulness of the proposed synchronous adgmmmars, we conduct
experiments on the machine transliteration task. We detraieshow machine translit-
eration could be modeled as the synchronous adaptor grasnmidis section.

For machine transliteration, we use an adapted nonterrgjniato capture the syl-
lable equivalents between two languages. There may bepteutiharacters on both the
source and target sides in a syllable. One possible way t@htloel many-to-many syl-
lable mappings is to enumerate all possible subsequentcegaihe source and target
sides. However, assuming the source namgdjaharacters and the target name [tas
characters, the number of rules [ags|? |t|>) complexity, which is large especially for
long name pairs.

To reduce the grammar size, we use an alternative représenta which we re-
strict the leftmost characters on both sides to be alignedlgnrone and introduce a
special empty character to link unaligned characters. For instance, we do not di-
rectly allowSyl — (a a 1 1/l /R) or 8yl — (x / 5 #f). Instead, we link
the bilingual characters (including empty ones) in seqadnam left to right, such as
Syl % (aal1l/F /R ¢ e)andSyl = (x ¢/ 5 7). In addition, we use nonter-
minal NEC to represent single character pair without any empty charge.g.(a / fi[)),
nonterminalSEC represents single character pair of empty source and n@tydarget
(e.g. (e / 7)), and nonterminalEC represents single character pair of non-empty source
and empty target (e.d1 / ¢)). We also use three nontermin8ECs, SECs andTECs to
represent corresponding pairs of one or more charactgrsNECs — (a a / i /R),
SECs — (¢ / ), andTECs = (1 1 /¢ ¢). Although the above design introduces some
useless character pairs, our goal is to learn the syllahlevggnts which are captured

by the adaptosyl, so we are not interested in the subtree structure insideéys.
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In detail, we design following gramntato learn syllable mappings:
Name — (Syl /Syl)™"
Syl — (NECs / NECs) (3.12)
% — (NECs SECs / NECs SECs) (3.13)
Syl — (NECs TECs / NECs TECs) (3.14)

{
{
{
{
NECs — (NEC / NEC)™
SECs — (SEC / SEC)™"
TECs — (TEC / TEC)™"
NEC — (s; / t;)
SEC — (e / t;)
{

TEC — (s; / €)

where the start symbaikme represents the transliteration name pair, the adapte@nont
minal Syl may be expanded to the pair of syllables with the same lengl&3.12), with
less source length (ru213), or with less target length (rul&14), ands; andt; enumer-
ate over the source and target character set respectivedyieidt this grammar as the
syllable grammarFigure3.1shows an example for the English-Chinese transliteration.
The above syllable grammar is able to learn inner-syllablgetidencies. However,
the selection of the target characters also depend on thextorfror example, the fol-
lowing three instances are found in the training set:
(aabye/Hlaol tbil)
(aagaard/Hlai] t5[gel TE[del)
(aalto/Fl[a]l /Rler] ¥Eltuol)

where the same English syllable a) are transliterated t¢%[ao]), (¥2[ail) and

SSimilar to Johnson, 2008 the adapted nonterminal are underlined. Similarly, ve® aise rules in
the regular expression style— (A / A)* to denote the following three rules:
X — (As / As)
As — (A /A)
As — (A As /A As)
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Name

Syls

ﬁ\sm
|
Syl Syl

/\/\
NECs TECs NECs SECs

NEC TEC NEC SEC
| | | |
n/% ale x/ 5, e/Hr

Figure 3.1: A parse tree of syllable grammar Ear-Ch transliteration.

(frfa1) respectively, depending on the following syllables. To eldtiese contextual
dependencies, we propose the hierarchical synchronopsoaidgammar. The two-layer

word grammauis obtained by adding following rules:

Name — (Word / Word)™
Word — (Syl / Sy1)*
where a new adapted nontermiidaked is introduced to capture the inter-syllable depen-
dencies. Figur8.2shows an example for the English-Japanese transliterativere the
syllable combinations between English transcript anddegp@aKatakana are captured by
the adapted nontermingbrd (e.9.(s e n/ £ 2)).
Following (Johnson, 2008 we might further add a new adapted nontermgual to

learn the word collocations. The following rules appeathiadollocation grammar

Name — (Col / Col)™

Col — (Word / Word)™

Word — (Syl /Syl)*
Figure 3.3 shows a synchronous tree example of the collocation gramwieare the

whole name is captured by the adapted nonterndoal
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Syls
Syl
NECs
NECs

NEC
|
a/—

NEC
|
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Name
Words
Words
I
Word
I
Syls
|
Syl Syl
/\ I
NECs TECs NECs
I I I
NEC TEC NEC
I I I
s/t e/e n/ >

Figure 3.2: A parse tree of word grammar far-Ja transliteration.

syl

/\
TECs NECs TECs

TEC NEC TEC

I I I I
u/e j/x i/e

Name
Cols
I
Col
I
Words
Words
I
Word
I
Syls
syl
TECs
TECs Syls
|
TECs Syl
/\
NECs TECs NECs TECs
NEC TEC TEC TEC TEC NEC TEC
I I I I I I I
y/ & o/e s/e h/e i/e da/H a/e

Figure 3.3: A parse tree of collocation grammar farJk transliteration.
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3.3.2 Transliteration Model

We use the n-gram translation model ét al., 2009 as the transliteration model in
our experiments. Denote the bilingual painas (s / t), and it could be split into bilin-
gual syllable sequencés,...,yx) = ({(s1 / t1),...,(sk / tx)). This transliteration

model factorizes the probability d?(y) into n-gram probabilities

K K
P(y) = P(yy) = [[ Pyt ™) ~ T Plurlyi=ns)- (3.15)
k=1 k=1

After the inference step for synchronous adaptor gramnmsordeed in Sectio.2.2
we construct joint segmentation lattice for each trainingtance. We first generate a
merged grammat’ using collected subtrees under adapted nonterminals ueegyn-
chronous parsing to obtain probabilities in the segmeattice. Specifically, we
flattenthe collected subtrees undgyl, i.e. removing internal nodes, to construct new
synchronous rules. For example, we could get two rules fitaniree in Figurs. L

Syl — (m a/ %)
If multiple subtrees are flattened to the same synchrondeswe sum up the counts of
these subtrees. For rules with non-adapted nonterminah@n{) we assign the prob-
ability as the same of the sampled rule probability, i.e.flet= 6,. For the adapted
nonterminalSyl, there are two kinds of rules: (1) the rules in the originallyabilistic

SCFG, and (2) the rules flattened from subtrees. We assiguléhgrobability as

math . g, if ris original SCFG rule
0, = (3.16)

T
e if r is flatten from subtree

wherea andb are the parameters associated WifiL, m is the number of types of
different rules flatten from subtrees, is the count of rule-, andn is the total num-
ber of flatten rules. One may verify that the rule probalesitare well normalized.

Based on this merged gramm@f, we parse the training string pairs, then encode the
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parsed forest into the lattice. FiguB4 show a lattice example for the string pair
(aalto/Flla] /Rler] Fltuol). The transition probabilities in the lattice are
the inside probabilities of correspondiggl node in the parse forest. After building the

segmentation lattice, we train language model for bilingyHables from the lattice.

aalto/ P /R¥E

Figure 3.4: An example of decoding lattice for SAG.

In transliteration step, given the source stringnd grammag;, we want to find a

translatiort that maximizes the conditional probability:

t = arg max P(t|s,G)
¢
P(s,t|G)

= arg max ————

¢ Ps[9)
= arg max P(s,t|G)
t

= d,G)P(d 3.17
argtmax;ﬂsaﬂ ,G)P(d|9) (3.17)

whereP(d|G) is the probability of derivatiod under grammag, andj(s, t|d,G) = 1 if
the yield pair ofd is (s, t) andd(s, t|d, G) = 0 otherwise. However, there are exponential
number of derivations, so the above optirtrahslation decodings often approximated

by the optimalerivation decodingi.e. we find the derivatiod in

~

d = arg max P(d|G) (3.18)
d
s.t. yield(d) = (s, —)

We use the Viterbi algorithm with beam searthét al., 2004 to find the best derivation

d instead of summing up (exponential number of) derivations.
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3.4 Experiments

3.4.1 Data and Settings

We conduct experiments on the following four language gans the ACL Named

Entities Workshop (NEWS 2009) datasets

En-Ch
En-Ja
En-Ko

Jn-Jk

In the data preparation step, we remove spaces and the@posgymbol () within
names. For example, the Japanese n&aeichi” would be converted toKanichi”.
These removals confuse syllable boundaries and may hysetfi@mance. Note that this

preprocessing step is the same for both the baseline modgraposed model, so they

: English name to Chinese name;

: English name to Japanese Katakana;

: English name to Korean Hangul;

: Japanese name (written in English) to Japanese Kaniji.

| Lang | Data | #Entry | #Src Char| #Tgt Char| #Tgt Voc |

Train | 31961 218073 101205

En-Ch | Dev 2896 19755 9160 374
Test 2896 19864 9246
Train | 27993 188941 131275

En-Ja | Dev 1818 12105 8358 81
Test 1788 11961 8293
Train| 4840 32150 15128

En-Ko | Dev 998 6656 3134 713
Test 993 6606 3121
Train | 16352 105916 34231

Jn-Jk | Dev 3539 23248 7462 1600
Test 3868 25668 8020

Table 3.1: Transliteration data statistics.

http: //ww. acl - i j cnl p- 2009. or g/ wor kshops/ NEWS2009/
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are used in experiments for simplicity. TalBld gives some statistics of the datasets. For
En-Ch, there is only one Chinese reference per English nasmiée for other language
pairs, there may be multiple references for the same Engéste.

We implement the joint source-channel modeldt al., 2004 as the baseline system,
in which the orthographic syllable alignment is automdlyaderived by the Expectation-
Maximization (EM) algorithm. Since EM tends to memorize thening instance as a
whole,Li et al. (2009 restrict the target side to be single character in syllagl@évalents
for English-Chinese experiments. We follow their work amglg the single-character
restriction to other language pairs.

Our method can be viewed as the Bayesian extension of the &debbaseline.
Since PYSAGs could learn accurate and compact translderanits, we do not need
the single-character restriction any more. In the infeeestep of PYSAGS, we first run
the sampler through the whole training corpus foriterations (burn-in), then collect
adapted subtree statistics for eveéfyiterations, and finally stop aft@o collections.

In general, we have no idea which values should be assigribeé toyperparameters
a andb. Following Johnson and Goldwater, 200%e put aBeta(«, 3) prior ona and
a “vague”Gamma(10,0.1) prior onb to model the uncertainty of hyperparameters. We
tune« andg from {0.3, 1, 3}, and choose the parameters with highest word accuracy on
the development set. After each iteration, we resample eldoyperparameters from the
posterior distribution of hyperparameters using a sliecegar (Neal, 2003. We modify
the open-source implementation of slice sampler provigeslark Johnsoh

For both the baseline model and our proposed models, we theilsegmentation lat-
tice after training. Then we traindorder language model with the Witten-Bell smooth-
ing (Witten and Bell, 199)from the lattice using the SRI language model todlkitfter
that, the Viterbi algorithm with beam seardh ét al., 2009 is used in decoding for both

the EM-based model and the proposed Bayesian models.

"http://web. sci ence. ny. edu. au/ ~nj ohnson/ Sof t war e. ht m
8htt p: // www. speech. sri.com projects/srilmn


http://web.science.mq.edu.au/~mjohnson/Software.htm
http://www.speech.sri.com/projects/srilm/
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3.4.2 Evaluation Metrics

For evaluation, we report the standard evaluation mete@sed in (i et al., 20093,
and report thevord accuracyandmean F-scorenetrics. Following notations used ihi(
et al., 20098 we denote:

N as the total number of names (source words) in the test set;

n; as the number of reference transliterationsifoname;

r; ; as thej™ reference transliteration for th& name;

c;x as thek' candidate transliteration output by transliteration egsfor i name.

