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Abstract. This paper presents models for automatic transliteration of
proper names between languages that use different alphabets. The mod-
els are an extension of our work on automatic discovery of patterns of
etymological sound change, based on the Minimum Description Length
Principle. The models for pairwise alignment are extended with algo-
rithms for prediction that produce transliterated names. We present
results on 13 parallel corpora for 7 languages, including English, Rus-
sian, and Farsi, extracted from Wikipedia headlines. The transliteration
corpora are released for public use. The models achieve up to 88% on
word-level accuracy and up to 99% on symbol-level F-score. We discuss
the results from several perspectives, and analyze how corpus size, the
language pair, the type of names (persons, locations), and noise in the
data affect the performance.

1 Introduction

The task of machine transliteration involves mapping the representation of a
word to another language, typically using a different alphabet, based on its
sound or spelling, rather than its meaning. Transliteration is commonly applied
to proper names, as well as to terms in rapidly growing areas, such as medicine
or technology, [12]. Two principal applications for machine transliteration are
machine translation and information search—multilingual information retrieval
(IR), information extraction (IE), and named-entity recognition (NER). While
in machine translation the goal may be to produce only one correct translite-
ration for each word, in other tasks we may wish to produce several possible
transliterations, and merge different variants of the same name.

There are two main approaches to machine transliteration: transliteration
generation and transliteration mining (discovery). In transliteration generation
one builds a transliteration model, which takes a source named entity as input
and produces its representations in the target language as output.

Transliteration generation can be considered in a broad sense as a special case
of alignment and transduction of words. The similarity of machine transliteration
and alignment of etymologically-related words have been observed by [15], who
applied the same model, a finite state transducer, for both tasks. In [1], translite-
ration is mentioned in the broader context of linguistic string-transduction tasks,
such as paraphrasing, morphological transformation and co-reference resolution.
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The definition that [3] proposes for cognate—“words with a common form
and meaning across the languages”—is applicable to both transliterated and et-
ymologically related words. Machine transliteration is, of course, a different task
from cognate alignment. The main principle for word changes in etymology is
the regularity of sound change, whereas transliteration of names may not al-
ways follow regular rules. Transliteration does not always follow pronunciation
in practice—it can be based on script, or tradition, or on translation. For exam-
ple, the French name Jean [ZÃ] used to be transliterated into Russian as Жеан
[üEan], i.e., based on its French spelling rather than its pronunciation. The same
name may be transliterated into another language differently depending on tra-
dition: e.g., the name of the famous Russian author Лев Толстой is commonly
translated into English as Leo Tolstoy; the name of his son, which is identical in
Russian, is commonly transliterated as Lev Tolstoy. Furthermore, transliteration
rules may be different in different domains [6].

Thus, there may be more noise in transliteration data than in etymological
data. On the other hand, words in remotely related languages, (e.g., Finnish–
Hungarian), will have substantially more complex correspondences. Therefore,
while the tasks of transliteration and etymological alignment may be similar from
the algorithmic point of view, it is not a priori obvious that the same algorithms
will work for both tasks.

The models that we use for transliteration were originally developed for auto-
matic discovery of patterns in etymological sound change, [17]. We apply these
models to 13 parallel corpora in 7 languages: Farsi, English, Russian, Greek,
Hebrew, French, and Japanese (Katakana script for foreign names), which are
extracted from Wikipedia headlines using language links. We report results on
automatic transliteration of names of American actors from English into four
languages that use different kinds of writing systems: alphabetic (Russian and
Greek) and consonantal (Farsi and Hebrew). We also examine the performance
on data of different semantic type—person names vs. location names. For exam-
ple, for English-Russian transliteration we use 3 different datasets: person names
of English origin (American actors), person names of Russian origin (Russian
writers), and location names of Russian origin (Russian cities).

As far as we are aware, the comparison of transliteration results among differ-
ent semantic types has not been addressed in the literature to date; [10] studied
the influence of the origin of names and of noise in the data on the results of
transliteration, but they did not apply their method to words of different types.

2 Related work

A comprehensive survey in [9] classifies machine transliteration generation meth-
ods into several broad categories: rule-based, phonetics-based, spelling-based,
hybrid—a mix of spelling and phonetics, and combined—applying several meth-
ods and then selecting the best transliteration via re-ranking. According to this
classification scheme, the models we use would be classified as spelling-based, as
they use only the spelling of the words with no information about their pronun-



ciation. Some of our etymological models use phonetic features [19]; they will be
applied to the transliteration task in future work.

