

 University of Groningen

Applying dynamic Bayesian networks in transliteration detection and generation
Nabende, Peter

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nabende, P. (2011). Applying dynamic Bayesian networks in transliteration detection and generation.
[Thesis fully internal (DIV), University of Groningen]. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/2eb9dbf9-0e9c-4b8c-a3e2-410b30215b16

Applying Dynamic Bayesian Networks in
Transliteration Detection and Generation

Peter Nabende

Research presented in this thesis was carried out under the auspices of the Center for
Language and Cognition Groningen in the Faculty of Arts at the University of Gronin-
gen. Research funding was from a second NUFFIC Uganda project (NPT-UGA-238) for
strengthening ICT training and research capacity in public universities in Uganda.

Groningen Dissertations in Linguistics 95
ISSN 0928-0030

c©2011, Peter Nabende
ISBN 978-90-367-5227-5

Document prepared with LATEX2ε and typeset by pdfTEX
Cover designer: Peter Nabende
Printed by Wörhmann Print Service, Zutphen, The Netherlands.

Proefschrift

Rijksuniversiteit Groningen

Applying Dynamic Bayesian Networks in
Transliteration Detection and Generation

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. E. Sterken,
in het openbaar te verdedigen op

vrijdag 2 december 2011
om 16:15 uur

door

Peter Nabende
geboren op 18 maart 1980

te Mbale, Oeganda

Promotor: Prof. dr. ir. J. A. Nerbonne

Copromotor: Dr. ir. E. F. Tjong Kim Sang

Beoordelingscommissie: Prof. dr. V. Baryamureeba
Prof. dr. M. Biehl
Prof. dr. K. U. Schulz

To my parents
and family

Acknowledgments

This thesis has been made possible with the additional help of people who contributed
their ideas, time, and resources. It is very difficult for me to acknowledge all who
were involved or those who feel were involved. Please accept my sincere apology if
you feel you helped but have not been mentioned. I am grateful to all of you who
helped even in the slightest form.

First of all, I am greatly indebted to my supervisors Jörg Tiedemann and Erik
Tjong Kim Sang, and promoter John Nerbonne, whose ideas and comments helped
shape many parts of this thesis. I am grateful to John Nerbonne as the main leader
in the Netherlands of the NUFFIC II Uganda project that has funded all of my PhD
research. For my research, John Nerbonne initiated the idea to use Dynamic Bayesian
Networks (DBNs) for detecting pronunciation differences or for a related Natural
Language Processing (NLP) task. And Jörg helped to suggest that alternative NLP
task in machine transliteration which I would from then be involved in. Jörg also
helped me in using weighted finite state automata and adapting some statistical
machine translation approaches to machine transliteration which I used as baselines
to compare with DBN models. Erik helped with software for a standard baseline
approach of Pair n-gram models for detecting transliterations, and volunteered to
translate the summary of this thesis to Dutch. Thank you again to Erik and John
for the valuable comments and for making sure that my grammatical and spelling
errors in the thesis were minimized as much as possible. I am grateful to Jörg for the
first 18 months and to Erik for the other 30 months during which weekly meetings
and updates about my progress were always eye-opening and made my PhD research
experience exciting, and they helped to keep me focused and in the right direction.

viii

I am also very grateful to the reading committee consisting of V. Baryamureeba, M.
Biehl, and K. Schulz for accepting to read this thesis according to schedule and for
their positive response.

Most of my study was centered around adapting Pair HMM and Dynamic Bayesian
Network (DBN) software for computing transliteration similarity. I would like to
thank Karim Filali for providing his Graphical Modeling Toolkit (GMTK) scripts
for implementing DBN models and Martijn Wieling for the version of Pair HMM
software that was used in dialect work. I extend my thanks to Svetlana Zinger for
the helpful advise when starting to learn to use Pair HMM software. In dealing
with Pair HMM software errors, I thank Martijn and Daniel de Kok for their help,
and to Daniel again for suggesting the C/C++ class at University of Groningen’s
Donald Smits Center for Information Technology. Thanks to Martijn again for the
informative overview on thesis printing.

From the Department of Information Science in the Faculty of Arts at University
of Groningen, I would like to thank Gertjan van Noord for suggesting to use cross
entropy for evaluating machine transliteration models. Thank you to Gosse Bouma
for forwarding the first announcement about the Named Entities Workshop (NEWS)
shared task on transliteration generation. The first shared task and two additional
shared tasks would later become continuous points of motivation for my study. I
am indebted to the organizers of the 2009 and 2010 NEWS for availing me with
the standard transliteration datasets for various language pairs that I used in my
experiments on applying DBN models in transliteration detection and generation. I
am particularly grateful to Haizhou Li, A Kumaran, Min Zhang, Mitesh Khapra, and
Vladmir Pervouchine.

During my final year, I enjoyed the company of Barbara Plank, Çagri Cöltekin,
and Dörte Hessler who were also in the phase of compiling their PhD theses. I am
grateful to the three for helpful suggestions from discussions on our thesis writing
progress. I am grateful for their valuable help on Latex and the suggestion to use
the tikz package in Latex which turned out to be perfect for most of the diagrams in
my thesis. I also thank them for being remindful of various requirements including
those that needed formalization and thesis printing details.

The department of Information Science in Groningen provided a wonderful en-
vironment to work in. I was very lucky to share an office with: Jörg, Raphael
Aregu, Fridah Katushemererwe, and Gideon Kotzé from whom I got an idea about
tree alignment and with whom I enjoyed and still enjoy online Chess games. Also,
thank you to Gideon for accepting to be my paranimf and main contact for han-
dling the printed copies of this thesis. In addition to my office mates and those I
have already mentioned, this not so complete list includes some of the rest: Geoffrey
Andogah, Proscovia Olango, John Kizito, Jackie Benavides, Harm Brower, Kostadin

ix

Cholakov, Nynke van der Vliet, Peter Meindertsma, Tamás Biro, Leonie Bosveld-de
Smet, George Welling, Valerio Basile, Johan Bos, Tim van de Cruys, Jelena Prókic,
Ismail Fahmi, Jori Mur, Lonneke van der Plas. I am grateful for their contributions
and the opportunity to learn from them during weekly reading group meetings. I also
enjoyed playing soccer with most of them and many others that I can not mention
all them here. Most of the people in this Department have been and continue to be
an inspiration to me. I would like to thank Wyke van der Meer, the CLCG PhD
coordinator during the four years of my study for the administrivia associated with
my presence at the Faculty of Arts. I also extend my gratitude to all staff members
of the CNL secretariat for their service. In the context of administering the NUFFIC
II project in the Netherlands, I am very grateful to Erik Haarbrink and Gonny Lak-
erveld for taking care of my welfare in various aspects. Thank you too to Geertje
Holtrop and Mark Strookappe.

I was lucky to meet many friends who made my stay in Groningen a wonderful
experience. Most of them especially at the Bisschop Nierman Centrum International
student house (Plutolaan) have enriched my life with pleasant memories. Many
provided valuable information and help at the time I most needed it. Outside of
Groningen, I am grateful to Eva and Mike Kagunda for the times we had together
and especially for your incredible help.

Part of my study time was spent at Makerere University in Uganda. In Makerere
University, I am very fortunate to be part of the School of Computing and Informatics
Technology (SCIT). It is more likely that I would never have got the opportunity to
pursue research presented in this thesis if I had not been part of SCIT. I am sincerely
grateful to Venansius Baryamureeba for his main role in establishing SCIT and as
the main leader in Uganda of the NUFFIC II Uganda project. I am also grateful to
Jude Lubega as Makerere University coordinator of the same project and to Peace
Tumuheki as one of the main administrators of the project. I would also like to thank
Josephine Nabukenya as Dean of SCIT at the time of writing. Thank you too to
Rossette Birungi for the responsibility to handle formal documents pertaining to my
absence from SCIT. For that, I also thank Fausia Konde. I am still and will always be
thankful to my MSc. Computer Science project supervisor Tom Wanyama who while
at SCIT suggested to me the graphical models approach of Bayesian networks on
which I would later base my interests for PhD studies. For my PhD research, I thank
John Quinn for the discussions I always had with him about my progress and I am
grateful for his invitations to present my research in the Machine learning research
group at SCIT. I benefited from comments and questions in those presentations.
Many colleagues at SCIT made my life comfortable including those I was lucky to
share an office with (Godfrey Onyait, Noreda Kiremire, Paul Bakaki, Rose Nakibuule,
Gilbert Maiga, and in the PhD room) and all those I interacted with during the lunch

x

breaks. I extend my gratitude to all those who helped.
Finally, I would like to thank my family for their everyday presence in my life and

for the support they have provided throughout my entire life. I am deeply grateful to
my parents Irene and Fred Wanziguya for making sure that I made it through primary
and secondary school and for supplementing my undergraduate studies. Most of all, I
am hugely indebted to them for funding my MSc studies without which the next step
of pursuing PhD studies would still be a dream. What they sacrificed for me is not
easy to repay. My siblings Richard Muloni, Carol Kwaga, James Zeere, Prima Zemei,
Naume Muzaki, and Florence Wanyenze have always been a source of motivation and
inspiration. They have been and will always be a blessing to me. I am also grateful
to relatives close to this family who had a positive influence on me and who have
helped me in my endeavours including while I was away in Groningen. Lastly but
not least, I am specially grateful to my girlfriend Joyce for her love, patience, comfort
and kind support.

May God bless you all.

Peter Nabende
October 22, 2011

Contents

Acknowledgments vii

Contents xi

List of Figures xv

List of Tables xvii

Abbreviations xxi

1 Introduction 1
1.1 Background . 1
1.2 Research goal . 4
1.3 Research approach . 5
1.4 Overview of the rest of the thesis . 6

2 A review on machine transliteration 9
2.1 Introduction . 9
2.2 Transliteration Detection . 10

2.2.1 Data resources and transliteration detection methods 11
2.2.2 Discussion . 18

xii Contents

2.3 Transliteration generation . 19
2.3.1 Phonetic-based transliteration generation 20
2.3.2 Orthographic-based transliteration generation 27
2.3.3 Discussion . 33

2.4 Conclusion . 34

3 Dynamic Bayesian Networks 37
3.1 Introduction . 37
3.2 Bayesian networks . 38

3.2.1 Representation . 38
3.2.2 A transliteration example . 40
3.2.3 Bayesian networks – inference 41
3.2.4 Bayesian Networks - Limitation 42

3.3 Dynamic Bayesian Networks . 42
3.3.1 DBNs – representation . 43
3.3.2 Transliteration example . 44
3.3.3 DBNs – Inference . 45
3.3.4 DBNs – Learning . 46

3.4 Conclusion . 50

4 Pair HMMs for transliteration detection 53
4.1 Introduction . 53
4.2 Hidden Markov Models . 54

4.2.1 A brief review on representation 54
4.2.2 Recent use of HMMs in machine transliteration 55

4.3 Pair Hidden Markov Models . 57
4.3.1 Origins . 57
4.3.2 Pair HMMs for modeling word similarity 57
4.3.3 Pair HMMs for modeling transliteration similarity 58
4.3.4 Pair HMMs – Inference . 62
4.3.5 Pair HMMs – parameter estimation 69

4.4 Transliteration detection experiments using geographic names data . . 71
4.4.1 Data . 71
4.4.2 Evaluation setup and results 72

4.5 Experiments using NEWS 2009 and 2010 shared task data 82
4.5.1 Data . 82
4.5.2 Evaluation setup and results 84

4.6 Conclusion . 91

Contents xiii

5 Transduction-based DBN models for transliteration detection 93
5.1 Introduction . 93
5.2 Transduction-based DBN models . 94

5.2.1 The memoryless stochastic transducer 94
5.2.2 Representing the RY transducer as a DBN 95
5.2.3 DBN templates for modeling transliteration similarity 98
5.2.4 Inference . 104

5.3 Experiments (NEWS 2009 and 2010 shared task data) 107
5.3.1 Data . 107
5.3.2 Evaluation setup and results 107
5.3.3 Error Analysis . 109
5.3.4 Computing transliteration similarity based on ensembles of DBN

models . 111
5.4 Conclusion . 112

6 Applying DBN models in mining transliterations from Wikipedia 115
6.1 Introduction . 115
6.2 Wikipedia – A source for transliteration mining 116

6.2.1 Transliteration mining using Wikipedia inter-language links . . 118
6.2.2 Transliteration mining using comparable Wikipedia article text 119

6.3 DBN model selection for transliteration mining 119
6.3.1 Pair HMMs . 120
6.3.2 Transduction-based context-dependent DBN models 121

6.4 Experiments using NEWS 2010 shared task setup 122
6.4.1 Wikipedia inter-language link data 122
6.4.2 Evaluation setup and results 124

6.5 Experiments using comparable article content 135
6.5.1 Extracting training data from Wikipedia 135
6.5.2 Comparable Wikipedia article content data 135
6.5.3 Evaluation setup and results 138

6.6 Conclusion . 140

7 Applying Pair HMMs in transliteration generation 143
7.1 Introduction . 143
7.2 Transliteration generation tasks . 145

7.2.1 Traditional machine transliteration task 145
7.2.2 Translating transliterations task 145

7.3 Using Pair HMMs in transliteration generation 146
7.3.1 Finite state automata . 147

xiv Contents

7.3.2 Representing Pair HMMs as WFSTs 150
7.4 Experiments using NEWS 2009-2010 shared task data 152

7.4.1 Data . 152
7.4.2 Transliteration models . 153
7.4.3 Evaluation metrics . 156
7.4.4 Results . 158

7.5 Experiments on translating transliterations 161
7.5.1 Data . 161
7.5.2 Transliteration models . 162
7.5.3 Evaluation metrics . 163
7.5.4 Results . 163

7.6 Conclusion . 167

8 Conclusions and future work 169
8.1 Conclusions . 169
8.2 Future work . 173

Bibliography 175

Index 185

Summary 187

Samenvatting 191

Grodil 195

List of Figures

2.1 Transliteration generation overview . 20

3.1 A Bayesian network for relating different writing system characters . . 41
3.2 A 2-TBN and an unrolled network for a Hidden Markov model. 44

4.1 Probabilistic version of pairwise alignment finite state automaton . . . 58
4.2 Finite state representation of Pair HMM proposed by Mackay and

Kondrak. 59
4.3 A finite state representation of a Pair HMM with 3 transition parameters. 62
4.4 A finite state representation of a Pair HMM with 9 transition parameters. 63
4.5 Finite state representation of the Random Pair HMM. 67
4.6 Variation of corpus cross entropy with test size for different Pair HMMs

on English-Russian Geonames corpus. 77

5.1 Graphical representation for the MCI DBN template 97
5.2 A Pair HMM and a conceptual DBN representation for an alignment. 99
5.3 A DBN representation of a Pair HMM with an illustrative assignment

of values to variables . 100
5.4 Graphical representation for a context-independent memory DBN tem-

plate . 101

xvi List of figures

5.5 Graphical representation for a context-dependent DBN template. . . . 102
5.6 Graphical representation for the context-dependent length DBN tem-

plate. 103

6.1 Two Wikipedia articles on the same topic but in different languages. . 117
6.2 NEWS 2010 transliteration mining task overview. 118
6.3 Precision-Recall curves for Pair HMMs and context-dependent DBN

models after evaluation on mining English-Hindi transliteration pairs
from Wikipedia. 129

6.4 Precision-Recall curves for Pair HMMs and context-dependent DBN
models after evaluation on mining English-Tamil transliteration pairs
from Wikipedia. 131

6.5 Precision-Recall curves for Pair HMMs and two context-dependent
DBN models after evaluation on mining transliteration pairs from
English-Russian comparable Wikipedia articles. 139

6.6 Graph of F-score against returned cut-off for Pair HMMs and context-
dependent DBN models after evaluation of mining transliteration pairs
from English-Russian Wikipedia articles. 140

7.1 An example of a finite state acceptor for accepting strings using a two
symbol alphabet. 148

7.2 An FST for a standard Cyrillic romanization system. 149
7.3 A finite state transducer approximation of the Pair HMM with nine

transition parameters. 151
7.4 An edit distance-based WFST. 154

List of Tables

1.1 A Web-based MT system’s English to Chinese translation. 2

4.1 Transliteration data for four language pairs from the Geonames database. 72
4.2 Alphabet size per language in Geonames data. 72
4.3 Corpus cross entropy results for different Pair HMMs and algorithms

on English-Russian Geonames corpus. 76
4.4 Number of iterations required to converge for different Pair HMM on

Geonames data. 79
4.5 CVA and CVMRR transliteration detection results for two Pair HMMs

and algorithms on English-French Geonames data. 79
4.6 CVA and CVMRR transliteration detection results for two Pair HMMs

and different algorithms on English-Russian Geonames data. 80
4.7 CVA and CVMRR transliteration detection results for two Pair HMMs

and different algorithms on English-Dutch Geonames data. 81
4.8 CVA and CVMRR transliteration detection results for two Pair HMMs

and different scoring algorithms on English-German Geonames data. . 81
4.9 Corpus size per language pair of NEWS 2010 shared task data. 83
4.10 Transliteration detection accuracy and MRR for baseline approach of

pair n-gram models. 85

xviii List of tables

4.11 Transliteration detection accuracy for different Pair HMMs and scoring
algorithms on English-Bengali NEWS 2010 shared task data. 87

4.12 Transliteration detection accuracy for different Pair HMMs and scoring
algorithms on English-Chinese NEWS 2010 shared task data. 87

4.13 Transliteration detection accuracy for different Pair HMMs and scoring
algorithms on English-Hindi NEWS 2010 shared task data. 88

4.14 Transliteration detection accuracy for different Pair HMMs and scoring
algorithms on English-Kannada NEWS 2010 shared task data. 88

4.15 Transliteration detection accuracy for different Pair HMMs and scoring
algorithms on English-Russian NEWS 2010 shared task data. 89

4.16 Transliteration detection accuracy for different Pair HMMs and scoring
algorithms on English-Tamil NEWS 2010 shared task data. 89

4.17 Transliteration detection accuracy for different Pair HMMs and scoring
algorithms on English-Thai NEWS 2010 shared task data. 90

5.1 Illustration of an alignment between a Russian name and its Dutch
representation. 98

5.2 Transliteration detection accuracy and MRR for different transduction-
based DBN models. 108

5.3 Transliteration detection results examples from the use of context-
dependent DBN models. 110

5.4 Transliteration detection results for ensembles of DBN models. 112

6.1 Pair HMMs and transduction-based DBN models for mining translit-
erations from Wikipedia. 121

6.2 Number of Wikipedia topic pairs per language pair before and after
data pre-processing. 123

6.3 A sample of English-Russian Wikipedia topic pairs. 124
6.4 A sample of expected transliteration mining results from Wikipedia

topics. 125
6.5 NEWS 2010 shared task transliteration mining results on English-

Russian data. 127
6.6 English-Hindi transliteration mining results for Pair HMMs and context-

dependent DBN models against NEWS 2010 shared task results. . . . 130
6.7 English-Tamil transliteration mining results for Pair HMMs context-

dependent DBN models against NEWS 2010 shared task results. . . . 132
6.8 English-Chinese TM results for Pair HMMs and context-dependent

DBN models against NEWS 2010 shared task results. 133

List of tables xix

6.9 English-Arabic TM results for two Pair HMMs and two context-dependent
DBN models with the NEWS 2010 shared task results. 134

6.10 Wikipedia data for English and corresponding Russian articles. 137

7.1 Transliterated Russian names in four European languages. 146
7.2 Size of training, development, and testing datasets from NEWS 2009

and NEWS 2010 shared task per language pair. 152
7.3 Transliteration generation results for three language pairs on NEWS

2010 shared task data. 159
7.4 Results for English→Russian transliteration generation on NEWS 2009

shared task data. 160
7.5 LCSR and accuracy results for using WFSTs in translating translations.164
7.6 LCSR and accuracy results for using a PSMT system in translating

transliterations. 165
7.7 A sample of results showing examples of some typical problems in

translating transliterations with WFST and PSMT models. 166

Abbreviations

2-TBN Two-slice Temporal Bayes net

ANN Artificial Neural Network

ASR Automatic Speech Recognition

CCE Corpus cross entropy

CLIR Cross Language Information Retrieval

CON DBN Context-dependent Dynamic Bayesian network

CPD Conditional probability distribution

CPT Conditional probability table

CRF Conditional Random Field

CVA Cross validation accuracy

CVMRR Cross validation mean reciprocal rank

DBN Dynamic Bayesian network

EM Expectation Maximization

xxii Abbreviations

FSA Finite state acceptor

FST Finite state transducer

GEM Generalized expectation maximization

GMTK Graphical modeling toolkit

HMM Hidden Markov model

LCSR Longest common subsequence ratio

MAP Mean average precision

MCI DBN Memoryless and context-independent Dynamic Bayesian network

MEM DBN Memory-dependent Dynamic Bayesian network

MRR Mean reciprocal rank

MT Machine Translation

NE Named entity

NEWS Named entities workshop

NLP Natural Language Processing

OCR Optical character recognition

Pair HMM Pair Hidden Markov model

PGM Probabilistic graphical model

PSMT Phrase-based Statistical Machine Translation

SMT Statistical Machine Translation

TD Transliteration Detection

WFSA Weighted finite state acceptor

WFST Weighted finite state transducer

Chapter 1

Introduction

1.1 Background

With the advent of the Web, various Natural Language Processing (NLP) systems in-
cluding Machine Translation (MT) and Cross Language Information Retrieval (CLIR)
are increasingly being accessed and used for cross language information processing.
The automated NLP systems are useful as they help to overcome various limitations
that are initially associated with manual information processing. Currently, a major
benefit of using NLP systems is the instant generation of output given input data,
and hence the possibility of processing and handling large amounts of data even with
low cost computational resources. However, gains in processing capability of NLP
systems are offset by poor output quality. There are many factors that can affect
system output quality including the use of inadequate and error prone models in a
particular application. This thesis is concerned with the case where NLP systems en-
counter words or phrases in data that are unknown to them which complicate system
processing and consquently result in poor output quality.

In bi-lingual or multi-lingual applications, the problem caused by unknown words
is mainly complicated by lack of a corresponding representation in some target lan-
guage. Table 1.1 illustrates this problem where a state-of-the-art Web-based machine
translation system (Google Translate1) fails to get corresponding representations in
the Chinese language for the two underlined words (Falade and Fansidar) written
using the Latin alphabet and in an English sentence. As Table 1.1 shows, the strategy
used by the MT system and which is commonly used by similar systems in dealing
with unknown words is to simply copy them to the resulting output. Table 1.1 also
shows that all the words that the system failed to represent in the Chinese translation
are names (Falade is a person name whereas Fansidar is a drug name). This strategy

1http://translate.google.com

2 1. Introduction

English input Chinese translation
While the battle against malaria is gradually being 儘管防治瘧疾的戰鬥正在逐贏得

won according to Dr. Falade, the use of Fansidar 根據博士Falade，使用的Fansidar
as a combination drug is highly discouraged. 作為一個組合藥物是非常氣餒。

Table 1.1: A Web-based MT system’s English-to-Chinese translation

of simply copying unknown words may be useful in cases where the source and target
language use the same writing system since there is a likelihood to retain spellings
for named entities across the languages. When the source and target language use
different writing systems, the strategy of copying unknown words is not useful.

Transliteration, a process used to convert new words from a source language to
a phonetically equivalent, understandable, and representable form using the writing
system of the target language is currently the most natural approach to dealing with
unknown words for the case where different writing systems are used. For example, a
suggestion of a phonetically equivalent representation for the word Fansidar in Table
1.1 could be like this in Chinese: 反思大 /fan-si-da/. Here, the main NLP system
would require an additional transliteration sub-system that helps generate hypothet-
ical target language representations for any identified unknown word. A different
approach to employing transliteration in a cross-language processing system is to
complement the system’s bi-lingual lexicon with a separately acquired transliteration-
pair lexicon. Either way, transliteration is currently important both as a topic and as
a sub-task in NLP since system effectiveness is expected to increase when it is used.

In both of the transliteration-based approaches in the last paragraph, various
methods have been proposed and used to help improve the quality of the system
generated transliterations or transliteration-pair lexicons. However, recent work, for
example the shared tasks on transliteration mining (Kumaran et al. 2010b) and
transliteration generation (Li et al. 2010), shows that there is need to identify more
approaches that can help improve system performance in the two tasks. Research on
using a given method in each of the two transliteration-related tasks is usually based
on an interest of attaining improvements in system performance.

In this thesis, the interest is to see whether models derived from two edit distance-
based Dynamic Bayesian Network (DBN)-modeling approaches can lead to improve-
ments in transliteration detection and generation. The two edit distance-based ap-
proaches implement Pair Hidden Markov Models (Pair HMMs) and transduction-
based DBN models. The Pair HMM approach originates from work in biological
sequence analysis (Durbin et al. 1998) and was later adapted to compute word sim-
ilarity and successfully applied in cognate identification(Mackay and Kondrak 2005,

1.1 Background 3

Kondrak and Sherif 2006) and in dialect comparison (Wieling et al. 2007). The
transduction-based DBN approach originates from work in automatic speech recog-
nition with successful applications in the tasks of pronunciation classification (Filali
and Bilmes 2005) and cognate identification (Kondrak and Sherif 2006). The mo-
tivation to investigate the two approaches is based on our knowledge about their
successful application in tasks with requirements similar to those for transliteration
detection. While automated transliteration detection and generation still demand
new approaches, there was not yet any investigation about the use of the two edit
distance-based DBN modeling approaches in transliteration detection and generation.

We investigate the application of several edit distance-based DBN models associ-
ated with the two approaches. Preliminary work involves an empirical investigation
on the application of different Pair HMMs in detecting transliteration pairs using
‘simple’ datasets where the source and target language texts are based on the Latin
alphabet. We use text based on the Latin alphabet not only because it is simple to
process computationally, but because we wanted to first determine the feasibility of
having Pair HMMs model different character representations of written words using
the easy to process data. We have assumed bi-lingual text based on the same al-
phabet to be used as transliteration data because of different written representations
for similar pronunciations between source and target languages and the use of dif-
ferent diacritical characters to convey additional pronunciations for some languages.
In this case, our ‘simple’ datasets comprise of geographic name pairs extracted from
the Geonames2 database for three language pairs: English-French, English-German,
and English-Dutch. We also extracted English-Russian geographic name pairs to
form our first experimental dataset where the languages use different writing sys-
tems. This English-Russian dataset is part of the preliminary setup. We then use
more datasets obtained from the 2009 (Li et al. 2009) and 2010 (Li et al. 2010) shared
tasks on transliteration generation for a further evaluation of the Pair HMMs and
transduction-based DBN models in another experimental Transliteration Detection
(TD) setup. The data from the shared tasks for this set of experiments includes
the following seven language pairs: English-Bengali, English-Chinese, English-Hindi,
English-Kannada, English-Russian, English-Tamil, and English-Thai. For this set of
experiments, we also evaluate the DBN models against a standard baseline approach
of using cross-language Pair n-gram information for transliteration detection and de-
termine best performing DBN models for later evaluation on real-world data. In order
to establish the value of applying the proposed DBN-related approaches in translit-
eration detection and generation on real-world data, we evaluate the application of
some of the Pair HMMs and transduction-based DBN models against state-of-the-art
methods that were used in the 2009 and 2010 shared tasks on transliteration gener-

2http://www.geonames.org

4 1. Introduction

ation (Li et al. 2009, Li et al. 2010) and in the 2010 shared task on transliteration
mining (Kumaran et al. 2010b). Here, the comparison against state-of-the-art meth-
ods is simplified by using the same datasets and same evaluation setup as used during
the shared tasks. The shared task data used in the transliteration mining experiments
comprises of standard Wikipedia topic pairs for five language pairs: English-Arabic,
English-Chinese, English-Hindi, English-Russian, and English-Tamil.

1.2 Research goal

The overall research goal in this thesis is to apply Pair Hidden Markov models (Pair
HMMs) and transduction-based Dynamic Bayesian Network models in transliteration
detection and generation while aiming for improvements over existing techniques.
Based on this goal, the thesis aims to address the following questions:

1. Does the current state of research necessitate an investigation into the use of
new methods (such as the Dynamic Bayesian Network (DBN) models proposed
in this thesis) for transliteration detection and generation?
For this question, we would like to know whether existing methods for translit-
eration detection and generation suffice.

2. Can DBN models that have been used in tasks (such as cognate identification
and pronunciation classification) with requirements similar to transliteration
detection be valuable when used in the context of computing transliteration
similarity? Related to that, can modifications to these DBN models that meet
the requirements for computing transliteration similarity be valuable in the de-
tection of transliteration pairs?
Here, we would like to know whether the assumptions associated with the suc-
cessful application of DBN models in previous tasks could also lead to successful
application of the DBN models in transliteration detection and generation.

3. What features are critical to the use of DBNs for modeling transliteration sim-
ilarity?
In the thesis, we investigate various DBN model structures and parameter set-
tings. We would like to know which types of Pair HMMs and transduction-
based DBN models adequately address factors that are important in modeling
transliteration similarity.

4. Can the application of DBN models improve transliteration detection and gen-
eration quality as compared to current state-of-the-art methods?
Results obtained from representative experimental setups may not portray the
true effect of applying DBN models on real-world data. Here, we are interested

1.3 Research approach 5

in knowing whether there can be any benefits of using DBN models when eval-
uated on real-world data for transliteration detection and generation. This,
as the question has been put, requires an evaluation against state-of-the-art
methods that would be applied in a similar manner.

1.3 Research approach

The research approach used in this thesis is mostly focused on addressing the ques-
tions in the previous section. To address the first and second questions, I undertook
an exhaustive literature review on approaches that have been proposed and used
in previous work for transliteration detection and generation. In order to avoid
repetitions, I also considered recent comprehensive literature reviews on machine
transliteration, for example in Karimi et al (2011). The literature review is mostly
exploratory, but a critical analysis is given where suitable.

To address the remaining questions, we follow an empirical approach in which
experiments are conducted to evaluate the performance of several DBN models in
transliteration detection and generation. For the third and fourth question, we define
an experimental transliteration detection setup to evaluate the use of proposed DBN
models for computing transliteration similarity. Here, we first experiment with our
own prepared transliteration data from a Web-based geographic names database
(Geonames) and later we experiment with standard transliteration corpora from the
2009 and 2010 shared tasks on transliteration generation (Li et al. 2009, Li et al.
2010). Each dataset has been manually verified and we assume that each source
language word has exactly one target language word match. We use the experimental
transliteration detection setup at this stage to identify DBN models that could be
useful for transliteration generation and in detecting transliteration pairs from ‘noisy’
real-world data.

For the fourth research question, our participation in both the 2009 and 2010
NEWS shared tasks on transliteration generation and transliteration mining respec-
tively ensured an evaluation of the application of the proposed DBN models against
state-of-the-art methods that were also applied on the same standard transliteration
corpora. In the thesis, I have followed the same evaluation setups as specified for
the NEWS 2009 shared task on transliteration generation (Li et al. 2009) and for
the NEWS 2010 shared task on transliteration mining (Kumaran et al. 2010b) for
evaluating the DBN models. For the transliteration generation task, participating
teams were supplied with training and development data for a dozen language pairs
to be used for training and tuning the participating systems. After training and
development, each participating team was required to submit ten system generated
candidate transliterations per source language word in the the test set for a given lan-

6 1. Introduction

guage pair. For the transliteration mining task, each participating team was availed
with a seed set of matching name pairs for five language pairs to be used as ini-
tial training data. In these experiments we use models that performed well in the
experimental transliteration detection setup mentioned in the previous paragraph.

1.4 Overview of the rest of the thesis

In Chapter 2, we present a literature review on transliteration detection and gener-
ation aimed at determining the current state of research on the two tasks and the
need for new solutions to some identified gaps. We give a general view for each of
the two tasks and a description of the main phases. We then review several mod-
eling approaches that have been used in each task ranging from the earliest to the
current state-of-the-art. This also involves an analysis of performances achieved by
the approaches in the two tasks.

In Chapter 3, we introduce the main concepts underlying the framework of Dy-
namic Bayesian Networks (DBNs). First, we introduce Bayesian Networks from which
DBNs are an extension. We discuss BNs and subsequently DBNs according to three
aspects: their representation, inference, and learning methods. For DBN learning
in particular, we review a theoretical explanation of the Expectation Maximization
(EM) algorithm. The EM algorithm and its generalized form are applied in different
ways to train all DBN models that we have proposed for transliteration detection and
generation. At the end of the chapter, we specify the general framework for applying
the DBN models in transliteration detection and generation.