Then the word accuracy and mean F-score metrics can be derfedows:

e Word Accuracy in Top-1 (Acc)
The word accuracy is also known as the word error rate, it aoreaghe correctness
of the first transliteration candidate in the candidate pisiduced by a translit-
eration system. If the first transliteration candidate meascat least one of the
references, the result is considered correct. Otherwiigbeifirst transliteration
candidate matches none of the references, the tranghiernatmeasured as the
wrong one. The overall word accuracy is defined as the cowent percentage

over the whole test set:

Ace = %i b T g = (3.19)
—1 |0 otherwise
e Fuzziness in Top-1 (Mean F-scoré+)

The mean F-score measures how different the top transidereandidate is from
its closest reference. First, the Edit Distang&X) and the Longest Common Sub-
sequence [(C'S) between the candidate word and each reference are caldulat
using dynamic programming. The edit distance measures thienoom number

of single-character editing operations, including insext and deletions (no re-

placements in calculation). For example, the edit distédmet@een 4bcdef” and
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“afcdg” is 5, including deletions ob, e, £ from the first string, and insertions of
f, g into the second string. The longest common subsequencdimedeas the
longest subsequence (not substring) common in the two segaeFor example,
the longest common subsequence betweerdef” and “afcdg” is “acd”. Then
for each name in the test set, we define the best matchingneieas the reference
with the minimal edit distance from the candidate:

rim = arg min ED(c; 1,7 ) (3.20)

j

Finally, the best matching reference is used to calculdtedPrecision P), the

Recall (®) and their harmonic mear¥() for the:*" word:

. LCS(CZ‘J, Tz’,m)

P (3.21)
|cial
L -
R _ CS(Cz,lv Tz,m) (322)
‘Ti,m‘
2PR
= 3.23
""" P+R (3.23)

The overall mean F-score is the average F-score over theevist set.

The above two metrics are both defined over the taandidates. One may argue
that multiple grapheme may have the same pronunciatiomaumsliteration. Actually,
Li et al. (20092 also define other metrics to evaluate other transliteratede in the
candidate list, such as thd A P,,. However, according to some national standards (e.g.
The Chinese Phonetic Alphabet Spelling Rules for Chinesael} there are usually
only one grapheme representation is considered correca rAsult, we only adopt the
above two metrics to evaluate tapgzandidates. The evaluation script can be downloaded

from the website of the NEWS 2089

Shttp://ww. nj gb. gov. cn/ qwdt / ggl / 201209/ W020120911597707484864. pdf
Ohttps://translit.i2r.a-star.edu. sg/ news2009/ eval uati on/


http://www.njqb.gov.cn/qwdt/ggl/201209/W020120911597707484864.pdf
https://translit.i2r.a-star.edu.sg/news2009/evaluation/
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3.4.3 Results
| Language] Model | Dev(%) | Test(%) |
(Lietal.,, 20094 | 66.8/87.1| 66.8/86.7
En-Ch Syl 66.6/87.0| 66.6/ 86.6
Word 67.1/87.2| 67.0/86.7
Col 67.2/87.1| 66.9/86.7
(Lietal.,, 2009 | 43.7/82.2| 44.7/82.2
Fn-Ja Syl 43.7/81.8| 44.9/82.4
Word 44.0/82.5| 45.9/82.6
Col 44.0/81.8| 44.5/82.2
(Lietal, 2003 | 28.1/63.1| 27.7/63.3
Fn-Ko Syl 33.6/66.8/ 32.0/65.4
Word 33.9/66.2| 34.0/65.6
Col 33.8/66.1| 33.9/66.0
(Lietal.,, 20094 | 57.5/73.3| 58.5/73.7
Jn-Jk Syl 60.7/75.5| 61.7/75.9
Word 60.5/75.4| 61.5/75.8
Col 60.9/75.5/ 61.7/76.1

Table 3.2: Transliteration results, in the format wbrd accuracy / mean F-scare
“Syl”,“Word” and “Col” denote the syllable, word and collatton grammar respectively.

Table 3.2 presents the transliteration results of all experimentsmRhis table, we

draw following conclusions:

1. The proposes Bayesian models achieve better perfornoaratdeast comparable
performance than the baseline EM-based model on both treafeaent set and
the test set for all language pairs. We conclude that the R¥S#ould find good
syllable mappings from the raw name pairs without any h&asi®r restrictions.

In this point of view, the proposed method is language inddpat.

2. If we sort the improvements on the test sét(%) from the highest to the lowest,
we can getEn-Ko(6.3) > Jn-Jk(3.2) > En-Ja(1.2) > En-Ch(0.1). We also observe
from Table3.1 that the number of training instances are exactly in thersexe

order: En-Ko(4.8K) < Jn-Jk(16K) < En-Ja(28K) < En-Ch(32K). These facts
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may be explained that the prior knowledge play a more importale for small
data than large-scale data. For sufficient large-scale #laeacan just let “data

speak themselves”, since EM could already learn good dgl&ignments.

3. Comparing among the best (absolute) accuracy value#feraht language pairs,
we have:En-Ch(67.0) > Jn-Jk(61.7) > En-Ja(45.9) > En-Ko(34.0). In general,
higher performance could be achieved with more training.d&ne exception is
that the result ofin-Jk (with smaller training set) is higher tha&a-Ja. The rea-
son might because Japanese Kanji has relative small (magdah 8et of English
correspondences and it is easy to split the source Englisle mao syllable parts.
For example, éhiyako/ T 7 T can be easily splitintoéhi-ya-ko/ -1 -F"
without ambiguity. To transliterate from western names dpahese, however,

there may be difficult to find the corresponding Katakana padase.

4. The word and collocation grammars achieve slightly bgteeformance than the
syllable grammars, although the improvements are notf&egnt. These facts do
not give strong evidences to support the assumption thataghtext information
are helpful. We guess the reason is that the instances iglitexation are very
short, so syllable grammars are good enough while the watctalocation rules

become very sparse, which results in unreliable probg@itimation.

For theEn-Ch experiments, the only syllable pair that violates the srgjiaracter
restriction is(x / 5 ). We perform additionakn-Ch baseline experiments by re-
placing the single English charactet) with two charactergk S) and run the baseline
experiments. The results of replacement have been reporbed previous worklduang
et al., 201) as {Dev67.8/86.9}, which improve the baseline results {De¢(.8/87.1)}
in Table3.2 We can conclude that the single-character restrictiotshibe performance.
Furthermore, for other language pairs, there may not eiigtle replacements. Com-
pared with EM, the proposed PYSAGs automatically learragyd equivalents without

restrictions and achieve better performance.
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3.4.4 Discussion

We examine the learned syllable mappings in PYSAGs. Tal8eshowsEn-Ch
examples of learned syllable equivalents with largesectéid counts in the final sampled
tree of the syllable grammar. As comparison, Tahkeshows the syllable equivalents

collected from the -best output of the baseline EM algorithm.

s/H[s11/1669| ro/%F[1uol/531]| 1a/Fi[1a1/382
t/45[te1/728 | son/Frlsenl/d42| tt/%5[tel/380

man/ = [man]/703 k/ 7 [ke /408 1//Rler1/367
d/f[del/579| ma/[mal/390 | ton/Hi[dun]/360
ck/Fi[kel/564 | co/FHkel/387| ri/H[1i1/342
de/fE[de]/564| 11//R[erl/383| ra/Fi[1al/339

| x/5tlke] H[s11/40 | x/5i[kel/3 | x/Wilsil/l |

Table 3.3: Examples of sampl@&sd-Ch syllable mappings (total 79141, type 6880) in
the final sampled tree. Chinese Pinyin (in square brackew)tlze counts of syllable
equivalents are given.

s/H[s11/6186| ri/HE[1i11/1114] 11//K[er1/924
1//K[er]/3172| ro/% [1u01/1093| p/H[pul/8sl
t/5F[te1/2434| c¢/7[kel/1062| m/1}[mu]/800
d/f%[de]/2355| k/Fi[kel/1048| ra/$i[1al/759
g/1%[gel/1582| ck/Fi[kel/971| le//Rler]/750
b/#i[bul/1497 | man/% [man]/933 | de/fE[de]/718

‘ x/3tlke] Hr[sil/0 ‘

x/3[kel/90 | x/H[si1/139]

Table 3.4: Examples of learn@h-Ch syllable mappings (total 101205, type 5466) in
the 1-best alignment output by EM baseline. Chinese Pinyin (urasg brackets) and the
counts of syllable equivalents are given.

From these tables, we can see that the PYSAGs and baseliret fimaioslightly dif-
ferent syllable mappings from raw name pairs. Note that tebBseline restricts only
one character in the Chinese side, while PYSAGs do not hayé&euristics or restric-

tions. Specifically, we are interested in the English token which is the only one that
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has two corresponding Chinese charactetdke] #i[si]). Table3.3 demonstrates
that many of these correct mappings are discovered by PY SAKEE these equivalents
can not be found if we restrict the Chinese side to be only biaeacter I(i et al., 2004,
as shown in Tabl&.4.

Another interesting example is the Japanese Katakana 3ymbb which is used
to indicate the preceding vowel is a long vowel. As the omdjijoint source-channel
model restricts that the Japanese side of syllable mappinigs a single Katakana, the
symbol “—" has many correspondences in English, sucimas (er), (e), (a), (o),
(y), depending on the previous syllables. In contrast, thegsep SAG model could
recognize the symbol-" should not be split from its previous syllable, and learmya

to-many syllable mappings. Some learned examples are sasatiows:
(ner/+[nal —[-1) (ley/VI[1i] —[-]1) (mar/~[mal —[-])

Besides the above unbreakable syllable mappings, our PY®AGel could also
learn big breakable syllable equivalents. For examplefdath@wing syllable equivalents

(with separated form) can be found in sampled trees for aetieres:

(ski/Hlsi] Z[jil) = (s/¥rlsil) (ki/FEE[jil)
(mc/ZF[mail Flkel) = (m/F[mail) (c/TLlkel)
)=
)=

(man/ ¥ [ma] » [n] ma/~[mal) (n/>[nl])

(ber/"\[be] JL[ru] be/N[bel) (r//t[rul)

In general, these big syllable equivalents may be sepairatedmall syllable mappings.
They are considered as a whole since the PYSAGs give highbapilities to the whole
syllable equivalents than the separated ones due to tighiffrequency appearance. This
observation explains why the PYSAG sampled less syllablevatgnts in total (with
more types) in Tabl&.3 than those equivalents learned by EM in TaBlé (with less
types), and the frequencies of sampled syllable equivalisnsmaller than the corre-

sponding ones learned by EM. Similar results could be foondther language pairs.
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3.5 Summary

In this chapter, we propose synchronous adaptor grammarsdohine translitera-
tion. Based on the sampling, the PYSAGs could automatichdigover syllable equiv-
alents without any heuristics or restrictions. In this pahview, the proposed model
is language independent. The joint source-channel modkeeérs used for training and
decoding. Experimental results on the transliteratiokgas four language pairs show
that the proposed method outperforms the EM-based basglstem. We also com-
pare grammars in different layers and find that the two-lgyammars are suitable for
the transliteration task, although the performance difiee between grammar layers are

not significant.
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Chapter 4

Feature-based Constituent-Context

Model

The basic Constituent Context Model (CCMl€éin and Manning, 2002has been
described in SectioB.2.1 Although CCM achieves promising results in short sentence
its performance drops for longer sentences. In this chapgepropose a general feature-
based framework for CCM in which various overlapping feasucould be easily added.
Features take the log-linear form with local normalizatahere we can still use the EM
algorithm to estimate model parameters with minor changidénmaximization step.
To avoid overfitting, we usé;-norm regularization to control the model complexity.
Furthermore, previous induction modeldd€in and Manning, 2002Smith and Eisner,
2004 Mirroshandel and Ghassem-Sani, 20@Glland et al., 201Ptrain and evaluate
models on the same dataset, so there is no reasonable wayasecmodel parameters.
We advocate using a separated validation set to perform Insetiction, and measure
the trained model on additional test set. Under this franmkeywse could automatically
choose suitable model parameters instead of setting thgrrieatly. We also examine

the sparse model issues in this chapter.
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4.1 Feature-based CCM

4.1.1 Model Definition

Motivated by Berg-Kirkpatrick et al., 2010Li et al., 2013, the basic idea behind
the feature-based CCM is to factorize the multinomial distion over sequences into
small factors that describe overlapped aspects of coastswand distituents (a.k.a. non-
constituents).