The most common approach for spelling-based transliteration uses source-
channel models, [11,4]. Many methods used for machine transliteration are adopted
from phrase-based statistical machine translation [16,5]. The importance of the
representation of word-pairs is emphasized in [6], i.e., the features used in the
transliteration task. The representation in [6] combines uni-grams and bi-grams,
which are then used as features in an optimization task. It was shown in [12]
that sequential n-grams outperform the bag-of-word n-gram models.

A Minimum Description Length (MDL) approach to transliteration is de-
scribed in [22]. This work, as well as others [13,8], uses the Expectation-Maximization
(EM) algorithm: in the Expectation stage the probabilities of substring corre-
spondence are counted; in the Maximization stage word pairs are re-aligned using
these probabilities.

Automatic transliteration and evaluation has been explored in a series of
workshops on Named Entities, which organized shared tasks in transliteration
generation and mining [24].

3 Data

We use datasets that we extracted from cross-language links in the Wikipedia.
We did not try to extract as much data as possible; rather, we focused on lan-
guage and on topical homogeneity of each dataset. In this paper, we present
work on Wikipedia dumps dated up to 12 December 2012.1 We used only the
page titles, language links, and category links. The full text of the articles is
not used in the transliteration task, with one exception, below. To extract the
datasets we used Wikipedia Categories; we tried to focus on categories that can
guarantee higher homogeneity in the data. For example, the majority of names
in category American actors are of English origin, and most of the names in
category Russian Writers are of Russian origin. However, there are many excep-
tions among person names; this is especially true for languages such as English
or Russian, which are in use across wide geographic areas.

We also used location names, since toponyms may be more stable and more
consistent than person names. For the dataset of Iranian Locations, we parsed
the content of the corresponding Wikipedia pages. Since the number of titles
for Iranian cities in the Russian Wikipedia was small, we collected names of
towns and locations from Russian-Wikipedia pages about Iranian Shahrestans
(counties). The data used our experiments is summarized in Table 1.

Each dataset was semi-automatically cleaned. Some amount of noise was
intentionally left in data; e.g., the name of the Russian city Санкт-Петербург
([Sankt-Peterburg]) is usually “transcribed” into English as Saint-Petersburg,
because this is a commonly accepted translation, although it is not phonetically
accurate. We removed patronymics, which are very common in the Russian data,

1 Wikipedia dumps are available under the GNU Free Documentation License and
Creative Commons License at the Wikimedia Web-site.



Dataset Language Size: # Dataset Language Size: #
pair of pairs pair of pairs

American Actors En–Ru 1471 Russian Cities Ru–En 1136
En–He 1245 Ru–Fa 870
En–Fa 840 Ru–Fr 828
En–Gr 407 Ru–Jp 317

Russian Writes Ru–En 1462 French Cities Fr–Ru 828
Iranian Cities Fa–En 439 Iranian Locations Fa–Ru 1893

Fa–Ru 469

Table 1: Transliteration corpora/datasets, extracted from Wikipedia headlines
and language links. The language codes are: En–English, Fa–Farsi, Fr–French,
Gr–Greek, He–Hebrew, Jp–Japanese (Katakana), Ru–Russian.

since in most cases they are omitted in other languages. We also removed all
accent marks from the Greek dataset. Since these marks are obligatory in Greek
script, transliteration models based on these data cannot be used in real-world
application, though this data still interesting for a transliteration task.2

It was stated in [24] that “a reasonably large” dataset for the translitera-
tion task should consist of ∼10 000 name pairs, which is orders of magnitude
larger than our datasets. Some authors report satisfactory results using consid-
erably smaller datasets. For example, a word-level accuracy of 33% for Arabic-
to-English transliteration is reported using a training set of only 935 name pairs,
and an accuracy of 46% for Russian-to-English, using a training set of 545 name
pairs [23]. In this paper we present models that achieve good results (Section 6)
on relatively small datasets; DirecTL+ [7], which we use as a baseline for com-
parison, also demonstrates reasonable results on our datasets.