In Chapter 4, we introduce the Pair HMM approach as the first of the DBN meth-
ods proposed for use in transliteration detection and generation. First, we provide
some background regarding the origins of the Pair HMM method from its inception
in the field of biological sequence analysis (Durbin et al. 1998) to its adaptation for
estimating word similarity(Mackay and Kondrak 2005). A discussion then follows
of the requirements that need to be met in order to adapt the Pair HMM approach
for estimating transliteration similarity. Different plausible Pair HMM parameteriza-
tion settings are proposed and evaluated in an experimental transliteration detection
(TD) setup. We first investigate two settings for the Pair HMMs in the experimental
TD task: in the first setting, we assume that only one character vocabulary is used
to generate the source and target words, and in the second setting, we assume that
the Pair HMMs use separate character vocabularies corresponding to the source and
target language writing systems. It is obvious that the second setting relates more
with transliteration, and its related experiments are aimed at determining the neces-
sity to model the differences in the source and target language vocabularies in Pair
HMM emission parameters which are used for computing transliteration similarity.

1.4 Overview of the rest of the thesis 7

Here, we use four data sets obtained from the Geonames database as described in the
Background section (1.1). We then investigate the use of different Pair HMM string
similarity scoring algorithms and the use of different definitions for Pair HMM tran-
sition parameters. For this investigation, we used standard corpora from the NEWS
2009 and NEWS 2010 shared tasks on transliteration generation. The translitera-
tion detection performance of the Pair HMM approach is evaluated against that of a
standard baseline approach of using ‘pair n-gram’ models.

In Chapter 5, we introduce the transduction-based Dynamic Bayesian Network
approach as the second DBN-related approach we have proposed to apply for com-
puting transliteration similarity. First, we review the approach as initially proposed
by Filali and Bilmes (2005) in their pronunciation classification task. A discus-
sion then follows regarding the adaptation of the transduction-based DBN modeling
approach in the context of transliteration similarity estimation. In proposing differ-
ent transduction-based DBN model generalizations, we start with a presentation of
an approximate transduction-based DBN model representation for the Pair HMMs.
We have successfully adapted three DBN model generalizations associated with the
transduction-based DBN modeling approach for computing transliteration similarity.
These are described in addition to the baseline DBN model template from which they
are derived. Each of the DBN model generalizations is used to account for specific
types of temporal dependencies, including: dependencies that capture memory from
previous edit states of a DBN model; contextual dependencies of edit states of a DBN
model on either source or target string elements or on elements from both source and
target strings; and dependencies that account for the lengths of edit steps needed
for string similarity estimation. We then investigate the use of several models from
the DBN model generalizations in the experimental transliteration identification task
introduced in Chapter 4 using standard transliteration corpora from the shared tasks
as mentioned in Chapter 4. The performance from the use of the transduction-based
DBN models is evaluated against that of the baseline pair n-gram approach and the
best performing Pair HMMs in Chapter 4. Our analysis of the results leads us to fur-
ther propose and test several ensembles of DBN models for computing transliteration
similarity.

In Chapter 6, we present an evaluation of the use of the DBN models in mining
transliterations from real-word data (specifically, from the Web-based Wikipedia en-
cyclopedic resource). Two transliteration mining sub-tasks for evaluating the DBN
models are first introduced. In the first sub-task, we use the same evaluation set-up
as that used in the NEWS 2010 shared task on transliteration mining where partic-
ipating systems are evaluated on mining transliterations from paired cross-language
Wikipedia topics. For this task, we evaluate the Pair HMM and transduction-based
DBN methods against state-of-the-art methods that were used by the other partici-

8 1. Introduction

pating teams in the shared task. In the second sub-task we propose and evaluate the
application of the DBN models on paired cross-language Wikipedia article content
in addition to using the respective paired Wikipedia topics.

In Chapter 7, we present an evaluation of the use of Pair HMMs in transliteration
generation. Although Pair HMMs were initially proposed just for the purpose of
computing string similarity – where they have been successfully used – this chapter
is aimed at determining whether the Pair HMMs could as well be valuable in translit-
eration generation. Two transliteration generation sub-tasks are first introduced. In
the first sub-task, we use the same evaluation setup as that used in the NEWS 2009
(Li et al. 2009) and NEWS 2010 (Li et al. 2010) shared tasks on transliteration
generation. In the second sub-task we propose using the transliteration generation
framework for translating named entities between languages that use the same writ-
ing system. We then describe a scheme for representing Pair HMM parameters as
parameters in weighted finite state automata to allow for their use in transliteration
generation. We also describe various types of other weighted finite state automata for
evaluation in addition to the Pair HMM-based models. For the first task, we report
on results associated with the use of weighted finite state automate including the Pair
HMM-based models and compare them to results associated with the use of a state-
of-the-art phrase-based statistical machine translation approach. For the second task,
we evaluate the weighted finite state automata models and the phrase-based statisti-
cal machine translation approach against the standard baseline of copying unknown
words.

Chapter 8 concludes the thesis with a discussion of results on the application of
the two proposed DBN-related approaches in the two tasks of transliteration mining
and generation. We also point out the contributions of the thesis. Finally, we present
our suggestions for future work including work that we have not managed to cover
in the thesis.

Chapter 2

A review on machine transliteration

2.1 Introduction

The origins of the use of transliteration as a process for dealing with unknown words
in a foreign language or in a dialect of a particular language seem to be non-existent
in transliteration literature. However, the systematic attempts to create systems for
representing characters in a writing system of origin (for example in Japanese or
Chinese) to characters in a different language using its writing system (for example
to English using the Latin alphabet) are well documented and these systems are
commonly referred to as ‘transliteration systems’. The term Romanization is often
associated with transliteration systems where the Roman alphabet is used to repre-
sent characters from a different writing system. For example, the American Library
Association-Library of Congress (ALA-LC) romanization tables1 constitute one of
the largest collection of romanization systems for representing text in more than 150
languages written in various non-Roman scripts using the Latin alphabet. Contem-
porary literature suggests that transliteration is likely to have started as a process
for converting a given word in a language of origin to a phonetically equivalent, un-
derstandable, and orthographically representable form in some target language (Li
et al. 2009). Specifically, if the conversion is from a language of origin, the process
is called forward transliteration. Backward transliteration or reverse transliteration
is defined as the reverse process, where the aim is to find the original word repre-
sentation in a language of origin given an existing word in a foreign language (for
example finding the original Russian name (дмитрий) given an English name variant
‘Dmitriy’.

The use of automated Natural Language Processing (NLP) applications such as
Machine Translation (MT) and the non-diminishing importance of unknown words

1http://www.loc.gov/catdir/cpso/roman.html

10 2. A review on machine transliteration

that these applications encounter necessitated the use of automated methods as well
to help deal with them. The most popular reference to one of the earliest attempts
at fully automating the process of transliteration in the sense of processing named
entities (which constitute the largest percentage of unknown words) dates back to
almost two decades ago (Arbabi et al. 1994) where a combination of a rule-based
expert system and an artificial neural network were used for including vowels in
Arabic names. Also, around just the same time, studies on the automated search for
named entities within a language and across languages had already started. Currently
the general term used for cross-language named entity search for the case where the
languages use different writing systems is transliteration mining . From the later half
of the 1990s on, various approaches have been proposed to handle named entities
(NEs) in cross language applications with regard to both the converting of NEs from
one writing system to another, and to the search of corresponding NEs in different
writing systems. In this chapter, we introduce the current view of the two tasks:
transliteration generation, and transliteration detection, and with respect to each
task, we review some of the major approaches that have been used from the earliest
to current state-of-the-art. The organization of our review will follow the same order
of presentation for the two tasks throughout the thesis.

Notation

To simplify our review of the various transliteration detection and generation ap-
proaches, we establish some notation that is common to most of the methods. The
transliteration process in both detection and generation involves an analysis of the
source and target language words which we denote here as: S for a source language
word and T for a target language word. However, we shall extend the notation
whenever there is need to reflect the point of discussion. For example, it may be
necessary to specify a source word constituting m characters as Sm1 = s1s2...sm and
a target word with n characters as Tn1 = t1t2...tn. When discussing a phonetic-based
approach we use SP to denote the phonetic representation of a source word, while TP
is used to denote the phonetic representation of the target word. For the constituent
phonetic units, we use SP l1 = sp1sp2...spl for the source word and TP k1 = tp1tp2...tpk
for the target word. For other specific representations, additional notation will be
defined as per the need.

2.2 Transliteration Detection

The process of detecting transliterations generally involves the search for correspond-
ing NEs from a collection of candidate NEs between two or more languages in different

2.2 Transliteration Detection 11

writing systems. The main differences in the transliteration detection approaches are
associated with: the data source for obtaining candidate NEs in each of the languages;
the methods that are used to identify candidate NEs; and the methods that are used
to relate and extract transliteration pairs. We shall review transliteration detection
approaches based on the type of data resource used. For each type of data resource,
we present some examples from transliteration literature and the subsequent methods
that are used for candidate NE identification, transliteration similarity estimation,
and transliteration pair extraction.

2.2.1 Data resources and transliteration detection methods

Transliteration detection necessitates the use of a bi(multi)-lingual2 corpus from
which we expect to match bi-lingual NEs. That is, the resource when considered
as a whole, should have a reasonable amount of text in at least two or more lan-
guages to enable the identification and extraction of similar words across different
languages. The most common types of bi-lingual data resources for transliteration
detection can be classified into: bi-lingual single document texts, which consist of
texts in two or more languages in the same document; parallel corpora, which con-
sists of texts in two or more languages and where the texts are translations of one
another (Karimi et al. 2011) and in different documents where corresponding sen-
tences that are related through a given identifier are exact translations of each other;
and comparable corpora, which is text in two or more languages and in different
documents where the corresponding text are not exact translations of each other (as
is the case in parallel corpora). The main differences in the transliteration mining
process for the different approaches are associated with the kind of data resource that
is used and the identification of candidate NEs from a given data resource. After the
identification of candidate NEs, the setup for comparing and extracting NEs across
different languages is often similar. In the following we review a selection of some
examples and transliteration detection methods associated with each of the different
types of bi-lingual data resources.

a) Bi/Multi-lingual single document text

The use of single document text for detecting transliteration pairs usually requires the
application of prior knowledge about the presentation of different entities in a given
document. Based on how bi-lingual text is represented, the transliteration detection

2Although the term multi-lingual is a generalization of bi-lingual, most of the approaches utilize
bilingual resources. We therefore prefer to use the term bi-lingual in a general discussion to represent
both cases. However, when describing a given approach that uses multi-lingual resources (that is,
in more than two languages), we will correctly specify it as a multi-lingual resource.

12 2. A review on machine transliteration

process may be simplified or may require some additional pre-processing steps before
applying a transliteration similarity estimation method. In the examples below, we
see two different representations. In one example, source words are hypothesized to
exist in parentheses next to target words in a sentence (Lin et al. 2004). In the other
example (Kuo et al. 2007), source words are hypothesized to collocate with target
words in a sentence but there is rarely an existence of delimiters that enclose source
words.

Kuo et al. (2007) use predominantly Chinese Web pages, where transliterated
words are collocated closely with their original source(English) words and the source
words are often appositives of neighboring target(Chinese) words in a close context.
They assume that the scope of a close context is within a sentence boundary which
is delimited by punctuation such as full stops, commas, question and exclamation
marks; and that it is a range of proximity where a source word and its target translit-
eration collocate. Kuo et al. also suggest that in cases where there are different types
of words in a close context, we need to consider only word pairs that are most likely
to be associated with phonetic transliteration. To describe how candidate named
entities are identified, we use one of their examples, which illustrates collocations of
source and target language words:

“...經營Kuro 庫洛P2P 音樂交換軟體的飛行網, 3 日發表P2P 與版權爭議的解決方案
C2C (Content to Community)...”

In the example above, “庫洛 /KU-LUO/” is a transliteration for “Kuro”, the two
can also be qualified as a candidate transliteration pair. However, although C2C is
collocated with “Content to Community”, the latter is just an acronym expansion and
not a transliteration; such a pair can not be used as a candidate transliteration pair.
Based on this observation, Kuo et al. propose a procedure for identifying candidate
pairs which is as follows: 1) the predominantly Chinese Web page is segmented into
sentences using punctuation marks as delimiters; 2) a search is made for any source
language word S in each sentence; 3) if an English word S is recognized, then a k-
neighborhood is defined to serve as the close context of the recognized English word; 4)
T ∈ Ω is defined as a target transliteration candidate in the k-neighborhood, where Ω

is the set of all transliteration candidates in the k-neighborhood. In the example above,
“Kuro” is recognized as an English word, “經營 /JIN-YIN/” and “庫洛 /KU-LUO/”
are suggested in a close context, the left and right k -neighborhoods. Two candidate
pairs, “Kuro-經營” and “Kuro-庫洛” are then selected for further examination. For
transliteration similarity estimation, Kuo et al. (2007) use a phonetic similarity (PS)
modeling approach. The candidate words are first transformed into syllabic sequences
Ssy for the English word and Tsy for the Chinese word. The PS model is then used
to identify the most probable Tsy’ that matches S. In the PS model, they formulate

2.2 Transliteration Detection 13

their transliteration process using the noisy channel model (Brown et al. 1993) and
by applying Bayes’ rule, P (T |S) is expressed as:

P (T|S) =
P (S|T)P (T)

P (S)
(2.1)

where P (S|T) represents the noisy channel probability (also called transliteration
probability) and P (T) is the language model probability. P (S|T) is approximated
using a phonetic confusion probability P (Ssy|Tsy) which is obtained from a phonetic
confusion probability matrix. They propose three ways of estimating the syllable-
based confusion matrix: 1) PASR(Ssym|Tsyn) for which an automatic speech recog-
nition (ASR) system is used and where a labeled English speech database is run
through a Chinese ASR system; 2) PSYL(Ssym|Tsyn) for which a Syllable PSM is
used and where the syllable confusion probability is estimated by extracting translit-
eration pairs which are converted to syllables and to phonemes; 3) PSS(Ssym|Tsyn)

for which a Sub-syllable PSM is used and where the syllable confusion matrix is esti-
mated using sub-syllable confusion probability. Kuo et al. exploit the three confusion
matrices in different stages for transliteration similarity estimation. After obtaining
a similarity score and ranking the candidate list of T, they identify the most probable
Tsy’ by using a hypothesis test to decide whether T’ is a transliteration of S.3

Lin et al. (2004) use both single document bi-lingual text and parallel text for
extracting English Chinese transliterations. We present their approach for the single
document text here and that for the parallel text in the next subsection on Parallel
corpora. For the single document bi-lingual text, they exploit the fact that some data
resources print source language terms in parentheses following their transliterations
as shown in their example below:

國西部城市(1995年人口約247,000),位於科隆(Cologne)西北方 ...

In the example above 科隆 is a transliteration of Cologne. During transliteration
similarity estimation, Lin et al. use a statistical transliteration model. The source
language word (S) is first split into k transliteration units (TUs) S = su1, su2, ..., suk
which are then converted independently into k target characters tc1, tc2, ..., tck using
the statistical transliteration model. The tcj ’s are subsequently combined to produce
a target word T. Their transliteration model for P (tcj |sui) is estimated using an
Expectation Maximization (EM) algorithm with Viterbi decoding.

3Kuo et al. (2007) provide a much more detailed description of their approach with many
mathematical formulations, but because of space constraints, we have decided to omit most of the
details.

14 2. A review on machine transliteration

b) Parallel corpora

The use of parallel corpora necessitates the alignment of sentences between two lan-
guages. As will be seen below, some approaches apply a sentence alignment procedure
as part of the transliteration mining process whereas other approaches use data re-
sources in which the sentences are already aligned. Each aligned sentence pair is
then hypothesized to contain similar NEs across the different languages. Most of the
approaches go a step further in filtering out unnecessary entities in at least one of
the languages before applying a transliteration similarity estimation method.

Sherif and Kondrak (2007a) use two sets of sentence aligned bi-text from an
Arabic tree bank part 1-10k word English translation corpus, and an Arabic English
parallel news Part 1 corpus. They report that the two corpora contain Arabic news
articles and their English translations aligned at the sentence level. They use the tree
bank data as development data to optimize the acceptance threshold used by one of
their methods for transliteration similarity estimation and extraction. They use the
following pre-processing procedure to identify candidate NEs. First, they tokenize
the English corpus using a tokenization tool (Word splitter). After tokenization, they
remove all uncapitalized words; stop words are also removed from both sides of the
bi-text. Lastly, English words of length less than 4 and Arabic words of length less
than 3 are removed. Sherif and Kondrak (2007a) then apply a number of models for
word similarity estimation including the bootstrapped stochastic transducer which
is their main proposed method in the paper. Below, we summarize the similarity
estimation methods that Sherif and Kondrak use:
1) Levenshtein edit distance (LED). Is used as the baseline method. To enable
the computation of LED, a common representation between the source and target
languages is needed. Specifically, Arabic candidate NEs are romanized to get to the
common representation.
2) ALINE, is a phonetic-based word similarity estimation algorithm where individual
phonemes input to the algorithm are decomposed into a dozen phonetic features,
such as Place, Manner, and Voice. Then, a substitution score between a pair of
phonemes is based on the similarity as assessed by a comparison of the individual
features. After an optimal alignment of the two words is computed with a dynamic
programming algorithm, the overall similarity score is set to the sum of the scores of
all links in the alignment normalized by the length of the longer of the two words.
The source and target words are first converted into phonetic transcriptions using a
deterministic rule-based transformation.
3) Fuzzy string-matching algorithm. This was initially proposed by Freeman et al.
(2006). The Fuzzy matching algorithm is based on the Levenshtein Edit Distance
but encodes more knowledge about the relationships between the source and target

2.2 Transliteration Detection 15

language. In this case, the LED is computed using letter equivalences as matches
instead of identities. The source and target language letters within a class are treated
as identities. The resulting Levenshtein distance is then normalized by the sum of
the lengths of both words.
4) The main model proposed in Sherif and Kondrak (2007a) is a stochastic transducer
from Ristad and Yianilos (1997) which is trained iteratively, and then applied to score
a pair of candidate NEs.

In a rather different NE identification approach, Lee and Chang (2003) first apply
a sentence alignment procedure to align parallel texts at the sentence level. An NE
tagger is used to identify proper nouns in the source text (English) which serve as
candidate source NEs for identifying transliterations in the target language (Chinese).
Lee and Chang (2003) also formulate the transliteration problem as a noisy channel
model while exploiting phonetic similarities between source words (S) and target
words (T). The computation for P (T|S) is first formulated as a marginalization over
an alignment sequence (δ):

P (T|S) =
∑
δ

P (T, δ|S) =
∑
δ

P (T|δ, S)P (δ|S). (2.2)

where δ represents an alignment candidate with δ = δ1, δ2, ..., δN match types. To
reduce computational complexity, the summation criterion in Equation 2.2 is changed
into a maximization and P (T|S) is approximated as:

P (T|S) ≈ max
δ
P (T|δ, S)P (δ|S) ≈ max

δ
P (T|δ, S)P (δ) (2.3)

Using transliteration units suN
1 for the source word and tuN

1 for the target word, Lee
and Chang re-approximate P (T|δ, S)P (δ) in Equation 2.3 as follows:

P (T|δ, S)P (δ) = P (tuN
1 |suN

1)P (δ1, δ2, ..., δN) ≈
N∏
i=1

P (tui|sui)P (δi). (2.4)

Finally logP (T|S) is computed as:

logP (T|S) ≈ max
δ

N∑
i=1

(logP (tui|sui) + logP (δi))

The maximum accumulated log probability among all possible alignment paths is
computed using a dynamic programming procedure. Lee and Chang (2003) estimate
the model probabilities using an Expectation Maximization (EM) procedure. They
also incorporate some linguistic processing in their method, first to accelerate the
convergence of EM training and then during transliteration similarity estimation to
improve transliteration identification quality.

16 2. A review on machine transliteration

Lin et al. (2004) use a named entity identification approach similar to Lee and
Chang’s (2003) approach above. We already saw in the previous section (on Bi/Multi-
lingual single document text) that Lin et al. (2004) use both the single document
bilingual text and parallel text to mine transliteration pairs. For parallel text, Lin et
al. first identify proper names in the source (English) sentence and then subsequently
identify transliterations for each proper name. They suggest the use of a part of
speech tagger and named entity recognizer for identifying English proper nouns. All
words in the target language (Chinese) sentence are considered as transliteration
candidates. They then use Viterbi decoding to identify the transliterations in the
target language sentence using the same procedure as described at the end of the
previous subsection.

c) Comparable corpora

Comparable corpora is mainly obtained from Web-based cross-language text, usually
with the aid of cross-language links. Common sources include: time-aligned news
articles over a given period of time, and encyclopedic resources such as Wikipedia.
Most of the recent work in transliteration mining use comparable corpora as they
are easy to acquire, and they can be used without the need of applying a sentence
alignment procedure as is the case for parallel corpora. In this case, we simply use
similar text with the assumption that they are likely to contain a reasonable number
of corresponding NEs between the source and target languages. In the following, we
review some of the recent approaches that use comparable corpora.

Udupa et al. (2009) use comparable news corpora for mining NE transliteration
equivalents. They investigate the effectiveness of using different sets of paired docu-
ments for mining transliteration equivalents. In one stage, they investigate the use
of documents comprising the comparable corpora (Cs, Ct), and in another stage, they
investigate the use of paired documents (As,t) obtained from (Cs, Ct) as highly similar
documents. In the latter stage, they use a cross-language document similarity model
(KL-divergence) to estimate content similarity between documents (Ds,Dt). Using
Vs to denote the source language vocabulary and Vt the target language vocabulary,
Udupa et al. compute KL-divergence as follows:

−KL(Ds|Dt) =
∑

T∈Vt

P (T|Ds) log
P (T|Dt)
P (T|Ds)

(2.5)

and since the interest is in target documents which are similar to a given source
document, the denominator in Equation 2.5 (which is independent of the target
document) can be ignored. By expanding P (T|Ds), the following Equation is used
for computing cross-language similarity:

2.2 Transliteration Detection 17

∑
T∈Vt

∑
S∈Vs

P (S|Ds)P (T|S) logP (T|Dt).

Udupa et al. then use two transliteration similarity models on each document pair
(Ds,Dt) in As,t to produce a set Pairss,t of NE transliteration equivalents. The
first model, which they call the discriminative transliteration model uses a logistic
function to compute transliteration similarity between every candidate pair of words
(S,T) in each (Ds,Dt):

Transliteration similarity (S,T, θ) =
1

1 + e−wt·φ(S,T)
(2.6)

where φ(S,T) is the feature vector for the pair of words φ(S,T) and w is the weights
vector which is learnt discriminatively using a bi-lingual list of matching translitera-
tions. The second model, which they call the generative transliteration model extends
a word alignment hidden Markov model (W-HMM) (He 2007). In a W-HMM, the
emission probability depends on the current character and the previous target char-
acter. By marginalizing over all possible alignments, they compute the probability
of a target word given a source word as follows:

P (T|S) =
∑
A

m∏
j=1

P (aj |aj−1, saj−1
)P (tj |saj , tj−1) (2.7)

where tj (and respectively si) denote the jth (and respectively ith) character in T
(and respectively S) and A ≡ am1 is the hidden alignment between T and S, and
in which tj is aligned to saj , for j = 1, ...,m. The parameters of the W-HMM are
estimated using the EM algorithm and they use logP (T|S) for the transliteration
similarity score.

Klementiev and Roth (2006) exploit two observations in mining transliteration
pairs from multi-lingual news streams. The first observation is that NEs in one lan-
guage associated with multi-lingual news streams tend to co-occur with their coun-
terparts in another language for a given period of time. The second observation
is that “NEs often contain or are entirely made up of words that are phonetically
transliterated or have a common etymological origin across languages”. Klementiev
and Roth (2006) introduce an algorithm called co-ranking which exploits the two ob-
servations simultaneously during the transliteration detection process. For the first
observation, they use a Discrete Fourier Transform (Arfken 1985) based metric to
compute the similarity of time distributions. For the second observation, they score
NE similarity using a discriminative linear transliteration model. The translitera-
tion model is iteratively trained using single word NE pairs. During training, for a
given source NE (S) in one language, the current model chooses a list of top-ranked

18 2. A review on machine transliteration

transliteration candidates T in another language. The words in the candidate pair
are partitioned into a set of substrings su and tu up to a particular length (including
the empty string which they denote by _). Couplings of the substrings (su, tu) from
the source and target language sets of words produce feature vectors which are used
for training. Klementiev and Roth employ the perceptron (Rosenblatt 1958) algo-
rithm which takes a variable number of features in its examples; and as the iterative
algorithm observes more data, it discovers and makes use of more features. Time
sequence scoring is then used to rank the list and subsequently choose the target
candidate NE T’ that is best temporally aligned with S. A method called F-index
(Hetland 2004) is used to implement the temporal similarity score function. The
pairs of transliteration NEs and the best temporally aligned (thresholded) candidate
NEs are utilized in a similar manner to iteratively train the transliteration model.
The resulting pairs of source and target NEs are then evaluated for accuracy.

A recent shared task on transliteration mining (Kumaran et al. 2010b), used
comparable Wikipedia article topics for five language pairs as source data for mining
transliteration pairs. The comparable Wikipedia article topics are obtained with the
aid of ‘inter-language links’ which are located on the same page as the source language
text. A report about participating systems in the shared task shows the application
of discriminative and generation-based methods for transliteration similarity estima-
tion. Some approaches like those in Udupa et al. (2009) have been described above.
Generation-based methods mostly included various forms of Hidden Markov Mod-
els (HMMs) and finite state automata (Darwish 2010, Noeman and Madkour 2010).
Discriminative methods included some of the well known methods such as: sup-
port vector machines (SVMs) and a standard string kernel method (Jiampojamarn
et al. 2010). The shared task report shows that some methods achieved good F-score
values but on only one or a few datasets, and not for all datasets.

2.2.2 Discussion

The identification of candidate named entities can be a complex procedure depending
on the requirements of the named entity recognition task and the language in use. As
is suggested from some of the approaches reviewed above, some Asian language text
presents more challenges for named entity recognition mainly because of the extra
work required to identify words in a sentence as compared to text written using
a Latin or Cyrillic alphabet. In Chinese text for example, the segmentation of a
sentence is complicated by the lack of blanks and marks to indicate word boundaries.
Consequently, the identification of candidate words is difficult with a major problem
of segmentation ambiguities (Chen and Bai 1998).

The review above also shows that some methods specify the transliteration sim-

2.3 Transliteration generation 19

ilarity estimation problem in a similar manner but differ in the probabilistic mod-
els that contribute to a transliteration similarity estimate. For example, we see
that a number of methods use the noisy channel model (NCM) approach but dif-
fer in the kinds of probability distributions that are specified to approximate the
probability specifications in Equation 2.1 for the NCM. Other approaches apply an
edit distance-based measure for example the Levenshtein Edit Distance based on a
common representation for the source and target words. We also see variations in
the computation of edit distance in different methods. Many generation-based ap-
proaches use a dynamic programming algorithm for evaluating alignments between
the source and target words and use an Expectation Maximization algorithm for
training the associated transliteration models. Up to this point, we see that although
the HMM framework has been used in transliteration detection, there is not yet any
application of the edit distance-based Pair HMM approach that we propose to use
for the same task in the thesis. It is also clear from the review that there is not
yet any application of generic Dynamic Bayesian Network (DBN) models such as
the transduction-based DBN models proposed in the thesis for the same task. The
review above also identifies the use of different discriminative-based approaches in
transliteration detection.

The transliteration detection task has led to the organization of a shared task in
which various transliteration detection methods are evaluated using the same stan-
dard corpora. Again as literature on transliteration detection generally revealed, both
generative-based and discriminative-based methods were evaluated in the shared task
and the report showed that there was still room for improvement. Such a shared task
already simplifies some of our aims in the thesis. Specifically, by using the same
datasets used in the shared task, we need not re-run the experiments associated with
state-of-the-art approaches; we only have to run the experiments for the DBN models
proposed in the thesis and compare the results with those that were reported for the
state-of-the-art methods on the same standard transliteration corpora.

2.3 Transliteration generation

Unlike the transliteration detection task which can vary depending on the data source,
the transliteration generation task (both forward and backward) is similar across dif-
ferent transliteration generation approaches. In forward transliteration, we want the
transliteration system to automatically convert a source word into a target translit-
eration or a set of target transliterations when variations are expected. In the back-
ward(reverse) direction, the aim is to find the original source word for a given target
transliteration or transliterations. In both cases of transliteration generation, the
core of the system is a trained model or set of models for character conversion. A

20 2. A review on machine transliteration

Resources,
e.g bilingual

corpus
Training Transliteration

target
word(s)

T

source word
S

model(s)

Figure 2.1: Transliteration generation overview. Adapted from Karimi et al. (2011).

general framework for transliteration generation is provided in (Karimi et al. 2011)
specifying two main phases: training of the transliteration model(s) and generating
transliterations using the trained model(s).

Karimi et al. (2011) identify different subtasks in each of the two main phases
(Figure 2.1) in the transliteration generation process. Two common subtasks in the
training phase include: segmentation of source and target character strings in the
training pairs, and determining associations between the source and target translit-
eration units after performing a training procedure or a manual specification of the
transformation rules. In the transliteration generation phase, two common subtasks
include: source word segmentation into transliteration units, and using the trained
model(s) or transformation rules to map source transliteration units to target translit-
eration units by resolving different combinations of alignments and unit mappings.
As illustrated in Figure 2.1, at the end of the transliteration generation phase the
transliteration system is usually expected to suggest more than one target transliter-
ation. Since there is always a dependence on the previous sub-task from the training
phase to the transliteration generation phase, we will review some of the main translit-
eration generation approaches in their entirety. Automated transliteration generation
approaches are usually categorized according to the type of transliteration units used;
that is, whether they are phonetic or orthographic or a combination of both (Karimi
et al. 2011, Oh et al. 2006). In our review, we follow a similar categorization.

2.3.1 Phonetic-based transliteration generation

The earliest reported attempts at automated transliteration generation involved the
use of phonemes between the source and target languages. In Arbabi et al. (1994),
the generation of romanized transliterations for Arabic names is as follows: The
Arabic names are first vowelized automatically using a combination of an artificial
neural network (ANN) and a knowledge-based system (KBS). The ANN is used to

2.3 Transliteration generation 21

filter out words that would otherwise be vowelized inappropriately by the knowledge-
based system; while the KBS uses linguistic vowelization rules. In the transliteration
stage, the vowelized Arabic NEs can be converted into a standard, phonetic Latin
representation using a parser or table. Generally, the Latin representation is broken
down into a group of phonetic syllables which can be used to produce various spellings
in languages that use the Latin alphabet.

A few years after Arbabi et al.’s (1994) work, Knight and Graehl (1997) used
weighted finite-state automata for Japanese Katakana to English back transliteration.
The transliteration process in Knight and Graehl (1997) follows a number of steps
which are implemented as follows:

• English word (taken here as the source word S) sequences are generated using
a distribution P (S); then

• English pronunciations (SP) are produced from English words using P (SP|S);

• the English pronunciations are converted into Japanese sounds TP using P (TP|SP);

• Japanese sounds are converted into into Japanese Katakana (Tk) using P (Tk|TP);

• and misspellings caused by Optical Character Recognition (OCR) (TOCR) are
modeled through P (TOCR|Tk).

P (S) is implemented as a weighted finite state acceptor (WFSA), while the other
conditional distributions are implemented as weighted finite state transducers (WF-
STs). The aim is to find an English word S’ that maximizes the joint probability
given a Katakana string (TOCR) observed by OCR:

S’ = argmax
S

P (S) · P (SP|S) · P (TP|SP) · P (Tk|TP) · P (TOCR|Tk) (2.8)

Knight and Graehl (1997) use a general composition algorithm to integrate the dif-
ferent models and hence the computation in Equation 2.8. They then use Dijkstra’s
shortest-path algorithm (Dijkstra 1959) for extracting S’. A unigram scoring method
is used in constructing the WFSA for P (S); the WFST for P (SP|S) is based on the
CMU pronunciation dictionary; the WFST for P (TP|SP) is learned automatically
using an Estimation Maximization (EM) algorithm (Baum 1972) from a collection
of English/Japanese sound sequences; the WFST for P (Tk|TP) is composed from
two manually constructed WFSTs (the first WFST for merging long Japanese vowel
sounds into new symbols while the second for mapping Japanese sounds to Katakana
symbols); finally the WFST for P (TOCR|Tk) is obtained using the EM algorithm
applied on a collection of OCR’d text with the corresponding Japanese Katakana
text.