Formally, letB be a boolean matrix with entries indicating whether theesponding
span encloses constituent or distituent. As explained ati@e2.2.1, some bracketing
B may not corresponds to parse tree. We just ignore those diragk in probability
calculation, i.e. letP(B) = 0. We denote3; as the set of bracketings with tree rep-
resentations. For tree-equivalent bracketiige Br, denotels as the corresponding
tree representation. We define factors in the log-lineanfaith local normalization.
Let Fi(k = 1,...,K) be K different factors. Each factoF) corresponds to a-
dimensional feature vectdf,. For each feature vector, there iggdimensional weight
vectorw, measuring the importance for each dimension. Note fokthéactor F, the
corresponding multinomial parameter in traditional CCNh@sv treated as a function of
weightswy. Using these notations, we define the log-linear faétofor span(i, j) in

some bracketings for sentences' as

Fk(S<i,j>|wk) = Pk(s<i,j>|B<i,j>> wy,)
_exp(wy - fi(S4))
> o exp(wy - fir(v))

where f;, returns a feature vectaw, is the corresponding weight vector, apgddenotes

(4.1)

the inner product of vectors. The denominator sums overnnemumnalized probabilities
(as defined in the numerator) for all possible factor valueg,9v). Since there are
exponential values respect to the dimension number, we approximately caletlas

summation only over values that appear in the training carpu
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Similar to CCM, there are constituent factors and distitifantors in the feature-
based model. Constituent and distituent factors only dgfiababilities over constituent
and distituent spans respectively. To distinguish camstit and distituent factors, we
define a factor category function as

+1, if F}, is constituent factor
o = (4.2)

—1, if F} is distituent factor

Then the joint probability o (S, B|w) can be defined:

P(S, Blw) = P(B|w)P(S|B, w) (4.3)

= P(Blw) [ ] P(Sup|Bis) (4.4)

=PBlw) ] ] FSuplwo)x 1T 1] FelSuplwn)

<27.]>¢TB k(sk:*l <Z,]>€TB kék:+1
(4.5)
= P(Blw) H H Fiu (S5 |wg) x H H Fi.(S4. 5 wr)
<27J>¢TB k:dp=—1 <i,j>€TB k:op=—1

< I Is=1 £(Stig wr) )
(i,7)€TB Hk‘ W0p=—1 Fk(S<i7j>‘wk>

=PBlw) [ I FSuplwe) x [ TIEFSuplwe)  (4.7)

(2,5) k:dp=—1 (1,5)€Tp k

=K(Slw) [ TIF*Suslws) (4.8)

The joint probability is factorized first by the chain ruke §), then over factors defined
for each active spard(4 and4.5). In Equation ¢.6), we introduce an additional term
representing the product of distituent factors (for 6, = —1) over constituent spans
(for (i,75) € Tg). We first multiply the additional term in the first part of tequation,
then divide this term in the second part. Since spap) either belongs to the tree span
setT or not belongs td'z, we can combine the two parts in Equati@ngj to get the

first term in Equation4.7). Finally in Equation 4.8), we define the terni(S|w) to
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represent those products independenB @fs

K(Slw) = P(Blw) [[ T] Fe(Suslwe) (4.9)

<Z j> k: 5]6—71

The rest products in Equatiod.g) are defined only over tree spans. In this way, we have
reduced the complexity to evaluate the joint probabiliynfirall O(n?) spans taO(n)
tree spans for sentence with lengthThe same trick can be found in the Appendix A.1
in (Klein, 2005.

As defined in Equatior4(1), factors are normalized locally over spans. One advan-
tage of the locally normalized model is that the EM algorittwald be still used to learn
the model parameters. The constaHtS|w) in Equation 4.8) would be cancelled in the

EM algorithm, which we will describe in the Sectioh.{.2.

4.1.2 Parameter Estimation

In this section, we present the algorithm to estimate pat@méor the feature-based
CCM. Let S be the set of training sentences. As described in Seétidid, we assign
P(B) = 0for B ¢ Br. Under the maximum likelihood estimation, we want to fiado

maximize the data log likelihood (ignoring non-tree-e@l@nt bracketings):

L(S|w) = Zlog Z P(S, Blw) (4.10)

Ses BeBr(S)

However, the summation of hidden variali#as inside the logarithm operator, resulting
in the complicated expressions for the analytical solutinstead, we use the Expectation-
Maximization (EM) algorithm to solve the problem approxieis.

Given current model parametets'? in each iteration of EM, we seek new parameter

w to maximize the expectation of the completed-data logikiosid:

w') =" Z P(B|S, w°?)log P(S, Blw) (4.11)

SeS BeBr (S
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E-Step

The E-step evaluates the posterior probabilty3|S, w?) given fixedw?. We
can use the (modified) inside-outside algorithbar{ and Young, 199Dto efficiently
calculate the expected counts for each factor. To simpéfydtions, we define

by = | [ Fe-(Siilwi) (4.12)

k

For sentenceé with lengthl, the inside probabilityN can be calculated bottom-up

recursively
INGjy = § 4-1 .
> Og g Ny, i j—i>1
k=i+1

The outside probability OT can be calculated top-down recursively

1, if j—i=1
OuT(;j) = q i-1 !

kz: (b(k,j) OUT<k7j> IN(k,z‘) -l—kz d)(z‘,k) OUT(Z‘J@ IN(j,k>7 if j —1 <

=0 =j+1

The fraction of trees that contain the span;j) as a constituent can be calculated as

@] = INGg) X OUT ) / NGy (4.13)
For each spafy, j), assuming the feature vector for factar(S; ;) is v, we accumulate
the following expected counts for factéy;:

e[Fo(v), Sip] = i) Ton = (4.14)

L —rlpuyl, ifd=-1
We denote:[F;,(v)] as the accumulated expected counts for fagjoover training set.
We do not consider empty spans in the above calculation @fef@utside probabili-
ties. Since the empty spans do not depend on tree structuggsst add expected count

1 for each distituent factor anwfor each constituent factor over empty spans.

1There is a notation error in our previous pageuéng et al., 2012 which is fixed here.
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M-Step
The objective in M-step is to tune to maximize the expected complicated-data log

likelihood together with the regularization terms:
Q(w, ") — Al|wl|, (4.15)

where) is a non-negative coefficient for tie-norm ofw. Because of the high-dimensional
feature space, we uge-norm of weight vectorw as regularization terms to control the
model complexity. The regularization terms can serve awaatic feature selector, lead-
ing to learn compact models. Tlignorm is preferred than thig-norm since the former
norm leads to much sparser modéb(1 and Hastie, 2005

In traditional CCM, model parameters (multinomial distitilon probabilities) are es-
timated by normalizing relative frequencies in the M-stépthe feature-based model,
we use gradient-based search algorithm to optimize theeabbjective function nu-
merically. For differentiable objective functions, we magply the Limited-memory
BFGS (Nocedal, 198palgorithm to optimize. Due to th& regularization term, how-
ever, the objective in Equatior (15 is not differentiable atv = 0. So we use the
Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) medh@ndrew and Gao,
2007 to deal with/;-norm optimization. We use the open-source C++ implememtat
| i bLBFGS? in experiments.

The optimization process needs to calculate the gradie@(af, w°'¢) (without the
regularization terms) respect to the weight veetoMathematically, considering Equa-

tion (4.8) and @.12, we have

P(B|S, w) = 5 P(S,ﬁ(|27022|w0ld)
B/eTs(S) ;
B K(S|w™) [Ty sy e, [T F* (S wi)
EB'GBT(S) K (S[w) H(z’,j)eTB IT. F/fk (St j) |wi'?)
. H(i,j)eTB ¢<i7j>
B ZB’EBT(S) H(i,j)eTB Plig)

(4.16)

2ht t p: / / ww. chokkan. or g/ sof t war e/ | i bl bf gs/


http://www.chokkan.org/software/liblbfgs/
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in which the constanf’(S|w°?) could be cancelled in derivation. We can substitute

Equation 4.9) into the definition of) (Equation §.11)) and expand) as

w') Z Z P(B|S, w"%) log P(S, Blw)

S BeBr(S)

> P(B|S,w01d)log{ (Slw) ] TIE* ”|w,€}
BeBr(S) (i,j)€Tp k
Br(5)

P(B|S, w“ld)[logP(B|w)+Z > log Fi(Sjlwy)
(z7]> k‘:6k:—1

%
%

Be

+ Z Zéklong Z]|wk):|

<Z]>€TB k
C [o] d O
=C+ > QPww+ Y QY (w,w) (4.17)
k(sk:Jrl k:észl

where(C' is a constant value independentwof andQ,(f) and Q,id) represent the corre-
sponding quantities for the constituent and distituenofia; which are defined as:

Q wd) Z Z P(B|S, w?) Z log F.(S. 5y |wr) (4.18)

S BeBr(S) (1,5)€TB

=" > N b log Fi(Silw) (4.19)

S BeBr(S) (i,j)eTB

= > e[Fi(v)]log Fx(S 5 wy) (4.20)
veEV)
(d) w?) Z Z B|S’w01d)|:Zlong(S<i,j>|wk)
S BGBT(S <Zv.7>
> 1ong(s<i,j>|wk)} (4.21)
(i,4)€TB

=> > > 1) log Fiu(S.5) lwi) (4.22)

S BeBr(S) (i,j)eTB

= ) elFr(v)] log Fi(Sy 5 |we) (4.23)

veEVY
in which the set, contains all appeared values in the training set ofitfidfactor £},

ande[Fy(v)] is the accumulated expected counts for fadtor
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Therefore, the expansion fin Equation ¢.17) can be written as

Q(w, w') = C + Z Qr(w, w?) (4.24)
k
where  Qy(w, w”?) = Z e[Fi(v)]log Fi (S5 lwk) (4.25)
veEVY

in which Q,, is the corresponding component for th& factor. The probabilities of
factors are multiplied together, so the logarithm term i@ dtvove equation can be de-
composed into the sum of the logarithm of each factor prdibiFurthermore, the
¢1-norm term in Equation4.15 can be also written as the sum#&fnorm of the corre-
sponding weights for each factor. As a result, optimizing ¢tkrerall objective function
is equivalent to optimize objective functions for each déact his does not only allow us
to simplify the derivations and computation of the gradiéot also makes it possible to
use different regularization parametgrfor different factorsrty,. Since different factors
have different feature numbers and feature spaces, indilidgularization may improve

the overall performance.