4 Method

We use Etymon, a set of MDL-based models that we developed for analyzing
etymological data, as the basis for our transliteration models.3 The collection
of models is described in [17,19,18]. The models take as input a phonetic repre-
sentation of genetically related words, or cognates, and aim to discover regular
phonetic changes between languages within a language family. This is done by
searching for the best pairwise alignment of words, by optimizing the description
length of the alignments. Transliteration is an analogous task, since in order to
learn how to transliterate from one language to another, it seems that a natural
prerequisite is to align the words in the training set. Thus, it seemed reason-
able to suppose that we could use these models for aligning the data. After
alignment, we introduce a set of prediction procedures for performing the ac-
tual transliteration—based on the alignment. We briefly describe the models;
detailed explanations can be found in [17,19]—and the prediction procedure.

2 We consider recovery of accents a separate task, beyond the scope of this work.
3 The tools are publicly available from http://etymon.cs.helsinki.fi/



Fig. 1: English–Farsi alignment matrix; American Actors dataset. The size of
each ball indicates the probability of the corresponding symbol-pair alignment.

4.1 1×1 Alignment

Our baseline 1×1 model finds an optimal alignment, where each symbol of the
source word may align to at most one symbol of the target word, with possible
insertions or deletions. Information about the context of the symbols is not used.

For example, the alignment matrix for English to Farsi transliteration on the
American Actors is shown in Figure 1. The matrix shows that, e.g., English e
is most frequently aligned to “.” due to omission of short vowels in Farsi script.
Mapping English a to Farsi آ is rare, as seen from the size of the corresponding
bubble; this happens when a designates [a] that is situated at the beginning of
the word. The 1×1 model is unable to capture this rule; the only information it
uses is that a is transliterated to ا more frequently than to any other symbol.

4.2 2×2 Alignment

The 2×2 model extends the 1×1 model, by allowing for alignment of up to two
consecutive symbols at a time on each level; this model also takes into account the
start and end word boundaries. Unlike the 1×1 model, this model captures some
information about the symbols’ context when learning the correspondences. For
example, it should discover cases where one symbol in language 𝐴 corresponds
to two symbols in language 𝐵; e.g., Russian ‘ч’ is often transliterated as “ch”
in English—the 1×1 model is by definition unable to discover such correspon-
dences. The 2×2 model can also discover that certain symbols are transliterated



differently when they appear at the beginning or at the end of a word, as in
the example of a and آ mentioned above, in Section 4.1. For example, the name
Alda from the American Actors dataset is correctly transliterated into Farsi as
آلدا by the the 2×2 model—with آ at the beginning. The 1×1 model incorrectly
predicts the transliteration with—الدا ا as the most probable correspondence for
a in both initial and final position, unable to exploit the context information.

4.3 Prediction

Once all word pairs in the training set are aligned, the discovered symbol corre-
spondences can be used to predict transliterations for new, unseen words. The
result of the convergence of the alignment algorithm is a count matrix, such
as one shown in Figure 1, which indicates how often each symbol (in the 1×1
model)—or pair of symbols (in the 2×2 model)—of the source language is aligned
to symbols in the target language in an optimal way. We have implemented an
algorithm that predicts the target representation of a given source word based
on the alignment. Theoretically, this is done by searching among all possible
strings in the target language to select the string that yields the lowest cost
under the model, when aligned with the source word. In practice, this can be
achieved efficiently, by using simple table lookup for the baseline 1×1 model,
and by a Dynamic Programming algorithm for the more complex models. Pre-
diction based on the 1×1 model is straightforward, since symbols are aligned
independently of their context; we assign to each source symbol the single target
symbol to which it is cheapest to align:

𝑡𝑖 = arg min
𝑡∈𝑇

𝐿(𝑠𝑖, 𝑡) (1)

where 𝑠𝑖 is the 𝑖th symbol in source word, 𝑇 is the alphabet of the target lan-
guage augmented with the special symbol ‘.’ to allow for deletions, and 𝐿(𝑥, 𝑦)
is the cost (code-length) of aligning the source-language symbol 𝑥 to the target-
language symbol 𝑦 under the learned model.