22 2. A review on machine transliteration

Work related to Knight and Graehl (1997) then adapted and extended the phonetic-
based approach while applying it to other language pairs. In Stalls and Knight (1998),
weighted finite state automata are used in Arabic to English back-transliteration.
Stalls and Knight (1998) use probability distributions similar to those in Knight
and Graehl (1997) implementing the WFSA for P (S) and the WFST for P (SP|S)

in exactly the same way. The modification in Stalls and Knight (1998) is that, in-
stead of using conversions from English phonemes (SP) to Arabic phonemes (TP)
and conversions from Arabic phonemes to Arabic orthography T, they use only one
additional model for converting English phoneme sequences directly to Arabic orthog-
raphy (P (T|SP). The WFST for P (T|SP) is obtained using the EM algorithm on
a manually built English-phoneme-to-Arabic-writing dictionary. In Al-Onaizan and
Knight (2002), the phonetic-based approach in Stalls and Knight (1998) is adapted
by using a finite state machine to filter out ill-formed English phonetic sequences
instead of using position markers in the phoneme set during the Arabic to English
back-transliteration process. Al-Onaizan and Knight (2002) also extended Stall and
Knight’s (1998) phonetic-based approach with the use of a spelling based model to
deal with words that are not of English origin.

Apart from the back-transliteration work based on Knight and Graehl’s (1997)
phonetic-based approach, there were other parallel phonetic-based approaches that
employed different techniques for transliteration generation in different language
pairs:

Kawtrakul et al. (1998) performed Thai-to-English back-transliteration. In Kaw-
trakul et al. (1998), Thai loan words (T) were first segmented into syllables and
mapped to phonemes using some transcription rules. The phoneme sequences of the
loan words were then compared to the phonetic sequence of a set of English words
(S) in a phonetic dictionary. The English word (S’) with the most similar phonetic
sequence was selected as the transliteration.

Jung et al. (2000) applied an extended Markov window method to build the
model for English to Korean transliteration. In their transliteration process, Jung
et al. (2000) first generate mappings between English and Korean phonemes. They
use the pronunciation symbols for English words as defined in the Oxford computer-
usable dictionary (Roger 1992) and construct English to Korean phonetic mapping
tables that meet syllabification and alignment requirements for training the translit-
eration model. Their alignment process proceeds in two stages: consonant alignment
obtained from a scan of English phonetic units and Korean notation; and vowel
alignment which leads to a separation of corresponding vowel pairs based on the con-
sonant alignment stage. In the transliteration generation stage, a probabilistic tagger
is used to find the most likely Korean transliteration candidates given an English in-
put NE that has been syllabified. Given that S represents an English NE (where

2.3 Transliteration generation 23

Ss = ss1ss2...ssn is its syllabification), and T = tp1tp2...tpn a Korean word (where
tpi is the ith phonetic unit of T), Jung et al. (2000) aim at finding a Korean word
T’ such that the joint probability p(S, T) ∼= p(Ss, T) is maximized.

T’ = argmax
T

P (Ss,T) = argmax
T

P (T|S)P (S) (2.9)

where the translation model in Equation 2.9 is approximated based on the extended
Markov window as follows:

P (T|S) ∼=
∏
i

P (tpi|tpi−1, ssi−1, ssi, ssi+1) (2.10)

Equation 2.10 is further expanded into more fragmented probability terms to deal
with data sparseness when training. For the language model probability (P (Ss)) in
Equation 2.9, a bi-gram language model is used:

P (Ss) ∼=
∏
i

P (ssi|ssi−1) (2.11)

the transliteration model is then finally formulated as:

T’ = argmax
T

P (Ss,T) ∼= argmax
T

∏
i

P (tpi|ssi−1, tpi−1)P (ssi|tpi, ssi−1)P (ssi+1|tpi, ssi)
P (ssi+1|ssi)

(2.12)
Lee and Choi (1998) model English to Korean transliteration by using both

phoneme transformations (pivot method corresponding to phonetic-based transliter-
ation), and only grapheme transformations (direct method). In their phoneme-based
transliteration method, English graphemes are first converted to English phonemes;
the English phonemes are then converted to Korean graphemes. Using S to denote
an English word and T a Korean word, the aim is to find a Korean word T’ that
maximizes the conditional probability P (T|S). By applying Bayes’ rule, Lee and
Choi specify their transliteration problem as:

T’ = argmax
T

P (T|S) = argmax
T

P (T)P (S|T)

P (S)
∼= argmax

T
P (T)P (S|T) (2.13)

The language model probability P (T) in Equation 2.13 is obtained by using a bi-gram
conditional probability distribution on Korean pronunciation units (PUs):

P (T) ≈
N∑ t∏

i=1

P (tpi|tpi−1)

where N is the total number of segmentation of T, tpi is the ith PU in a segmen-
tation of T, and t is the total number of PUs in a segmentation. The translation

24 2. A review on machine transliteration

model probability P (S|T) is also obtained using a bi-gram conditional probability
distribution between English and Korean PUs:

P (S|T) ≈
δ∑ t∏

i=1

P (spi|tpi) where δ is the total number of alignments for T and S.

Wan and Verspoor (1998) use five stages in English to Chinese transliteration. in
the first stage they parse a complete English phrase through a dictionary in search of
a standard translation, and if there is no standard translation, the phrase is broken
into words, and each word is parsed through a dictionary. Words with no standard
translations are selected for transliteration. In the second stage, each word that
is selected for transliteration is divided into syllables, and in the third stage the
transliteration process proceeds to find patterns within each syllable that are handled
in appropriate ways for mapping to a particular Romanization standard (Pinyin in
this case) in the fourth stage. In the last stage, the Pinyin representation of a word
is mapped to Chinese Han characters using a Pinyin - Han character correspondence
table.

Meng et al. (2001) use a number of modules based on the steps required to trans-
form an English out of vocabulary word to Chinese. Meng et al. (2001) first detect
Romanized Chinese names using a maximum-matching segmentation algorithm and
then automatically acquire pronunciations for names other than Romanized Chinese
names using either the PRONLEX pronunciation lexicon from LDC or an auto-
matic letter-to-phoneme generation process (which is obtained through training on
the PRONLEX lexicon by aligning words with the corresponding pronunciations in
Viterbi-style for a one-to-one letter-to-phoneme mapping). Meng et al. then apply
cross-lingual phonological rules to deal with some problems in English pronuncia-
tions. For phoneme alignments between English and Chinese, Meng et al. iteratively
train a finite state transducer using a bi-lingual proper name list containing English
names and their Chinese transliterations. Given an English phoneme sequence, they
implement confusion matrices to produce alternative Chinese phoneme sequences
prior to syllabification in a Chinese Romanization system (Pinyin in this case). The
result is called a Chinese phoneme lattice. In the final stage, they search through the
phoneme lattice to identify Chinese phonemes that constitute legitimate syllables.
The resulting syllable graph is searched using the A* search algorithm to find the
N most probable syllable sequence using probabilities derived from the confusion
matrix and a syllable bi-gram language model.

Karimi et al. (2011) review a number of additional phonetic-based transliteration
generation approaches. To avoid a complete repetition of the review in Karimi et
al. (2011), we provide a summary of some of these other phonetic-based approaches
while focusing on the transliteration models used.

2.3 Transliteration generation 25

Jeong et al. (1999) use a Hidden Markov Model (HMM) framework in Korean
to English back-transliteration. The aim is to determine the most likely original
English (S’) word that maximizes the conditional probability of an English word
given a “foreign” word (P (S|T)). Using S = s1s2...sm to denote the English word,
and T = t1t2...tn to denote the foreign word, Jeong et al. (1999) formulate the
transliteration problem as follows:

S′ = argmax
S

P (S|T) = argmax
S

P (s1s2...sm|t1t2...tn)

= argmax
S

P (s1s2...sm)× P (t1t2...tn|s1s2...sm) (2.14)

Using a phonetic representation (sp1sp2...spp) for the English string S = s1s2...sm,
Equation 2.14 leads to:

S’ = argmax
S

P (sp1sp2...spp)× P (t1t2...tn|sp1sp2...spp)

∼= argmax
S

∏
j

P (spj |spj−1)× P (tj |spj) (2.15)

The first term in Equation 2.15 P (spj |spj−1) corresponds to the transition probabil-
ity between two states of an HMM while the second term P (tj |spj) to the output
probability in a given state. The computation in Equation 2.15 is effected using the
Viterbi algorithm.

Oh and Choi (2002) use pronunciation and contextual rules for English to Korean
transliteration. In Oh and Choi’s system, English pronunciation units are first aligned
to corresponding phonemes, then the transliteration of English words to Korean
words is achieved through a number of steps including: identification and processing
of “complex word forms”; detection and processing of English words of Greek origin;
chunking of aligned English pronunciation and phoneme data into two classes of pure
English words and English words of Greek origin); and finally English phoneme to
Korean conversion based on the use of English to Korean Standard Conversion Rule
(EKSCR). Contextual rules are captured by observing errors from the use of EKSCR
to a given number of randomly selected words which are not part of the test set.

Virga and Khudanpur (2003) apply the IBM source-channel model (Brown et al.
1993) in English to Chinese transliteration. The steps followed in their transliteration
process include: 1) conversion of an English name into a phonemic representation
using the Festival speech synthesis system; 2) translation of the English phoneme
sequence into a sequence of generalized initials and finals (GIFs) which are the com-
monly used sub-syllabic units for expressing pronunciations of Chinese characters; 3)
transformation of GIF sequences into Pinyin symbols without specifying tone; and

26 2. A review on machine transliteration

4) translation of the Pinyin sequence to Chinese character sequence. Steps 2 and 4
are accomplished using Brown et al’s (1993) statistical translation model. For exam-
ple, for step 2, the aim is to find the sequence of GIF symbols g′ = g′1g

′
2...g

′
k that

maximize the probability of a GIF sequence g = g1g2...gl given an English phoneme
sequence SP = sp1sp2...spj :

g′ = argmax
g

P (g|sp) = argmax
g

P (sp|g)P (g). (2.16)

Virga and Khudanpur (2003) estimate a trigram model for P (g) in Equation 2.16
using a CMU toolkit on a training portion of Chinese names. In the case of step 4, a
trigram model with Good-Turing discounting and Katz back-off is estimated as the
language model for the transformation of Pinyin sequences to Chinese characters.

Gao et al. (2005) used a direct model in English to Chinese transliteration as
opposed to the indirect approach in the source channel model described above (Virga
and Khudanpur 2003). Using TC = tc1tc2...tcl to represent Chinese Pinyin sequences
and SP = sp1sp2...spj for the English phoneme sequence as above, Gao et al. (2005)
reformulate the transliteration problem by rewriting Equation 2.16:

TC’ = argmax
TC

P (TC|SP)P (TC) (2.17)

Gao et al. (2005) use an EM algorithm to find the Viterbi alignment per training
pair for generating English phoneme to Chinese Pinyin mapping probabilities, which
are subsequently encoded in a WFST. For the language model for P (TC), they train
a syllable-based bi-gram model using the same instances of Chinese names that were
used for building the WFST.

Most of the reviews in literature about phonetic-based machine transliteration
hardly discuss any work of the kind in the last five years. Below we briefly review
only two recent references where phonetic-based transliteration is used. In both ref-
erences, an Indian language is involved in the phonetic-based transliteration process.
While phonetic-based transliteration is used in both references, orthographic-based
transliteration is also reported and seems to be used more than the phonetic-based
approach.

Surana and Singh (2008) use pronunciations for foreign words in English to Indian
language transliteration. They use the the CMU speech dictionary for lookup and
for training a pronunciation estimation model. English words that are not of Indian
origin are first converted to phonemic representation and the English phonemes are
then mapped to Indian language letters. For English words that are of Indian origin,
they simply segment the English word and convert the Latin segments into Indian
language segments for generating a corresponding Indian transliteration.

2.3 Transliteration generation 27

Das et al. (2010) use a phonetic-based transliteration approach to handle valid
English dictionary words. They use a standard machine learning sequence labeler
conditional random field to map English phonemes to Indian language transliteration
units.

2.3.2 Orthographic-based transliteration generation

Going by the common definition for transliteration generation, the transliteration pro-
cess is expected to involve a phonetic mapping from one language to another. How-
ever, transliteration work as reported in recent literature suggests that, orthographic-
only based methods result in transliteration generation quality which is comparable
to that for phoneme-based methods, and sometimes even significantly better (Li
et al. 2004). An orthographic-based approach eliminates a number of intermedi-
ate phonetic representation and transformation steps that require extra work and
time. The elimination of the intermediate phonetic steps implies that any flaws that
may be associated with the intermediate steps will be avoided. Recent work has
mostly favored the use of orthographic-based transliteration generation, mainly ap-
plying techniques associated with the machine learning paradigm. Most of the earlier
orthographic-based methods have been reviewed well in recent reviews on machine
transliteration (Oh et al. 2006, Chinnakotla et al. 2010, Karimi et al. 2011). The
orthographic-based approach constitutes various types of approaches with the two
notable categorizations of generative-based and discriminative-based models as is the
case for transliteration detection above. Although we discuss some of the translit-
eration generation methods under the two common categorizations of generative-
based and discriminative-based approaches, we also separately discuss recent ap-
proaches that are adapted from a related domain (especially machine translation
(Matthews 2007, Finch and Sumita 2008)), and those that use additional informa-
tion in the transliteration generation process such as semantic transliteration by Li
et al. (2007).

a) Generative and Rule-based approaches

The earliest cited work on orthographic-based transliteration generation suggests a
common usage of a machine translation inspired framework of the source channel
model (Lee and Choi 1998, Jeong et al. 1999, Kim et al. 1999) and related meth-
ods such as the joint source channel model (Li et al. 2004, Zhang et al. 2004) and
modified joint source channel model (Ekbal et al. 2006). Other earlier transliter-
ation generation modeling methods include: decision trees (Kang and Choi 2000),
transliteration networks (Kang and Kim 2000, Goto et al. 2003), and n-gram mod-
els (Abduljaleel and Larkey 2003). All of these are generation-based approaches.

28 2. A review on machine transliteration

Relatively recent approaches include: Weighted Finite State Transducers (WFSTs)
(Lindén 2006), hand crafted transliteration rules (Malik 2006), consonant-vowel-
based methods (Karimi et al. 2006, Karimi et al. 2007), and substring-based transduc-
tion (Sherif and Kondrak 2007b). In the following we point out the main techniques
that are employed starting with earlier approaches to recent approaches.

Kang and Choi (2000) used decision trees to generate Korean strings given English
words. They use an extended version of Covington’s (1996) alignment algorithm to
determine alignments for training the decision trees. In the extended version of Cov-
ington’s alignment algorithm, they introduce a binding operation to deal with ‘null
mappings’. A depth-first search algorithm is used to prune away fruitless branches
when estimating the alignments. To learn decision trees using the alignments, ID3
like algorithms (Quinlan 1986) are used. During transliteration, each English letter
in a given English word is mapped to Korean characters using the corresponding de-
cision trees; the Korean characters are then concatenated to produce the final Korean
transliteration.

Goto et al. (2003) use several models based on a lattice of conversion units be-
tween English and Japanese Katakana characters. During transliteration, Goto et
al.’s method follows three approaches: the computation of the likelihood of a par-
ticular choice of generating English conversion units through letter chunking for a
given English word; the use of English and Japanese contextual information simulta-
neously to compute the plausibility of conversion from each English conversion unit
to various Japanese conversion candidate units using a single appropriate probability
model; the use of several probability models based on the maximum entropy method
while modeling different kinds of information.

Abduljaleel and Larkey (2003) use an n-gram transliteration model for English to
Arabic transliteration. The model is a set of conditional probability distributions over
Arabic characters, conditioned on English unigrams and selected n-grams. They use
proper name lists to train the n-gram model using GIZA++ (a statistical alignment
tool). During transliteration, an English word S is first segmented according to the
n-gram inventory, and for each segment, all possible Arabic transliterations T are
generated. The equation for scoring each word is given as follows:

P (T|S,T ∈ Ar) = P (T|S)× P (T ∈ Ar) (2.18)

where P (T ∈ Ar) is the probability that the Arabic word T conforms to the spelling
patterns of Arabic names, and is computed using a letter bigram model of general
Arabic as the product of the probabilities of each letter bigram in T.

Li et al. (2004) and Zhang et al. (2004) use a joint source channel model to
capture the simultaneous generation of source and target words. A joint probability
model is estimated and is marginalized to yield conditional probability models for

2.3 Transliteration generation 29

both forward transliteration and back-transliteration. Given an alignment δ with
transliteration unit correspondences 〈s, t〉k for an English string S and a Chinese
string T, Li et al. formulate their transliteration problem as follows:

T’ = argmax
T,δ

P (S,T, δ) for English to Chinese transliteration, and

S’ = argmax
S,δ

P (S,T, δ) for Chinese to English transliteration.

Li et al. (2004) then use an n-gram transliteration model to capture the condi-
tional probability or transliteration probability of a transliteration unit correspon-
dence 〈s, t〉k depending on its immediate n predecessors. The following Equation is
used to compute the joint probability of a pair of English (S) and Chinese (T) words:

P (S,T) = P (S, T, δ) =

K∏
k=1

P (〈s, t〉k|〈s, t〉k−1k−n+1) (2.19)

Lindén (2006) aligns source and target words using the minimum simple edit dis-
tance. From the alignments, Lindén determines the frequency of each edit operation
in context for at most four letters in the source word including the letter si which is
aligned with ti in the target word T. Given that the context si−1, si, si+1, si+2 in the
source word is represented by si4, Lindén formulates the transliteration problem as
follows:

P (T|S) =
∏

i=1..max(|T|,|S|)

P (ti|si4) (2.20)

P (ti|si4) is estimated with counts of the transformations ti|si4 divided by the count of
the context si4. When the context rarely occurs, an offline back-off model is used for
smoothing P (ti|si4). Lindén then uses a cascade of weighted finite state transducers
to implement the transliteration process.

Malik (Malik 2006) employs a completely rule-based approach for translitera-
tion from Shahmukhi to Gurmukhi. During transliteration, each Shahmukhi token
is parsed into its constituent characters. Characters that bear a dependency are
transliterated using ‘dependency rules’ while characters that do not bear a depen-
dency are transliterated by character mapping. Malik (Malik 2006) specifies a number
of tables that encode the different types of rules.

Karimi et al. (2007) use an alignment approach comprised of two steps: the
first step uses consonant and vowel properties of a word’s characters, and the second
uses a frequency-based search for valid alignments. In the first step, consonant-
vowel sequences (qS and qT) for a pair of words (S and T) in a training corpus is

30 2. A review on machine transliteration

generated and if the sequences match, consonant clusters and vowel sequences are
added to an alignment set. if qS and qT do not match, the second step is used
where a search for alignments proceeds from left to right while examining one of four
possible options for transliteration: single character to single character (si, tj , r),
digraph to single character (si, si+1, tj , r), single character to digraph (si, tj , tj+1, r),
and single character to empty string (si, ε, r). For transliteration generation, Karimi
et al. (2007) propose the use of a collapsed consonant and vowel method called (CV-
MODEL3) as an extension of two previous models (CV-MODEL1 and CVMODEL2).
The source word is segmented and a probability is computed for each generated word
(T) as follows:

P (T|S) =

|K|∏
k=1

P (T̂k|Ŝk),

where |K| is the number of distinct source segments and P (T̂k|Ŝk) is the probability
of the Ŝk → T̂k transformation rule. Karimi et al then apply a tree structure fol-
lowing Dijkstra’s α-shortest path, to generate the α highest scoring (most probable)
transliterations, ranked based on their probabilities.

b) Semantic transliteration

Li et al. (2007) introduce into the transliteration model semantic information with
regard to language of origin and the gender associated with a name. The aim is
still to determine the optimum target name T’ which yields the highest posterior
probability given the source name S :

T’ = argmax
T∈τS

P (T|S) (2.21)

where τS is the set of all possible transliterations for the source name S. To incorporate
language of origin (L) and gender information (G) in the transliteration, Equation
2.21 is re-written as:

P (T|S) =
∑

L∈L,G∈G

P (T,L,G|S) =
∑

L∈L,G∈G

P (T|S,L,G)P (L,G|S) (2.22)

where P (T|S,L,G) is the transliteration probability from source S to target T, given
the language of origin L and gender G. L and G denote the sets of languages and
gender respectively. Given an alignment between S and T, P (T|S,L,G) is estimated
using a bigram language model. The mappings between source and target char-
acters for computing P (T|S,L,G) are obtained from alignments resulting from the
application of the EM algorithm on training data. Information concerning gender

2.3 Transliteration generation 31

and language of origin is incorporated in Equation 2.22 by rewriting P (L,G|S) as
P (L,G|S) = P (G|L,S)P (L|S). Using LS to denote the language of S, P (L|S) can be
obtained as:

P (L|S) =

{
1 L = LS

0 L 6= LS

and using GS to denote the gender for S, p(G|L, S) is obtained as:

P (G|L,S) =

{
1 G = GS

0 G 6= GS

In the case where semantic information is not available, Li et al. (2007) learn the
semantic information from the names themselves.

c) Transliteration using statistical machine translation methods

While a number of approaches aim to develop transliteration-specific methods, the
adaptation of Statistical Machine Translation (SMT) methods to transliteration gen-
eration has become popular as a valuable alternative. The SMT methods that have
been used for transliteration generation range from the earlier popular IBM mod-
els (Brown et al. 1993) to a currently more popular state-of-the-art phrase-based
SMT approach (Koehn et al. 2003). The application of the SMT methods is sim-
ply modified to reflect the properties of a transliteration process. That is, the task
is first viewed as a character translation problem rather than a word (or phrase-
based translation) problem. In section 2.3.1 on phonetic-based methods for translit-
eration generation, we have already seen the application of the IBM models (Virga
and Khudanpur 2003). Orthographic-based methods that use the IBM models, uti-
lize them in a manner similar to that presented for the phonetic-based approaches.
A detailed description about the adaptation of the phrase-based SMT approach to
transliteration can be found in Matthews (2007) and Finch and Sumita (2008).

d) Discriminative machine transliteration

Zelenko and Aone (2006) propose two discriminative methods for transliteration.
Using an existing transliteration dictionary D (a set of name pairs (S,T)), Zelenko
and Aone learn a function that directly maps a name S from one language into a
name T in another language. The main difference in their work is the omission of
the alignment step and any probabilistic computations such as P (T|S), P (S,T) that
depend on alignments. Their discriminative methods correspond to local and global
modeling paradigms: in the local paradigm, Zelenko and Aone learn linear classifiers
that predict a letter ti from the previously predicted letters s1...si−1 and the original

32 2. A review on machine transliteration

name S. In the global paradigm, Zelenko and Aone learn a function W for mapping
a pair (S,T) into a score W (S,T) ∈ <.

Klementiev and Roth (2006) train a linear model to decide whether a target word
(T) from a set of candidate words is a transliteration of a source word (S). T and S are
partitioned into a set of substrings Ss and Ts up to a particular length (including the
empty string). Klementiev and Roth use the same transliteration model described in
the previous section on Transliteration Detection to convert input strings to target
strings.

e) NEWS 2009 and NEWS 2010 shared tasks on transliteration generation

Just like the case for transliteration detection, the transliteration generation task
had also led to the organization of two transliteration generation shared tasks (Li
et al. 2009, Li et al. 2010) to evaluate state-of-the-art transliteration generation meth-
ods using the same standard corpora by the time of writing this thesis. The reports
from the two shared tasks (Li et al. 2009, Li et al. 2010) also show the use of both
generation-based and discriminative-based methods for modeling transliteration gen-
eration.

The 2009 NEWS shared task report (Li et al. 2009) identified two translitera-
tion generation modeling approaches that were applied by many of the participating
teams: phrase-based statistical machine transliteration (which originates from statis-
tical machine translation work as described above) and Conditional Random Fields
(CRFs) (Lafferty et al. 2001). The most successful approaches in the first shared
task, however, are reported to have combined several models (CRFs, Maximum En-
tropy Models, Margin Infused Relaxed algorithm) by re-ranking the transliteration
generation outputs from each model (Oh et al. 2009). A discriminative sequence
prediction model (Jiampojamarn et al. 2009) referred to as DirectL was reported to
have a good transliteration generation performance.

The 2010 NEWS shared task report (Li et al. 2010) shows reduced participation,
but for the teams that participated, approaches that are similar to those applied in
the 2009 shared task are used including phrase-based machine transliteration and
CRFs. The phrase-based approach is used for transliteration on various language
pairs (Finch and Sumita 2010, Song et al. 2010) while CRFs are used by one of the
seven participating teams (Das et al. 2010). Jiampojamarn et al. (2010) extend
their DirectL approach above resulting in relatively better transliteration generation
quality for this shared task. Most of the participating approaches also combine
different models via re-ranking of the outputs (Das et al. 2010, Finch and Sumita
2010, Song et al. 2010) to improve transliteration generation quality. All methods are
said to be orthographic-based except for some cases where a Romanization system
is used before applying a transliteration generation system. However, in almost all

2.3 Transliteration generation 33

results associated with the twelve language pairs for the 2010 shared task, only one
participating system achieves just over 50 % transliteration generation word accuracy
on the English-Korean language pair.

2.3.3 Discussion

Approaches for automated transliteration generation can be divided into two main
classes: those that use phonetic information in the transliteration process and those
that use only the orthographic representation. Transliteration generation literature
shows that phonetic-based approaches were mainly used during the early years of re-
search in automating the transliteration generation process. Later and more recently,
orthographic-based approaches seem to be more preferred. However, there are also
techniques that combine the use of both phonetic and orthographic-only information.

As the review shows, most of the approaches aim at determining a target word
(in the case of forward transliteration) that maximizes a posterior probability asso-
ciated with the target word given the source. Again, we see that the noisy channel
framework is used for transliteration generation as well and the channel (translit-
eration) model is specified and implemented differently in the reviewed approaches.
Although there are some approaches that use an alignment-based representation to
model the transliteration generation process, explicit references to the use of an edit
distance-based metric to score hypothetical transliterations are rare. The review also
shows that the HMM framework has been used mainly for learning alignments for
transliteration generation. This includes being part of the alignment models in the
GIZA++ alignment toolkit which is used when applying state-of-the-art statistical
machine translation approaches to transliteration generation. Here, we envisage that
the DBN models proposed in the thesis can be applied in a manner similar to how the
HMMs have been used in learning alignments for transliteration generation . How-
ever, there has not yet been an application of the DBN models that we propose for
that purpose.

We also see that, some approaches incorporate linguistic information to help im-
prove transliteration generation quality. Recently, there are attempts to incorporate
different types of information such as semantic information in addition to using the
orthographic-only information (Li et al. 2007). The review also shows that improved
transliteration generation quality can be achieved by combining the application of
transliteration generation methods compared to applying each method separately
as the reports from the recent shared tasks on transliteration generation show (Li
et al. 2009, Li et al. 2010). However, results associated with the 2010 shared task
suggest that there is still considerable room for improving transliteration generation
quality since almost none of the state-of-the-art systems achieved over 50% transliter-

34 2. A review on machine transliteration

ation generation accuracy using standard transliteration corpora for twelve language
pairs. Evaluation of the state-of-the-art systems in the 2011 shared task on translit-
eration generation was still onging at the time of writing this thesis.

2.4 Conclusion

Literature on automated transliteration detection and generation suggests generic
constituent phases for which various methods have been proposed to model translit-
eration related tasks. For transliteration generation, many approaches follow an
overall two step procedure of first specifying or training transliteration models given
correct transliteration pairs, and then later applying the models to propose target
candidate words given a source language word. The transliteration generation process
also usually involves first specifying or training a transliteration model to be used for
computing transliteration similarity in the identification of transliteration pairs from
a pre-processed set of candidate transliterations. It is often the case that the size of
training data affects the representational quality and consequently the performance
of the transliteration models.

Recent shared tasks on transliteration mining (Kumaran et al. 2010b) and gener-
ation (Li et al. 2009, Li et al. 2010) provide us with some baseline for making general
conclusions about the current state of research. In both shared tasks most of the ap-
proaches are reported to as using similar techniques with very few modifications. For
example, the reports for all the previous shared tasks on transliteration generation
show that a large percentage of the systems used either a phrase-based statistical
machine translation approach or CRFs. Although some some of these approaches
achieved good performances on some language pairs, the shared task results show
that they are still far from achieving high transliteration detection and generation
quality for many other language pairs.

It is clear from our literature review that most of the work on machine translit-
eration has been concentrated on cases where the source and target languages use
different writing systems. In this thesis, we propose the application of the traditional
transliteration detection and generation setups for cases where source and target use
the same writing system. We have based our proposition on the fact that certain
differences between languages that use the same writing system result in different
written representations for the same entity. And that this is similar to how differ-
ent representations are used for the same entity across writing systems. Therefore
traditional transliteration setups should be a plausible alternative to dealing with
unknown words across languages that use the same writing system.

Finally, although literature shows that the HMM framework has been applied
in both transliteration detection and generation, there are many other HMM and

2.4 Conclusion 35

DBN model generalizations that have not yet been evaluated in the two tasks. This
includes the Pair HMM and transduction-based DBN models that we propose to
apply in the two tasks. In the following chapter, we provide an overview on the
concepts underlying the framework of Dynamic Bayesian Networks before exploring
in later chapters our application of the proposed edit distance-based DBN modeling
approaches in transliteration detection and generation.

Chapter 3

Dynamic Bayesian Networks

3.1 Introduction

Dynamic Bayesian networks (DBNs) are a class of temporal probabilistic graphical
models (PGMs) that have found successful application in many domains. This is
attributed to the more general representations that DBNs allow, leading to very
large model spaces and the use of generic algorithms for inference and learning.
The DBN framework already generalizes a variety of methods including some of
the most common and successful methods in Natural Language Processing (NLP)
such as Hidden Markov Models (HMMs). The inference and learning algorithms
used in these methods can also be viewed as instantiations of some of the standard
DBN algorithms; for example, the forward-backward algorithm used for inference and
learning in HMMs can be considered a special type of the message-passing algorithm
used for inference in Bayesian Networks.1

As temporal probabilistic graphical models, DBNs are used to model not only
sequential data (linguistic or biological) where we are doubtful about the generat-
ing mechanism but also to model time series data that is generated by some causal
process (Murphy 2002). Various DBN modeling methods have been proposed for
many tasks in the literature, and most of the methods are easily adaptable to various
other tasks. Although, it should be important to review the various DBN modeling
approaches when proposing to apply DBN models in a given task, we do not present
such a review in this thesis. The reader is referred to Murphy (Murphy 2002) for
some examples of DBN modeling approaches. In this chapter, we present abstractly
the concepts underlying the framework of Dynamic Bayesian Networks in three as-
pects: the specification and representation of DBN models, DBN inference, and DBN

1We use the term Dynamic Bayesian Networks to generalize HMMs regardless of how the HMMs
are implemented.

38 3. Dynamic Bayesian Networks

learning. We as well propose some examples to illustrate the application of some of
the concepts in the context of transliteration. In the following section, we start with
an introduction to Bayesian networks from which DBNs are an extension.

3.2 Bayesian networks

3.2.1 Representation

Bayesian networks provide a means of expressing a joint probability distribution over
a set of inter-related random variables. They are specified by way of a graphical
modeling language where nodes are used to represent random variables and edges
are used to represent dependencies between the random variables for some system
domain. The use of a graphical language to communicate representative models car-
ries with it a number of advantages. Some advantages given by Koller and Friedmann
(2009) are as follows: 1) A graphical representation provides an accurate reflection
of our understanding of the domain we are modeling and facilitates the effective
construction of the models. 2) A graphical representation allows the distributions
defined by a given model to be used effectively for inference where there is need to
answer different types of queries with respect to the problem domain.

In specific terms, Bayesian Networks are described as directed acyclic graphs in
which edges specify conditional dependencies or independencies. The graphical repre-
sentation of a network also specifies the requirements for the quantitative part of the
model which comprises of a set of probability distribution functions for each random
variable. A formal definition of a Bayesian network specifies the following (Jensen
and Nielsen 2007, Koller and Friedman 2009):

• A set of random variables X1, ..., Xn represented by nodes and a set of directed
edges between the random variables.

• Each variable has a finite set of mutually exclusive states.

• The variables together with the directed edges form a directed acyclic graph
(DAG).

• Each variable Xi is conditionally dependent on only its parents (PaXi
) and its

children.