Finally, the gradient of), respect to the corresponding feature weight veaipfor

factor F), can be computed as follows:

V(@) = ) e[Fi(v)] x Ay (wy) (4.26)
Ay(wi) = fr(v) = Y F(v') fi(v)) (4.27)

wheree[Fy.(v)] is the expected counts accumulated in the E-step. The sidafavation

can be found inBerg-Kirkpatrick et al., 2010

Rich features can be easily incorporated in this featussdanodel. In next section,

we show the feature templates used our experiments.
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4.2 Feature Templates

4.2.1 Basic features

There are two kinds of features: constituent features, prgtix {c:}; and distituent
features, with prefix {:}. Features in the two categories are active only if the span e
close constituent or distituent respectively. The basatuiee templates are listed as fol-
lows with their names and descriptions. A running exammansl, 3) in “oRB;DToNN3”",
is also shown for each feature template.

e const: This constant feature always takes valu@r any given span. We use this
feature to measure the number of spans.

e seq[n]: This indicating feature is active for sequence enclosesiay with size:.

If n = 0, then sequences with any length are considered.

seq2 || ... | DT_JJ | DT_NN | RB_DT

value|| ... 0 1 0

e 1x[n]/rx[n]: The indicating feature for the preceding/followingerminals (left/right

context), where represents sentence boundary.

1x2 .. ¢ ¢ | © RB|RB DT
value || ... 0 1 0

rx2 ... |DT NN [ NN o | < ¢
value || ... 0 0 1

e 1b[n]/rb[n]: The left/rightn boundary terminals inside given span. If the length

of span is less than, then this feature template is not activated.

1b2 || ... | RB_DT | DT_NN | TO_VB
value|| ... 0 1 0
rbl - RB DT NN

value|| ... 0 0 1
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4.2.2 Composite features

Basic features can be composited to more complicated &atWve define two com-
position operators: join.), and concatenationH). For the join operator, the compos-
ited feature space is the Cartesian product of the featuaeespof the two operands.
For the concatenation operator, the composited featuespahe concatenation of the
operands’ feature spaces.

Here we use an example to demonstrate the difference betwieoperator and
concatenation operator. Assume there3apossible valuese( RB, DT) for featurelxi,
and 3 possible valuesD{, NN, ¢) for featurerx1. We consider feature vectors of the
two operators for spafi, 3) in “oRB;DT,NN3”. The joined feature space hasx 3 = 9

dimensions:

1x1.rxt | o.{DTNN,0} | RB.{DT,NN,0} | DT.{DT,NN,0}
value | O/ 0O|O0O]O0O|O0O|121 [O]O0]O

The concatenated feature space has3 = 6 dimensions:

1xi+rx1 | ¢ |RB| DT || DT| NN | ©
value 0/1/]01| 0|01

We only allow compositions with join operators followed bgncatenation opera-
tors. In this representation, the original CCM could be espnted as:d:seq0, d:seq0,

c:1x1.rx1,d:1x1.rx1}. We show templates used in experiments in next subsection.

4.2.3 Templates in Experiments

Various knowledge can be incorporated into the featuredbasodel. However, since
there are huge feature combinations, we can not enumerte ith experiments. In

experiments, we use a restricted set of features descrivied@wvs.
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The first feature set used in experiments is the sequencdemigfth up to5: {seq,
seq?2, seq3, seq4, seq5}. Note that the original CCM consider sequences with aalpytr
lengths, while we restrict the maximal sequence length to [8nce most of the longer
sequences occurs only once or twice in the training set, s@adi them to reduce the
memory usage and disk spaces. For long sentences, we findlibwifig boundary
features, which appear much more frequently than sequesatarés, play important

role in experiments (see subsect.5.

Boundary words have been proven useful for detecting pHyasadaries in super-
vised settingXiong et al., 201QHe et al., 201 We introduce this idea to unsupervised
grammar induction. The features used in experiments aréic@tions of left boundary
and right boundary words with lengths up2o{1b1, 1b2, rb1, rb2, 1bl.rbi, 1bl.rb2,

1b2.rbi, 1b2.rb2}.

The original CCM also consider the pair of preceding one ward following one
word as contexts. We consider combinations of left contedtraght context words with
lengths up t@: {1x1, 1x2, rx1, rx2, 1x1.rx1, 1x1.rx2, 1x2.rx1, 1x2.rx2}. The special

sentence boundary tokens introduced when needed.

The last feature used is the constant featwen$t}. The constant feature always

takes valud for each span.

Overall, we define constituent an@ distituent factors in the feature-based model.
The first constituent (distituent) factor is the concatemadf the sequence features, the
boundary features, and the constant featugeg{+. . . +seq5+1b1+...+1b2.rb2+const}.
These two factors are denoted &s. s and Fy .5 respectively. The second constituent
(distituent) factor is the concatenation of the contextdess and the constant feature:
{1x1+...+1x2.rx2+const}. These two factors are represented/asx and Fy.y re-

spectively.
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4.3 Experiments

4.3.1 Datasets and Settings

We carry out experiments on the Wall Street Journal portfdhePenn English Tree-
bank Marcus et al., 1993 in which section$2-21 are used as the training set, section
00 is used as the development set, and seciis used as the test set. We remove null
elements (such as “*-1” and “-NONE-") in treebank, sinceytlage only for linguistic
purposes and not readable for human learner. In additiorrew@ve words acting as
punctuations in sentences if the part-of-speech (POS}tage of the follows:

, . "7 $ # -LRB- -RRB-
where the last two POS tags represent the left brackets ghtlbtackets respectively.
We follow previous practice¥(ein and Manning, 200Xlein, 2009 and remove punc-
tuations for simplicity. Finally, tree nodes dominating elements are pruned. The
detailed preprocessing step could be seerKirif, 2005. For comparison, we build
various datasets with sentences lengths no moreltha, 30, 40 words after removing
null elements and punctuations. Tablé gives the statistics for each dataset. Figte

shows an example of the parse tree found in the training set.

Train Dev Test
# sent\ #word | # sent\ #word | # sent\ # word

PTB10 | 5899 | 41701 | 265 | 1875 | 398 | 2649
PTB20 | 20243| 266785 992 | 13309 | 1286 | 16591
PTB30 | 32712| 579241| 1573 | 27929 | 2028 | 35148
PTB40 | 37561| 746844| 1809 | 35999 | 2338 | 45813

Dataset

Table 4.1: Penn treebank data statistics.

The baseline system is the original EM-based constituentext model Klein and
Manning, 2002Klein, 2005. EM algorithm is sensitive to the initial condition, so we

adopt the same uniform-split initialization. Followingeprous work, we use the part-of-



65

S
VP
VP
NP NP
PN _—
DT NN MD VB DT JJ NN
0 t1|1e . exch|ange ) sho|uld s ta|ke A z|1 s pro-a|ctive6posi|tion -

Figure 4.1: An example of reference tree.

speech tag sequences instead of raw words as the input oasleéirie system and our
induction system. We also report performance of otherarivaselines for comparison,
including the left-branching baseline and the right-brang baseline. Figurd.2 and
4.3 show the corresponding left-branching tree and right-tharg tree of the above
reference tree (Figur.1), where the special nontermingdn represents the constituent
placeholder in the tree node. For English, right-branchegpens to be a strong baseline
(e.g. we can see from the figures that the right-branchirgyties similar structures to
the reference tree). However, other languages may have lotiieching biaseX{(ein,
2005. We also evaluate the performance of the binarized trdelaarthe upper bound of
any binary-tree induction system. Figutel shows the binarized tree of the mentioned
reference tree (shown in Figu#el), in which the new introduced nonterming#-DT

binarized the original flat spaft, 7) into small ones.

For both the baseline CCM and proposed feature-based CCMuymeesmoothing
values on the development set for constituent factors 28, 20}, and those for dis-
tituent factors from(8, 20, 40, 80, 160}. There are many parameter combinations, so we
first fix the distituent smoothing value to 186 and tune constituent smoothing values,
then tune distituent smoothing values with the tuned ctrestt smoothing value. The

results reported in this thesis are the best tuned ones.
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Con
/\
Con
/\
Con
/\
Con
Con
Con
/\
DT NN MD VB DT JJ NN

the exchange should take a pro-active position
1 2 3 4 5 6 7

Figure 4.2: An example of left branching tree.

Con
/\
Con
/\
Con
/\
Con
Con
Con
/\
DT NN MD VB DT JJ NN
Othe ) exch|ange ) sho|uld 5 ta|ke A a . pro—a|ctive6posi|tion7

Figure 4.3: An example of right branching tree.
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S
/\
VP
/\
NP
NP
NP NP-DT
/\ /\
DT NN MD VB DT JJ NN
0t1|1e ) exch|ange ) sho|uld 5 ta|ke A e|1 . pro—a|ctiverosi|tion7

Figure 4.4: An example of binarized reference tree, the uppand of any binary in-
duction system.

For feature-based model (F-CCM), we still use uniformisglifategy to initialize
probabilities in the first E-step, and set all weights to zasothe initial point of the
gradient-based search algorithm in the M-step. As the standachine learning pipeline,
for both baseline models and the proposed models, we peté&aming on the training
set, select the model with the best performance on the davelot set, and report the
final result of selected model on the test set. After trairihregfeature-based models on
the training set, we obtain the weights for each feature dsimms. We then use these

weights to parse and induce trees on the development andbtesets.

For the four factors used in feature-based CCM, we seleataagation parameters
from set {0.03, 0.1, 0.3, 1, 3, 10, 30}The use of development for tuning is a reasonable
way for selecting model parameters. We choose the parasrtbtrachieve the highest
development score as final regularization values and rép@torresponding evaluation

metrics on the test datasets.

3In our previous work fuang et al., 2012 we did not regularize factorBc :x and Fy .. In this
thesis, we perform regularization for these two factors e and rerun some experiments, so some of the
results in this thesis are different from our previous régadones.
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4.3.2 Evaluation Metrics

The evaluation objective is sometimes unclear for unsupetvgrammar learning
tasks, which depends the following processing tasks. M@mreahe objective function
that unsupervised models try to optimize may differ from ¢laluation metricsL{ang
and Klein, 2008. We follow previous unsupervised constituency tree itiducap-
proachesKlein, 2005 Smith and Eisner, 20Q45o0lland et al., 201Pand evaluate the
induced trees from our system against the annotated treel&ince our models only
induce the set of bracketings for raw strings without anteakéabels, we report the unla-
beled precision), unlabeled recallR), and their harmonic mearty(). These metrics
differ from the standard PARSEVAL metri8lack et al., 199)in following ways: con-

stituent spans contain single words are discarded andpficilty of brackets is ignored

in evaluation.
Con
Con
Con
Con Con Con
DT NN MD VB DT JJ NN
0t1|1e ) exch|ange ) sho|uld 3 ta|ke A a . pro—a|<:tive6posi|tion7

Figure 4.5: An example of candidate tree.