The 2×2 prediction is more complicated, since it is possible to align zero,
one, or two source symbols to symbols of the target language, and we need
to choose the lowest cost alignment for the entire source word. We solve this
optimization problem using Dynamic Programming (DP). To predict a target
word, the algorithm starts from the beginning of the source word, and for each
symbol 𝑠𝑖, finds the best prediction up to 𝑠𝑖 based on previously computed
partial alignments. The algorithm computes the cost 𝐿(𝑖) of the best prediction
up to 𝑠𝑖, for all 𝑖. Thus, for predicting the best target sequence corresponding to
the source word up to the 𝑖-th symbol, 𝑠𝑖, the possible final candidate alignments
are in the set 𝐶, where:

𝐶 =
{︀

(𝑠𝑖 : .), (𝑠𝑖 : 𝑡), (𝑠𝑖 : 𝑡𝑡′), (𝑠𝑖−1𝑠𝑖 : .), (𝑠𝑖−1𝑠𝑖 : 𝑡), (𝑠𝑖−1𝑠𝑖 : 𝑡𝑡′)
}︀

,
and 𝑡 and 𝑡′ are symbols from the target alphabet. Each of these 6 alignments
has a fixed cost under the learned 2×2 model. The optimal prediction up to the
𝑖-th source symbol is given by minimizing the sum of one of these alignments,
plus the cost 𝐿(𝑖 − 1) of the optimal alignment up to symbol 𝑠𝑖−1, for the first



three candidates in 𝐶, or 𝐿(𝑖− 2), the optimal cost up to 𝑠𝑖−2 for the last three
candidates in 𝐶,—where 𝐿(𝑖− 1) and 𝐿(𝑖− 2) have been pre-computed by DP
previously. Using this approach the best target word—under the model—can be
predicted in linear time.

5 Evaluation

The quality of machine transliteration depends on the ultimate task for which
transliteration is being developed. In multilingual IE and IR, the system may
make use of multiple possible variants. For example, in many cases more than one
transliteration may be acceptable for a particular name, but if the system pop-
ulates a database with events or relationships, identifying and merging different
references to the same real-world entity is needed across multiple sources, [21,20].
In a multi-lingual setting, this capability is indispensable, [2,14].

Here, we evaluate performance of the transliteration models at the word level
and at the symbol level. The most common word-level measure is accuracy [9]:

𝐴 =
number of correct transliterations

total number of test words
(2)

Symbol-based evaluation measures are more diverse than word-based ones;
in general, they are based on an edit distance between the system response and
the expected transliteration. In this paper we use Normalized Edit Distance and
Mean F-score. The normalized edit distance is computed as:

𝑁𝐸𝐷 =

∑︀
𝑖
𝐸𝐷(𝑐𝑖, 𝑟𝑖)∑︀

𝑖
|𝑐𝑖|

(3)

where 𝑐𝑖 is the expected transliteration for word 𝑖, 𝑟𝑖 is the system response, and
𝐸𝐷(𝑐𝑖, 𝑟𝑖) is an edit distance (here, the Levenshtein edit distance).

The symbol-level Mean F-score [24] is based on the Longest Common Sub-
sequence between an expected transliteration 𝑐 and the system response 𝑟4:

𝐿𝐶𝑆(𝑐, 𝑟) =
1

2
(|𝑐|+ |𝑟| − 𝐸𝐷(𝑐, 𝑟)) (4)

Recall, Precision and F-score for a particular word are calculated on the basis
of 𝐿𝐶𝑆:

𝑅 =
𝐿𝐶𝑆(𝑐, 𝑟)

|𝑟| 𝑃 =
𝐿𝐶𝑆(𝑐, 𝑟)

|𝑐| 𝐹 = 2
𝑅× 𝑃

𝑅+ 𝑃
(5)

We average the F-score over all words to get the mean over the entire data set.
Alongside our models, we use two other models for comparison. One is a naive

baseline, where each symbol of source alphabet is transliterated as fixed symbol
(or a string of symbols) from the target alphabet. In many cases this is a one-to-
one mapping, but there are many exceptions; e.g., the Russian щ corresponds to
English shch while Russian ь is most frequently omitted in transliteration. We

4 We slightly simplify all formulae here, assuming only one expected transliteration
and one system response for each word.



did not apply this baseline to Katakana, since it is difficult to make reasonable
correspondence between Katakana and Russian symbols.