• To each variable Xi with parents PaXi , a conditional probability table (CPT)
for P (Xi|PaXi

) is attached.

As suggested by the definition above, a number of stages are involved in constructing
a Bayesian network model to represent a given domain. Koller and Friedman (2009)

3.2 Bayesian networks 39

introduce three important stages to Bayesian network model construction which we
review based on their presentation in the following section.

a) Specifying variables

In a Bayesian network, variables are used to represent entities that are relevant
to the domain we are modeling. The entities and their related attributes may be
described in various ways, but it is important that the variables that we use do
precisely represent the domain. If the variables do not precisely represent the domain,
conclusions resulting from the use of the Bayesian network model will be inaccurate
for a given set of observations in the domain. In addition to using variables that
precisely represent a problem domain, we also have to ensure that each variable’s
range of values adequately represent the true conditional independence assumptions
as defined in a Bayesian network model of the domain.

Based on how the problem has been specified, different types of variables can
be defined including observable and / or hidden variables. Observable variables are
variables that we can directly measure whereas hidden variables are variables that
we can only infer from the observable variables in the model. Also, based on the
problem, the variables may be discrete or continuous. In modeling transliteration,
we expect to use only discrete random variables, that is variables that take on a finite
set of values.

b) Specifying the Bayesian network structure

Although a Bayesian network is used to compactly represent the joint probability
distributions for a particular domain, the specification of a Bayesian network struc-
ture is not straightforward. This is because there can be many network structures
that reflect the same set of independencies in the domain we are modeling. Koller
and Friedman (2009) suggest an approach that should be successful for specifying
a Bayesian network to represent the domain of interest. This approach according
to Koller and Friedman is to specify a structure that in the most part reflects the
causal order and dependencies of the variables in the domain, so that between two
variables, we use the notion ‘child variable’ to represent the effect and the notion
parent variable to represent the cause. Koller and Friedman (2009) also point out a
commonly used approach of using a backward construction process in the specifica-
tion of a Bayesian network structure. The process is called backward because when
constructing the Bayesian network, we start with a child variable which represents an
effect and move on to determine factors (causes) that are associated with the effect
which we add to the network as parent variables having edges to the child variable.
Koller and Friedman (2009) also emphasize the inevitability of approximations where

40 3. Dynamic Bayesian Networks

it is possible to represent many weak dependencies which can easily result in a very
complex model that is infeasible to use.

c) Specifying probabilities

This is a very important task in completing the specification of a Bayesian network
model since the queries that we would like to answer about the domain rely on prob-
ability distributions encoded by the Bayesian network. Koller and Friedman (2009)
point out a number of errors that can have a significant effect on the conclusions that
result from using a Bayesian network. Examples of errors from Koller and Friedmann
(2009) that we need to handle when assigning probability distributions for different
variables in the network include: zero probabilities which need to be avoided in ap-
propriate ways; the presence of small differences in probabilities that could imply
large differences in conclusions; and the insensitivity of the model to differences in
relative probabilities, for example we would require that the Bayesian network model
encode correctly that the probability of the relationship between an English l and a
Russian л is greater than the relationship between an English l and the Russian ж.

Practically, the probabilities can be assigned through an expert or can be esti-
mated from training examples of the domain. In the context of transliteration, some
of the variables used may be associated with large probability distributions that we
can not manually assign but can only use a computational technique for automatic
estimation. A common probability estimation approach that we review later in this
chapter is the Expectation Maximization procedure.

3.2.2 A transliteration example

We would like to represent the character relationships between writing systems used
by some source and target languages (for example English and Russian respectively).
We can use a random variable si to represent a character in the source language
writing system, and a random variable tj to represent a character in the target
language writing system. i and j are used to map to the ith (respectively jth)
character in the source (respectively target) set of characters.

We can represent the relationship between the source and target language char-
acters by making tj ‘depend’ on si as shown in Figure 3.1. To complete the definition
of the Bayesian network for this example, we need local probability models to rep-
resent the nature of the dependence of tj on si. According to Figure 3.1, we need
a probability model P (si) to represent the distribution of the different characters
in the source writing system. The distribution over the target random variable tj
is a conditional distribution which we denote here as P (tj |si). P (tj |si) means that
for each assignment of values for the source random variable si, there is a different

3.2 Bayesian networks 41

s1 s2 ... sVs
si

ti

s1

t1 t2 ... tVt

s2
...

sVs

Figure 3.1: A Bayesian network graph for relating characters between writing systems.
si and tj are random variables representing unique characters in the source (resp. target)
writing system. Vs and Vt equal the total number of characters in the source (resp. target)
writing system.

distribution for tj . For example, given that the variable si is assigned the English
character ‘a’, there is a probability distribution for each Russian character tj that
appears as a corresponding character in a transliteration where ‘a’ appears.

3.2.3 Bayesian networks – inference

The main importance of a Bayesian network model is its use for answering queries
related to the problem domain that it models. The reasoning process that is followed
in using a Bayesian network model for answering a given query is refered to as
inference. Generally, the inference task is to compute the posterior distribution over
a subset of variables (query variables) given the values of some evidence variables.
The computation can involve hidden variables which are neither query nor evidence
variables. In the example of Figure 3.1 where the network models the similarity
between characters in different writing systems, a query we may want to answer is
what probability should be associated with assigning the variable tj , some target
character, given that si is assigned to some source character, for example P (ti =

ш|si = a) (in the case of a comparison of Latin ‘a’ and Cyrillic ‘ш’ characters). The
value for this probability based on the network of Figure 3.1 is easy to obtain as we
only need to look it up from the conditional probability distribution for the variable
ti. If the question is inverted, that is P (si = a|ti = ш), we can still easily arrive to
an answer by doing inference by enumeration using Bayes’ rule:

P (si = a|ti = ш) =
P (si = a, ti = ш)

P (t = ш)
=
P (si = a)× P (ti = ш|si = a)∑

si

P (ti = ш, si)
(3.1)

42 3. Dynamic Bayesian Networks

Bayesian network inference done in this way leads to an exact answer and is therefore
called exact inference. Exact inference requires a summation over a joint distribution
in which we marginalize out irrelevant variables. The direct computation of probabil-
ities as illustrated in Equation 3.1 is only possible for a small network. Several exact
inference algorithms have been proposed to help increase efficiency over the direct
approach while still being applicable for some complex representations. The following
are some of the exact inference algorithms for Bayesian networks (Darwiche 2008):
inference by variable elimination; inference by tree clustering ; inference by condition-
ing ; inference by reduction to logic.

As the size of the network increases with respect to the number of random vari-
ables and connections between them, we may experience an exponential blow up of
the joint probability distribution represented by the model. All the exact inference
methods mentioned above are sensitive to this complexity. Approximate inference
algorithms are insensitive to this complexity and can be quite efficient regardless of
the network topology.

3.2.4 Bayesian Networks - Limitation

The Bayesian network in Figure 3.1 can only be used from a static point of view.
That is, the joint probability distribution over the variables si and ti of the network
is fixed although there are different values for P (ti|si). In a temporal setting such as
the transliteration similarity task where we want to represent a distribution over a
sequence of characters, the Bayesian network of Figure 3.1 cannot be used. In order
to deal with problems where there is need to define distributions over more complex
inter-relationships such as those in a temporal setting, template-based approaches
have been proposed (Koller and Friedman 2009). In this thesis we use Dynamic
Bayesian Networks as a template-based approach for modeling transliteration simi-
larity.

3.3 Dynamic Bayesian Networks

Dynamic Bayesian networks have been developed to extend Bayesian networks to en-
able the representation and analysis of systems that change over time. The approach
builds upon the framework of Bayesian networks but where random variables in the
Bayesian network relate to time. DBNs are also usually discussed under three main
aspects in the literature (Koller and Friedman 2009, Murphy 2002): representation,
inference, and learning. We follow the same outline while using most of the notation
as in Murphy (2002).

3.3 Dynamic Bayesian Networks 43

3.3.1 DBNs – representation

The possibility to have random variables relate to time in a Bayesian network enables
DBNs to represent probability distributions over a sequence of random variables
comprising of observations that are related to an underlying sequence of hidden states.
A DBN model is formally defined as a pair 〈B0,B→〉 where B0 is a Bayesian network
over an initial distribution over states P (Z

(1:N)
1), and B→ is a two-slice Temporal

Bayes net (2-TBN) (Murphy 2002). Just as in Bayesian networks, the structure of a
DBN is a directed acyclic graph (DAG) where each node represents a domain variable
of interest at some time instant, and each directed arc represents the dependency
between the two nodes it connects. A hidden state is represented in terms of a set
of Nh random variables, St and the observation is also represented in terms of a
set of No random variables, Ot. The transition and observation models of a DBN
are defined as a product of the conditional probability distributions (CPDs) in the
2-TBN (Murphy 2002):

P (Zt|Zt−1) =

N∏
i=1

P (Z
(i)
t |Pa(Z

(i)
t)) (3.2)

where Z(i)
t is the ith node at time t (which may be hidden or observed; and N =

Nh+No), and Pa(Z
(i)
t) are the parents of Z(i)

t , which may be in the same or previous
time-slice (assuming a first-order Markov model). A given time t is associated with
a number of states each of which is associated in turn with a number of parents
Pa(Z

(i)
t) which may influence Z(i)

t . The product of these characterizes the state at
time t, Zt.

For a given DBN, the general assumption is that parameters associated with
nodes and dependencies among nodes are time invariant; and in particular, that the
dependency parameters between two nodes across two time slices remain unchanged
with time. Hence, as Murphy (2002) puts it, we can define a DBN over an observation
sequence of length T by “unrolling” the 2-TBN until we have T time-slices. The joint
distribution for the sequence of length T can then be obtained by multiplying together
all of the CPDs (Murphy 2002):

P (Z
(1:N)
1:T) =

N∏
i=1

PB0
(Z

(i)
1 |Pa(Z

(i)
t))×

T∏
t=2

N∏
i=1

PB→(Z
(i)
t |Pa(Z

(i)
t)) (3.3)

Before we can make the computation in equation 3.3, we need to have a DBN
model and the stages required to construct one are similar to those described for
Bayesian networks in section 3.2.1 on Bayesian network representation. That is, we
need to specify suitable variables (Z) for the problem domain, the DBN structure

44 3. Dynamic Bayesian Networks

S1 S2

O1 O2

(a) (b)

S1 S2 S3 S4

O1 O2 O3 O4

Figure 3.2: (a) A 2-TBN for a Hidden Markov Model and (b) An unrolled network of
four time-slices for the HMM. We follow the common convention of representing observed
variables as shaded nodes and hidden variables as clear nodes.

that encodes the relationship between the variables (Zi|Pa(Zi)), and the DBN model
probabilities. A template is used to define a DBN structure and from the definition
of a DBN and equation 3.3, the template may define at least two Bayesian networks:
for B0 and for the 2-TBN B→. Figure 3.2 is a graphical representation of a 2-TBN
for a classic Hidden Markov Model (HMM) (a) and when unrolled for four time slices
(b).

HMMs are categorized as the simplest of DBN models because they represent
the hidden state using only one random variable. Many variants that extend the
classic HMMs have also been proposed and used in various tasks. Murphy (2002)
describes several examples as this long list shows: HMMs with mixture-of-Gaussians
output, HMMs with semi-tied mixtures, auto-regressive HMMs, buried Markov mod-
els, mixed-memory Markov models, input-output HMMs, factorial HMMs, coupled
HMMs, hierarchical HMMs, asynchronous IO-HMMs, variable-duration (semi-Markov)
HMMs, mixtures of HMMs, segment models, and abstract HMMs. To this list, we
add Pair HMMs which we propose to use for computing transliteration similarity. Al-
though Pair HMMs are one of the two DBN approaches that we evaluate for translit-
eration detection and generation, some of the HMM variants in Murphy’s (2002)
list above actually warrant an empirical investigation to determine whether they can
improve transliteration detection and generation quality over existing methods.

3.3.2 Transliteration example

Consider the name джейн written in Russian for which we would like to find a
corresponding English name. Assuming that we use a Hidden Markov model to
represent our transliteration problem. In Figure 3.2, we can think of each hidden state

3.3 Dynamic Bayesian Networks 45

as an English character that we would like to find given the model and the observed
name in Russian. We can therefore think of an underlying event of English characters
that should explain the observation of characters in a name written using the Cyrillic
alphabet. We can further assume that in the process of finding a corresponding
English representation, each English character maps to only one Russian character.
The event of English characters may then proceed as follows. At the start, we can
choose an English character according to an initial probability distribution given
the Russian character д. Next, we choose a transition according to the distribution
defined by the 2-TBN. Here, we would like to choose an English character that is the
most likely explanation for the second Russian character given the English character
in the previous step. We then proceed with the 2-TBN until all the Russian characters
are explained. For this example, we need the starting probability distribution of
English characters for each Russian character. We also need the distribution of
moving from one English character in a previous step to an English character given
a Russian character in the current step.

3.3.3 DBNs – Inference

In DBNs, the problem of inference is generally represented as the problem of finding
the probability of hidden variables in a time-slice given a set of consecutive observa-
tions. The most important literature on DBN inference (Murphy 2002, Koller and
Friedman 2009, Mihajlovic and Petkovic 2001) identifies four common DBN inference
tasks: filtering, prediction, smoothing, and decoding. Let St and Ot respectively de-
note the state and observation at time t:

In filtering, at time t, inference is done to keep track of P (St|O(1:t)), that is, we
estimate the ‘belief’ state given all of the observations (evidence) obtained so far.
Filtering is usually applied in estimating the state of a real time system given a
set of values over an interval of time from some measurement function. The class
of DBN models that have commonly been used for this purpose are Kalman Filter
models. Filtering can also be useful in the context of transliteration as a sequence
analysis problem. Given source and target language words as observation sequences
and the parameters of a DBN model, filtering can be used to compute the probability
distribution over the hidden states at the end of the sequence.

In prediction, given observations O(1:t), inference is done to predict the distri-
bution over some subset of variables at time t′ > t. Prediction can also be useful
in the context of transliteration. For example, we can compute character sequence
predictions by using DBNs to represent n-gram models.

Smoothing involves estimating a state of the past, given all the evidence up to the
current time in some longer trajectory: P (St−l|O1:t), where l : 0 ≤ l ≤ t can vary

46 3. Dynamic Bayesian Networks

with different time ranges. Smoothing in this case is aimed at incorporating future
evidence to help reduce temporary fluctuations in the belief state which can lead to
temporary “misconceptions” in the belief state (Koller and Friedman 2009).

In decoding, the aim is to find the most likely sequence of hidden states given
the observations: S′1:t = argmax

S1:t

P (S1:t|O1:t). This inference task is important for

both transliteration detection and generation. In transliteration detection, we can
use the probability score associated with the most likely alignment sequence between
a source word and a candidate transliteration for comparison with other candidate
transliterations. In transliteration generation, we can assume target words to be
associated with observations and decoding can then be used to infer the sequence of
source language characters that explain the observed target word characters.

One additional task that is important for transliteration detection is the computa-
tion of the probability for an observed pair of source and target language words which
can be used for evaluation with other candidate words. In the previous paragraph we
have mentioned one way of achieving that - by comparing the scores associated with
the ‘best’ alignments of a source word and candidate target transliterations. The
other way involves a summation over all possible hidden trajectories. For the classic
HMMs, this can be achieved by using a forward algorithm (Rabiner 1989).

3.3.4 DBNs – Learning

There are two types of learning that are associated with DBNs: DBN structure learn-
ing and DBN parameter estimation. In DBN structure learning, the task is to extract
a DBN structure as well as its parameters given training data. In DBN parameter
estimation, we assume that the DBN structure is known and the learning task is to
determine the parameters that define the conditional probability distributions of the
attributes.

a) DBNs – structure learning

Since a DBN can be represented by two networks B0 and B→, learning the structure
of a DBN reduces to learning the structure of B0 and B→. Boyen et al. (1999) provide
a detailed introduction to DBN structure learning. Here, we briefly point out the
most relevant parts of their discussion.

If we have complete data (that is the training sequence D is fully observable), the
learning task is to find the networks B0 and B→ that “best match” D (Friedman et
al. 1998). The notion of best match is defined using a scoring function and the term
of interest is the log-likelihood function, defined as L(B0,B→ : D) = logP (D|B0,B→).
The log-likelihood function measures how likely the data is given the candidate models

3.3 Dynamic Bayesian Networks 47

B0,B→. The log-likelihood function relies on sufficient statistics that summarize the
frequencies of the relevant events in the data. A scoring function that utilizes the
log-likelihood function can be defined and the goal then is to find the networks that
maximize the score.

If we have incomplete data (that is, the training sequence D is partially observ-
able), then we no longer know the exact counts in the data. As one of the earliest
attempts at DBN structure learning, Friedman (1997) extends the traditional Ex-
pectation Maximization (EM) algorithm to a Structural EM (SEM) algorithm. The
Expectation step (E-step) in the SEM algorithm is similar to that in the traditional
EM algorithm. The E-step uses the current structure and parameters to complete
the data and compute expected counts (expected sufficient statistics). The Maximiza-
tion step (M-step) of the SEM algorithm re-estimates parameters and also evaluates
candidate structures using expected sufficient statistics computed from the current
structure.

Although it is important to undertake an empirical investigation into DBN struc-
ture learning for transliteration detection and generation, it will not be part of the
work reported in this thesis. Instead, we will evaluate known DBN structures that
we have adapted from related work and those that we have modified and specified for
computing transliteration similarity. Therefore, in learning DBN models for comput-
ing transliteration similarity in this thesis, our main concern is with DBN parameter
estimation.

b) DBNs – parameter learning

In DBN parameter estimation, we start with some apriori knowledge about the DBN
model which is represented in the form of a prior probability distribution over model
parameters (Ghahramani 1998). The knowledge is updated using data to obtain a
posterior probability distribution over models and parameters. Assuming that the
prior probability distribution over the parameters for a given DBN model structure
is specified by P (θ|B), a data set D is used to compute a posterior distribution over
the parameters as shown in Equation 3.4 below.

P (θ|B,D) =
P (D|θ,B)P (θ|B)

P (D|B)
. (3.4)

The approach used in estimating DBN model parameters is also determined by
one of the two cases described in the previous section on DBNs structure learning.
That is whether learning is based on complete data or incomplete data. If the training
sequence is D is fully observable and we assume a DBN structure, the goal of learning
is to estimate DBN model parameters (θ) that ‘best match’ D. Here, we also use a
log-likelihood function to measure the likelihood of the D given the parameters (θ)

48 3. Dynamic Bayesian Networks

and a scoring function that facilitates the estimation of parameters that maximize
the likelihood value.

If the training sequence is partially observable, an Expectation Maximization
algorithm is often used. The DBN models we propose to use for transliteration
detection and generation involve hidden states or variables for which we apply an
EM algorithm to estimate DBN model parameters. Although the EM algorithm is
well covered in the Literature, we provide a detailed review in the following subsection
since it plays the most important role in the training of the DBN models that we
propose to use for computing transliteration similarity in transliteration detection
and generation.

c) DBN Parameter learning using the EM algorithm and its generalization

Maximum Likelihood Estimation (MLE) using an Expectation Maximization (EM)
algorithm is the most common aproach for estimating parameters given that a par-
ticular model has hidden or latent variables. Our review of the EM algorithm is
completely based on an unpublished note by Stuart Russell and on a tutorial by
Borman (2004) which also builds upon Stuart Russell’s note. We also use similar
notation as in Russell’s note and in Borman’s (2004) tutorial.

The EM algorithm iterates between two steps: the Expectation step where we
compute values of the model’s hidden and observed variables given training data
and current model parameters; and a Maximization step (M-step), where new model
parameters are estimated that maximize the likelihood of training data. The overall
goal when using an EM algorithm is to find the model parameters θ such that P (D|θ)
is maximal. The M-step of the EM algorithm can be achieved by introducing a log
likelihood function of the parameters θ (L(θ)) given the data D as follows:

L(θ) = lnP (D|θ) (3.5)

Assuming that θn denotes the current estimate for the model’s parameters after n
iterations, we wish to find an estimate of the parameters in the next iteration (θn+1)
such that the difference of the values of the likelihood functions for the current and
next iteration L(θn+1) − L(θn) is maximized. In the presence of a set of hidden
variables in the model, denoted by Z, We can re-write P (D|θn+1) as follows:

P (D|θn+1) =
∑
z

P (D|z, θn+1)P (z|θn+1) (3.6)

where z refers to the values of Z. The difference that we wish to maximize can then
be writen as:

L(θn+1)− L(θn) = ln

(∑
z

P (D|z, θn+1)P (z|θn+1)

)
− lnP (D|θn). (3.7)

3.3 Dynamic Bayesian Networks 49

As Equation 3.7 involves the logarithm of a sum, we can use Jensen’s inequality
(Jensen 1906). The inequality is stated as follows:

ln

n∑
i=1

λixi ≥
n∑
i=1

λi ln(xi) where λi ≥ 0 are constants such that
n∑
i=1

λi = 1.

If we introduce constants of the form P (z|D, θn) to Equation 3.7 such that P (z|D, θn) ≥
0 and

∑
z P (z|D, θn) = 1, we can apply Jensen’s inequality as follows:

L(θn+1)− L(θn) = ln

(∑
z

P (D|z, θn+1)P (z|θn+1) · P (z|D, θn)

P (z|D, θn)

)
− lnP (D|θn)

= ln

(∑
z

P (z|D, θn)
P (D|z, θn+1)P (z|θn+1)

P (z|D, θn)

)
− lnP (D|θn)

≥
∑
z

P (z|D, θn) ln

(
P (D|z, θn+1)P (z|θn+1)

P (z|D, θn)

)
− lnP (D|θn)

=
∑
z

P (z|D, θn) ln

(
P (D|z, θn+1)P (z|θn+1)

P (z|D, θn)P (D|θn)

)

, 4(θn+1|θn). (3.8)

Equation 3.8 can be written as

L(θn+1) ≥ L(θn) +4(θn+1|θn) (3.9)

Equation 3.9 shows that L(θn)+4(θn+1|θn) is bounded above by L(θn+1). It is easy
to show that any θn+1 which increases L(θn)+4(θn+1|θn) will also increase L(θn+1).
In order to maximize L(θn+1), the EM algorithm requires the selection of θn+1 such
that L(θn)+4(θn+1|θn) is maximized. If we denote the maximization value by θ

′

n+1,
then

θ
′

n+1 = argmax
θn+1

{L(θn) +4(θn+1|θn)}

= argmax
θn+1

{
L(θn) +

∑
z

P (z|D, θn) ln
P (D|z, θn+1)P (z|θn+1)

P (D|θn)P (z|D, θn)

}

= argmax
θn+1

{∑
z

P (z|D, θn) lnP (D|z, θn+1)P (z|θn+1)

}

50 3. Dynamic Bayesian Networks

= argmax
θn+1

{∑
z

P (z|D, θn) ln
P (D, z, θn+1)

P (z, θn+1)

P (z, θn+1)

P (θn+1)

}

= argmax
θn+1

{∑
z

P (z|D, θn) lnP (D, z|θn+1)

}

= argmax
θn+1

{EZ|D,θn{lnP (D, z|θn+1)}} (3.10)

Equation 3.10 defines both the expectation and maximization steps. In the expecta-
tion step, the algorithm determines the conditional expectation

EZ|D,θn{lnP (D, z|θn+1)};

and in the maximization step, the algorithm maximizes the expression using θn+1.
The Generalized EM algorithm relaxes the requirement of maximizing4(θn+1|θn)

to the one of increasing 4(θn+1|θn) so that 4(θ
′

n+1|θn) ≥ 4(θn|θn). With this
requirement it is possible to show that the likelihood L(θn+1) is guaranteed to be
non-decreasing at each iteration.

3.4 Conclusion

The framework of Dynamic Bayesian Networks (DBNs) offers a large space of mod-
els which can be exploited to represent and reason about various temporal domains.
However, the use of DBNs and Bayesian networks in general is more likely to be
successful if the set of variables and the interactions between variables that are de-
fined in the first stages of model construction do provide an adequate representation
of the domain being modeled. Our proposal to use DBNs in transliteration related
tasks can proceed in different ways ranging from determining DBN model structures
given example transliteration data to using already specified DBN structures. In the
thesis we are concerned with the latter where we investigate DBN structures that
have already been proposed but not yet tested in transliteration-related tasks. Given
a DBN model structure, the parameters associated with the model also need to be
estimated before we can use the model to answer queries associated with a given
domain. In this chapter, we have reviewed the expectation maximization algorithm
which has been and still is the cornerstone of parameter estimation in the framework
of DBNs. The estimation of DBN model parameters forms the first main phase in
our application of DBN models in transliteration-related tasks. Given a fully param-
eterized DBN model, we can use a suitable inference algorithm to answer a specific
type of query in the problem domain. In transliteration mining, we would like to use

3.4 Conclusion 51

the model to compute the similarity estimate associated with a source and target
word. Specifically, we want to use the model to compute the probability of observing
the pair as candidate and transliteration. In transliteration generation, we would like
to use the DBN model parameters for suggesting hypothetical target representations
given a source word. The use of a particular inference algorithm to answer a spe-
cific query with regard to transliteration mining and generation constitutes the other
main phase in applying the DBN models.

Chapter 4

Pair HMMs for transliteration detection

4.1 Introduction

The detection of transliterations requires an analysis on words written in the source
and target languages with the aim of determining word(s) from the target language
that are the most likely representation(s) of a word in a source language and vice
versa. In this thesis, we assume the transliteration detection process to be composed
of two steps. The first step involves computing the transliteration similarity between
a source language word and a target language candidate transliteration or between
a candidate original source word a known transliteration in a target language. The
second step involves making a decision on whether or not to regard the pair of source
and target language words as a true transliteration pair based on their computed
transliteration similarity.

In this chapter, we introduce the approach of Pair Hidden Markov models (Pair
HMMs) as the first of two Dynamic Bayesian Network (DBN)-related approaches
that we have proposed to use for computing transliteration similarity in the process
of detecting transliterations in bilingual text. Pair HMMs as the name suggests
extend the classic Hidden Markov models (HMMs) by modeling two observation
sequences instead of one sequence. The inference algorithms for the Pair HMMs are
also modifications of the traditional inference algorithms (that is Forward-Backward,
Viterbi) for the classic HMMs. The Pair HMM approach in its own right offers a
huge model space, but we choose to start our investigation with some structures and

This chapter is an extended version of the following publications:
P. Nabende, J. Tiedemann, and John Nerbonne – Pair Hidden Markov Model for Named Entity
Matching, Innovations and advances in Computer Sciences and Engineering, pp. 497–502, 2010,
Springer Netherlands; and
P. Nabende – Comparison of applying Pair HMMs and DBN models in transliteration identification,
Proceedings of the 20th Computational Linguistics in Netherlands meeting, pp. 107–122, Feb 2010,
Utrecht, The Netherlands.

54 4. Pair HMMs for transliteration detection

parameter definitions that have been successfully used for computing word similarity
in tasks having requirements similar to those for computing transliteration similarity
such as cognate identification (Mackay and Kondrak 2005) and dialect comparison
(Wieling et al. 2007). Our aim here is to determine whether assumptions that were
used in Pair HMMs for computing word similarity in previous work are valuable
for computing transliteration similarity. We then propose additional Pair HMM
parameter settings with the aim of determining the effect of parameter changes on
transliteration detection accuracy. For preliminary experiments we used our own-
prepared transliteration data consisting of geographic name pairs extracted from the
Geonames online database for four language pairs: English-Dutch, English-French,
English-German, and English-Russian. In the second set of transliteration detection
experiments, we used standard transliteration data for seven language pairs from the
2009 and 2010 Named Entities Workshop (NEWS) shared tasks on transliteration
generation for evaluating several Pair HMMs and a standard baseline approach that
uses pair n-gram information for computing transliteration similarity. The seven
language pairs include: English-Bengali, English-Chinese, English-Hindi, English-
Kannada, English-Russian, English-Tamil, and English-Thai.

In the following section, we introduce the classic HMMs and briefly review recent
uses of the HMM framework in modeling transliteration. From there, we introduce
Pair HMMs starting with their origins to the requirements for applying them to
compute transliteration similarity. We then describe the Pair HMMs that we use
to investigate the effects of parameter changes on transliteration detection quality.
Based on atleast one of the Pair HMM structures that we have proposed to investi-
gate, we also describe the algorithms for training the Pair HMMs and for computing
transliteration similarity.

4.2 Hidden Markov Models

4.2.1 A brief review on representation

Hidden Markov models find their origins as extensions to Markov models. Rabiner
(1989) describes how the concept of Markov models can be extended to include the
case where the observation is a probabilistic function of a state, resulting in a model
that is a doubly embedded stochastic process in which the underlying stochastic
process is not observable (i.e. it is hidden). Coupled with the defining property that
the underlying stochastic process satisfies the Markov property, we end up with a
Hidden Markov Model . To satisfy the Markov property, the value of the state at
time t (denoted here by St), is dependent on only the previous state (St−1), and
independent of all other states prior to t−1. The outputs from the states also satisfy

4.2 Hidden Markov Models 55

the Markov property. That is, the observation in a state at time t (denoted here by
Ot) is independent of all other states and observations. Taken together, these Markov
properties lead to the following factorization of the joint distribution of a sequence
of states (S) and observations (O) (Ghahramani 2001):

P (S1, ..., ST , O1, ..., OT) = P (S1)P (O1|S1)

T∏
t=2

P (St|St−1)P (Ot|St) (4.1)

This factorization of the joint distribution can be represented graphically as a
Dynamic Bayesian network (see Figure 3.2 in Chapter 3). It is clear from equation
4.1 that to determine the probability distribution over sequences of observations, we
need probability distributions over: the initial state P (S1), the K × K transition
matrix defining P (St|St−1), and the output (or emission) model defining P (Ot|St).

4.2.2 Recent use of HMMs in machine transliteration

The transition and output model P (Ot|St) in equation 4.1 can be specified in various
ways. In the following, we review some recent formulations for the HMM transition
and output models in the context of the transliteration modeling process.

a) Bi-Stream HMMs

Zhao et al. (2007) propose a bi-stream HMM for letter-alignment within named
entity (NE) pairs. When using the bi-stream HMM, the probability of a source NE
(denoted by sI1) given a target NE (denoted by tJ1), is formulated in equation 4.2
below as:

P (sI1|tJ1) =
∑
aI1

I∏
i=1

P (si|tai)P (csi |ctai
)P (ai|ai−1) (4.2)

where ai maps si to the target letter tai at position ai in the target NE. P (ai|ai−1)

is the transition probability distribution; P (si|tai) is a letter-to-letter translation
lexicon; csi is a letter cluster of si and P (csi |ctai

) is a cluster level translation lexicon.
The bi-stream HMM generates two streams of observations: the letters together with
their classes following the distribution for P (si|tai) and P (csi |ctai

) at each state
respectively. Zhao et al. (2007) also define a constraint to ensure that the transition
can only jump forward or stay at the same state.

b) Maximum n-gram HMMs

Zhou (2009) views an HMM as a bi-gram model where the transliteration of the
current character is dependent on the transliteration of a previous character. In this

56 4. Pair HMMs for transliteration detection

approach, the underlying hidden process is a sequence of characters in one language
which generates characters in the other language. When using the bi-gram HMM,
the probability of target NE given the source NE is formulated in equation 4.3 below
as:

P (tn1 |sn1) = P (t1|s1)P (t2|s2, t1)...P (tn|sn, tn−1) (4.3)

where P (ti|si) =
of times si translates to ti

of times si occurs
and

P (ti|si, ti−1) =
of times si translates to ti given si−1 → ti−1

of times si−1 translates to ti−1
Zhou uses an alignment procedure to build a translation lexicon that is in turn used
for obtaining character translation pair occurrences. This facilitates the computation
of the probabilities in equation 4.3. It is straightforward to formulate the equations
for estimating transliteration probability for the trigram HMM case and other higher
order n-gram HMMs.

c) HMMs for searching transliterations

Darwish (2010) uses an approach similar to the bigram HMM approach above. In
Darwish’s case, a character sequence (denoted here by s′i in the source NE (sI1) is
taken to be a potential transliteration for a character sequence t′j in the target NE
(tJ1). Darwish calculates the probability of s′i given t′j from a trained model as follows:

P (t′j |s′i) =
∏

all sx...sy

P (sx...sy|t′k...t′l) (4.4)

where sx...sy are non-overlapping segments generated by finding all 2n−1 segmenta-
tions of the character sequence s′i. According to Darwish (2010), the segmentation
producing the highest probability is chosen, and all target segment sequences t′k, ..., t

′
l

that are known to produce sx...sy for each possible segmentation are also produced.
If a set of non overlapping sequences of t′k, ..., t

′
l generates t

′
j , then t′j is identified as

a transliteration of s′i; and if multiple target sequences have P (s′i|t′j) > 0, then the
t′j that maximizes P (s′i|t′j) is chosen as the proper transliteration.