In detail, we represent a parse trédo be a set of unlabeled constituent brackets.
Each tree node corresponds to one sfiay) over the constituent that the node covers.
Terminal (word) and preterminal (POS tag) nodes are exduaeare nonterminal nodes
which dominate only a single terminal. Lét= {G,} andC = {C;} denote the set of

span representations for the golden tree bank and the sysigut respectively, and
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M = {M;} = {G; nC;} denote the matched span set, then the unlabeled precision,

recall andF; could be calculated as follows
b SIMl_Zend

— - 4.28
Sl -G (4.28)
YoM Y IGN G|
R = L = L 4.29
SGl - SGl (4.29)
2PR
A=5p (4.30)

Note that the abov®&/R/ F; are calculated over all sentences in the tree bank.
We use examples to show how to evaluate these metrics. Térenek tree in Figure

4.1 and the candidate tree in Figutes can be represented as following span sets

Constituent| Ref Cand | Matched
DT NN | (0,2) | (0,2) (0,2)
MD VB - (2,4) -
JJ NN - (5,7) -
DT JJ NN | (4,7) | (4,7) (4,7)
VB DT JJ NN | (3,7) - -
MD VB DT JJ NN | (2,7) | (2,7) (2,7)
DT NN MD VB DT JJ NN | (0,7) (0,7) (0,7)
Total | |G| =5 ||C|=6 | |M|=4

As a result, the precision and recall for this examplefare % andR = % respectively.
In the similar way, the number of matched spans, total spathshee precision and recall
are (1)|M,| = 2,|C| =6, P, = 2, R, = 2, for the left-branching tree (Figu.2);
() IM.| = 4,|C,| =6, P, = 2, R, = 3, for the right-branching tree (Figure3);
(3) M| =5, |C.| =6, P, = 3, R, = 2, for the binarized reference tree (Figute).

5

From this example, we can see that the left-branching tredad’/R. In contrast, the
right-branching baseline matches the reference tree aglj¢od as the induced tree in
this example). For any binarized reference tree, the recalivays100% since it never

misses any span in the reference.
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4.3.3 Induction Results

Table4.2 shows the experimental results on the Penn English Treethataisets of
different length limits (PTB10, PTB20, PTB30, PTB40). LBch and RBranch rows
show the left branching and right branching baselines. WBlowws show the results
of binarized treebank, which is the upper bound of any gramnthuction systems that
output binary-trees. We reimplement the baseline CCM, kvlgichieves comparable
performance compared to previous reported reskltsif, 2009. The results of feature-
based CCM are presented in the F-CCM rows.

From these results, we observe that the left branching inasate bad for English
language, while the right branching baseline achievesivelgood performance for var-
ious datasets. The upper bouRidmetrics range from abo8t% to 89%, which is lower
than expected. The annotation guild line of Penn Treebardefatrees to be relative flat
trees with big phrase structure (usually the noun phrasé®. binarized treebank gets
low precisions for these cases, especially for long seetenc

The original CCM performs much better than the right brangtbaseline on short
sentences while the performance decreases dramaticdbyger sentences (even worse
than than the right branching baseline). These evidenaas 8fat the single multino-
mial distributions for constituents and distituents areaime to capture complicated tree
structures appeared in long sentences. In contrast, opoged F-CCM achieves much
better performance than the CCM on long sentences. Thespyecrecall and?; metrics
of F-CCM all outperform CCM and the right branching baseima large gap on large
datasets. These results demonstrate the effectivendss tefature-based models.

The performance of F-CCM is slightly worse than CCM on PTBIBe reason might
be that we use shorter sequences (maxifhaMe have carried out experiments of F-
CCM with exactly the same features as CCM, the performanée@©EM is almost the
same as CCM on all datasets (less theh F; differences). The feature templates used

to report the final results in Tab#e2 are those described in subsectibB.3
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Dataset | Train | Dev | Test |
PTB10 | P(%) R(%) Fi(%) | P(%) R(%) Fi(%) | P(%) R(%) Fi(%)
LBranch | 25.60 32.46 28.62 25.65 32.42 28.64 27.01 35.23 30.58
RBranch| 55.08 69.83 61.58 56.96 71.98 63.59 53.89 70.28 61.0Q
UBound | 78.88 100.0 88.20 79.13 100.0 88.35 76.68 100.0 86.8(Q
CCM 64.85 82.21 7250 | 65.90 83.28 73.58 | 62.11 81.00 70.30
F-CCM | 64.32 81.53 71.91 65.53 82.81 73.14 61.66 80.42 69.80
PTB20 | P(%) R(%) Fi(%) | P(%) R(%) Fi(%) | P(%) R(%) Fi(%)
LBranch | 15.16 19.95 17.22 15.33 20.21 17.43 15.13 19.97 17.2]
RBranch| 42.57 56.04 48.39 42.07 55.47 47.84H 42.14 55.64 47.96
UBound | 75.97 100.0 86.35 75.85 100.0 86.26 75.74 100.0 86.20Q
CCM 43.08 56.71 48.96 42.61 56.18 48.46 42.25 55.78 48.08
F-CCM | 52.67 69.33 59.86 | 52.63 69.39 59.86 | 51.93 68.56 59.10
PTB30 | P(%) R(%) F.(%) | P(%) R(%) Fu%) | P(%) R(%) (%)
LBranch| 11.70 15.60 13.37 11.94 15.82 13.61 11.68 1552 13.33
RBranch| 37.37 49.82 42.70 37.51 49.71 42.7q 37.30 4957 42.57
UBound | 75.01 100.0 85.72 75.47 100.0 86.02 75.25 100.0 85.88
CCM 37.63 50.17 43.01] 37.96 50.30 43.27 37.32 49,59 42.59
F-CCM | 42.77 57.01 48.87 | 42.83 56.75 48.82 | 42.20 56.07 48.15
PTB40 | P(%) R(%) F.(%) | P(%) R(%) Fu%) | P(%) R(%) (%)
LBranch | 10.56 14.12 12.08 10.78 14.35 12.31 10.45 13.95 11.95
RBranch| 35.46 47.45 40.59 35.49 47.26 40.54 35.63 4754 40.73
UBound | 74.74 100.0 85.54 75.09 100.0 85.77 74.96 100.0 85.69
CCM 29.22 39.10 33.44 29.43 39.19 33.62 28.95 38.62 33.10
F-CCM | 39.70 53.12 45.44 | 39.80 53.00 45.46 | 39.46 52.64 45.10

Table 4.2: Induction results of feature-based CCM.

[Data] PTB10, PTB20, PTB30, PTB40.

[Rows] LBranch: left branching tree; RBranch: right branchingetr&/Bound: bina-
rized treebank, which is the upper bound of any grammar itwlusystems that out-
put binary trees; CCM: the original constituent-contextdalp F-CCM: the proposed
feature-based CCM.

[Columns] P: overall precisionR: overall recall;F;: overall F-score.
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4.3.4 Grammar sparsity

The regularization terms can serve as the feature selécthis section, we compare
the sparsity of learned grammars between various regataizcoefficients on PTB10.
As mentioned in Sectiod.1.2 we use different regularization coefficients for differen
factors. Since there are too many results of parameter c@tibns to show here, we
only show the results that all factors use the same regalaoizcoefficients in Tablé.3.
The dimension of the sequence factafs (s and Fy . g) is 72289, and the dimension of
the context factorsHc:x and Fy.x) is 54439. We report the number of weights with

non-zero values as the measurement of grammar sparsity.

‘ A ‘ Fe:s ‘ Fq:s ‘ Fe:x ‘ Fq:x ‘ Dev Fy ‘ TestF; ‘
0.03| 68963| 71622 | 52806| 54199| 72.33 | 68.19
0.1 | 57907| 69683 | 47240| 52672| 73.16 | 69.80
0.3 | 34954| 57316| 32120| 46828| 72.40 | 68.85
1 | 11738 27735| 13713| 24113| 72.82 | 69.70
3 4125| 10064| 5621| 10228 72.75 | 70.15
10 | 1498, 3325| 2345| 4323| 70.46 | 67.44
30 630| 1231| 1002| 1874| 67.20 | 62.36

Table 4.3: Sparsity of the induced grammars. Theolumn gives the regularization
coefficients, the middle four columns show the number of ners weights of each

factor, and the last two columns show the correspondingalue on the development set
and test set respectively.

From this table, we can see that thenorm with larger\ leads to sparser model with
less non-zero dimensions. However, if the non-zero weighgspenalized too heavy,
the feature-based model would underfit the training dateeadd with bad development
Fi. The suitable value of regularization coefficieAt=£ 0.1) can be selected by the de-
velopment set. Another interesting observation is thahtimaber of non-zero distituent
factors (Fy4.s and Fy.x) is much greater than constituent factofg (s andFc.x). For
tree with yield lengthn, there are)(n) constituent spans an@(n?) distituent spans, so

the feature-based model needs more distituents to encegedbability distributions.
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4.3.5 Feature Analysis

In subsectiom.2, we designed (1) constant feature, (2) boundary featuBsse-
guence features, and (4) context features for the feataseebhCCM. We examine which
kind of features works well for F-CCM in this subsection. Wibgact each feature set
from the final feature set and rerun the experiments. Thergwrpatal results are shown
in Table4.4. The CCM and F-CCM results are also given for comparison.

If the constant feature is excluded from the feature setpénrmances slightly de-
crease on all datasets. We have checked the weight of theaobfesature and found that
the weight is quite small (less than—°), so this feature does not show much discrimi-
nating ability.

The boundary features affect F-CCM very much, especialgfort sentences. For
short spans, usually the boundary words can determine tlas@lcategory, such as the
noun phrases usually begin with articles and end with notis.long sentences, the
boundary features still has significant impact, so we caitethe boundary words could
help for unsupervised grammar induction. Note that we useeroomplex context fea-
tures than CCM, so the performances without boundary featare still better than the
original CCM on long sentences.

One interesting observation is that excluding the sequigatares does not hurt per-
formance much, and even slightly improve the performandemng sentences. Since we
design boundary features to capture constituent contdm@sequence features may be
duplicated. In addition, as long sequences occur a few timt#®e training corpus, the
parameter estimation may be unreliable.

The context features play the most important role in feabased CCM, since the
performances drops most if the context features are exdltrden the feature set. This
gives evidence to the claim that constituents appear intitoest contexts, which is the
motivation of distributional clustering.

In summary, the boundary and context features are the mosiriamt features.
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| Dataset | Train | Dev | Test |
PTB10 | P(%) R(%) Fi (%) | P(%) R(%) F.(%)| P(%) R%) Fi(%)
CCM 64.85 82.21 7250 65.90 83.28 73.58 62.11 81.00 70.30
F-CCM | 64.32 8153 71.91 65.53 82.81 73.16 61.66 80.42 69.8(Q
-const| 63.82 80.90 71.35 65.16 82.34 72.75 60.95 79.49 69.00
-bdr 50.18 63.61 56.10 50.31 63.58 56.17 48.96 63.85 55.42
-seq 63.39 80.36 70.88 65.28 82.50 72.88 61.35 80.01 69.45
-Ctx 42.43 5379 47.44 41.86 5290 46.74 41.94 54.69 47.47
PTB20 | P(%) R(%) F(%) | P(%) R%) F(%) | P(%) R%) F.(%)
CCM 43.08 56.71 48.96 42.61 56.18 48.46 42.25 55.78 48.08
F-CCM | 52.67 69.33 59.86 52.63 69.39 59.86 51.93 6856 59.1Q0
-const| 52.49 69.09 59.65 52.41 69.10 59.61 51.62 68.15 58.74
-bdr 41.15 54.17 46.77 41.43 54.62 47.12 40.82 53.90 46.46
-seq 5156 67.86 58.60 51.49 67.89 58,56 50.76 67.02 57.77
-Ctx 36.55 48.11 41.54 36.01 47.47 40.95 36.16 47.75 41.186
PTB30 | P(%) R(%) Fi(%) | P(%) R%) F.(%)| P(%) R%) Fi(%)
CCM 37.63 50.17 43.01 37.96 50.30 43.27 37.32 49.59 42.59
F-CCM | 42.77 57.01 48.87 42.83 56.75 48.824 42.20 56.07 48.15
-const| 42.49 56.64 4855 42.64 56.50 48.6(0 41.86 55.63 47.77
-bdr 37.87 50.49 43.28 38.36 50.83 43.73 37.66 50.05 42.98
-seq 43.38 57.83 4957 43.74 57.96 49.86 42.91 57.03 48.97
-Ctx 32.06 42.73 36.63 31.95 42.33 36.41 32.77 43.56 37.40
PTB40 | P(%) R(%) Fi(%) | P(%) R%) F.(%)| P(%) R%) Fi(%)
CCM 29.22 39.10 33.44 29.43 39.19 33.672 28.95 38.62 33.10
F-CCM | 39.70 53.12 45.44 39.80 53.00 45.46 39.46 52.64 45.10
-const| 39.62 53.01 45.35 40.01 53.28 45.7(0 39.22 52.33 44.84
-bdr 37.06 49.58 42.41 37.55 50.00 42.89 36.83 49.13 42.10
-seq 40.82 54.62 46.72 41.18 54.84 47.04 40.31 53.78 46.08
-Ctx 30.73 41.11 35.17 30.92 41.18 35.32 30.86 41.17 35.28

Table 4.4: Induction results of feature-based CCM for featibtraction experiments.
[Data] PTB10, PTB20, PTB30, PTB40.
[Rows] CCM: the original constituent-context model; F-CCM: theposed feature-
based CCM,; -const: all feature sets except constant feahde all feature sets except

boundary features; -seq: all feature sets except sequeatgds; -ctx: all feature sets

except context features.
P: overall precisionR: overall recall;F;: overall F-score.