The second model we used for comparison is the open-source system Di-
recTL+ [7]. It uses aligned data as input for the training; for alignment, we use
the M2M-aligner, an open source program by the same authors, [8].5

We evaluate the models’ performance via leave-one-out cross-validation.

6 Results

The results are shown in Tables 2 and 3, followed by the overall scores, average
over all datasets that we tested. Although on some of the datasets, DirecTL+
beats the Etymon models, Etymon’s performance appears higher overall.

One shortcoming of this evaluation scheme may be that only one correct
answer is permitted for each word pair. For example, in the American Actors
dataset, the English surname Murray is transliterated into Russian in two dif-
ferent ways: twice as Мюррей and twice as Мюррэй—therefore, for this name
(Murray) any model can get at most 50% accuracy at the word level. We did not
measure how this ambiguity ultimately affects the evaluation results, though it
is common for person names.

By comparison, location names are more consistent; in most cases the to-
ponyms are older and represent a more homogeneous transliteration scheme.
Loan words and repetitions are more rare among location names. Thus, the re-
sults on location data are in general higher. For example, if we consider the
results on three English-Russian datasets, namely American Actors, Russian
Writers and Russian Cities, we can see from the tables that for both forward
and backward transliteration the highest performance is achieved on the Russian
Cities dataset. Comparing the datasets Russian Writers and Russian Cities is
informative: both datasets use the same language pair, have the same language
of names origin, and approximately the same size. However, we observe a differ-
ence of 20% in word-level accuracy on Ru-En transliteration and 14% on En-Ru,
due to differences in the nature of the names.

It is also interesting to compare the Iranian Cities and Iranian Locations
datasets for Russian-Farsi transliteration. As was described in Section 3, the
latter contains a list of the Shahrestan’s locations with population over 800. The
dataset is four times larger, but it is also more noisy: Wikipedia editors seem
to pay less attention to transliteration of smaller place names. In fact, we have
found many inaccuracies among the Iranian Locations. For example, the Iranian
place-name بوئین /buin/ appears in Russian as Бу /bu/. Due to such noise in the
data, for these datasets we achieved approximately the same results according
to all measures, although the number of word pairs in the Iranian Cities dataset
(439) is four times smaller than in the Iranian Locations dataset (1893). This

5 We use default parameters for both programs. It may be possible to achieve bet-
ter results through elaborate tuning of the parameters, though we did not explore
parameter tuning. By comparison, our Etymon models have no parameters to tune.