As the review in chapter 3 on Dynamic Bayesian Networks showed, there are sev-
eral other types of HMMs that have been proposed and used successfully in various
tasks and yet they might also be useful for transliteration detection. In this chapter,
we only investigate the edit distance-based approach of Pair HMMs which is also
different from the HMM approaches reviewed above. Our motivation in investigating
the Pair HMM approach is based on our observation of its success in various tasks
ranging from biological sequence analysis through to the Natural Language Process-
ing (NLP) task of computing word similarity which is similar to that of computing
transliteration simiarity.

4.3 Pair Hidden Markov Models 57

4.3 Pair Hidden Markov Models

4.3.1 Origins

The approach of Pair HMMs originates from modifications to a pairwise alignment
finite state automaton (Durbin et al. 1998). The conversion of the automaton to a
Pair HMM is achieved by defining a model which fulfills the representational require-
ments of HMMs and whose parameters are defined in such a way so as to approximate
the parametric definitions of the finite state automaton. Durbin et al. (1998) define
three emission states that correspond to the states of the automaton as follows: a
match state (denoted by M) which has emission probability distribution pab for emit-
ting an aligned pair of symbols a:b; and two gap states (denoted by X and Y) with
distributions qa for emitting a symbol a against a gap. Durbin et al. (1998) also
satisfy the requirement that the probabilities for all the transitions leaving each state
sum to one. Figure 4.1 illustrates Durbin et al.’s (1998) initial probabilistic version
of the pairwise alignment finite state automaton. This probabilistic model is similar
to a Hidden Markov model but instead of emitting a single sequence, it emits a pair
of sequences.

The model in Figure 4.1 allows for symmetry between source and target and there-
fore uses two parameters to represent transition probabilities between emission states.
These parameters are denoted by δ (which represents the transition probability from
the match state to a gap state) and ε (which represents the transition probability of
staying in a gap state). Durbin et al. also define the start and end states to formal-
ize conditions for initialization and termination. They specifically define transition
probabilities from the start state to be the same as transition probabilities from the
substitution state to any of the emitting states. They also define the probability
of transition to the end state from each emitting state (τ) be the same. Durbin et
al. (1998) then define the inference and learning algorithms for the proposed Pair
HMM structure in the context of biological sequence analysis. The reader is referred
to Durbin et al. (1998) for a detailed description of the accompanying Pair HMM
algorithms based on the model structure in Figure 4.1.

4.3.2 Pair HMMs for modeling word similarity

After the introduction of the Pair HMM approach, Mackay and Kondrak (2005)
proposed to adapt it to compute word similarity and use it in a cognate identification
task. Mackay and Kondrak proposed a number of modifications to Durbin et al.’s
(1998) original Pair HMM structure so as to suit the alignment and comparison of
words in natural language. In the first modification, they added a pair of transitions
between the gap states X and Y each having the same transition probability (denoted

58 4. Pair HMMs for transliteration detection

start M

X

Y

End

1− 2δ − τ

δ

δ

τ

1− 2δ − τ

δ

δ

τ

1− ε− τ

ε

τ

1− ε− τ

ε

τ

Figure 4.1: Probabilistic version of the pairwise alignment finite state automaton in Durbin
et al. (1998). Three transition parameters are specified including δ (for transitions from the
match state (M) to gap states (X or Y)), ε (for transitions of staying in a gap state, and τ
(for transitions to the end state).

by λ). In another modification, they defined two parameters to represent two different
transition probabilities to the end state. They defined τM to represent the transition
probability from the match state to the end state, and τXY to represent the transition
probability from the gap states to the end states. Figure 4.2 shows a finite state
representation of the Pair HMM proposed by Mackay and Kondrak (2005). Mackay
and Kondrak then modified the Pair HMM inference algorithms based on the Pair
HMM structure in Figure 4.2. The reader is referred to Mackay’s thesis (2004) for a
further description of the inference and learning algorithms for that particular Pair
HMM structure.

4.3.3 Pair HMMs for modeling transliteration similarity

The task of computing transliteration similarity is similar to that of computing word
similarity where the approach of Pair HMMs has been applied successfully (Mackay

4.3 Pair Hidden Markov Models 59

M

X

Y

End

1
−

2
δ
−
τ M

δ

δ

τM

1
−
ε−
λ
−
τX
Y

ε

λ

τ
X
Y

1−
ε−
λ−
τ
X
Y

ε

λ

τX
Y

Figure 4.2: Finite state representation of the Pair HMM proposed by Mackay and Kondrak
(2005) for computing word similarity. The Pair HMM uses five transition parameters: three
for the transition probabilities between edit states (δ, λ, ε), and two to the end state (τXY ,
τM).

and Kondrak 2005, Wieling et al. 2007). However, we need to know whether or not
the Pair HMMs approach is useful for computing transliteration in the process of
detecting transliterations from bilingual text. Our starting point is to cast the task
of computing transliteration similarity in exactly the same way as that of computing
word similarity. Before we do that, we need to address requirements for computing
transliteration similarity. Some of the requirements have already been addressed by
Mackay (2004) in their use of Pair HMMs for computing word similarity.

The first requirement involves representing the source and target language words
in a form that enables inference to be done efficiently using Pair HMMs. In translit-
eration, the source and target language words are transcribed using different writing
systems. If we consider the orthographic representation of the words, the method

60 4. Pair HMMs for transliteration detection

used for computing transliteration similarity should be able to handle the different
alphabets. Alternatively, we might use a phonetic alphabet to transcribe the words
phonetically. If we use a phonetic representation, the transliteration similarity esti-
mation method can assume one alphabet for both source and target languages. How-
ever, the requirement to use a phonetic representation is very likely to be difficult due
to lack phonetically transcribed data. Although transliteration is commonly defined
to involve a phonetic transformation of a source language word to a target language
word using a different writing system, some approaches that use orthographic-only
representations are reported to have resulted in comparable if not better machine
transliteration accuracy than phoneme-based approaches (Li et al. 2004).

The other requirement involves the tokenization of the source and target language
words in their representational form into segments that can be used for alignment.
A starting point for tokenization, is to use the language’s alphabet (orthographic
representation) or a phonetic alphabet (phonetic representation). It is also common
to find a combination of characters in one language corresponding to a single character
in the other language: an example is the English letter pair 〈ch〉 as compared to the
Russian representation 〈ч〉. In that case it should be possible to represent 〈ch〉 as a
single token on the English side.

There are some assumptions we can consider to simplify the application of the
Pair HMM method to transliteration similarity estimation. We take a leaf from
the word similarity estimation task in Mackay (2004) which uses a number of these
assumptions for applying Pair HMMs in the cognate identification task. Since the
transliteration detection task involves the analysis of NEs, we can regard an NE as a
particular ‘type of word’. We therefore hardly expect some of the assumptions used
for computing word similarity to affect transliteration detection quality. First, we
assume a monotonic ordering of characters in the source and target language words
when computing transliteration similarity. That is the basic ordering of the tokens
remains the same between the source and target language. Second, we assume no
crossing links in the token alignments between the source and target words. Third,
we assume only one-to-one character alignments. This third assumption critically
limits the application of Pair HMMs in detecting transliterations for some language
pairs whose writing systems are fundamentally different such as between English
and Chinese. English uses a phonemic alphabet whereas the writing system for
Chinese is mostly logographic1. Consider this example where we have the name
“Peter” as written in English and one of its simplified Chinese representations 彼得.
If we tokenize the names by character, and try to get an alignment for them, we
will always end up with atmost two character matching alignments while the rest
of the characters are aligned to an empty string. Consequently, the resulting Pair

1In a logographic writing system, each symbol in theory represents an idea.

4.3 Pair Hidden Markov Models 61

HMM will have a poor representation with regard to strings in the source and target
language. For this specific case, we would like to use a method that matches the
Chinese character ‘彼’ to the English character sequence ‘Pe’, and also matches ‘得’
to ‘ter’ which is close to a true representation of the character correspondences in the
source and target language strings.

Mackay and Kondrak (2005) also maintain some symmetries associated with the
gap states “X” and “Y” of a Pair HMM. The same symmetries are also maintained in
(Wieling et al. 2007) in the Dutch dialect comparison task. For the dialect comparison
task, it is indeed more meaningful to consider the states “X” and “Y” the same since
the source and target words are from the same language. For the transliteration
task, where the source and target languages use different writing systems, the gap
states should be distinct and should reflect the different properties of the source and
target writing systems. In our preliminary experiments, we determine the effect on
transliteration detection quality from using Pair HMMs that distinguish between the
the gap states based on different alphabets for the source and target language in
comparison to using Pair HMMs where the gap states are assumed to be the same.
In the former, we constrain the the Pair HMMs to generate the pair of words based
on the different probability distributions in the gap states X and Y that reflect the
distinct properties between the source and target writing system respectively. In the
latter, the Pair HMMs generate the pair of words based on a probability distribution
for X which is the same for Y for which we assume that the writing system for
the source and target languages is the same and can be obtained by combining any
distinct writing systems.

When using Pair HMMs for a particular task, the main focus is usually on com-
paring the effectiveness of different Pair HMM inference and learning algorithms and
determining the optimal structure of the underlying model. To determine the opti-
mal structure, we can examine the relative contribution of three sets of parameters
(Mackay and Kondrak 2005): substitution parameters, gap parameters (insertion and
deletion), and transition parameters. Because substitution parameters constitute the
core of a Pair HMM, focus is usually put on the gap and transition parameters. In
the second set of transliteration detection experiments, we determine the effect of
Pair HMM transition parameters on transliteration detection quality. In our inves-
tigation, we have defined three Pair HMMs in addition to Mackay and Kondrak’s
(2005) Pair HMM where we train the models to use different probability distribu-
tions for the gap states (X and Y) that reflect differences in the writing systems for
the source and target languages. In the first case, we train a Pair HMM without
transition parameters between each of the edit states; the only transition parameters
in the Pair HMM are from a from a start state to one of the edit states and from one
of the edit states to the end state. In the second case (Figure 4.3), we define the

62 4. Pair HMMs for transliteration detection

M

X

Y

Endδ

δ

δ

δ

α

α

α

α

β

β

β

β

Figure 4.3: A finite state representation of a Pair HMM with three transition parameters
(α, β, δ). The probability of leaving an edit state to another state is the same for all
destination states.

Pair HMM to use three transition parameters associated with leaving one of the edit
states, and where we also specify the probability of starting in one of the edit states
to be the same as the probability of moving from the substitution state (M) to that
edit state including M. In the third case (Figure 4.4), we define the Pair HMM to use
different probabilities for transitions between the edit states and to the end state.

4.3.4 Pair HMMs – Inference

As is the case for the classic HMMs, we are concerned with three important tasks
which are necessary in using Pair HMMs for computing transliteration similarity.
estimation:

The first task, which is also related to our aim for using Pair HMMs, is to com-
pute the probability of a pair of words given a specific Pair HMM. In the context
of transliteration detection, this task is actually that of computing transliteration
similarity. The probabilities that we compute from this task enable the comparison
of candidate transliterations given an original source language word and vice versa

4.3 Pair Hidden Markov Models 63

M

X

Y

End

1
−
δ X
−
δ Y
−
τ M

δX

δY

τM

1
−
εX
−
λX
−
τX

εX

λX

τ
X

1−
ε
Y −

λ
Y −

τ
Y

εY

λY

τ Y

Figure 4.4: A finite state representation of a Pair HMM with nine distinct transition
parameters: six for transition probabilities between the edit states (δX , δY , λX , λY , εX ,
εY), and three to the end state from each edit state (τX , τY , and τM).

and hence the decision on which pairs to regard as ‘true transliteration pairs’. For
this task, we evaluate the Forward and Viterbi algorithms and their log-odds versions
which combine the base algorithms with a random Pair HMM (see below).

The second task is to determine the most probable alignment given a pair of words
and a Pair HMM. In this task we need to use a version of the Viterbi algorithm for
the given Pair HMM to find the most probable alignment sequence given two words.
Given training data, we can use the alignment sequences to estimate parameters
of a Pair HMM. Given a Pair HMM, we can use the alignment score to represent
transliteration similarity.

The third task is associated with estimating the parameters of a Pair HMM. Given
a Pair HMM structure with unspecified parameters, we need to compute Pair HMM
parameters that maximize the likelihood of data which in our case consists of true

64 4. Pair HMMs for transliteration detection

transliteration pairs. There are a number of algorithms that we can use to estimate
Pair HMM parameters (Arribas-Gil et al. 2006). In our case, we will use a modified
version of the Baum-Welch (Baum et al. 1970) Expectation Maximization algorithm
for estimating Pair HMM parameters. This algorithm also uses a forward-backward
procedure.

It is apparent from the tasks above that the standard algorithms for inference
using Pair HMMs include: the Forward, Backward and Viterbi algorithms. These
algorithms are based on the classic HMM algorithms and the reader is refered to
Mackay (2004) for their derivation for Pair HMMs. Unfortunately, the implementa-
tion of these algorithms based on the classic HMMs requires that they be modified
to suit a particular Pair HMM structure. In the following subsections, we provide
pseudocode to illustrate the Forward, Backward, and Viterbi algorithms for the Pair
HMM with distinct emission parameters and whose transition parameters are all dis-
tinct 4.4. We denote the source and target words by x and y respectively. We also
use i and j to denote the indexes in the two sequences respectively. xi denotes the
ith character in the source sequence and yj denotes the jth character in the target
sequence. We use pxi,yj to denote the probability of emitting the ith source word
character and jth target word character when in a Pair HMM’s substitution state.
qxi

is used to denote the probability of emitting the ith source word character and an
empty symbol in the deletion state (X) whereas qyj is used to denote the probability
of emitting the empty symbol and the jth target word character in the insertion state
(Y).

a) Forward algorithm for the Pair HMM with distinct parameters

The Forward algorithm computes for all possible paths, the total probability of a
pair of subsequences (x1, ..., xi and y1, ..., yj) that have been emitted upto a hidden
state k (M, X, Y). We use the variable fk(i, j) to denote this total probability, and
f .(i, j) to indicate the Forward probability associated with being in any of the states.
The initialization, induction, and termination equations for the Forward algorithm
specific to the Pair HMM of Figure 4.4 are as shown on the next page.

b) Backward algorithm for the Pair HMM with distinct parameters

In a manner similar to that of the Forward algorithm, the Backward algorithm com-
putes the total probability for all possible paths of the subsequences starting from
xi+1 and yj+1 up to the end, when the Pair HMM is in a state k. We use the variable
bk(i, j) to denote the total Backward probability and b.(i, j) to indicate the Backward
probability associated with any of the states. We also use n and m to index the end
of the source and target sequences respectively. The initialization, induction, and

4.3 Pair Hidden Markov Models 65

The forward algorithm for a Pair HMM that uses distinct transition parameters
1. Initialization

fM (0, 0) = 1− δX − δY − τM , fX(0, 0) = δX , fY (0, 0) = δY
All f .(i,−1) = f .(−1, j) = 0

2. Induction
for 0 ≤ i ≤ n, 0 ≤ j ≤ m, except (0, 0) do

fM (i, j) = pxiyj [(1− δX − δY − τM)fM (i− 1, j − 1)+

(1− εX − λX − τX)fX(i− 1, j − 1) + (1− εY − λY − τY)fY (i− 1, j − 1)],
fX(i, j) = qxi

[δXf
M (i− 1, j) + εXf

X(i− 1, j) + λY f
Y (i− 1, j)],

fY (i, j) = qyj [δY f
M (i, j − 1) + λXf

X(i, j − 1) + εY f
Y (i, j − 1)]

end for
3. Termination

P (O|µ) = τMf
M (n,m) + τXf

X(n,m) + τY f
Y (n,m)

The backward algorithm for a Pair HMM that uses distinct transition parameters
1. Initialization

bM (n,m) = τM , b
X(n,m) = τX , b

Y (n,m) = τY
2. Induction

bM (i, j) = (1− δX − δY − τM)pxi+1yj+1
bM (i+ 1, j + 1) + δXqXi+1

bX(i+ 1, j)

+ δY qYj+1
bY (i, j + 1),

bX(i, j) = (1− εX − λX − τX)pxi+1yj+1b
M (i+ 1, j + 1) + εXqxi+1b

X(i+ 1, j)

+ λXqyj+1b
Y (i, j + 1),

bY (i, j) = (1− εY − λY − τY)pxi+1yj+1
bM (i+ 1, j + 1) + λY qxi+1

bX(i+ 1, j)

+ εY qyj+1
bY (i, j + 1).

3. Termination
P (O|µ) = (1− δX − δY − τM)bM (0, 0) + δXb

X(0, 0) + δY b
Y (0, 0)

termination equations of the Backward algorithm specific to the Pair HMM of Figure
4.4 are as shown above.

c) Viterbi algorithm for the Pair HMM with distinct parameters

The Viterbi algorithm is used to find the best alignment sequence(s) given a pair
of observation sequences. We use the variable v.(i, j) to denote the probability of
emitting the aligned subsequences x1, ..., xi and y1, ..., yj by the Pair HMM with the
sub alignment ending with (a) aligned pair xi and yj (v.(i, j) = vM (i, j)), (b) xi
aligned to an empty string e (v.(i, j) = vX(i, j)), and (c) yj aligned to the empty

66 4. Pair HMMs for transliteration detection

The Viterbi algorithm for a Pair HMM that uses distinct transition parameters
1. Initialization

vM (0, 0) = 1− δX − δY − τM , vX(0, 0) = δX , vY (0, 0) = δY .
All v.(i,−1) = v.(−1, j) = 0

2. Induction
for 0 ≤ i ≤ n, 0 ≤ j ≤ m except (0, 0) do

vM (i, j) = pxiyj max

(1− δX − δY − τM)vM (i− 1, j − 1)

(1− εX − λX − τX)vX(i− 1, j − 1)

(1− εY − λY − τY)vY (i− 1, j − 1)

 ,

vX(i, j) = qxi
max

δXv

M (i− 1, j)

εXv
X(i− 1, j)

λY v
Y (i− 1, j)

 ,

vY (i, j) = qyj max

δY v

M (i, j − 1)

λXv
X(i, j − 1)

εY v
Y (i, j − 1)

end for
3. Termination

P (H) = max(τMv
M (n,m), τXv

X(n,m), τY v
Y (n,m)).

string e (v.(i, j) = vY (i, j)). Using v.(i, j) to indicate the probability in any of
the states, the initialization, induction, and termination equations for the Viterbi
algorithm specific to the Pair HMM of Figure 4.4 are as shown above.

d) Log-odds algorithms

The Forward, Backward, and Viterbi Pair HMM algorithms may be sufficient for
computing transliteration similarity. Durbin et al. (1998) introduce another ap-
proach of using log-odds ratios to compute string similarity. A log-odds ratio is used
to incorporate the likelihood of the random occurrence of a pair of observations in
the computation of string similarity. Mackay and Kondrak (2005) show that using
of the Viterbi log-odds algorithm results in significantly better cognate identifica-
tion performance compared to using the standard Pair HMM algorithms. Since the
requirements for computing transliteration similarity are similar to those for com-
puting word similarity where the approach of log-odds ratios is reported to be more
successful, we also propose to evaluate it for computing transliteration similarity.

The log-odds algorithms use a random Pair HMM (Figure 4.5) to represent the

4.3 Pair Hidden Markov Models 67

S X Y E
1− η

η

1− η

η 1− η

η

1− η

η

Figure 4.5: Finite state representation of the random Pair HMM. This model uses only
one transition probability (η) with deletion probabilities (rxi) and insertion probabilities
(ryj). X and Y nodes respectively refer to deletion and insertion states, and S denotes a
start state. The unlabeled node represents a silent state which does not emit any symbols
but is used to gather inputs from S and X states. Adapted from Durbin et al (1998).

likelihood of the random occurrence of a pair of strings in the source and target
languages. The random Pair HMM does not have a match state since the source and
target sequences are assumed to have no underlying relationship to each other. The
random model in Figure 4.5 uses only one transition parameter2 (η) with deletion
probabilities (rxi

) and insertion probabilities (ryj). In the following, we briefly review
the Viterbi log-odds algorithm using Mackay and Kondrak’s Pair HMM (Figure 4.2).

According to the random Pair HMM in Figure 4.5, the probability of the random
occurrence of a pair of words can be computed as follows:

P (x, y|R) = η(1− η)n
n∏
i=1

rxi
η(1− η)m

m∏
i=1

ryj = η2(1− η)n+m
n∏
i=1

rxi

m∏
i=1

ryj . (4.5)

where x (having n characters) and y (having m characters) represent source and
target words respectively. An additive model with resulting log-odds scores for emis-
sions and transitions can be specified by combining emission scores and transition
scores from the standard and random Pair HMMs. The following equations are used
to merge the emission and transition scores for Mackay and Kondrak’s Pair HMM
(Figure 4.2) to get the standard terms necessary for sequence alignment following a
dynamic programming methodology. In the equations below, we use s(., .) to denote
the substitution score; d(.) the gap open score; and e(.) and f(.) gap extension scores
that correspond to transitions and emissions from the match state to the gap states,
and between the gap states respectively.

2There should be no restriction on the number of transition parameters that can be used in the
random Pair HMM. It should be possible to use two transition parameters, one associated with
deletions, while the other with insertions. However it is the emission states X and Y that contribute
more to the final random model probability.

68 4. Pair HMMs for transliteration detection

s(x, y) = log
pxy
rxry

+ log
1− 2δ − τM

(1− η)2

d(x) = − log
qxδ(1− ε− λ− τXY)

rx(1− η)(1− 2δ − τM)

e(x) = − log
qxε

rx(1− η)

f(x) = − log
qxλ

rx(1− η)

c = log
1− 2δ − τM

1− ε− λ− τXY
+ log(τXY).

The Viterbi log-odds algorithm for Mackay and Kondrak’s Pair HMM is as shown
below.

The Viterbi log-odds algorithm for a Pair HMM that uses five transition parameters
1. Initialization

vM (0, 0) = −2 log(η), vX(0, 0) = vY (0, 0) = −∞.
All v.(i,−1) = v.(−1, j) = 0

2. Induction
for 0 ≤ i ≤ n, 0 ≤ j ≤ m except (0, 0) do

vM (i, j) = sxiyj max

vM (i− 1, j − 1)

vX(i− 1, j − 1)

vY (i− 1, j − 1)

 ,

vX(i, j) = max

vM (i− 1, j)− d(xi)

vX(i− 1, j)− e(xi)
vY (i− 1, j)− f(xi)

 ,

vY (i, j) = max

vM (i, j − 1)− d(yj)

vX(i, j − 1)− e(yj)
vY (i, j − 1)− f(yj)

 .

end for
3. Termination

P (H) = max(vM (n,m) + log(τM), vX(n,m) + c, vY (n,m) + c).

The log-odds emission and transition score expressions, and the Viterbi log-odds
algorithm for the other Pair HMMs are also derived based on the respective Pair

4.3 Pair Hidden Markov Models 69

HMM parametric definitions. In a similar manner, we derive the Forward log-odds
algorithms for all the Pair HMMs.

4.3.5 Pair HMMs – parameter estimation

A Pair HMM requires two main sets of parameters to compute transliteration simi-
larity: transition and emission parameters. These parameters need to be estimated
before a Pair HMM can be used for computing transliteration similarity. There ex-
ist different approaches for estimating these parameters; some approaches which are
compared in literature include (Arribas-Gil et al. 2006): numerical maximization
techniques, and Expectation Maximization (EM) algorithms with variants such as
stochastic EM and stochastic approximation EM. For the transliteration detection
task, we will adopt the EM-based Baum-Welch algorithm which has already found
successful application in the cognate identification (Mackay and Kondrak 2005) and
dialect comparison (Wieling et al. 2007) tasks.

Before we describe the Baum-Welch algorithm for the Pair HMMs, we begin by
presenting the case for the classic HMMs. The main difference between estimating
parameters for Pair HMMs and estimating parameters for classic HMMs is that for
the Pair HMMs, we have to consider an extra dimension of observation sequences.
Using common notation for the classic HMMs, we specify the transition probability
from a state sk to a state sl at time t by the variable ξt(k, l) which is formulated as:

ξt(k, l) = P (sk, sl|Od, µ) =
P (sk, sl, O

d|µ)

P (Od|µ)

where Od is an observation sequence and µ is some HMM. Through expansion and
simplification using forward (ft(k)) and backward (bt(k)) variables, it can be shown
that

ξt(k, l) =
ft(k)Pklel(O

d
t+1)bt+1(l)

P (O|µ)

We also specify the probability of being in a state k at time t given the observation
sequence by the variable γt(k):

γt(k) = P (sk|Od, µ) =
P (sk, O

d|µ)

P (Od|µ)
=

ft(k)bt(k)∑N
l=1 ft(l)bt(l)

It can be seen that

γt(k) =

N∑
l=1

ξt(k, l) =

N∑
l=1

ft(k)Pklel(ot+1)bt+1(l)

P (O|µ)

70 4. Pair HMMs for transliteration detection

=
1

P (O|µ)
ft(k)[

N∑
l=1

Pklel(ot+1)bt+1(l)] =
1

P (O|µ)
ft(k)bt(k)

If we sum over the time index for the two variables ξt(k, l) and γt(k), we get expecta-
tions (or counts) that can be used in re-estimating the parameters of an HMM using
the following equations:

πk = expected number of times in state k at time t = 1 = γ1(k)

Pkl =
expected number of transitions from state k to state l

expected number of transitions from state k

=

T−1∑
t=1

ξt(k, l)

T−1∑
t=1

γt(k)

=
∑
d

1

P (Od)

∑
t

ft(k)Pklel(O
d
t+1)bt+1(l)

ek(v) =
expected number of times in state k observing symbol v

expected number of times in state k

=

∑
t:ot=v,1≤t≤T

γt(l)

T∑
t=1

γt(l)

=
∑
d

1

P (Od)

∑
t|Od

t =v

ft(k)bt(k)

Now, for the Pair HMMs, we have to sum over the positions in each of the sequences,
and over all possible sequences. Let h denote the index of the pair of sequences we
are using, and let f and b denote the forward and backward variables respectively
but this time with an extra dimension. We obtain the following equations for the
transition and emission probabilities:

For a transition (k to l) ending in a substitution state we have

Pkl =
∑
h

1

P (O|µ)

∑
i

∑
j

fh(i,j)(k)Pklel(x
h
i+1, y

h
j+1)bh(i+1,j+1)(l) (4.6)

For an emission in the substitution state we have

ek(v(xi,yj)) =
∑
h

1

P (O|µ)

∑
i|xh

i ∈Oxy

∑
j|yhj ∈Oxy

fhk (i, j)bhk(i, j) (4.7)

The equations for the insertion and deletion states will have slightly different forms.
In the insertion state, we need to match symbol yj only. Therefore in the equation

4.4 Transliteration detection experiments using geographic names data 71

for estimating transition probability, we change the index for only one sequence of
the pair and we use the emission probability for a symbol from one string against a
gap. The probability estimations for the gap states are as follows:

For the deletion state X:

Pkl =
∑
h

1

P (O|µ)

∑
i

∑
j

fh(i,j)(k)Pklel(x
h
i+1)bh(i+1,j)(l) (4.8)

ek(Oxy) =
∑
h

1

P (O|µ)

∑
i|xh

i ∈Oxy

∑
j

fhk (i, j)bhk(i, j) (4.9)

For the insertion state Y:

Pkl =
∑
h

1

P (O|µ)

∑
i

∑
j

fh(i,j)(k)Pklel(y
h
j+1)bh(i,j+1)(l) (4.10)

ek(Oxy) =
∑
h

1

P (O|µ)

∑
i

∑
j|yhj ∈Oxy

fhk (i, j)bhi (i, j) (4.11)

These expressions enable the use of a forward-backward procedure to learn all the
transition and emission parameters of a Pair HMM.

4.4 Transliteration detection experiments using ge-
ographic names data

4.4.1 Data

For the preliminary transliteration detection experiments, we obtained geographic
name pairs from the Geonames3 database. This database provides a collection of geo-
graphic names and how they are alternately represented using different languages. We
consider only four language pairs: English-Dutch, English-French, English-German,
and English-Russian. As this list of language pairs shows, we also include in our
investigation the case where the source and target language use the same writing
system. We propose this as an alternative solution for building bilingual named en-
tity lexicons where names are spelled differently across the languages even for the
case of the same writing system.

After extracting the raw collection of geographic name pairs from the Geonames
database, we manually checked each dataset (for each language pair) to remove any
noisy and / or irrelevant entities. For the language pairs where the same writing

3http://www.geonames.org

http://www.geonames.org

72 4. Pair HMMs for transliteration detection

system is used, we filtered out name pairs where the names have the same spelling.
This resulted in much smaller sizes of the datasets for these language pairs. We also
found frequent use of diacritics and accents in the datasets. We did not normalize
any diactrics to the standard Latin alphabet of 26 characters. The presence of the
unusual characters for these language pairs partly justifies our assumption to analyse
the data in the context of transliteration since the diacritics and accents convey
different pronunciations. Table 4.1 gives a summary of the dataset sizes after pre-
processing.

Language pair Total no. of NE pairs
English-Russian 25104
English-Dutch 514
English-French 784
English-Germany 856

Table 4.1: Total size of cross language name pairs that were obtained from the geonames
database.

4.4.2 Evaluation setup and results

In this section, we evaluate two Pair HMM settings in an experimental transliteration
detection task. In the first setting, we specify Mackay and Kondrak’s Pair HMM to
use the same alphabet for the source and target observation sequences. We refer to
this Pair HMM setting as PHMM1. In the second setting, we apply Mackay and and
Kondrak’s Pair HMM with distinct insertion and deletion parameters corresponding
to two character vocabularies (one vocabulary for generating source language char-
acters whereas the other is for generating target language characters). We refer to
the second Pair HMM setting as PHMM2. Table 4.2 shows the vocabulary sizes
that were obtained from data for the four language pairs using the two Pair HMM
settings.

Language pair PHMM1 PHMM2
English-French 66 57 English 52 French
English-Russian 127 91 English 61 Russian
English-Dutch 62 56 English 47 Dutch
English-Germany 33 32 English 32 German

Table 4.2: Total sizes of the alphabets for PHMM1 and PHMM2 models.

4.4 Transliteration detection experiments using geographic names data 73

The aim of investigating the two Pair HMM settings at this stage is to determine
whether the assumption of generating source and target observations based on a
single alphabet is sufficient for transliteration similarity estimation. We also evaluate
the use of most of the Pair HMM algorithms presented in Section 4.3.4 for computing
transliteration similarity.

In the previous subsection, the small size of the experimental datasets limits
our evaluation of the Pair HMMs. In this chapter, we follow two approaches to
address this limitation. In the first approach, we propose to use the transliteration
similarity likelihood that each model assigns to correct named entity matches in the
transliteration corpus. We therefore apply an information theoretic measure known as
corpus cross entropy (CCE) which is computed based on the likelihoods. CCE can be
used to evaluate the models without the need for a test corpus. Usually, CCE is used
to give an initial idea about how well the models approximate the true representation
of data in the corpus. We provide such an evaluation for the English-Russian dataset.
However, in order to evaluate the models for identifying transliterations, we need to
use standard evaluation metrics. For the second approach, we perform K-fold cross
validation where we use the usual standard evaluation metrics of accuracy and mean
reciprocal rank (MRR).

Starting with the first approach, we introduce the concept of cross entropy in
the context of comparing the models we have proposed to compute transliteration
similarity. It is important to note that we provide a rather detailed introduction since
there is scarcely a discussion on the use of cross entropy for comparing transliteration
models in the machine transliteration literature. Later, we present our application of
corpus cross entropy that we use to compare the two Pair HMM settings including
the inference algorithms.

a) Corpus cross entropy

Entropy in information-theoretic terms is used to quantify the uncertainty associated
with a random variable. In the context of transliteration, the random variables can
be perceived to range over characters or words. If we have a set of events whose
probabilities of occurrence are P (x1), P (x2), ..., P (xN), we may want to know the
extent of uncertainty for the events. Such a measure, denoted by H(x) is defined
by Shannon (1948) to have the following properties: (1) H(x) should be continuous
in P (xi). (2) If the P (xi) are equal, P (xi) = 1

N , then H should be a monotonic
increasing function. (3) if a choice is broken down into two successive choices, the
original H(x) should be the weighted sum of the individual values of H(x). The only
H(x), that satisfies these three assumptions is specified by Equation 4.12 (Shannon
1948) where K is a positive constant. H(x) is referred to as the entropy of the

74 4. Pair HMMs for transliteration detection

probability distribution over the events.