[Columns]
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4.3.6 Discussion

Experiments show that we achieve better performance wattittonal CCM while

using much compact grammars. There are some issues we wisttss here.

1. There are too many feature templates to explore, and wetestl a few of them.
Other kinds of features may improve the induction perforogarsuch as words
and stemsHeadden lll et al., 2009 and punctuationsSpitkovsky et al., 2011b
Ponvert et al., 2011 They can be easily added as features, although we have not
tested them. In addition, we can also design manually rndésaiures to precisely
control the induced tree and may further improve perforrearfor particular an-

notation guild lines.

2. In previous approaches for unsupervised constituerayigrar inductionklein,
2005 Smith and Eisner, 20040lland et al., 201 they tune parameters and eval-
uate metrics on the same dataset, which is problematic. Asudty we advocate

using a separated development set to perform model sealectio

3. The EM algorithm only find the sub-optima in the parameparce. Online EM
algorithms have shown improvements over full EM on some pesused learning
tasks (iang and Klein, 2009Spitkovsky et al., 201Q&pitkovsky et al., 2010b
These ideas can be easily incorporated into our featuredbB#1, with minor
modification of the expected count calculation in the E-stémother learning
algorithm is the_ateen EM(Spitkovsky et al., 2012ain which multiple objective
functions are alternative optimized. We may simulate rpldtobjective functions

using different regularization coefficients and altewelii optimize them.

4. (1-norm regularization is used to learn sparse and compaceéimBeyesian learn-
ing methods are alternatively frameworks to learn compeatgnars, which can

be also applied for CCM inference.
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4.4 Summary

In this chapter, we presented a feature-based model for A@Mihich various
knowledge can be integrated as features. The local norat@liznature makes it suitable
to fit in the EM algorithm. The use d@f-norm regularization leads to compact grammars.
We also proposed a reasonable model selection and evaltia@inework. Experimental
results demonstrated the proposed model achieved betferrpance compared to the

CCM baseline especially on long sentences.
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Chapter 5

Improved Combinatory Categorial

Grammar Induction

Combinatory Categorial Grammar (CCG) is an expressivedtizied grammar for-
malism which is able to capture long-range dependenBis&.and Hockenmaier (2012b
propose a simple robust CCG induction method, in which xsécfor each part-of-
speech tags are generated first, then the Expectation-Naation (EM) is used to esti-
mate model parameters. They compare the full EM, the VitENdiand thek-best EM

schemes and find that tihebest EM algorithm performs best.

In this chapter, we focus on the above approach and proptesesésns and improve-
ments. Specifically, we introduce boundary part-of-sp@€dS) tags into the baseline
model to capture lexical information of language. The baugdnodel and the basic
model are combined together. We also perform nonparantdsiesian inference based
on the Pitman-Yor process to learn compact grammars. Hxpetal results demon-
strate that the boundary models consistently improve teellmee models for all learning
algorithms (full EM, k-best EM, and Bayesian inference). The Bayesian infereate o

performs the full EM, but underperforms thebest EM.
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5.1 Grammar Generation

Bisk and Hockenmaier (2012Ipropose a simple iterative lexicon generation algo-
rithm from the golden part-of-speech (POS) tags. Due toithplgity and effectiveness
of this method, we also adopt it to generate lexicons in ouhote We rephrase their
algorithm with minor modifications in this section.

Only two atomic categories| (nouns or noun phrasés)ands (sentences) are al-
lowed in grammar. Conjunction words are expanded from aigpsanjunction category
conj. Trees are all generated from a special start symbpl In assumption, all strings

are either nouns or sentences, i.e. they are generated frerof ohe two unary rules:
TOP — N TOP — S

In addition, we restrict that: (1) strings containing atsieane verb must be parsed with
the TOP-S rule; and (2) strings without any verb must be parsed witlTtTeN rule?.

The initial CCG lexiconZ¥ is created manually by assigning atomic categotg
nouns,sS to verbs, andtonj to conjunctions for fixed POS tags. The following is an
example of initial lexicon for the English Penn TreebankgagMarcus et al., 1993

N : {DT, NN, NNS, NNP, NNPS, PRP}
S : {MD, VB, VBD, VBG, VBN, VBP, VBZ}
conj: {CC}
Note that the tagiNPS (representing plural proper noun) and the ¥&g (representing
verb of non-3rd person singular and in present tense) aremgisn Bisk and Hocken-
maier, 2012pbbut they are included in the treebank tag set.
The lexicon for atomic categories remains fixed after thisihiexicon £(°) has been

created. However, the categories that POS tags may acgeiupdated iteratively during

In formal English grammaraip is often used to represent noun phraseskenmaier and Steedman,
2007. Following Bisk and Hockenmaier, 2012bwe do not distinguish noun phrase from nouns for
efficiency. This simple treatment causes some problemstreegleterminers would be treated as adjuncts
and then regarded optional, but actually they are needesirfgular count nouns.

2Bisk and Hockenmaier (2012bnly make the first restriction.
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induction. In each step, we create new category candidateslfacent words, including:
(a) modifiers, in the form ok|X; and (b) functors, in the form df|y for different cate-
goriesX andY. The motivation of modifiers and functions has been desgrilv&ection
1.4. If new candidates satisfy at least one of conditions anthteanone of restrictions,
they are inserted to the lexicon of corresponding POS tag chmditions (items with
[c]) and restrictions (items with [r]) of modifiers and furats are listed as follows.
Modifier For each POS tag with some categaryve insert new modifier candidaXéx
(and corresponding\X) to the right- (and corresponding left-) adjacent POS fag, i

[c] X is an atomic category;

[c] X is a modifier itself.
Functor For adjacent POS tags with categorkeandy, we consider thax may takeY
as argument to form the functor categdry, andY may also tak& as argument result
in the functorY\X. The new category is valid if the hedidand argumenk pass the fol-
lowing tests:

[c] H is modifier or in the form ofg|...), andA is atomic categoryl or S;

[c] HisS andAisN, i.e. categorieS/N andS\N are allowed;

[c] A is not modifier, i.e. any non-modifier (atoms and functorsy i@ argument;

[r] H is different fromA, otherwise the result category is modifier rather than fomct

[r] H is notN, since we assume that atomiican not take any arguments.

After creating lexicon, we parse the sentences with CCG ambye categories that
can not lead to a parse. The rest categories for POS tagsedd@aigpdate the lexicon

for each step. We perform this induction step twice to obtaénfinal lexiconZ®.

The above induction procedure is almost the same as thethlgatescribed inBisk
and Hockenmaier, 2012bThey also introduced an additional induction step to comb
adjacent constituents that can be derived from the exisxigon. However, their exper-
iments did not show significant improvement of this “derivégkicon generation step,

S0 we omit this step in our experiments.
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5.2 Improved CCG Induction Models

5.2.1 Basic Probabilistic Model

The basicmodel is the baseline model described Ho¢kenmaier and Steedman,
2002, which is also used inHisk and Hockenmaier, 2012bThere are four types of
rules in CCG: lexicali{) rules generate terminal words; unaty (ules which could be
root rules or type-raising rules; left-headdd ules with the first symbol as functor,
e.g. the forward composition rules; and right-head®d(les with the second symbol
as functor, e.g. the backward composition rules. Binargsrare generated top-down
recursively from the special start symllP. For each unexpanded nontermiRathe
basic model first generates the expansion gggec {W, U, L, R} according taP. (exp|P).
Then for each expansion type, the model generates eitmemi@rwordw or head child

H and possible non-head chiiid

Lexical: P.(exp = W|P) P, (w|P,exp = W)

Unary: P.(exp = U|P) Py(H|P, exp = U)
Left: P.(exp = L|P) P.(H|P,exp = L) P(N|P,H,exp = L)
Right: P.(exp = R|P) Pr(H|P,exp =R) P.(N|P,H, exp = R)

where the subscripte:, w, U, L, [, R, r} represent different probability distributions.

After the lexicon generation step (presented in Sedid) each POS tag acquires a
lexicon of CCG categories. These lexicons are used to paggedining corpus and CCG
rules are created. For parameter estimation, we implernefbtpectation Maximization
(EM) algorithm is used to learn probabilities in the basicd®lo In the full EM, the
Inside-Outside algorithmL@ri and Young, 199pis used to collect the expected counts
in the E-step of EM algorithm. We also implement théest EM described irBisk and

Hockenmaier, 20129bin which the expected counts are collected frobest parse trees.
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5.2.2 Boundary Models

Boundary part-of-speech (POS) tags have been proven usefdetecting phrase
boundaries in supervised settirKjgng et al., 2010He et al., 201Pand in unsupervised
grammar induction@olland et al., 2012Huang et al., 2012 We introduce this idea to
unsupervised combinatory categorial grammar inductianceSthe POS tags are used
as input of the induction system, we use the terms “boundargiand “boundary POS

tag” interchangeably in this chapter.

TOP
S[L]
/\.
N[>] S\N[<B']
/////”\\\\\ T~
N/N N S\N s\s

DT[The] . NNS[man] ) VBD[ate] RB[quickly]
3

Figure 5.1: lllustration of the boundary probability cdition. The CCG rule types
are given in the square brackets next to each nontermin#ghoéddh only POS tags are
considered in induction model, we also show the words faitgla

Particularly, the boundary words of a given span are defisedeaordered pair of the
leftmost and the rightmost POS tag of the constituent cavbyethe span. Given parse

treeT’, we define the new probabilistic model as

P(T) = ( 11 fbcgoq> ( 11 ngRuamvzn) (5.1)

rulereT span{i,j)eT
where distributionP- ¢ is the basic CCG model defined in Sect®R2.1, Pzpr IS the

proposed boundary model, ;; means the boundary POS tags of the constituent covered
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by span(i, j), andB is a special nonterminal representing the constituentspdote the
basic modelP-¢( is defined over tree rules, and the boundary mdelgl is defined
over tree spans. This model is named ashhsic+bdr model in experiments. The
boundary modePgp could be learned by full EM and k-best EM, similar to the basic
CCG model (subsection2.1). We also propose Bayesian inference for both the baseline
and boundary models (see next subsection).