Size: # Word level Mean Word level Mean

of pairs Model Accuracy NED F-Score Accuracy NED F-Score

American Actors

En → Fa Fa → En

1x1 0.223 0.256 0.866 0.081 0.371 0.785

840 2x2 0.393 0.180 0.904 0.080 0.346 0.805

Baseline 0.233 0.273 0.863 0.032 0.433 0.759

DirecTL+ 0.157 0.363 0.831 0.118 0.324 0.828

En → Gr Gr → En

1x1 0.157 0.312 0.835 0.079 0.385 0.791

407 2x2 0.437 0.171 0.914 0.268 0.238 0.869

Baseline 0.179 0.343 0.833 0.101 0.456 0.767

DirecTL+ 0.342 0.232 0.887 0.140 0.417 0.794

En → He He → En

1x1 0.160 0.301 0.830 0.070 0.382 0.788

1245 2x2 0.415 0.186 0.901 0.104 0.337 0.816

Baseline 0.074 0.426 0.803 0.043 0.430 0.762

DirecTL+ 0.160 0.331 0.850 0.131 0.327 0.832

En → Ru Ru → En

1x1 0.338 0.222 0.881 0.309 0.223 0.878

1471 2x2 0.430 0.176 0.905 0.388 0.177 0.901

Baseline 0.298 0.25 0.871 0.282 0.250 0.868

DirecTL+ 0.387 0.214 0.890 0.373 0.189 0.901

Russian Cities

En → Ru Ru → En

1x1 0.448 0.113 0.936 0.509 0.082 0.957

1136 2x2 0.762 0.040 0.978 0.881 0.018 0.99

Baseline 0.379 0.176 0.911 0.823 0.028 0.986

DirecTL+ 0.501 0.163 0.919 0.813 0.028 0.985

Fa → Ru Ru → Fa

1x1 0.180 0.230 0.877 0.441 0.110 0.941

870 2x2 0.302 0.170 0.908 0.684 0.06 0.971

Baseline 0.125 0.264 0.861 0.507 0.098 0.949

DirecTL+ 0.325 0.190 0.900 0.514 0.100 0.952

Ru → Jp Jp → Ru

1x1 0.013 0.552 0.695 0.016 0.377 0.779

317 2x2 0.565 0.126 0.935 0.3 0.145 0.922

DirecTL+ 0.022 0.742 0.687 0.287 0.159 0.915

Ru → Fr Fr → Ru

1x1 0.389 0.124 0.933 0.355 0.154 0.919

828 2x2 0.697 0.051 0.973 0.668 0.065 0.965

Baseline 0.383 0.122 0.937 0.307 0.210 0.897

DirecTL+ 0.736 0.042 0.978 0.396 0.189 0.907

Table 2: Transliteration results



Size: # Word level Mean Word level Mean

of pairs Model Accuracy NED F-Score Accuracy NED F-Score

Russian Writers

En → Ru Ru → En

1x1 0.400 0.153 0.920 0.415 0.126 0.936

1462 2x2 0.634 0.091 0.953 0.689 0.073 0.962

Baseline 0.347 0.201 0.903 0.651 0.075 0.961

DirecTL+ 0.462 0.176 0.916 0.588 0.090 0.953

French Cities

Ru → Fr Fr → Ru

1x1 0.088 0.338 0.806 0.113 0.357 0.805

828 2x2 0.148 0.297 0.835 0.381 0.182 0.905

Baseline 0.075 0.376 0.790 0.081 0.471 0.787

DirecTL+ 0.199 0.259 0.863 0.176 0.381 0.826

Iranian Cities

En → Fa Fa → En

1x1 0.196 0.334 0.846 0.109 0.280 0.840

439 2x2 0.435 0.155 0.918 0.228 0.205 0.889

Baseline 0.175 0.353 0.840 0.057 0.282 0.842

DirecTL+ 0.132 0.391 0.828 0.289 0.185 0.901

Ru → Fa Fa → Ru

1x1 0.382 0.197 0.898 0.134 0.282 0.842

469 2x2 0.525 0.139 0.926 0.252 0.237 0.870

Baseline 0.267 0.277 0.864 0.092 0.296 0.833

DirecTL+ 0.151 0.332 0.846 0.222 0.210 0.886

Iranian locations

Ru → Fa Fa → Ru

1x1 0.380 0.201 0.898 0.135 0.274 0.848

1893 2x2 0.553 0.134 0.931 0.278 0.217 0.883

Baseline 0.285 0.270 0.867 0.078 0.318 0.822

DirecTL+ 0.155 0.345 0.847 0.317 0.189 0.900

Results averaged over all datasets

1x1 0.235 0.259 0.859

2x2 0.442 0.162 0.912

Baseline 0.245 0.278 0.857

DirecTL+ 0.311 0.253 0.878

Table 3: Transliteration results, continued, including overall averaged scores.

may mean that it is possible to use quite small training sets for transliteration,
if the data are highly homogeneous and clean.



7 Discussion and Current Work

To summarize, the main contributions of the presented work are: we provide a
new, simple, and manually verified data set for evaluation of transliteration mod-
els; we apply models built for etymological alignment to the task of cross-lingual
transliteration; we introduce simple extensions for prediction to the alignment
models, which yield procedures for transliteration based on the alignment. We
attempt to ground this work clearly in the context of other related approaches.

The MDL-based Etymon models, applied to the transliteration task without
significant modifications, have achieved results that are comparable with state-
of-the-art methods reported in the literature. We have discussed how the nature
of data, as well as its homogeneity, impacts performance quality.

Current work includes adapting Etymon’s context-sensitive models for trans-
literation. These models were shown, [19], to achieve substantially lower com-
pression cost and normalized edit distance than the 1×1 and 2×2 models. We are
implementing the prediction algorithm for these models, which is more complex
and requires a target language model. Another complication is that the context
models require each symbol to be represented as a vector of phonetic features.
Thus, the next step will be an implementation of phonetic representations of the
data. We also plan to expand our datasets by including more language pairs,
and more complex types of data, including company names.
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