H(x) = −K
N∑
i=1

P (xi) logP (xi) (4.12)

The choice of the logarithmic base corresponds to the preferred unit for measuring
information. For a character sequence S = s1, s2, ..., sN, we can specify the entropy
using Equation 4.13.

H(s1, s2, ..., sN) = −
∑
SN
1 ∈A

P (SN
1) logP (SN

1) (4.13)

where A is the vocabulary of characters for a given language.
The concept of cross entropy comes into play for cases where we use a model

distribution (which is a close approximation to P) instead of the true distribution P.
Specifically, cross entropy measures the amount of information needed to represent a
test event using the model distribution. The interest usually is to know how well the
model distribution approximates p. Equation 4.14 below defines the cross entropy
between the model distribution m(xi) and the true distribution P (xi):

H(p,m) = −
∑

i
P (xi) logm(xi) (4.14)

One resulting property for cross entropy is that it is an upper bound on the true
entropy H(P). That is, given a model m, H(P) ≤ H(P,m). If P = m, cross entropy
is said to be at a minimum and H(P,m) = H(P). The closer the cross entropy
H(P,m) is to the true entropy H(P), the better m becomes an approximation of p.
We can therefore use cross entropy to compare approximate models. Between two
models m1 and m2, the more accurate model should be the one with the lower cross
entropy. Here, lower cross entropy means that the result is less surprising since we
need very little information to represent the test event. Cross entropy is used to
derive the Perplexity measure which is used in many fields to measure how well a
given model fits the data: Perplexity = 2Cross entropy .

We formulate the cross entropy involving a Pair HMM that models the similarity
between a pair of observation sequences as shown in Equation 4.15 below:

H(P,m) = −
∑

s∈A1,t∈A2

P (s1 : t1, ..., sT : tT) logm(s1 : t1, ..., sT : tT) (4.15)

In this case, we draw the pairs of observations according to the true probability
distribution P, but sum the log of their probabilities according tom. If we assume that
all the tokens (events) in the corpus are distinct, then the true probability distribution
is simply a uniform distribution. Along a different line of reasoning, we can simply

4.4 Transliteration detection experiments using geographic names data 75

use the log probability that the model assigns to the tokes in the corpus for evaluation.
This log probability is referred to as the corpus cross entropy . Given a corpus C of size
N consisting of tokens c1, c2, ..., cN , the log probability of a model m on this corpus
is defined by the following equation:

HC(m) = −
(

1

N

)
×
∑

i
logm(ci) (4.16)

where the summation is done over the tokens in the corpus. It can be proven that
as N tends to ∞, the corpus cross entropy becomes the cross entropy for the true
distribution. To prove the equivalence of the corpus cross entropy with the true
entropy, it must be assumed that the corpus has a stationary distribution. The
proof depends on the fact that the maximum likelihood estimate approaches the true
probability distribution as the size of the corpus tends to ∞.

According to Manning and Schutze (1999), it is not exactly correct to use use
the result for corpus cross entropy in NLP applications because the stationary dis-
tribution assumption is clearly wrong for natural languages. Nonetheless, for a given
corpus, we can assume that a language is near enough unchanging and this can be
considered as an acceptable approximation to truth (Askari, 2006).

In our computation for CCE, we regard each named entity (NE) pair (si, ti) as a
token ci. We formulate the CCE of a given Pair HMM m (CCEm) on a transliteration
corpus as follows:

CCEm = −
(

1

N

)
×

N∑
i=1

log(m(si, ti)) (4.17)

where m(si, ti) is the probability the Pair HMM m assigns to a source and target
language NE pair (si, ti).

CCE results on English-Russian geographic names corpus

Here, we divided the English-Russian dataset into two where 90% (22594) of the
name pairs were used as training data and the rest as test data. The training data is
used to estimate the parameters of the Pair HMMs using the Baum-Welch algorithm.
The scoring algorithms for both Pair HMMs (PHMM1 and PHMM2) are then applied
to compute a log probability score for each name pair entry in the test set using the
parameters of the trained Pair HMMs. We then use Equation 4.17 to compute the
CCE per algorithm for each Pair HMM. Table 4.3 shows the resulting CCE for the
Pair HMM algorithms on the whole English-Russian transliteration corpus.

It is clear from Table 4.3 that the use of distinct emission parameters based on two
distinct alphabets results in a relatively lower cross entropy (hence less uncertainty)

76 4. Pair HMMs for transliteration detection

Pair HMM algorithm
CCE

PHMM1 PHMM2
Viterbi 34.085 23.907
Forward 33.970 21.201
Viterbi log-odds (identical) 220.468 110.633
Viterbi log-odds (distinct) 76.199 48.229
Forward log-odds (identical) 107.927 107.927
Forward log-odds (distinct) 63.353 45.248

Table 4.3: CCE for the Pair HMM algorithms on our English-Russian Geonames translit-
eration corpus.

compared to the case where one alphabet is used. It is important to note that we can
only use CCE to compare corresponding algorithms of the two Pair HMMs. We can
not use CCE to evaluate the base Pair HMM algorithms with the log-odds algorithms
since a base Pair HMM algorithm is also involved in the computation of the log-odds
score. This would always result in a higher value of CCE for the log-odds algorithm
compared to that for the base Pair HMM algorithm.

We can also compare the two models by looking at the rate of change of CCE
as the size of the test set increases. The graphs in Figure 4.6 show the variation of
CCE with the size of the English-Russian Geonames transliteration test set for the
different Pair HMM scoring algorithms.

The differences in the curves for the corresponding algorithms in Figure 4.6 also
suggest that using two alphabets (PHMM2) generally makes Pair HMMs better at
modeling transliteration similarity than when they use one alphabet. However, before
we make a final conclusion, we evaluate the models in a standard transliteration
detection setting using two traditional metrics: transliteration detection accuracy
and mean reciprocal rank (MRR). In the following subsection, we define the two
metrics.

b) Transliteration detection accuracy and mean reciprocal rank

Transliteration detection accuracy measures the proportion of target named entities
that are correctly detected as transliteration matches of the respective source named
entities.

Accuracy =
number of correctly identified target named entities

total number of test named entities identified

Transliteration detection accuracy can be computed at a particular cutoff rank. TOP-
1 accuracy (or sometimes referred to as precision at rank 1) indicates the proportion

4.4 Transliteration detection experiments using geographic names data 77

0 500 1000 1500 2000 2500

10
20

30

Viterbi

corpus size (n)

C
C

E

0 500 1000 1500 2000 2500

10
20

30

Forward

n

C
C

E

0 500 1000 1500 2000 2500

10
0

14
0

18
0

22
0

Viterbi log−odds (same em. params)

n

C
C

E

0 500 1000 1500 2000 2500

40
50

60
70

Viterbi log−odds (distinct em. params)

n

C
C

E

0 500 1000 1500 2000 2500

90
95

10
0

Forward log−odds (same em. params)

n

C
C

E

PHMM1
PHMM2

0 500 1000 1500 2000 2500

35
45

55

Forward log−odds (distinct em. params)

n

C
C

E

Figure 4.6: Variation of CCE with the English-Russian test set size for different Pair HMM
scoring algorithms.

of named entities in the test set for which the correctly detected target named entity
was the first to be returned by the transliteration system. Likewise TOP-5 accuracy
indicates the proportion of test named entities for which the correct transliteration
was returned within the first five candidate transliterations. If more than one translit-
eration is available for a source word in the test data, we need to take the variant
transliterations into account. A modified version of the transliteration detection met-

78 4. Pair HMMs for transliteration detection

ric will be used in Chapter 7 for this purpose. Equation 4.18 below takes into account
the case where we have more than one transliteration for a source word.

Accuracy =
1

N

N∑
i=1

1 if ∃ ri,j = ci,1; 0 otherwise (4.18)

where ri,j is the jth reference transliteration for the ith source word in test data and
ci,1 is the first candidate transliteration returned by the transliteration system. N is
the size of the test dataset.

For the transliteration detection experiments in this chapter, we assume that there
is only one transliteration for each source word. We also evaluate the methods using
only TOP-1 accuracy.

We also use MRR, which is mainly used in information retrieval to evaluate the
ranked list of documents returned by a search system. In the context of transliteration
detection, MRR is the average of reciprocal ranks associated with the NEs in the test
set. A reciprocal rank is the reciprocal of the rank at which the correct target
transliteration was identified for a given source NE.

MRR =
1

N

N∑
i=1

1

Ri
(4.19)

where Ri is the rank of the correct transliteration in the returned list of candidate
transliterations for the ith test NE. N is the total number of NEs in the test set.

When using these metrics for the preliminary set of experiments, we perform
stratified K-fold cross-validation for evaluation. We use Equations 4.18 and 4.19 to
compute the accuracy and MRR respectively in each fold. We then compute the
cross validation accuracy (CVA) and cross validation MRR (CVMRR) by averaging
the K individual accuracy and MRR values from each of the K folds.

CVA =
1

K

K∑
k=1

Ak. (4.20)

where Ak is the accuracy of a model on the kth test data set (see Equation 4.18)
while K is the total number of test datasets for cross-validation. Likewise,

CVMRR =
1

K

K∑
k=1

MRRk (4.21)

where MRRk is the MRR of a model on the kth test data set (see Equation 4.19).

4.4 Transliteration detection experiments using geographic names data 79

Transliteration detection accuracy and MRR results

Here, we evaluate the models on all the four language pairs for which we perform
stratified 10-fold cross validation. During training, a Pair HMM Baum-Welch algo-
rithm is used to estimate the emission and transition parameters of the corresponding
Pair HMM. Table 4.4 shows the average number of iterations that were required for
the Baum-Welch algorithm to converge for three of the four language pairs.

Language pair
avg. no. of iterations
PHMM1 PHMM2

English-Russian 802 702
English-Dutch 896 839
English-Germany 418 379

Table 4.4: Average number of iterations required by the Baum-Welch algorithm to converge
to local maximum for PHMM1 and PHMM2.

Table 4.4 suggests that Baum-Welch algorithm converges faster to a local optimum
for the case of PHMM2 than the case for PHMM1 on all the language pairs. Table
4.5 shows the CVA and CVMRR results from the use of the scoring algorithms for
the two Pair HMMs on the English-French dataset.

Pair HMM algorithm
CVA CVMRR

PHMM1 PHMM2 PHMM1 PHMM2
Viterbi 0.836 0.824 0.858 0.850
Forward 0.834 0.827 0.857 0.852
Vit. log-odds (identical) 0.675 0.682 0.751 0.752
Vit. log-odds (distinct) 0.835 0.844 0.861 0.866
Forward log-odds (identical) 0.676 0.677 0.751 0.751
Forward log-odds (distinct) 0.845 0.859 0.866 0.875

Table 4.5: CVA and CVMRR transliteration detection results for different Pair HMM
algorithms on English-French data. Values in bold indicate the best result.

The results in Table 4.5 suggest that if the standard Pair HMM algorithms are
used for computing transliteration similarity, there is no gain in using two separate
alphabets between English and French. Although all the log-odds versions of the
standard algorithms for PHMM2 achieve a slight improvement in transliteration de-
tection quality compared to those for PHMM1, the differences in CVA and CVMRR
are not significant. Table 4.5 also shows that the log-odds algorithms that use dis-

80 4. Pair HMMs for transliteration detection

tinct emission parameters result in better transliteration detection quality than the
standard algorithms for both Pair HMMs.

Table 4.6 shows the CVA and CVMRR results from the application of PHMM1
and PHMM2 on the English-Russian dataset.

Pair HMM algorithm
CVA CVMRR

PHMM1 PHMM2 PHMM1 PHMM2
Viterbi 0.759 0.824 0.788 0.834
Forward 0.759 0.830 0.788 0.838
Vit. log-odds (identical) 0.619 0.722 0.680 0.770
Vit. log-odds (distinct) 0.696 0.824 0.740 0.835
Forward log-odds (identical) 0.749 0.750 0.790 0.790
Forward log-odds (distinct) 0.831 0.833 0.840 0.841

Table 4.6: CVA and CVMRR transliteration detection results for two Pair HMMs and
different scoring algorithms on English-Russian Geonames data.

In Table 4.6, we see a general improvement in transliteration detection quality
from PHMM1 to PHMM2. Specifically, we see a considerable improvement in CVA
and CVMRR for the standard Pair HMM algorithms. Again, The Forward log-odds
algorithm that uses distinct emission parameters for the random and standard Pair
HMMs results in relatively high transliteration detection quality compared to other
scoring algorithms although with a slight difference compared to the standard Pair
HMM algorithms in PHMM2. There is also a bigger difference between PHMM1
and PHMM2 in using the Forward log-odds algorithm as compared to the case for
English-French above.

Table 4.7 shows the CVA and CVMRR results from the application of PHMM1
and PHMM2 on the English-Dutch dataset. The results in Table 4.7 suggest that
the Viterbi log-odds algorithm achieves a relatively higher transliteration detection
accuracy compared to the other Pair HMM algorithms although just slightly higher
as compared to the forward log-odds algorithm. Table 4.7 results also suggest that
not all algorithms result in improved transliteration detection quality when used for
PHMM2. Generally the differences in CVA and CVMRR between the corresponding
PHMM1 and PHMM2 algorithms are are so small.

Table 4.8 shows the CVA and CVMRR results from the application of PHMM1
and PHMM2 on the English-German dataset. Just like in the results for the English-
Dutch dataset, Table 4.8 shows that there is hardly any difference in using PHMM1
compared to using PHMM2. Again the log-odds algorithms that use distinct emission
parameters achieve higher transliteration detection accuracy compared to the base
algorithms.

4.4 Transliteration detection experiments using geographic names data 81

Pair HMM algorithm
CVA CVMRR

PHMM1 PHMM2 PHMM1 PHMM2
Viterbi 0.804 0.796 0.836 0.829
Forward 0.806 0.808 0.836 0.838
Vit. log-odds (identical) 0.781 0.779 0.821 0.817
Vit. log-odds (distinct) 0.824 0.826 0.846 0.846
Forward log-odds (identical) 0.783 0.783 0.821 0.821
Forward log-odds (distinct) 0.820 0.824 0.845 0.847

Table 4.7: CVA and CVMRR transliteration detection results for two Pair HMMs and
different scoring algorithms on English-Dutch Geonames data.

Pair HMM algorithm
CVA CVMRR

PHMM1 PHMM2 PHMM1 PHMM2
Viterbi 0.893 0.895 0.920 0.919
Forward 0.898 0.896 0.922 0.922
Vit. log-odds (identical) 0.802 0.805 0.859 0.860
Vit. log-odds (distinct) 0.829 0.920 0.938 0.938
Forward log-odds (identical) 0.808 0.808 0.865 0.865
Forward log-odds (distinct) 0.914 0.911 0.935 0.934

Table 4.8: CVA and CVMRR transliteration detection results for two Pair HMMs and
different scoring algorithms on English-German Geonames data.

c) Discussion

From the results on the four language pairs (that is English-French, English Russian,
English-Dutch and English-German), we saw some variations in transliteration de-
tection quality on using the different Pair HMM algorithms. The log-odds algorithms
(that use distinct emission parameters between the random and standard Pair HMM)
consistently performed well on all datasets based on the CVA and CVMRR metrics.
The use of an information theoretic metric (corpus cross entropy) also suggested
that PHMM2 algorithms are better approximators of transliteration similarity than
PHMM1 algorithms on the English-Russian dataset. The results also suggest that
some algorithms seem to be insensitive to changes in model settings, for example,
the Forward log-odds algorithm resulted in almost the same transliteration detection
quality under the two Pair HMM settings while the transliteration detection quality

82 4. Pair HMMs for transliteration detection

for the Forward and Viterbi Pair HMM algorithms changed considerably. The results
from the experimental transliteration detection task also differ from those reported
in previous work. In the cognate recognition task in (Mackay and Kondrak 2005)
and the Dutch dialect comparison task (Wieling et al. 2007), the Viterbi log-odds
algorithm is reported to have performed better than all the other algorithms on nine
language pairs that were used. This was also the case for the individual language
pair of English-French in the cognate identification task. However, for English-French
and English-Russian, the Forward log-odds algorithm performed consistently better.
This seems to suggest that the properties associated with transliteration data may
indeed differ from those of the datasets in tasks similar to transliteration detection
thus necessitating a check on various model settings. We specifically see bigger differ-
ences in CVA and CVMRR between PHMM1 and PHMM2 for the English-Russian
dataset where the languages indeed use different writing systems than the case for
the other language pairs where the languages use the same writing system.

4.5 Experiments using NEWS 2009 and 2010 shared
task data

4.5.1 Data

For the transliteration detection experiments in this section, we use manually verified
transliteration data from the NEWS 2009 (Li et al. 2009) and 2010 (Li et al. 2010)
shared tasks on transliteration generation. The transliteration data has been made
available as standard data for evaluating machine transliteration systems. We evalu-
ate the transliteration detection methods on seven language pairs: English-Bengali,
English-Chinese, English-Hindi, English-Kannada, English-Russian, English-Tamil
and English-Thai. For some language pairs, the respective shared task datasets did
not need any further processing before being used. However, for some language pairs,
the datasets needed some pre-processing which we describe in the following.

NE pairs that had spaces in them and of which the total size of the constituent
names was equal on the source and target side, were split into single NE pairs. We
assumed a monotonic ordering on the space-separated NEs and matched single names
by their corresponding position. It was common to find the use of a comma in the
space-separated NEs, especially in person names (for example ‘WATSON, JOHN B.’
in English and ‘วัตสัน, จอห์น บี.’ in Thai). The comma and the ordering in which
the names were written was always the same on both the source and target side.
From the English-Thai example above, the name ‘วัตสัน’ in the first position in the
Thai NE is indeed a true Thai transliteration of the name ‘WATSON’ which is also
in the first position in the English NE, and the same is true for the two remaining

4.5 Experiments using NEWS 2009 and 2010 shared task data 83

strings in the respective positions of the complete NEs. We could as well have left out
the space-separated NE pairs but a manual verification4 on the split-matched NEs
showed that almost all of the mappings were correct. We also removed any NE pairs
that had unnecesary representations in them including: numerical representations,
abbreviations, and person titles (such as Mrs., Mr., Dr., etc.). Table 4.9 shows the
total number of single NE pairs that were used per language pair.

Language pair Total size Training Testing
English-Bengali (En-Be) 14255 12814 1441
English-Chinese (En-Ch) 37228 33505 3723
English-Hindi (En-Hi) 16059 14486 1573
English-Kannada (En-Ka) 14368 12940 1428
English-Russian (En-Ru) 7840 7056 784
English-Tamil (En-Ta) 14622 13164 1458
English-Thai (En-Th) 29050 26126 2924

Table 4.9: Number of named entities from NEWS 2010 shared task standard transliteration
data for Training and Testing per language pair.

The English-Chinese datasets were first transformed into a Pinyin representa-
tion ignoring tones. A preliminary run on the original Chinese orthographic rep-
resentation using all the Pair HMM variants proposed in this chapter resulted in
very low transliteration detection accuracy. However, based on recent literature
(Jiampojamarn et al. 2010, Zhao et al. 2007, Zhou 2009), a plausible approach for Chi-
nese involves transforming the characters into Latin character representation using a
Romanization system such as Pinyin to simplify transliteration analysis. For exam-
ple, the Chinese characters in 彼得 would be transformed as follows using the Pinyin
Romanization system: ‘彼→bi’ and ‘得→de’ (assuming we ignore tones). With such
a transformation, we have the option of using the same vocabulary to represent the
English and Chinese strings when applying the Pair HMMs. However, we specify the
models to use distinct alphabets corresponding to the different writing systems. In
English-Chinese transliteration detection, it is also sufficient to use the Romanized
form for analysis, but in a transliteration generation task where the target string
should be a Chinese string, we would need to transform5 the Romanized represen-
tation into Chinese characters. Finally, for some language pairs, the named entities

4Verification in this case was possible since this the total size of this class of space separated NE
pairs did not exceed 500 on all language pairs.

5This would require another step in the process of transliteration generation, that is, the segmen-
tation of the string in the source language to enable mapping to a Romanized form for converting
to Chinese characters.

84 4. Pair HMMs for transliteration detection

were already sorted alphabetically on the English side and had to be randomized
before dividing the whole set into train and test sets.

4.5.2 Evaluation setup and results

For this set of experiments, we report on results for only one held-out6 test set for
each language pair; we therefore evaluate the models using transliteration detection
accuracy (Equation 4.18) and Mean Reciprocal Rank (MRR) (Equation 4.19). In this
section, we evaluate the Pair HMMs against a standard baseline of using pair n-gram
information.

a) Baseline – Pair n-gram models

We use as a baseline, a method that relies on the correspondence of source and
target n-grams for estimating transliteration similarity. In its own right, this baseline
method has a large model space for which we can derive various probabilistic and
non-probabilistic similarity estimation schemes.

Consider a pair tri-gram case between English and Russian. To describe the
method, we use the following name pair “Peter” (English) and “пётр” (Russian) which
we assume exists in training data. We would like to elicit tri-gram relationships using
the name pair by identifying tri-gram correspondences at the same position in the
source and target. To ensure that we do not miss out on any characters in the source
or target during the tri-gram correspondence identification process, we introduce a
‘dummy’ character denoted by # which we add at the start and end of each name as
follows:

Peter → {##P, #Pe, Pet, ete, ter, er#, r##}
пётр → {##п, #пё, пёт, ётр, тр#, р##}

First, we move in the forward direction, while storing information about the tri-
gram correspondences. For the name pair example above, we obtain the following
correspondences in the forward direction:

Tri-gram pairsforward = {##P-##п, #Pe-#пё, Pet-пёт, ete-ётр, ter-тр#, er#-р##}

After the forward pass, we move in the backward direction resulting in the following
tri-gram correspondences:

Tri-gram pairsbackward = {r##-р##, er#-тр#, ter-ётр, ete-пёт, Pet-#пё, #Pe-##п}
6We also performed 10-fold cross validation but there was hardly any error of margin to using

only one held-out test set. We report on results for only one held-out test set since we shall use
them for comparison purposes with several other models in the next chapter.

4.5 Experiments using NEWS 2009 and 2010 shared task data 85

The transliteration similarity scheme we use in this approach is based on whether
or not a tri-gram correspondence associated with a candidate pair in the test set
matches any of the tri-gram correspondences identified from the name pairs in the
train set. If it does match, then the transliteration similarity score for the candidate
pair is incremented by 1 otherwise we evaluate the next trigram pair until the end.
Apart from tri-gram relationships, we also explore bi-gram, 4-gram, 5-gram, and
6-gram relationships in a similar manner.

We have applied this n-gram approach to transliteration data for the seven lan-
guage pairs. Table 4.10 shows the transliteration detection accuracy and MRR for
the different pair n-gram models. As can be seen in Table 4.10, the accuracy and
MRR for the pair tri-gram model and the other higher order pair n-gram models are
already high for five of the language pairs. As mentioned before, the pair n-gram
approach can be associated with various scoring schemes. In a stratified 10-fold cross
validation transliteration detection experiment, we found that the use of the scoring
scheme described in the last paragraph led to considerably better transliteration de-
tection accuracy and MRR than the case when we use direct probabilities computed
for the n-gram correspondences in the train set. Table 4.10 also shows that apart
from the case for English-Chinese, the pair tri-gram model is generally better at
modeling transliteration similarity in comparison to the other pair n-gram models.

Model
Language Pair

En-Be En-Ch En-Hi En-Ka En-Ru En-Ta En-Th
accuracy

bigram 0.198 0.017 0.393 0.283 0.837 0.138 0.142
trigram 0.804 0.524 0.813 0.763 0.944 0.775 0.590
4-gram 0.767 0.678 0.809 0.738 0.922 0.762 0.623
5-gram 0.724 0.632 0.802 0.708 0.903 0.725 0.588
6-gram 0.728 0.614 0.806 0.710 0.903 0.705 0.549

MRR
bigram 0.252 0.026 0.453 0.341 0.866 0.188 0.186
trigram 0.844 0.604 0.850 0.806 0.956 0.824 0.659
4-gram 0.811 0.736 0.843 0.778 0.937 0.804 0.685
5-gram 0.771 0.683 0.837 0.751 0.920 0.768 0.645
6-gram 0.785 0.675 0.845 0.755 0.925 0.759 0.609

Table 4.10: Transliteration detection accuracy and MRR for different pair n-gram models
on seven language-pairs. Bold values indicate best results for each language pair.

86 4. Pair HMMs for transliteration detection

b) Pair HMM results

For the set of results reported in this section, we estimated each Pair HMM’s pa-
rameters using the Baum-Welch EM algorithm starting with uniform initial proba-
bility distributions for starting, emission, and transition parameters. We then used
the transliteration similarity estimates computed by six scoring algorithms to detect
transliteration pairs from bilingual lists of candidate source and target NEs. We eval-
uate transliteration detection quality from using each Pair HMM scoring algorithm
by computing transliteration detection accuracy and MRR. Tables 4.11 to 4.17 show
the transliteration detection accuracy and MRR results for different scoring algo-
rithms (for each Pair HMM variant) on test data for the seven language pairs. In the
Tables, PHMM0 denotes the Pair HMM variant which is specified and trained with
only emission parameters and no transition parameters between edit states; PHMM3
denotes the Pair HMM which is specified and trained to use three transition param-
eters between edit states (Figure 4.3); PHMM5 denotes the Pair HMM which uses
five transition parameters between the edit states and distinct emission parameters
in all the edit states (Figure 4.2); and PHMM9 denotes the Pair HMM that uses nine
distinct transition parameters between the edit states in addition to distinct emission
parameters in each edit state (Figure 4.4). The accuracy and MRR values in bold
indicate the best result for a given Pair HMM and those in bold and italicized
indicate the overall best result for that language pair. As shown in almost all tables,
the Forward log-odds algorithm (where the random model’s insertion and deletion
parameters are based on character frequencies from the respective training data) for
each Pair HMM variant consistently and in most cases outperforms the other algo-
rithms on all transliteration data for the seven language pairs. On the other hand,
we see that the Forward log-odds and Viterbi log-odds (that use the same insertion
and deletion parameters for the standard models and the random model) consis-
tently result in poor transliteration detection quality for all language pairs. We also
see that although there is a general improvement in accuracy and MRR from the
lack of Pair HMM transition parameters (PHMM0) to using transition parameters
(PHMM3, PHMM5, PHMM9), an increase in the number of transition parameters
does not guarantee improvements in transliteration detection quality. This is the case
with PHMM9 which despite having the best accuracy and MRR from the Forward
and Viterbi algorithms for almost all language pairs, results in lower transliteration
detection (TD) quality on the best performing Forward log-odds algorithm. It is also
surprising to see that for atleast four of the language pairs (En-Be, En-Ch, En-Hi, and
En-Th), the Forward log-odds algorithm for PHMM3 results in the best overall accu-
racy and MRR whereas the other algorithms lead to poor TD quality in comparison
to other Pair HMM variants. For the English-Russian dataset, we expected

4.5 Experiments using NEWS 2009 and 2010 shared task data 87

Pair HMM algorithm
PHMM0 PHMM3 PHMM5 PHMM9

accuracy
Viterbi 0.717 0.579 0.776 0.795
Forward 0.822 0.731 0.869 0.862
Vit. log-odds (identical) 0.462 0.523 0.524 0.552
Vit. log-odds (distinct) 0.877 0.754 0.783 0.832
Forward log-odds (identical) 0.501 0.614 0.571 0.588
Forward log-odds (distinct) 0.902 0.932 0.873 0.912
Pair tri-gram baseline 0.804

MRR
Viterbi 0.773 0.655 0.832 0.844
Forward 0.883 0.811 0.906 0.897
Vit. log-odds (identical) 0.583 0.631 0.625 0.659
Vit. log-odds (distinct) 0.918 0.803 0.835 0.878
Forward log-odds (identical) 0.621 0.737 0.678 0.704
Forward log-odds (distinct) 0.936 0.950 0.911 0.937
Pair tri-gram baseline 0.844

Table 4.11: English-Bengali transliteration detection accuracy and MRR for Pair HMMs.

Pair HMM algorithm
PHMM0 PHMM3 PHMM5 PHMM9

accuracy
Viterbi 0.205 0.111 0.418 0.426
Forward 0.293 0.236 0.482 0.487
Vit. log-odds (identical) 0.050 0.080 0.132 0.132
Vit. log-odds (distinct) 0.180 0.237 0.537 0.537
Forward log-odds (identical) 0.086 0.129 0.145 0.144
Forward log-odds (distinct) 0.467 0.684 0.666 0.661
Pair tri-gram baseline 0.524

MRR
Viterbi 0.286 0.163 0.533 0.538
Forward 0.411 0.358 0.611 0.615
Vit. log-odds (identical) 0.088 0.126 0.209 0.209
Vit. log-odds (distinct) 0.233 0.296 0.634 0.632
Forward log-odds (identical) 0.150 0.205 0.228 0.226
Forward log-odds (distinct) 0.586 0.777 0.764 0.760
Pair tri-gram baseline 0.604

Table 4.12: English-Chinese Pair HMM transliteration detection accuracy and MRR.

88 4. Pair HMMs for transliteration detection

Pair HMM algorithm
PHMM0 PHMM3 PHMM5 PHMM9

accuracy
Viterbi 0.639 0.651 0.671 0.733
Forward 0.733 0.755 0.804 0.807
Vit. log-odds (identical) 0.284 0.464 0.253 0.349
Vit. log-odds (distinct) 0.585 0.787 0.636 0.729
Forward log-odds (identical) 0.429 0.553 0.307 0.426
Forward log-odds (distinct) 0.843 0.885 0.793 0.870
Pair tri-gram baseline 0.813

MRR
Viterbi 0.710 0.745 0.754 0.808
Forward 0.817 0.831 0.866 0.867
Vit. log-odds (identical) 0.396 0.576 0.345 0.458
Vit. log-odds (distinct) 0.683 0.853 0.724 0.805
Forward log-odds (identical) 0.549 0.665 0.414 0.538
Forward log-odds (distinct) 0.899 0.923 0.861 0.911

Table 4.13: English-Hindi Pair HMM transliteration detection accuracy and MRR.

Pair HMM algorithm
PHMM0 PHMM3 PHMM5 PHMM9

accuracy
Viterbi 0.593 0.602 0.780 0.758
Forward 0.636 0.693 0.816 0.841
Vit. log-odds (identical) 0.342 0.422 0.426 0.411
Vit. log-odds (distinct) 0.698 0.769 0.801 0.762
Forward log-odds (identical) 0.326 0.447 0.490 0.479
Forward log-odds (distinct) 0.779 0.855 0.858 0.854
Pair tri-gram baseline 0.763

MRR
Viterbi 0.659 0.701 0.849 0.831
Forward 0.746 0.790 0.873 0.891
Vit. log-odds (identical) 0.460 0.535 0.546 0.526
Vit. log-odds (distinct) 0.782 0.836 0.862 0.831
Forward log-odds (identical) 0.448 0.574 0.608 0.603
Forward log-odds (distinct) 0.858 0.904 0.905 0.903
Pair tri-gram baseline 0.806

Table 4.14: English-Kannada Pair HMM transliteration detection accuracy and MRR.

4.5 Experiments using NEWS 2009 and 2010 shared task data 89

Pair HMM algorithm
PHMM0 PHMM3 PHMM5 PHMM9

accuracy
Viterbi 0.688 0.781 0.876 0.878
Forward 0.810 0.818 0.881 0.876
Vit. log-odds (identical) 0.365 0.740 0.823 0.828
Vit. log-odds (distinct) 0.633 0.866 0.878 0.884
Forward log-odds (identical) 0.472 0.731 0.836 0.841
Forward log-odds (distinct) 0.864 0.885 0.888 0.887
Pair tri-gram baseline 0.944

MRR
Viterbi 0.738 0.821 0.884 0.885
Forward 0.843 0.846 0.888 0.885
Vit. log-odds (identical) 0.442 0.787 0.850 0.854
Forward log-odds (identical) 0.565 0.786 0.861 0.863
Forward log-odds (distinct) 0.878 0.889 0.892 0.891
Pair tri-gram baseline 0.956

Table 4.15: English-Russian Pair HMM transliteration detection accuracy and MRR.