Figure5.1shows an example of induced CCG tree. The probability ofgharse tree

under the boundary model is:

Pspr(T) = P(DT_DT|B) x P(NNS_NNS|B) x P(VBD_VBD|B)
x P(RB_RB|B) x P(DT_NNS|B) x P(VBD_RB|B)

x P(DT_RB|B) x P(DT_RB|B)

Note that the boundary probabilities are defined over thesfm each tree node, so for
unary rules (e.g. the root rules and type-raising rule® ,abundary probabilities may
be calculated multiple times for the same span, e.g. the i&DT_RB|B) appears twice

in the above example. This model is slightly different frdme probability model of the
constituent context model described in Sectiah in which the probabilities are defined
over unique span set.

Currently, we use a single nontermirgatio represent all boundary tag pairs. We have

also tried to let the boundary pairs depend on the categorgrmoésponding tree nodes.

For instance, the new boundary probability for the tree guFeé5.1becomes
Pppr(T) = P(DT_DT|N/N) x P(NNS_NNS|N) x P(VBD_VBD|S\N)
x P(RB_RBJS\S) x P(DT_NNS|N) x P(VBD_RBJ|S\N)
x P(DT_RBJS) x P(DT_RB|TOP)
However, this category-dependent boundary model perf@oas in experiments (not

reported). The reason might be the data sparsity probleroe shere are quite a lot of

categories in the induced combinatory categorial grammar.
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5.2.3 Bayesian Models

The EM algorithm may overfit the training data, so we propbseBayesian model to
infer grammars and tree structures. In Bayesian modelgye¢herative process is often
formulated as the Chinese Restaurant process (CRP) orttharR¥or process (PYP) to
encourage rule reuse and learn compact models ¢t al., 2006Pitman and Yor, 1997
Since PYP is a generation of CRP and has more elegant analtalnlie behaviour over
the “long tail” of probability distributions, we focus on Fin our approach.

The detailed PYP has been given in Sectioh.2 and we apply the PYP into CCG
induction. For each nonterminain CCG, we maintain a cache to store the total number
n of rules expanded with as parent, the total different rule types and the counts,,
of each rule that has been generated,kifot 1,...,m. Initially, all caches are empty,
i.e. withn = m = 0 and parse trees are generated in sequence. For each setitence
PYP generates trees in top-down fashion. For each nontaftalrel to be expanded, we
consult the cache associated with that nonterminal andidednether to choose thé&"

rule in the cache, or generate a new rule. The probabilithed¢ two cases is

math - if z1=m+1
P(z|2icn) = " _ (5.2)
et iz =k ke {l,--- ,m}

wherez; is the cache index of thé" generated ruley € [0, 1] andb > 0 are two label-
associated parameters naming the discount and concentgrameters respectively.
Note that different labels may have different values:@&ndb. If we decide to gener-
ate a new rule, then the new rule is sampled from the baseronital distributionF,.
We also put a Dirichlet prior on the base distribution and [glenthe base rule proba-
bilities & ~ Dir(8|a). The above sampling procedures are performed recursiogiyn d
until all frontier labels are terminals. For CCG inductiooaels described in previous
sections, PYP priors are put on all factored models, althabhgy may have different

hyperparameters.
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To infer trees and parameters of PYP model, we apply the ps#l Metropolis-
Hastings algorithmHastings, 1970Johnson et al., 200Tho sample trees from parse
forest. In detail, we iteratively draw samples for eachdialtraining corpus in sequence
or in random order. Assuming the current tree of thd”OS tag sequence1s, we first
remove this tree from the whole tree set to obt@in, the set of sampled trees except
thei'» one. Then we draw new tré&€ from some proposal distributio(77|7_;), and

accept the new sampled tree with probability

A(T;, T!) = min {1

)

P(T,|a7 a, b) Q(Tz|711) } )

" P(T|a, a,b) Q(T!|T-;) (5.3)

In theory, @ could be any distribution if it never assigns zero prob#biln practice,

the proposal distribution should be close enough to thedisiibution to avoid high

rejection rate. We use following proposal distribution xperiments:

1

I Plzr) Po(r|a)’e7=) (5.4)

rulereT;

in which P, is the conditional index probability in EquatioB.p), and the model needs
to consult the base distributia) if it encounters a new ruled(r ¢ 7_;) = 1). We do
not need to calculate the normalization consté(if_;) since it would be cancelled in
Equation 6.3). The proposal distribution differs from true distribution the sense that
caches are updated immediately after calculating proitiabilof each rule irif; under
the true distribution, while the caches stay fixed in propdssribution evaluation. In
experiments, we observe that only a tiny fraction (less #?ahof proposals are rejected.
This provides evidence that the proposal distribution \soslell enough. We use the
sampling algorithm described iB{unsom and Osborne, 20P® draw a parse tree from

the parse forest according to the proposal distribufjon
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5.3 Experiments

5.3.1 Datasets and Settings

We carry out experiments on the Wall Street Journal portibthe Penn English
Treebank [larcus et al., 19983 As the standard data split, we use sectio221 as the
training set, section0 as the development set, and sect¥3nas the final test set. We
remove punctuations and null elements in treebank, asahdatd preprocessing step in
previous unsupervised grammar induction approadkiksnand Manning, 2002Cohn
et al., 2010 Bisk and Hockenmaier, 2012b For comparison, we build datasets with

sentence lengths no more then 20, 30 and40 words after removing punctuations.

Train Dev Test

Dataset— sent| # word | # sent| # word | # sent| # word

PTB10 | 5899 | 41701 | 265 | 1875 | 398 | 2649
PTB20 - - - - 1286 | 16591
PTB30 - - - - 2028 | 35148
PTB40 - - - - 2338 | 45813

Table 5.1: Penn treebank data statistics.

As the standard machine learning pipeline, we perform legrand inference on the
training set, select model with best performance on theldpugent set, and report the
result of selected model on the test set. Theoretically,lwelsl tune and test parameters
on corpora with the same length. However, the number of CG€goaies obtained is
huge, so it takes quite a long time on tuning parameters ampdentences. As a result,
following previous approachB{sk and Hockenmaier, 201Pbwe only train and tune
parameters on sentences with length no more tihabut report performance on longer
sentences as well. Tabtel gives the statistics for each dataset.

The original Penn treebank only has constituency treeswbutvaluate the perfor-

mance of dependency trees. Converting constituency tcedsfgendency trees is not
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a trivial process, in which the head word of each constitiies® node must be identi-
fied. This is usually done using manually written convertinigs Collins, 1999. To be
consistent with previous work, we uséopansson and Nugues, 2J8Zodé€ to convert
treebank to dependency structures. Fightzand5.3 show a constituency tree and the

corresponding converted dependency tree.

VP
VP
/I\
DT/\NN MD VB DT JJ NN

the exchange should take . a pro-active position
1 2 3 5 6 7

Figure 5.2: An example of constituency reference tree.

M

ROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.3: An example of converted reference dependenggtate.

For natural languages, most dependencies are betweereadyacrds, such as the
adjacent adjectives and nouns. Similar to the trivial laftd right-branching baseline
in constituency grammar induction (Sectidr8), we also investigate two trivial base-
line, named backward linked tree and forward linked tree,d®pendency induction
system. Figuré.4 shows the backward linked dependency structure (correspgno
the left-branching constituency tree), in which each waidas the preceding word as an

argument and the last word acts as the head of the whole senteigure5.5shows the

Shttp://nlp.cs.lth.se/software/treebank_converter
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forward linked dependency structure (corresponds to tet-tiranching constituency
tree), where each word is the head of the succeeding worcharfdst word links to the

root. We report evaluation results for these trivial basdiin experiments as well.

ROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.4: An example of backward-linked dependency &irec

/WWWV\
ROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.5: An example of forward-linked dependency streect

To reduce model complexity, we restrict that the maximakof composition rule
is 2. The rule probabilities are initialized uniformly. For Fl#M models, we add fixed
value to expected counts in each E-step as smoothing. Werpenhiaximal(0 EM iter-
ations while stop eatrlier if the development score startfop. Fork-best EM models,
we interpolate thé-best probabilities and the full probabilities as desdatibethe foot-
note in Bisk and Hockenmaier, 2012bWe test different: (number of best trees) and
select the best one that achieving the best UAS in the dewveopset. In the Bayesian
inference, we run sampler through the whole training sex@efor400 iterations and use
the last sampled grammars to parse fresh sentences. Fodi@hnson and Goldwater,
2009 Huang et al., 201)] we put an uninformativ8eta(1, 1) prior ona and a “vague”
Gamma(10,0.1) prior on b to model the uncertainty of these hyperparameters. After
each iteration, we resample each of hyperparameters frerpdhkterior distribution of

hyperparameters using a slice sampliéedl, 2003.
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5.3.2 Evaluation Metrics

For the induced CCG trees, we followick and Hockenmaier, 2012IBisk and
Hockenmaier, 201340 convert CCG trees to dependency trees: (1) modifierseaeed
as dependents of their heads; (2) the head of the senteneatisd as a dependent of a
special root node at positian (3) the left part of conjunction is treated as the head of
conj, andconj is treated as the head of right part. Figbré and5.7 show an example
of the induced tree of combinatory categorial grammar aedtthresponding converted
dependency structure. The dependency links (represestad@ws) are pointed from
the head word to its arguments. Note that the dependen@asmabeled, since we do

not have label information in unsupervised induction.

Aﬁ =

N/N S\N {S/N}\S N/N N/N
| | |
DT NN MD VB DT JJ NN
| | | | | |
the exchange should take a|1 pro-active position
1 2 3 4 5 6 7

Figure 5.6: An example of constituency candidate tree.

ROOT DT NN MD VB DT JJ NN

the exchange should take a pro-active position

Figure 5.7: An example of converted candidate dependenagtstes.
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For evaluation, we represent a dependency tree as a setefdispey links. There are
alwaysn dependency links for sentences with lengthTherefore, there is no difference
between precision and recall, and we measure dependengsaagcstraightforwardly
by comparing the two dependency link sets of reference amdidate dependency trees.
The accuracy can be evaluated for the directed or undirdictes] in which the former
one consider the link directions but the latter one ignoeditik directions. We adopt the
directed accuracy and use the script of CoNLL 2008 shardd tasalculate the Unla-
beled Attachment Score (UAS) . Note that the UAS is calcdlateer the whole dataset
rather than individual sentences. We perform the McNensagisificant testiicNemar,
1947 to compare the proposed models with the baseline models.

We show an evaluation example here. The reference tree imébg3 and the candi-

date tree in Figur®.7 can be represented as following directed link sets

Ref Cand Matched
([0]JROOT, [3]MD, —) - -

([1]DT, [2]NN, ) ([1]DT, [2]NN, «=) | ([1]DT, [2]NN, <)
([2]NN, [3]MD, <) ([2]NN, [3]MD, «—) | ([2]NN, [3]MD, «—)
([3]MD, [4]VB, —) - -

([4]VB, [T]NN, —) ([4]VB, [T]NN, —) | ([4]VB, [7]NN, —)
([5]DT, [7]NN, «) ([5|DT, [T]JNN, «—) | ([5]DT, [7]NN, <)
([6]33, [T]NN, <) ([6]33, [TINN, <) | ([6]3J, [7]NN, <)

. ([0JROOT, [4]VB, —) i

- ([3]MD, [4]VB, ) -
gl =Ic| =7 M| =5

As aresult, the unlabeled attach score for this examplé.drethe similar way, the UAS
of the corresponding backward linked tree (FigGrd) and forward linked tree (Figure

5.5 are2 and1 respectively.

“http://barcel ona. resear ch. yahoo. net / dokuwi ki / doku. php?i d=conl | 2008: sof t war e
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5.3.3 Smoothing Effects in Full EM Models

We first carry out experiments to examine the effect of smagtalues for full
EM models. We test smoothing values from {1,10,20,30,48%70,80,90,100} and
evaluate the unlabeled attachment scores (UAS) of basiehardl basic+bdr model
on the development set and the PTB10 test set. Note that #iesfimoothing value is
selected as the one with best performance on the develom®emot related to the test

set), and the results on the PTB10 test set are only givenefsr@nce.