Pair HMM algorithm
PHMM0 PHMM3 PHMM5 PHMM9

accuracy
Viterbi 0.447 0.558 0.681 0.652
Forward 0.559 0.679 0.766 0.773
Vit. log-odds (identical) 0.227 0.347 0.227 0.190
Vit. log-odds (distinct) 0.649 0.726 0.709 0.660
Forward log-odds (identical) 0.201 0.383 0.281 0.223
Forward log-odds (distinct) 0.702 0.824 0.827 0.789
Pair tri-gram baseline 0.775

MRR
Viterbi 0.529 0.670 0.771 0.741
Forward 0.684 0.780 0.843 0.848
Vit. log-odds (identical) 0.342 0.463 0.346 0.278
Vit. log-odds (distinct) 0.745 0.810 0.796 0.746
Forward log-odds (identical) 0.315 0.506 0.420 0.320
Forward log-odds (distinct) 0.799 0.889 0.886 0.861
Pair tri-gram baseline 0.824

Table 4.16: English-Tamil Pair HMM transliteration detection accuracy and MRR.

90 4. Pair HMMs for transliteration detection

Pair HMM algorithm
PHMM0 PHMM3 PHMM5 PHMM9

accuracy
Viterbi 0.390 0.348 0.468 0.474
Forward 0.490 0.458 0.518 0.520
Vit. log-odds (identical) 0.141 0.165 0.150 0.156
Vit. log-odds (distinct) 0.602 0.646 0.600 0.589
Forward log-odds (identical) 0.150 0.199 0.170 0.176
Forward log-odds (distinct) 0.670 0.793 0.679 0.668
Pair tri-gram baseline 0.590

MRR
Viterbi 0.521 0.478 0.588 0.590
Forward 0.628 0.595 0.637 0.635
Vit. log-odds (identical) 0.250 0.280 0.255 0.261
Vit. log-odds (distinct) 0.709 0.748 0.698 0.693
Forward log-odds (identical) 0.261 0.325 0.282 0.285
Forward log-odds (distinct) 0.772 0.865 0.774 0.765
Pair tri-gram baseline 0.659

Table 4.17: English-Thai Pair HMM transliteration detection accuracy and MRR.

Pair HMMs to result in better transliteration detection quality since Cyrillic and
Latin alphabets that are used in Russian and English respectively are both mostly
phonemic and character correspondences between the two should not be difficult to
induce using Pair HMMs. However, as Table 4.15 shows, none of the Pair HMMs
results in an accuracy or MRR higher than that for the baseline approach of using
Pair trigram and higher order n-gram information for computing transliteration sim-
ilarity (Table 4.10). In order to eliminate the chance that we could have used an
inadequately trained model, we applied the Baum-Welch algorithm for each of the
Pair HMM variants on the English-Russian datasets this time with random probabil-
ity distributions for the initial parameters, but there was no change in transliteration
detection accuracy and MRR of the Pair HMMs compared to the baseline approach.
Probably, the unique underperformance of the Pair HMMs compared to the base-
line approach in the results above can be attributed to the small English-Russian
transliteration data we used for evaluation. Despite the result for the English-Russian
language pair, the Pair HMMs achieve considerably higher transliteration detection
accuracy and MRR for all the other language pairs in comparison to the performance
of the baseline approach that uses pair tri-gram information.

4.6 Conclusion 91

4.6 Conclusion

In this chapter, we have evaluated several Pair HMM settings in an experimental
transliteration detection task. In the first set of experiments where we evaluate the
models in identifying transliterations on a geographic names corpora, results show
that it is important to use models that accurately capture the properties of charac-
ter representations in different writing systems. A comparison of the transliteration
similarity scoring algorithms shows that it is important to factor in a measure for the
random probability of relating two candidate name pairs. We see that the Forward
log-odds algorithm consistently leads to the best transliteration detection accuracy
and MRR. We also see that the use of a log-odds score always results in better
transliteration detection quality across all model settings. The results also suggest
the insensitivity of using the log-odds similarity score on changes in model parameter-
izations. For example, we see that the Pair HMM variant that uses only 3 transition
parameters and a Forward log-odds algorithm leads to the best overall performance
despite a poor performance by the other Pair HMM algorithms using this model. An
investigation into changes in Pair HMM state transition parameters shows that is im-
portant to use transition parameters in the computation of transliteration similarity.
However, the results also suggest that an increase in transition parameters does not
guarantee an improvement in transliteration detection quality. Generally, results in
this chapter suggest that the edit distance-based approach of Pair HMMs could be
valuable in searching for transliteration pairs from bilingual text.

Chapter 5

Transduction-based DBN models for translit-
eration detection

5.1 Introduction

So far, we have adapted the approach of Pair Hidden Markov models (Pair HMMs) to
compute transliteration similarity with promising results in an experimental translit-
eration detection task. In this chapter, we introduce the second edit distance-based
Dynamic Bayesian Network (DBN) modeling approach that we adapt to compute
transliteration similarity. This approach is founded on the representation of a mem-
oryless stochastic transducer (Ristad and Yianilos 1997) as an edit distance-based
DBN model (Filali and Bilmes 2005). We have referred to this approach as the
‘transduction-based DBN approach’. Unlike the Pair HMM approach whose imple-
mentation is based on the classic Hidden Markov model (HMM) framework, the
transduction-based DBN approach in this chapter is implemented using the proba-
bilistic graphical modeling framework where templates are used to represent various
types of DBN models. The use of DBN templates enables us to define several gen-
eralizations of DBN models with the possibility of overcoming restrictions that are
fundamental to the framework for classic HMMs. For example, it is possible to
relax HMM restrictions associated with the Markovian assumptions of conditional
independence and the definition of an HMM as a function of a single independent
variable. The approach enables us to use an arbitrary number of random variables

This chapter is an extended version of the following publications:
P. Nabende – Applying a Dynamic Bayesian Network framework to transliteration identification,
Proceedings of the 7th International Conference on Language Resources and Evaluation Conference
(LREC 2010), pp. 244–251, May 2010, Valletta, Malta; and
P. Nabende – Comparison of applying Pair HMMs and DBN models in transliteration identification,
Proceedings of the 20th Computational Linguistics in Netherlands meeting, pp. 107–122, Feb 2010,
Utrecht, The Netherlands.

94 5. Transduction-based DBN models for transliteration detection

and dependencies between the variables which we can associate with various factors
that we hypothesize to have an effect on transliteration detection quality.

In the next section, we review the origins of the transduction-based DBN ap-
proach. Later, we describe different DBN model generalizations that we have adapted
to compute transliteration similarity. We then present the results from applying some
transduction-based DBN models in an experimental transliteration detection task us-
ing the same evaluation setup described in the previous chapter. This enables us to
compare transliteration-detection results from using transduction-based DBN models
to results from using Pair HMMs and the baseline approach of pair n-gram models.

5.2 Transduction-based DBN models

The transduction-based DBN approach (Filali and Bilmes 2005) is founded on the
representation and implementation of a memoryless stochastic transducer (initially
proposed by Ristad and Yianilos (1997)) as a DBN model for learning string edit dis-
tance. It is helpful to review the formulation of the memoryless stochastic transducer
so as to understand the random variables and conditional probability distributions
defined in the construction of the corresponding DBN model.

5.2.1 The memoryless stochastic transducer

Ristad and Yianilos (1997) model string edit distance as a memoryless stochastic
transduction between two strings. The transductions involve any of the three edit
operations of generating a substitution pair of symbols denoted by 〈a,b〉, a dele-
tion pair 〈a,ε〉, an insertion pair 〈ε, b〉 or a termination. In order to compute the
probability for a pair of strings, Ristad and Yianilos consider a string pair to be an
equivalence class representative for all edit sequences whose yield is that string pair.
The probability of a string pair is therefore computed as the sum of the probabilities
of all edit sequences for that string pair.

Assuming that the source string is denoted by sm1 = s1s2...sm where the characters
are associated with the source alphabet As, and the target string is denoted by tn1 =

t1t2...tn based on a target alphabet At. The edit operations can be represented using
a hidden random variable Z that takes in values from (As∪ε×At∪ε)\(ε, ε). Following
Ristad and Yianilos’ consideration in the last paragraph, Z can be perceived as a
random vector with two components (Z(s) and Z(t)). The probability of a pair of
strings can therefore be computed by marginalizing over the two components of the
edit operation variable Z (Filali and Bilmes 2005):

P (sm1 , t
n
1 |θ) =

∑
z(s)

∑
z(t)

P (zl1, s
m
1 , t

n
1 |θ) (5.1)

5.2 Transduction-based DBN models 95

where θ represents the parameters for the memoryless stochastic transducer and zl1
is such that its yield denoted by v(zl1) = 〈sm1 , tn1 〉 and max(m,n) ≤ l ≤ m+ n.

In the memoryless stochastic transducer, there is no dependence between edit
operations. Therefore P (zl1, s

m
1 , t

n
1 |θ) is simply the product of the probabilities of the

individual edit operations, that is

P (zl1, s
m
1 , t

n
1 |θ) =

∏
i

P (zi, s
m
1 , t

n
1 |θ) for 1 ≤ i ≤ l and zi = 〈z(s)i , z

(t)
i 〉

The RY memoryless stochastic transducer is also context-independent in the sense
that the edit operation random variable (zi) does not have any local dependence on
the source and target string characters (sai and tbi respectively), but does have a
global context dependence that ensures the generation of the string pair (sm, tn).
Using Q(zi) to represent P (zi, s

m
1 , t

n
1 |θ), this local context independence is depicted

in the following expression (Filali and Bilmes 2005):

Q(zi) ∝

f ins(tbi) for z(s)i = ε; z

(t)
i = tbi

fdel(sai) for z(s)i = sai ; z
(t)
i = ε

fsub(sai , tbi) for (z
(s)
i , z

(t)
i) = (sai , tbi)

0 otherwise

(5.2)

where
∑
z Q(z) = 1; ai =

∑i−1
j=1 1{z(s)j 6=ε}

and bi =
∑i−1
j=1 1{z(t)j 6=ε}

are the respective

indexes of the source and target string generated up to the ith edit operation; and
f ins, fdel, and fsub are the functions that map to [0,1] corresponding to the three edit
operation types of insertion, deletion, and substitution. Equation 5.2 also enforces
the consistency constraint that the pair of characters output by (z

(s)
i , z

(t)
i) is the

same as the actual pair of characters (sai , tbi) that needs to be generated at the ith

transduction so that the total yield, v(zl1) is equal to the string pair (sm1 , t
n
1).

5.2.2 Representing the RY transducer as a DBN

Filali and Bilmes (2005) use the graphical models framework to represent the joint
probability distribution of the Ristad-Yianilos (RY) stochastic transducer model with
its related consistency constraints as a DBN model. Random variables are defined
for the DBN model to correspond to the objects that contribute to the computation
of edit distance based on the memoryless stochastic transducer model. From the
description in the previous section, the main objects of interest include: the edit op-
eration variable (Zi); source and target character variables; variables that capture the
position of the characters in the source and target strings; and consistency variables
that check the yield of the edit operation variable against the actual pair of char-
acters at a given position. The dependencies between the random variables follow

96 5. Transduction-based DBN models for transliteration detection

naturally. For example, a dependency is defined between a string position variable
and the character variable. In this case, the idea is that knowledge about the position
in a string leads to knowledge about the character at that position. For consistency
checking, the consistency variables are defined to depend on the character variables
and the edit operation variable. To complete the specification of the DBN model, we
need to define the initial Bayesian network (B0), and a 2-frame Temporal Bayes Net
(2-TBN) (B→). We use the same graphical modeling approach in Filali and Bilmes
(2005) where the main modeling terms are associated with concepts in Automatic
Speech Recognition (ASR).

In the ASR-based graphical modeling approach, a frame1 is used to represent a
set of random variables and their attributes at a given time. The term Prologue frame
is used to refer to the initial Bayesian network B0, and the term Chunk frame is used
to refer to the Bayesian network that is to be unrolled as defined for a 2-TBN. An
Epilogue frame refers to a Bayesian network that models end conditions. Using this
ASR-based notation, the initial, chunk, and epilogue Bayesian networks that model
the memoryless stochastic transducer are as shown in Figure 5.1. Since the networks
are designed to model the properties of the memoryless stochastic transducer, the
DBN template defined by the three networks in Figure 5.1 is also referred to as
memoryless and context-independent (MCI). In the following paragraph, we describe
the variables and dependencies used to specify the MCI DBN template in Figure 5.1.

The nodes in Figure 5.1 represent variables while the directed edges represent
‘informational relationships’ between the variables. As defined in chapter 3, the
directed edges are used to suggest the influence of one variable on another. In Figure
5.1 Z as defined above is the edit operation variable and is defined for the DBN
model to take values from a distribution whose cardinality is equal to the product
of the size of the source (nAs∪ε) and target (nAt∪ε) vocabularies excluding (ε, ε). sp
and tp are variables used to capture the current position in the source and target
strings respectively. sp has a cardinality (m) equal to the length of the source string
while tp has a cardinality (n) equal to the length of the target string. The s and t
variables represent the current character in the source and target strings respectively.
The cardinality of s is equal to the size of the source language alphabet including
the empty string (As ∪ ε) while that for t is equal to the size of the target language
alphabet (At ∪ ε). The sc and tc nodes enforce the consistency constraint2 implied

1The term “frame” in the context of ASR, refers to contagious, small regions of a speech signal
which aid in the identification of phonemes

2Following equation 5.2, the sc and tc nodes have a fixed observed value 1 and the only config-
uration of their parents is such that the source component of the edit operation variable Z is s or
an empty symbol for sc and the target component of the edit operation Z is t or an empty symbol
for tc and that Z does not generate empty source and target symbols at the same time (Filali and
Bilmes 2005).

5.2 Transduction-based DBN models 97

sp1

s1

sc1

Z1

tc1

t1

tp1

B0
Prologue

B→
Chunk

(end network)
Epilogue

spi−1

si−1

ti−1

tpi−1

endi−1

spi

si

sci

Zi

tci

ti

tpi

endi

spτ

sτ

scτ

Zτ

tcτ

tτ

tpτ

endτ

send

tend

Figure 5.1: Graphical representation for the MCI DBN template. Following the common
convention for representing graphical models, shaded nodes represent observed variables,
unshaded nodes represent hidden nodes, and nodes with dots represent deterministic hidden
variables (Adapted from Filali and Bilmes, 2005).

by equation 5.2. The end node is introduced for the DBN model as a ‘switching’
parent of Z and it is used to indicate when we are past the end of both the source
and target strings, that is, when sp > m and tp > n. The send and tend nodes
represent variables that ensure that we are past the end of the source and target
strings respectively.

Decision trees are used to implement deterministic conditional probability tables
for most of the dependencies in Figure 5.1. Specifically, decision trees are used for
each of the following variable dependencies: spi → si and tpi → t (for the relationship
between position and character variables of the source and target strings respectively);
si → sci ← Zi and Zi → tci ← ti (for the relationship between the consistency

98 5. Transduction-based DBN models for transliteration detection

variables and their respective parents); spi−1 → spi ← Zi−1 and tpi−1 → tpi ← Zi−1
(for transition on the source and target side respectively); sposi → endi ← tposi
(for determining whether we are past the end of the edit sequence); endi → Zi (for
determining a value that Zi should have depending on the value (0 or 1) of endi,
that is endi is a switching parent of Zi, when endi = 0, the conditional probability
distribution of Zi is as described above with a cardinality of nAs∪ε × nAt∪ε, and
when endi = 1, Zi takes with a probability 1, a fixed value outside the range of edit
operations but consistent with si and ti); spi → sendi ← Zi and tpi → tendi ← Zi
(for determining whether we are at or past the end of the source and target strings
respectively. This is not the same as for the endi variable where we only check
whether we are past the end of the edit sequence. So if spi > m (the length of the
source string), then sendi is observed to be 1 with a probability 1; else if sendi < m,
then P (sendi = 1) = 0 and the whole edit sequence is considered to to have zero
probability; else if spi = m, then sendi will have a probability greater than 1 only
if the Zi is an insertion). For the Zi variable, a Dense Probability Mass Function
(DPMF) is used to implement a Dense Conditional Probability Table (DCPT) which
is used in the generation of source and target symbols in each frame.

5.2.3 DBN templates for modeling transliteration similarity

In order to propose additional edit distance based DBN templates using Filali and
Bilmes’ (2005) approach, we have to use the MCI DBN template as the baseline
template. Our starting point would be to represent the classic HMMs which are
the simplest type of DBN models. In this section, we discuss the requirements for
representing Pair HMMs as edit distance-based DBN models based on the MCI DBN
template.

First of all we compare Pair HMMs representation to transduction-based DBN
modeling representation based on a comparison made by Zweig and Russell (1999)
between DBNs and the classic HMMs for automatic speech recognition. We use
an alignment example to help clarify the differences in representation. Consider
an arbitrary one-to-one character alignment as illustrated in Table 5.1 between the
Russian name ‘Анатольевич’ and its Dutch representation ‘Anatoljevitsj’. The

А н а т о л ь е в и ч
A n a t o l j e v i t s j
M M M M M M M M M M I M I

Table 5.1: An arbitrary alignment between a Russian named “Анатольевич” and its Dutch
representation “Anatoljevitsj”.

5.2 Transduction-based DBN models 99

Mstart I E

τM−I

τM−M

τI−M

τI−E

M

Z1

А:A

O1

M

Z2

н:n

O2

M

Z3

а:a

O3

M

Z4

т:t

O4

M

Z5

о:o

O5

M

Z6

л:l

O6

M

Z7

ь:j

O7

M

Z8

е:e

O8

M

Z9

в:v

O9

M

Z10

и:i

O10

I

Z11

ε:t

O11

M

Z12

ч:s

O12

I

Z13

ε:j

O13

Figure 5.2: A Pair HMM (top) and a conceptual DBN (bottom) representation for the
alignment in Table 5.1. Shaded nodes in the DBN representation indicate ‘observed’ vari-
ables and unshaded ones indicate ‘hidden’ variables. ε denotes the ‘empty’ symbol.

upper part of Figure 5.2 is a finite state representation of a Pair HMM for the align-
ment whereas the lower diagram is a corresponding conceptual DBN representation.
A comparison of the two diagrams in Figure 5.2 shows at least two differences. One
difference is that the nodes and arcs in the Pair HMM representation refer to states
and transitions respectively, whereas in the DBN representation, nodes represent
variables and arcs specify conditional dependencies / independencies between the
variables. The other difference is that the labeling of the hidden variable (Zi) shows
that the DBN representation is explicit about time.

Although the DBN representation in Figure 5.2 seems to capture the Pair HMM
representation, it does not yet represent the states of the Pair HMM at each time
frame. If we follow the graphical modeling approach in the previous section, we need
to introduce position variables in a manner similar to that as described for the MCI
DBN model. The position variables will enable the representation of a Pair HMM
at particular time frames. Figure 5.3 shows the DBN representation of the Pair
HMM above with the position variables added; if we have a substitution operation,
the source and target position variables are incremented; if we have an insertion,
the source position variable will retain its previous value while the target position
variable is incremented; and if we have a deletion, the target position variable retains
its previous value while the source position variable is incremented. We can specify
the Z variable to model the three Pair HMM emission states by taking values from
a distribution with a cardinality of nAs∪ε × nAt∪ε − 1. The Pair HMM transition
probabilities can be encoded in the transition variables (that is between the edit

100 5. Transduction-based DBN models for transliteration detection

M

А

1

sp1

A

1

tp1

M

н

2

sp2

n

2

tp2

M

а

3

sp3

a

3

tp3

M

т

4

sp4

t

4

tp4

M

о

5

sp5

o

5

tp5

M

л

6

sp6

l

6

tp6

M

ь

7

sp7

j

7

tp7

M

е

8

sp8

e

8

tp8

M

в

9

sp9

v

9

tp9

M

и

10

sp10

i

10

tp10

I

10

sp11

t

11

tp11

M

ч

11

sp12

s

12

tp12

I

11

sp13

j

13

tp13

Figure 5.3: A DBN representation of a Pair HMM with an illustrative assignment of values
to the variables. Light gray nodes are used here to illustrate partially deterministic variables.
Dark gray nodes represent deterministic variables while unshaded nodes represent hidden
variables.

operation variable Zi−1 and the position variables (spi and tpi)). We could then use
decision trees to implement the CPTs of the different dependencies in a similar way
as was described for the MCI DBN model.

Based on the MCI DBN template, we adapt three other DBN model templates
that were initially introduced by Filali and Bilmes (2005) for computing translitera-
tion similarity. The three DBN model templates represent different types of depen-
dencies on the edit operation variables. The three types of dependencies include: edit
operation memory dependencies; source and / or target character context dependen-
cies; and edit operation length dependencies. In the following, we briefly point out
the main properties of these other DBN models.

a) Context-independent memory DBN template

Figure 5.4 shows the initial Bayesian network and the 2-TBN for the context inde-
pendent memory (MEM) DBN template. Here, modeling memory, means having the
current edit operation variable Zi use information from the previous edit operation
variable Zi−1. In Figure 5.4, a variable H is introduced to model various depen-
dencies between Zi−1 and Zi. Generally, H can be stochastic or deterministic, and
the amount of information that it summarizes from one frame to another is deter-
mined by its cardinality (Filali and Bilmes 2005). In this chapter, we investigate the
deterministic implementation of H, where H enables the modeling of the conditional

5.2 Transduction-based DBN models 101

sp1

s1

sc1

Z1

tc1

t1

tp1

B0
Prologue

B→
Chunk

spi−1

si−1

sci−1

Zi−1

H

tci−1

ti−1

tpi−1

endi−1

spi

si

sci

Zi

tci

ti

tpi

endi

Figure 5.4: Graphical representation for a context-independent memory DBN template.
(Adapted from Filali and Bilmes, 2005).

probability distribution P (Zi|Zi−1). Apart from this type of dependency, Zi can also
depend on the type of edit operation in the previous frame.

b) Context-dependent DBN template

Figure 5.5 shows the initial Bayesian network and the 2-TBN for a context-dependent
DBN template. Context-dependence, here, means adding a dependence of the edit
operation variable on the source and / or target string characters. For example, as
shown in Figure 5.5, we model context-dependence of the edit operation on the source
string characters by adding edges from si, sprevi to Zi. We also see from Figure 5.5
that the source consistency variable sc is not used because the consistency constraint
is defined through the conditional probability table of Z given its parents. Generally,

102 5. Transduction-based DBN models for transliteration detection

sp1

s1

Z1

tc1

t1

tp1

B0
Prologue

B→
Chunk

(end network)
Epilogue

spi−1

si−1

sprevi−1

Zi−1

tci−1

ti−1

tpi−1

endi−1

spi

si

sprevi

Zi

tci

ti

tpi

endi

spτ

sτ

sprevt

Zτ

tcτ

tτ

tpτ

endτ

send

tend

Figure 5.5: Graphical representation for a context-dependent DBN template.

we can model context-dependence to range from the case where we include only the
dependence on the current character to the case where we consider all characters in
the source (and / or target) string. In this chapter, we evaluate two main cases: one
case is as shown in Figure 5.5; in the other case, we use only one depedence of the edit
random variable on the current character in the source string. Based on these two
cases, we evaluate context-dependence for two additional settings where we simply
change the datasets so that the source becomes target and the target becomes source.

c) Length DBN template

Figure 5.6 shows the initial Bayesian network and the 2-TBN for a context-dependent
length DBN template. To enable an investigation on the effect on transliteration de-
tection quality from using a transduction-based DBN model where information about
the length of the edit sequence is factored into the computation for transliteration
similarity, we use additional variables which model the logic necessary for simulating

5.2 Transduction-based DBN models 103

tp1

t1

tc1

Z1

s1

sp1

tend1

send1

end1

reql1
ilen1

incl1
cnt1

B0
Prologue

B→
Chunk

tpi−1

ti−1

tci−1

Zi−1

si−1

spi−1

tendi−1

sendi−1

endi−1

reqli−1

ileni−1

incli−1

cnti−1

tpi

ti

tci

Zi

si

spi

tendi

sendi

endi

reqli

ileni

incli
cnti

Figure 5.6: Graphical representation for a context-dependent length DBN template.

variable length-unrolling of the chunk frame. The additional variables in Figure 5.6
are defined as follows. incl is a stochastic hidden random variable whose value added
to that of the variable inilen determines the number of allowed edit operations. The
variable cnt is used to determine the index of the current edit operation and is used
to trigger the random variable reql when the required sequence length is reached.
The variable end is explained if we reach the end of one string after having reached
the end of the other string in a previous frame. Apart from the template in Figure

104 5. Transduction-based DBN models for transliteration detection

5.6, we also investigate the effect of length for a context-independent DBN model by
simply adding similar edges introduced by the additional variables in this section to
the MCI DBN template in Figure 5.1.

d) Transliteration data requirements

The application of the DBN model templates above in the specification of DBN
models to compute transliteration similarity requires the representation of translit-
eration data in a form suitable for running DBN inference algorithms. Most of the
requirements which we discussed for the application of the Pair HMMs to compute
transliteration similarity apply for the DBN templates introduced in this chapter. We
follow the same segmentation approach as discussed in Chapter 4. That is we tokenize
source and target strings per character. We also assume a monotonic ordering of the
strings, and a one-to-one correspondence between tokens. The limitations described
for the Pair HMMs based on these assumptions also apply to the DBN templates.
In this chapter, we specify the DBN templates so that the resulting DBN models are
based on the representation of separate source and target alphabets corresponding
the respective writing systems. However, we do not investigate the effect of using
separate alphabets against the use of one alphabet on the quality of transliteration
similarity estimates as we did in Chapter 4.

5.2.4 Inference

We define the DBN templates for computing transliteration similarity using the
Graphical models Toolkit (GMTK) (Bilmes and Zweig 2002). Our interest is in
two main inference tasks when applying the edit distance-based DBN templates: pa-
rameter estimation given training transliteration data, and using the trained DBN
models to compute transliteration similarity. In both cases, GMTK uses the frontier
algorithm which we describe in the following.

a) Frontier algorithm

The frontier algorithm (Zweig 1996) uses a Forwards-Backwards procedure which
updates the joint distribution over a set of hidden nodes without needing to create
and manipulate a huge transition matrix as is the case in the Forwards-Backwards
algorithm for the classic HMMs. The forwards-backwards procedure in both cases
assumes that a hidden node (Zt) or set of hidden nodes (Z(1:D)

t) at a given time
t d-separates the past from the future. For the DBNs, the Frontier algorithm uses
a Markov blanket over the hidden nodes which it “sweeps” across the DBN first in
the forwards direction (while computing the forward variable α) and then backwards

5.2 Transduction-based DBN models 105

(for computing the backward variable β) (Murphy 2002). Our review of the Frontier
algorithm follows from a simplified presentation of the same by Murphy (2002). We
also use the same notation in (Zweig 1996).

Forwards pass

The nodes in the Markov blanket are called the “Frontier set” and the set is denoted
by F ; the nodes to the left and right of F are denoted by L and R. At every step of
the frontier algorithm, F should d-separate L and R.

Let hF refer to the hidden nodes in F, eF to the evidence nodes in F, eL to the
evidence nodes in L, and eR to the evidence nodes in R. In the forward pass, the
probability of the nodes in F is expressed as P (F)

def
= P (hF , eF , eL), and is computed

recursively as follows.
We can add a node N to the frontier set (that is move it from R to F) when all

its parents are already in F :

P (eL, eF , hF , N) = P (eL, eF , hF)p(N |eF , hF) (5.3)

since N is conditionally dependent on only eF and hF but not on eL. Equation 5.3
means that adding a node consists of multiplying its conditional probability distri-
bution (CPD) into the frontier.

We can remove a node N from F to L when all its children are in F. If N is
hidden, then eL∪{N} = eL and eF\{N} = eF .

P (eL∪{N}, eF\{N}, hF\{N}) = P (eL, eF , hF\{N})

=
∑
N

P (eL, eF , N, hF\{N})

=
∑
N

P (eL, eF , hF)

which means that removing a node consists of marginalizing it out. The same applies
to the case where N is observed:

P (eL∪{N}, eF\{N}, hF\{N}) = P (eL∪{N}, eF\{N}, hF)

= P (eL, eN , eF\{N}, hF)

= P (eL, eF , hF)

106 5. Transduction-based DBN models for transliteration detection

Backwards Pass

In the backwards pass, P (F)
def
= P (eR|hF , eF). The frontier is advanced from frame

t + 1 to frame t by adding and removing nodes in the opposite order that is used
in the forwards pass. Adding a node in this case means moving it from L to F, and
removing a node means moving it from F to R.

When a node N is added to F, we compute P (eR|eF , hF , N). In this case, since N’s
children are in F, which “shield” N from eR; P (eR|eF , hF , N) = P (eR, |eF , hF). When
a node N is removed from F, and added to R, we compute P (eR∪{N}|eF\{N}, hF\{N})
from P (eR|eF , hF). If N is hidden, then eR∪{N} = eR, and eF\{N} = eF . Therefore

P (eR∪{N}|eF\{N}, hF\{N}) = P (eR|eF , hF\{N})

=
∑
N

P (N, eR|eF , hF\{N})

=
∑
N

P (N |eF , hF\{N})P (eR|N, eF , hF\{N})

=
∑
N

P (N |eF , hF\{N})P (eR|eF , hF)

This means that to remove a node N, we multiply in N’s CPD.
The same procedure applies to the case where N is observed only that there is no

need to marginalize out N since it has only one possible value.

P (eR∪{N}|eF\{N}, hF\{N}) = P (eR∪{N}|eF\{N},hF
)

= P (eN , eR|eF\{N}, hF)

= P (eN |eF\{N}, hF)P (eR|eN , eF\{N}, hF)

b) Generalized Expectation Maximization

In the transliteration detection experiments, we use GMTK’s implementation of the
generalized expectation maximization (GEM) algorithm to estimate parameters for
each of the transduction-based DBN models. The reader is referred to Chapter 3 for a
detailed explanation of Expectation Maximization (EM) and the case for GEM. The
parameters for the DBN models constitute conditional probability tables that encode
the relationships between variables in a frame and between two adjacent frames, and
values for decision trees that are used to represent deterministic mappings. Specifi-
cally, there are two types of parameters (Bilmes 2002): numerical parameters which in
our case include dense and sparse CPTs and for which an EM algorithm is used; and
non-numerical parameters, which in our case constitute decision tree deterministic
values that do not require the use of an EM algorithm.

5.3 Experiments (NEWS 2009 and 2010 shared task data) 107

5.3 Experiments (NEWS 2009 and 2010 shared task
data)

5.3.1 Data

To ensure a comparison of the edit distance-based DBN models introduced in this
chapter and the Pair HMMs in a transliteration detection task, we use translit-
eration data from the NEWS 2009 and 2010 shared tasks on transliteration gen-
eration. We have already described the transliteration data for seven language
pairs (English-Bengali, English-Chinese, English-Hindi, English-Kannada, English-
Russian, English-Tamil, and English-Thai) in Chapter 4, section 4.5.1.

5.3.2 Evaluation setup and results

We use the same evaluation setup described in Chapter 4, section 4.5.2 associated
with the second set of experiments where we use transliteration data from the NEWS
2009 and NEWS 2010 shared tasks on transliteration generation. For the results re-
ported in this section, we trained the transduction-based DBN models on the same
training data (for each language pair) that we used for training the Pair HMMs
and pair n-gram models. In estimating the parameters for each DBN model, we ap-
plied the generalized EM algorithm with a maximum specification of three iterations.
During pre-runs, we observed this number of iterations to be optimal in avoiding
the overfitting of the models. We then applied a scoring algorithm implemented in
the GMTK toolkit to estimate transliteration similarity using the parameters of the
trained DBN models. We also evaluate the transduction-based DBN models using
transliteration detection accuracy and Mean Reciprocal Rank (MRR) as defined in
Chapter 4.