68

dev: basic —+—

tst: basic
dev: basic+bdr —x—
tst: basic+bdr —&—

unlabeled attachment score (%)

54 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
smoothing value

Figure 5.8: Impact of smoothing values on full EM learning @€CG induction. The
dependency accuracy values on the development and te$tSEBAO are plotted.

The experimental results are plotted in FigGr The accuracy scores on the devel-
opment set first increase then decrease with the incrememodthing value. We can
easily find that the best smoothing value (with highest dewe) is20 for both the ba-
sic model and basic+bdr model. The basic+bdr model ach®gesdicant better results
(dev:66.3, tst: 66.7) than the basic model (de#3.3, tst: 62.9) atp < 1073 level on both

development and test set when optimal smoothing valueségeted.
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5.3.4 K-bestEM vs. Full EM

In k-best EM, we select from {1, 10, (step 10), 200, (step 20), 300, (step 100),
1000}. Note that wherk = 1, the 1-best learning is known as the Viterbi learning
algorithm. The unlabeled attachment scoreg:dfest EM on the development set of
basic and basic+bdr models for different values @ire plotted in Figur®.9. The best

results of full EM are also shown for comparison.

75
dev: basic full EM
dev: basic+bdr full EM
dev: basic k-best EM ——
dev: basic+bdr k-best EM —&—
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Figure 5.9: Impact ok on k-best EM learning for CCG induction. The dependency
accuracy values on the development set of PTB10 are plotted.

From this figure, we can see that the accuracy scoresluést models increase
quickly with the increment of, then decrease slowly and finally converge to some steady
points. Secondly, the best resultsiabest EM exceed the full EM, proved the conclusion
in (Bisk and Hockenmaier, 2012bThirdly, the basic+bdr models outperform the basic
models, which demonstrates the effectiveness of boundargsy Finally, the Viterbi
results are lower than both the results of full EM antbest EM, which is consistent

with (Bisk and Hockenmaier, 2012bout opposite to$pitkovsky et al., 2010b
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5.3.5 Induction Results

The final results over all datasets are shown in Tahb?dor comparison. We report
the unlabeled attachment scores for the basic and basictbdels using full EM k-
best EM and Pitman-Yor process (PYP) as learning methodsieSesults of existing

approaches are included in this table as well.

| Model [ PTB10] PTB20] PTB30] PTB40]

(Klein and Manning, 2004 47.5 - - -
(Headden Il et al., 2009 68.8 - - -
(Spitkovsky et al., 2010b 65.3* | 53.8* - -

(Cohnetal., 201D 65.9 58.3 - -

(Bisk and Hockenmaier, 2012b 71.5 60.3 - -

(Naseem et al., 20}0 719 | 50.4* - -
Trivial backward' linked| 32.7 28.8 27.7 27.2
forward linked 25.4 25.7 26.3 26.4
, . basic 39.2 23.2 18.5 16.8
Viterbi EM basic+bdr 39.0 | 270 | 232 | 22.0
basic 67.3 56.0 52.0 50.4
h-bestEM —— ic+bar | 68.1 | 56.6 | 528 | 514
full EM bgsic 62.9 49.9 46.0 44.6
basic+bdr 66.7 54.0 49.4 48.2
PYP bgsic 66.0 53.9 50.5 48.8
basic+bdr 66.7 55.1 51.0 49.0

Table 5.2: Induction results of improved CCG models. Rassoitexisting approaches
are copied from Bisk and Hockenmaier, 2012b Starred results were obtained with
additional training data.

From this table, we can see that both the trivial backwarkelihand forward linked
baselines perform poor at the evaluation of dependencyacgul hese results are quite
different from the constituency grammar induction res@tsown in Sectiort.3.3, in
which the trivial right-branching constituency trees &sfei good performance. This
could be explained that although the constituency treesiginé-branching preferable,

the head words of constituents have not left or right pasiticeference.
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Viterbi EM can be seen as a special casekdiest EM withk = 1. Although
Spitkovsky et al. (2010bdemonstrate the Viterbi training method improves the Depe
dency Model with Valence (DMV), it does not perform well fouroCCG induction
model. Experimental results show that with a suitable s@le®f k, the k-best EM

outperforms the full EM, which is consistent witBigk and Hockenmaier, 2012b

With the introduction of Pitman-Yor prior distributiond)e proposed Bayesian in-
ference improves the full EM induction results. This pra@sdcevidence that compact
models are preferred in unsupervised CCG induction. Lowan expected, however,
the PYP results are still lower than thebest EM results. The reason might be thbest
EM is more likely to escape from local optima, while the samgpprocedure needs too

many iterations to converge and usually gets stuck in logair@ in practice.

Boundary models (basic+bdr) consistently show betteroperdnce than the corre-
sponding baseline models (basic), for all the full EMhest EM and Bayesian learning
models. The improvements of boundary models under Bay@siarence is relatively
smaller than the full EM and-best EM. The reason might be that both the bound-
ary models and Bayesian models give high probabilities ésdtparse trees with more
reused rules, so the combination of them only performs 8jidretter than individual
component. For longer sentences, the boundary methddasggierform baseline model,

demonstrating the robustness of our method.

Compared with existing approaches in Tabl@, our models stay in the interme-
diate level. The dependency accuracy scores of the Depeyndéodel with Valence
(DMV) (Klein and Manning, 200¢dare much lower than oursieadden Il et al. (2009
improve the basic DMV using rich contexts, words as well aSRays, and sophisti-
cated smoothing techniques, which might explain their éigierformance than ours on
short sentencesspitkovsky et al. (2010kpropose to use the Viterbi learning for DMV,
but their results are lower than our reported on€shn et al. (201Ppropose compli-

cated Bayesian models for the tree-subsection grammaish verdifficult to implement
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and tuneNaseem et al. (20)@nanually specify some dependency rules in experiments,
while we just use some coarse restrictions on lexicon anthigna generatiorBisk and
Hockenmaier (2012reports better results than our models on both short argiden-
tences. Our basic models with full EM akebest EM are the reimplementation of their
models. As their induction codes are not public availabteydver, we may miss some

details in implementation, and can not reproduce theirlt®su

5.3.6 Discussion

Our method takes the golden part-of-speech tags as inpid.pféctice may reduce
data sparsity problem caused by directly modeling wordswéder, this may also lose
useful lexical information. As reported ikleadden Il et al., 2009incorporating words
with high frequencies (greater thano0 times in their experiments) as well as the POS
tags could improve the induction accuracy for dependenayatso In CCG, words may
also help to distinguish lexical categories. For examgie,ttansitive verbs are often
tagged asq\N)/N and the intransitive verbs often have categsly. However, these
syntactic differences are not encoded in the Penn treeb@skt&gs, in which they may
both have the POS taBx depending on the tenses. How to use rich lexical information
to help the CCG induction is one possible research directi@ur work.

Although the simple additive smoothing methods could impr&M results (see
Figure 5.8), sophisticated smoothing schemes are also applicatdadden 1l et al.,
2009. Currently, the final probability is the product of basic G@odel and boundary
model, which is motivated by the agreement measurement rd alggnment Liang et
al., 200§. Although this simple strategy has already shown effectass in our experi-
ments, other interpolation techniques could be also testeaddition, the context POS
tags have been proved useful for constituency tree indugitein and Manning, 2002
Golland et al., 2012Huang et al., 2012 Using context information is another extension

of our current work.
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5.4 Summary

In this chapter, we have proposed to incorporate lexicalrmftion in unsupervised
CCG induction. Specifically, an additional boundary modediéfined to capture com-
plex language aspects, in which boundary words are gewefian a special symbol
independently for each span covered by tree nodes. Furtineynve describe nonpara-
metric Pitman-Yor process to encourage rule reuse. Expatizh results demonstrate
that the boundary models consistently improve the baselimgels for all learning algo-
rithms and over all datasets. The Bayesian inference dotpes the full EM, but still

underperforms th&-best EM.
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Chapter 6

Conclusion

6.1 Summary of Achievements

In this dissertation, we focus on three unsupervised stra@hduction problems: the
transliteration equivalence learning, the constituerreyrgnar induction and the depen-

dency grammar induction. We make following contributions:

e We review the overfitting problem of existing EM-based ttaesation models and
propose a general nonparametric Bayesian learning frarkdiaotransliteration.
We demonstrate how to represent the syllable learning pnolals the grammar
inference problem. The proposed synchronous adaptor gaasn(BAGs) could
automatically discover syllable equivalents without amytstics or restrictions.
The joint source-channel model is then used for training @eebding. Experi-
mental results on transliteration task of four languagesgiow that the proposed
method outperforms the EM-based baseline system. In tivig pbview, the new

model is language independent.

e We discuss the problems of constituent-context model (C@M)constituency
grammar induction and present the feature-based CCM inhwimguistic knowl-

edge could be easily incorporated. The EM algorithm is apiplicable for this
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local normalization method. The use Qfnorm regularization leads to compact
grammars. We also propose a reasonable model selectiorvalugton strategy.
Experiments demonstrate that the presented model achievegarable perfor-

mance on the short sentences but significant improvemetitedonger sentences.

¢ We investigate the state-of-the-art combinatory catedjgrammar (CCG) induc-
tion approach and propose to use boundary part-of-spegslatal Bayesian learn-
ing to improve the EM baseline. Specifically, an additionalibbdary model is
defined to capture constituents, in which boundary wordsgarerated from a
special symbol independently for each span covered by wdes: We also pro-
pose a Bayesian model based the Pitman-Yor process to egeowle reuse. The
full EM and k-best EM learning algorithms are also implemented for campa.
Experimental results demonstrate that the boundary maedeisistently improve
the baseline models for all learning algorithms and ovedahsets. The Bayesian

inference outperforms the full EM, but ttiebest EM performs the best.

6.2 Future Directions

In this dissertation, sampling techniques are used to igfammars for Bayesian
models (see Chapt@randb), since they are easy to implement. Although correct sam-
pling implementations guarantee to converge to the redbghitity distributions, the
converging speed is often slow in practice. An alternatmeraximating inference tech-
nique is the variational Bayesian inference, which castgtbsterior inference as a de-
terministic optimization problemJprdan et al., 199%ohen et al., 2010

Currently, we use the joint source-channel model as thedilegonodel for transliter-
ation. Similar the probabilistic inference for machinengkation Blunsom and Osborne,
2008, we can also directly use the synchronous adaptor gramesatecoding models,

instead of converting the inferred grammars to lattice dmhtusing the joint source-
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channel model to decode.

For feature-based CCM, we only experiment a few feature la&ieg Other features
such as words, stems may improve the performance. Morgowectuations are useful
information in grammar inductiorSpitkovsky et al., 201%Ponvert et al., 2001 while
currently punctuations are ignored in our model.

The lexicon generation step is very important for the CCQuatidn. In this thesis,
we just follow previous workBisk and Hockenmaier, 2012bo automatically generate
lexicons for each part-of-speech tag from the basic categ®randN. We may assign
more linguistic-motivated initial categorie®¥/atkinson and Manandhar, 1999 the in-
duction system.

Another direction is to use induced structures in subseER tasks, e.g. machine
translation. One issue should be mentioned is that the atrafumetrics used in unsu-
pervised learning tasks are different from the final evadmanetrics used for application
tasks. For example, the treebafRk score is used to evaluate the constituency tree in-
duction system, while the BLEUP@pineni et al., 2004s commonly used to evaluate

machine translation. We may use the final evaluation mairgutde the induction task.
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