Table 5.2 shows the transliteration detection accuracy and MRR results for the
transduction-based DBN models as compared to the best performing Pair HMMs
(Phmm) and the best baseline results for the Pair tri-gram method on the same
transliteration data for the seven language pairs. In Table 5.2: MCI refers to the
memoryless and context-independent DBN model (Figure 5.1), MEM refers to the
memory-dependent DBN model (Figure 5.4), CONs1 and CONs2 represent context-
dependent DBN models where the dependence of the edit operation on the characters
in the source string is factored into the computation for transliteration similarity, and
CONt1 and CONt2 represent context-dependent DBN models where the dependence
of the edit operation on the target string character(s) is used. For CONs1, the edit
operation depends on the current character in a source string whereas for CONs2,
the edit operation depends on both the current and previous character in the source

108 5. Transduction-based DBN models for transliteration detection

Models
En-Be En-Ch En-Hi En-Ka En-Ru En-Ta En-Th

accuracy
MCI 0.868 0.299 0.747 0.718 0.978 0.646 0.351
MEM 0.894 0.487 0.717 0.576 0.888 0.717 0.489
CONs1 0.960 0.699 0.855 0.842 0.983 0.828 0.736
CONs2 0.957 0.796 0.857 0.845 0.974 0.853 0.789
CONt1 0.954 0.676 0.840 0.835 0.983 0.840 0.762
CONt2 0.960 0.820 0.859 0.856 0.976 0.862 0.848
LENs1 0.956 0.713 0.831 0.767 0.982 0.839 0.733
LENt1 0.954 0.698 0.847 0.806 0.976 0.797 0.700
best PHMM 0.932 0.684 0.885 0.858 0.888 0.827 0.793
pair tri-gram 0.804 0.524 0.813 0.763 0.944 0.775 0.623

MRR
MCI 0.910 0.423 0.827 0.806 0.985 0.751 0.479
MEM 0.914 0.623 0.774 0.634 0.921 0.809 0.612
CONs1 0.975 0.791 0.908 0.897 0.986 0.896 0.833
CONs2 0.972 0.869 0.908 0.901 0.979 0.913 0.868
CONt1 0.972 0.775 0.897 0.895 0.987 0.905 0.849
CONt2 0.975 0.887 0.908 0.908 0.981 0.920 0.913
LENs1 0.971 0.807 0.888 0.839 0.985 0.903 0.828
LENt1 0.970 0.786 0.901 0.871 0.981 0.867 0.791
best PHMM 0.950 0.777 0.923 0.905 0.892 0.886 0.865
pair tri-gram 0.844 0.604 0.850 0.806 0.956 0.824 0.685

Table 5.2: Transliteration detection accuracy and MRR for different transduction-based
DBN models against best Pair HMM results (best PHMM) and baseline approach of using
Pair tri-gram information.

string (Figure 5.5). CONt1 and CONt2 correspond respectively to CONs1 and
CONs2, but with t referring to the target character(s). For results in this section,
English was used as the target language and each of the other languages as the source
language.

Table 5.2 shows that transduction-based DBN models improve transliteration de-
tection accuracy and MRR for 5/7 language pairs (English-Bengali, English-Chinese,
English-Russian, English-Tamil, and En-Thai). The transduction-based DBN models
also post a performance comparable to that of the Pair HMMs on English-Kannada
transliteration data. Unlike the case for the Pair HMMs, the transduction-based
DBN models outperform the baseline approach of using pair n-gram information for

5.3 Experiments (NEWS 2009 and 2010 shared task data) 109

all language pairs including the case for the English-Russian data where Pair HMMs
were outperformed by the baseline approach. The memory-dependent DBN model
results in the lowest accuracy and MRR compared to all the other transduction-
based DBN models; this result is unexpected in comparison to the MCI DBN model
where no edit operation dependencies are used nor character context dependencies.
The relatively better results from the context-dependent DBN models underline the
necessity to represent character context dependencies for the edit operation random
variable.

According to Table 5.2 results, the performance of the transduction-based DBN
models in detecting transliterations is similar to that reported for the pronunciation
classification task by Filali and Bilmes (2005) where context-dependent DBN models
achieved the lowest word error rate. However, since we evaluate the transduction-
based DBN models for more than one language pair in the task of detecting transliter-
ations, we see some variations in transliteration detection accuracy. For the translit-
eration detection task, CONs1 and CONt2 models perform better than the the other
context-dependent DBN models on the English-Bengali dataset while CONs1 per-
forms best on the English-Russian dataset, and CONt2 performs best on the remain-
ing datasets. In the pronunciation classification task (Filali and Bilmes 2005), CONs2
had the best result from their set of context-dependent DBN models.

Table 5.2 results also suggest that the language where we model context can have
a considerable effect on transliteration detection accuracy. If we compare the results
for CONs1 and CONt1, and those for CONs2 and CONt2, we see that modeling
context on the target language side improves transliteration detection accuracy over
the case where context is modeled on the source language side for almost all language
pairs.

5.3.3 Error Analysis

The transliteration detection results in Table 5.2 clearly show that we still need to im-
prove transliteration detection quality for most of the language pairs. An analysis of
sample results for the same input could be helpful in finding ways of achieving higher
transliteration detection quality when applying edit distance-based DBN models to
compute transliteration similarity. Table 5.3 shows a sample of the returned results in
the detection of Thai target transliterations given an English source word and where
at least one of the context-dependent models did not return the correct candidate at
first rank. From the sample results in the table, we see that the context-dependent
DBN models result in different suggestions at the first rank. We also see that the
reference named entity (NE) is returned at different ranks. The results in the table
also suggest that if we had a way to combine the models so that system used only

110 5. Transduction-based DBN models for transliteration detection

Src. NE Ref. NE CONs1 CONs2 CONt1 CONt2

holeman โฮล์เมิ่น
ฮัลต์เมิ่น โฮลส์เมิน

(1)
โฮลส์เมิน

hultman(3) holzman(2) holzman(4)

rickett รีคิด
ริกโค ริกส์ ไรกิ ริชาร์ด

reco(8) riggs(13) reiki(11) richard(2)

dare แดร์
ดาร์ก ดาร์ต เอเดอร์ ดาร์ก

dark(6) dart(8) ader(4) dark(3)

deibel
ไดเบิล เอเบิล เอเบิล

(1) (1)
abell(4) abell(10)

guide ไกด์
กวิโด้ กวิโด้ เกลด์ เกลด์

guido(22) guido(5) geld(6) geld(2)

wright ไรต์
แวริ่ง วาไรตี ฮาร์ต

(1)
wareing(7) variety(2) hart(25)

mier ไมเออร์
เมเออร์

(1)
มัวร์ เมเออร์

maier(2) moore(4) maier(2)

mynn มินน์
มีโนน(r2) แยนต์(r3) มินน(์r2) มินน(์r4)
minoan(2) yant(3) minn(2) minn(4)

harrod แฮร์เริด
ฮาโรลด(์r2) ฮาร์วูด(r2) แชร์เริด(r2)

(1)
harold(2) harwood(2) sherrod(2)

bowerman โบเออร์เมิ่น
โอเวอร์เมิน โอเวอร์เมิน

(1) (1)
overman(2) overman(2)

blacka แบค่า
แบล็กเคอร์ บอลติก ไบก์ บังกา
blacker(23) baltic(7) bike(11) banka(2)

pettus เพเติส
ฟีตัส

(1) (1) (1)
foetus(2)

exmouth เอ็กส์เมิท
สมูต

(1) (1) (1)
smoot(14)

hostess โฮสเตส
คอสต์

(1)
เชสเติร์ส

(1)
cost(3) chesters(2)

site ไซต์
ซิตี ซิตี คอสต์

(1)
city(4) city(2) cost(4)

Table 5.3: Examples of where at least one context-dependent DBN model failed to detect
the correct transliteration at the first rank between English and Thai. The numbers in
parentheses indicate the rank for the correct transliteration.

5.3 Experiments (NEWS 2009 and 2010 shared task data) 111

the best result, we would improve transliteration detection accuracy in comparison
to using the DBN models ‘individually’. However, it is difficult to model this decision
making process since we do not know which DBN model’s similarity estimate will
result in the best suggestion of a true transliteration given a source word and vice
versa. But we can still explore other simple schemes of combining the models to
determine whether there can be improvements in transliteration detection accuracy.
In the next subsection we evaluate the effect of different combinations of context-
dependent DBN models on transliteration detection accuracy and MRR.

5.3.4 Computing transliteration similarity based on ensem-
bles of DBN models

The ensemble framework that we have used in combining context-dependent DBN
models to compute transliteration similarity is quite straightforward. First of all, we
estimate the parameters of each context-dependent DBN model separately. We then
apply the trained models separately to compute transliteration similarity estimates
for the candidate string pairs. Finally, we combine the individual model similarity
estimates by adding them for each candidate string pair and getting an average based
on the total number of models.

Table 5.4 shows the transliteration detection results where we have used the simple
ensemble-based approach described in the last paragraph. Only context-dependent
DBN models are combined since they achieved better transliteration detection accu-
racy and MRR compared to other transduction-based DBN models. In Table 5.4,
CONs1, CONs2, CONt1, CONt2 are as described above whereas ALLCONst repre-
sents the combination of these four context-dependent DBN models. The values in
bold format in Table 5.4 indicate the best overall result which includes a comparison
with results in Table 5.2 where the edit distance-based DBN models were applied
‘individually’.

Table 5.4 results suggest that using the simple scheme of summing transliteration
similarity estimates from different DBN models and finding an average always leads to
a fair improvement in transliteration detection accuracy and MRR (although slightly
for some combinations) over the ‘individual’ application of the edit distance-based
DBNmodels. Table 5.4 results also suggest that combining context-dependent models
where character context is modeled in at least one DBN model on the source language
side and in at least one DBN model on the target language side leads to better
transliteration detection quality in comparison to the case of ‘individual’ application
of a context-dependent DBN model where character context is modeled on only the
source or target language side. This is also the case in (Kondrak and Sherif 2006)
where an average context dependent DBN model and Pair HMMs outperform

112 5. Transduction-based DBN models for transliteration detection

Combination
En-Be En-Ch En-Hi En-Ka En-Ru En-Ta En-Th

accuracy
CONs1+CONs2 0.967 0.791 0.864 0.856 0.980 0.859 0.811
CONs1+CONt1 0.971 0.800 0.865 0.861 0.987 0.864 0.834
CONs1+CONt2 0.971 0.864 0.868 0.866 0.984 0.872 0.865
CONs2+CONt1 0.969 0.846 0.865 0.863 0.984 0.971 0.856
CONs2+CONt2 0.970 0.883 0.870 0.867 0.984 0.874 0.879
CONt1+CONt2 0.965 0.811 0.863 0.854 0.984 0.865 0.845

ALLCONst 0.972 0.872 0.870 0.868 0.984 0.877 0.875
MRR

CONs1+CONs2 0.979 0.866 0.912 0.908 0.984 0.917 0.886
CONs1+CONt1 0.983 0.871 0.912 0.912 0.989 0.921 0.902
CONs1+CONt2 0.982 0.918 0.914 0.914 0.987 0.926 0.924
CONs2+CONt1 0.980 0.905 0.914 0.913 0.986 0.925 0.918
CONs2+CONt2 0.980 0.931 0.916 0.915 0.986 0.927 0.933
CONt1+CONt2 0.979 0.881 0.912 0.907 0.987 0.922 0.910

ALLCONst 0.983 0.924 0.917 0.916 0.987 0.929 0.931

Table 5.4: Transliteration detection results for different combinations of context-dependent
DBN models. Values in bold indicate best performance compared to using transliteration
similarity estimates ‘individually’.

manually designed methods on the cognate identification task. In this section, we
have only explored a small space of combinations. There are many DBN model
combinations that we can associate with the edit distance-based DBN modeling ap-
proaches and that should be worthy of investigation for improving transliteration
detection quality.

5.4 Conclusion

In this chapter, we have applied a more generic DBN modeling approach in an exper-
imental transliteration detection task. We successfully adapted three transduction-
based DBN model templates associated with the approach to compute transliteration
similarity. We specified eight transduction-based DBN models from the three DBN
templates and evaluated them against the performance of the Pair HMMs using the
same standard transliteration data for seven language pairs.

Results from our transliteration detection setup show that of the three transduction-
based DBN model templates, the template for context-dependent DBN models results

5.4 Conclusion 113

in models that achieve the highest transliteration detection accuracy as compared
to models based on the other transduction-based DBN templates. The context-
dependent DBN models also achieve a considerable improvement in transliteration
detection accuracy for all language pairs in comparison to the standard baseline ap-
proach of pair n-gram models. This includes the case for English-Russian where the
Pair HMMs did not perform well as we would have expected. The context-dependent
DBN models also result in better transliteration detection accuracy compared to Pair
HMMs for 5/7 of the language pairs.

The transliteration detection results for the transduction-based DBN models in
this chapter are generally similar to those that were reported for applying the edit
distance-based models in pronunciation classification (Filali and Bilmes 2005) and
cognate identification (Kondrak and Sherif 2006). An analysis of the transliteration
detection results associated with the use of the DBN models also suggests that us-
ing ensembles of DBN models to compute transliteration similarity may guarantee
improvements in accuracy.

It is important to note that although we have evaluated a reasonable number of
transduction-based DBN models, the approach still offers a huge space of possible and
feasible models which should be interesting to evaluate for computing transliteration
similarity in a transliteration detection task.

Chapter 6

Applying DBN models in mining translitera-
tions from Wikipedia

6.1 Introduction

In the previous two chapters, we evaluated the application of Pair Hidden Markov
models (Pair HMMs) and transduction-based Dynamic Bayesian Network (DBN)
models in an experimental transliteration detection task. The datasets that we used
in the transliteration detection experiments comprised a collection of source and
target language Named Entity (NE) pairs which we arbitrarily divided into reasonable
training and test sets. We then used the trained edit distance-based DBN models and
determined from the transliteration similarity scores, the rank of the candidate target
NE (for each source NE in the test set). In the transliteration detection experiments,
we assumed that there were no ‘noisy’ entities in the datasets. We also assumed
knowledge about NEs in one language (which for convenience we refer to as a source
language) for which we were supposed to determine a matching target language NE
from a list of candidate target NEs in the test set for the target language. We refer
to this as an ideal transliteration detection setup.

When we use real-world data to identify transliterations, we expect both the
source and target language sides of the datasets to have ‘noisy entities’. This is of-
ten the case in transliteration mining tasks where real-world data is obtained from
Web-based comparable corpora including news corpora (Klementiev and Roth 2006,
Sproat et al. 2006, Khapra et al. 2010) and encyclopedic corpora (mainly Wikipedia)

This chapter is an extended version of the following publications:
P. Nabende – Mining Transliterations from Wikipedia using Pair Hidden Markov Models, Proceed-
ings of the 2010 Named Entities Workshop, pp. 76–80, July 2010, Uppsala, Sweden.
P. Nabende – Mining transliterations from Wikipedia using Dynamic Bayesian Networks, To appear
in Recent advances in Natural Language Processing, Sept 2011, Hissar, Bulgaria.

116 6. Applying DBN models in mining transliterations from Wikipedia

(Kumaran et al. 2010b). This data is created by various users who represent it in
various ways leading to high proportions of noisy entities. In this chapter, we aim
to further establish the value of using the edit distance-based DBN models intro-
duced in Chapters 4 and 5 for computing transliteration similarity by evaluating
their application in mining transliteration pairs from Web-based noisy data.

In our investigation of the application of DBN models in this chapter, we hereby
distinguish between two transliteration mining related tasks in which the DBNmodels
are evaluated. In the first task, we follow the NEWS 2010 transliteration mining
shared task setup (Kumaran et al. 2010b) where bilingual Wikipedia topics extracted
using Wikipedia inter-language links (WILs) are provided as raw data for mining
single word transliteration pairs. During the shared task, we applied the Pair HMM
with distinct transition and emission parameters (Figure 4.4) to mine English-Russian
transliteration pairs. After the shared task, we extended the evaluation of more DBN
models on the English-Russian dataset and on the shared task datasets for the other
four language pairs: English-Arabic, English-Chinese, English-Hindi, and English-
Tamil.

In the second transliteration mining task, we investigate the application of Pair
HMMs and context-dependent DBN models in mining single word transliteration
pairs from Wikipedia article content in addition to mining from the topic pairs. In
the next section, we continue with the descriptions of the two transliteration mining
tasks. Later, we specify the edit distance-based DBN models we have chosen to
evaluate in the two tasks of mining transliterations from Wikipedia.

6.2 Wikipedia – A source for transliteration mining

Wikipedia is an online encyclopedic resource in which over 270 languages have been
used to write articles. In each language Wikipedia, there is a set of articles and for
some articles access is provided to pages about the same topic in other languages.
Figure 6.1 shows two Wikipedia articles about the same topic, one in English with the
title “Arab Spring” whereas the other is in Arabic with the title �

éJ
K. QªË@
�

H@ �Pñ
�
JË @ ‘Arab

Revolutions’ and where the Arabic page has been accessed using the Arabic Wikipedia
inter-language link which exists on the English page as shown. Currently, there is a
growing interest in using such article pairs as comparable text for extracting various
types of information. In our case, we use such article pairs across writing systems for
mining single word transliteration pairs. As mentioned in the Introduction section
above, we divide the Wikipedia transliteration mining task into two sub tasks. The
most common task (which for convenience, we refer to here as the ‘first’ Wikipedia
transliteration mining task) uses Wikipedia’s link structure to mine bilingual NEs.
Different types of links can be used for this task including (Erdmann et al. 2008):

6.2 Wikipedia – A source for transliteration mining 117

Arabic page

English page

Corresponding topics

Interlanguage link

Figure 6.1: Two Wikipedia articles on the same topic but in different languages.

inter-language links (an inter-language link is a link between two articles in different
languages), redirect pages (a redirect page is a page that has no content but only a
link to a target page), and link texts (these are the text part of the link that a user
can click to reach a target page). For the NEWS 2010 shared task on transliteration
mining (Kumaran et al. 2010b), only inter-language links were used to extract the
topic pairs which were used as comparable text for mining single word transliteration
pairs. We have also used the same datasets as those provided for the NEWS 2010
shared task on transliteration mining to evaluate the edit distance-based DBN models
and we do not explore using the other types of links in this chapter.

In the ‘second Wikipedia transliteration mining task’, we use the main article
content in addition to the topics. Although ‘linked text’ appears in main content, we
do not distinguish it from the unlinked text. We therefore consider all named entities
tagged in a pre-processing stage as candidate transliterations irrespective of whether
they are part of linked text or not. As is depicted in Figure 6.1, it is clear that the
main Wikipedia article content provides a lot more data that may lead to the mining
of many transliteration pairs compared to the case of using only topic pairs.

118 6. Applying DBN models in mining transliterations from Wikipedia

6.2.1 Transliteration mining using Wikipedia inter-language
links

Recently, many studies have found it inexpensive to extract a lot of specific cross-
language data including named entities and terminologies by using only Wikipedia’s
inter-language links (Adafre and de Rijke 2006, Mohammadi and GhasemAghaee
2010, Kirschenbaum and Wintner 2010, Erdmann et al. 2008). We will first use
comparable Wikipedia topics that have been identified from the Inter-language links
to constitute the collection of raw data to which the DBN models will be applied and
evaluated for mining single word transliteration pairs.

Figure 6.2 is an overview of the the NEWS 2010 transliteration mining shared
task setup. We use the same setup used in the shared task to simplify our comparison
of the application of the DBN models against state-of-the-art approaches that were
evaluated (Kumaran et al. 2010a) on the same standard transliteration corpora. In
Figure 6.2, the ‘Interwiki links’ refer to the collection of article titles such as the
English and Arabic titles in Figure 6.1 that are provided for the shared task as-is.
Since manual extraction of transliteration pairs is used to create the Gold standard,
only a small random sample of the many noisy article titles are provided as the gold

Interwiki

Links

(Noisy data)

Random

sample

Gold set:
Transliterations

(T)

Not

transliterations

(~T)

Transliterations

mined by system

Mined pairs

(in Gold as T)

Mined pairs

(in Gold as ~T)

A

B

Those in Gold T but

not mined by system C

Those in Gold ~T but

not mined by system D

Figure 6.2: Transliteration mining task and evaluation overview following the 2010 NEWS
shared task. (Adapted from Kumaran et al., 2010b).

6.3 DBN model selection for transliteration mining 119

set. Given the raw interwiki links, transliteration mining systems that participated
in the shared task were supposed to return single word transliteration pairs from each
pair of Wikipedia topics if they identified any, and otherwise, returned nothing if no
transliteration pairs were identified. On the evaluation side of Figure 6.2, A refers
to pairs from the transliteration mining system that are evaluated as True Positives
(TP), B refers to those evaluated as False Positives (FP), C refers to those evaluated
as False Negatives (FN), and D to those evaluated as True Negatives (TN). In section
6.4, we will refer to the notations in Figure 6.2 when describing the evaluation setup
for this transliteration mining task.

6.2.2 Transliteration mining using comparable Wikipedia ar-
ticle text

In addition to using Wikipedia’s article topics to mine transliterations, we also explore
the use of the main article content. The motivation here as suggested in Figure 6.1 is
quite obvious, that we expect to find more named entities in the main article content
than there are in the article titles. However, for the same number of Wikipedia topics,
we expect the datasets to grow exponentially hence requiring more time and effort to
pre-process and analyse. Instead of using all the article pairs between two languages
for mining transliterations, we limited the size and identified only article pairs that
we hypothesized to contain a sufficient number of transliteration pairs. To help us
achieve that, we used as a starting point existing statistics about the number of page
visits associated with the English Wikipedia for a given duration. Specifically, we
used statistics about the English Wikipedia articles that got the highest number of
page hits during the month of august 2009 and chose those that ranked highly in that
regard. The corresponding articles in the other language were then easily retrieved
through the inter-language links. Because there is need to manually annotate a
gold standard from this type of data, we limited the number of document pairs to
enable the evaluation of several DBN models for detecting transliteration pairs. Also,
because of my own lack of expertise in most of the writing systems, we evaluated the
DBN models for the English-Russian language pair only.

6.3 DBN model selection for transliteration mining

The DBN models that we apply to compute transliteration similarity in the translit-
eration mining tasks in this chapter have already been introduced in Chapters 4 and
5. In this section we present the specific DBN model structures we chose to apply
in mining transliterations from Wikipedia. To explain the choice of model struc-
tures, we briefly review the results from the transliteration detection experiments in

120 6. Applying DBN models in mining transliterations from Wikipedia

Chapters 4 and 5. Chapter 5 results show that the context-dependent DBN models
outperform the other DBN models in most of the language pairs. It is therefore natu-
ral to consider them as the most suitable from the set of DBN models for application
in mining transliterations from Wikipedia. However, Chapter 5 results also show
that the best performing Pair HMMs achieved accuracies and MRRs comparable to
those for some of the context-dependent transduction-based DBN models. The Pair
HMMs even performed best in the detection of English-Hindi and English-Kannada
transliterations. Moreover, we also note that the application of the transduction-
based DBN models was limited by slow runtimes during inference for training the
models and for computing transliteration similarity. This drawback on the use of the
transduction-based DBN models could prove costly in a task involving the analysis
of huge amounts of data. This is indeed the case in the transliteration mining tasks
in this chapter where we apply the models to mine from hundreds of thousands of
Wikipedia paired topics.

The transliteration mining tasks in this chapter necessitate an evaluation of most
of the Pair HMMs and transduction-based DBN models that were introduced in
Chapters 4 and 5. However, the results from Chapters 4 and 5 suggest that the use
of some algorithms (for the case of Pair HMMs) and some model generalizations (for
the case of transduction-based DBN models) always lead to gains in transliteration
detection quality over the other Pair HMM algorithms and transduction-based DBN
model generalizations. Therefore, we have chosen to consider model structures from
both DBN approaches that achieved the highest transliteration detection accuracy
and MRR for any of the language pairs investigated in this chapter. In the following
two subsections, we specify the chosen DBN model structures for each approach.

6.3.1 Pair HMMs

From the Pair HMM approach, we use the Pair HMM structures and the respective
algorithms that resulted in the best transliteration detection accuracy in Chapters
4 and 5. The Forward log-odds algorithm for the Pair HMM with three transition
parameters (which we denote here as PHMM3 – see Figure 4.3) led to the high-
est transliteration detection accuracy for most of the language pairs compared to
other Pair HMM structures and algorithms. However, the other scoring algorithms
for PHMM3 resulted in lower transliteration detection accuracy compared to the al-
gorithms for the other Pair HMM variants where transition parameters were used
in computing transliteration similarity. We therefore decided to evaluate at least
two Pair HMM variants that had the highest transliteration detection accuracy for
a particular language pair. Based on that, we chose to use PHMM3 and the Pair
HMM variant that uses five transition parameters (denoted here as PHMM5 – see

6.3 DBN model selection for transliteration mining 121

Figure 4.2) with their respective forward log-odds algorithms for mining single word
transliteration pairs from English-Chinese and English-Tamil Wikipedia topic pairs.
For English-Hindi, we use PHMM3 and the Pair HMM variant that uses nine dis-
tinct transition parameters (denoted here as PHMM9 – see Figure 4.4). For English-
Russian, we use PHMM5 and PHMM9.

6.3.2 Transduction-based context-dependent DBN models

From the transduction-based DBN model generalizations presented in Chapter 5, we
also chose the best performing DBN models. With reference to the transliteration
detection results in Chapter 5, the context-dependent DBN models led to the highest
transliteration detection accuracy and MRR compared to other transduction-based
DBNmodels on all transliteration datasets. We have therefore chosen to evaluate only
context-dependent DBN models for computing transliteration similarity in mining
transliterations from Wikipedia. Table 6.1 is a summary of the selected Pair HMM
and context-dependent DBN models.

We use a context-dependent DBN model that incorporates the dependency of
the edit operation variable on the current and previous target string character (de-
noted here as CONt2) for computing transliteration similarity for four language pairs:
English-Arabic, English-Chinese, English-Hindi, and English-Tamil. We have chosen
to use CONt2 for English-Arabic since it led to better transliteration detection accu-
racy for most of the language pairs compared to the other DBN models in Chapter
4. For English-Russian, we use a context-dependent DBN model that models a de-
pendency of the edit operation on the current source character only (See section
5.2.3 for detailed description of the transduction-based DBN model generalizations).
Note that here, we also take English to be the target language and each of the other
languages to be the source language. Therefore, CONt2 means that we change and

Language pair PHMMm1 PHMMm2 CON DBN
English-Arabic PHMM3 forwLO PHMM9 forwLO CON(s2&t2)
English-Chinese PHMM3 forwLO PHMM5 forwLO CON(s2&t2)
English-Hindi PHMM3 forwLO PHMM9 forwLO CON(s2&t2)
English-Russian PHMM5 forwLO PHMM9 forwLO CON(s1&t1)
English-Tamil PHMM3 forwLO PHMM5 forwLO CON(s2&t2)

Table 6.1: PHMMs and transduction-based DBN models for mining transliterations from
Wikipedia. forw. LO refers to the forward log-odds algorithm for a given Pair HMM.
PHMMm1 and PHMMm2 refer to the PHMMs that have the best and second best accuracy
and MRR from Chapter 4 results.

122 6. Applying DBN models in mining transliterations from Wikipedia

consider English as the source language and each of the other languages as the target
language.

6.4 Experiments using NEWS 2010 shared task setup

6.4.1 Wikipedia inter-language link data

In this task, three sets of data were provided per language pair for the NEWS 2010
shared task on transliteration mining (Kumaran et al. 2010b). For each language
pair, 1000 hand picked pairs of single word NEs were provided as seed data for
training any proposed transliteration mining system. Then pairs of corresponding
article topics that had been collected using Wikipedia Inter-language links (WILs)
from a given English Wikipedia data dump were provided as data from which single-
word transliteration pairs were to be mined. For all language pairs, the Wikipedia
paired topics were noisy with a large number of unwanted symbols which necessitated
a data pre-processing step before applying any transliteration mining system. Most
of the unwanted symbols included: temporal and numerical expressions, punctuation
symbols, formatting symbols, mathematical operator symbols, and characters from
other writing systems that are not part of the source or target language writing
system. 1000 Wikipedia links were also randomly selected (from the large noisy
WILs) from which single word NE pairs for each link were manually identified and
annotated to constitute the gold standard set used to evaluate the application of the
transliteration mining systems. The gold set also had cases where there existed no
transliteration pairs.

For this particular task, we expect there to be no effect on the final result in
using one language as the source language and the other language as the target and
vice-versa since we do not have prior knowledge about either the source or target
string. However, as in the transliteration identification tasks in Chapters 4 and 5,
we use English on the target side whereas each of the other languages is used on the
source side.

To reduce data sparseness, all datasets were converted to lowercase. For each of
the DBN approaches, the source and target language alphabets used by the models
were restricted to the characters that were found in the seed set for a first run of the
models. Although the seed sets contained the standard characters for most of the
languages, there were a lot of characters (mostly diacritics) in the noisy Wikipedia
topics that were missing in the seed set. With the aim of determining how to evaluate
words in the noisy set with the ‘new’ characters, we checked on the reference set and
observed that the words in the gold standard data hardly used any characters apart
from those in the seed set. We expect that an additional benefit of the transliteration

6.4 Experiments using NEWS 2010 shared task setup 123

mining task is to find new words including those that use uncommon characters
which usually convey an unusual original pronunciation of the word. Thus, we also
considered words with ‘new’ characters irrespective of how they were treated in the
evaluations of the NEWS 2010 transliteration mining shared task (Kumaran et al.
2010b). Table 6.2 is a summary of the datasets indicating the total number of noisy
Wikipedia paired topics for each language pair, and the final number of Wikipedia
topic pairs that were used to build the set of candidate NEs per language pair.

Language pair before pre-processing after pre-processing
English-Arabic 90926 85244 (93.8%)
English-Chinese 196047 175013 (89.3%)
English-Hindi 16963 14620 (86.2%)
English-Russian 345969 296053 (85.6%)
English-Tamil 13883 13249 (95.4%)

Table 6.2: Number of Wikipedia topic pairs before and after pre-processing.

We transformed each dataset into numerical representation to enable efficient
computation using the training and transliteration similarity estimation algorithms
for the edit distance-based DBN models. For words that had ‘new’ characters in the
Wikipedia topics, we used only information about the ‘known’ characters and ignored
the ‘unknown’ characters when computing transliteration similarity.

Acquiring additional training pairs - Iterative training

One critical issue in learning a transliteration model is the use of manually labeled
training data. To ensure accurate learning, a large number of transliteration matches
are needed. But for the shared task, only few are provided as seed data. One approach
we use to automatically acquire additional unverified training pairs from the noisy
Wikipedia data is to bootstrap from a seed set. This is described in the following
paragraph.

Assuming that the noisy Wikipedia data constitutes our set of unlabeled data U.
We first utilize the seed set to learn a transliteration model which for convenience
we denote here by T1. We apply T1 to U to identify the set of transliteration pairs
L1 whose similarity score according to the transliteration model are above a selected
threshold score th1. We then add L1 to S and use (S+L1) to learn a new translitera-
tion model which is applied to U again to identify an additional set of transliteration
pairs L2 whose similarity score according to the transliteration model is above a se-
lected threshold value th2. Following this approach we evaluate the performance of

124 6. Applying DBN models in mining transliterations from Wikipedia

the resulting models for a given number of iterations. At each iteration, we test the
learned transliteration model on the same gold standard set G.

6.4.2 Evaluation setup and results

The Pair HMM approach and the transduction-based DBN modeling approach are
both generation-based approaches1 whereby, for each candidate transliteration pair,
transliteration similarity is computed based on an underlying process which is per-
ceived to generate the two words. Then, based on some criterion (which in our case is
a threshold value), a decision is made as to whether the candidate transliteration pair
should be regarded by the transliteration system as a suggested true transliteration
pair or not. In the following, we use a sample from the English-Russian Wikipedia
topic pairs to demonstrate the evaluation setup used for the 2010 shared task on
transliteration mining.

Table 6.3 shows the sample of English and Russian Wikipedia topics from which
single word transliteration pairs are to be mined. Each underlined word in the Table
has a transliteration match in the other language. Given the Wikipedia topics in
Table 6.3, we expect the mining system to find transliterations pairs as illustrated in
Table 6.4. Based on the sample results in Table 6.4, there are some important points
to note with respect to the task. First, we see that not all Wikipedia article topics in
Table 6.3 will result in a transliteration pair. This is illustrated in Table 6.4 where
we use <NULL> to indicate that no transliteration pairs were found in some topic
pair. Secondly, following the NEWS 2010 shared task setup (Kumaran et al. 2010a),
morphological variations on either side are not regarded as transliterations. Thirdly,

English Wikipedia title Russian Wikipedia title
1 Chereksky District Черекский район Кабардино-Балкарии
2 Oleksandr Palyanytsya Паляница, Александр Витальевич
3 Erzerum Offensive Эрзурумское сражение
4 Mauricio Funes Фунес, Маурисио
5 Proper equilibrium Собственное равновесие

Table 6.3: Sample of English-Russian Wikipedia topic pairs. The underlined words indicate
that they have a transliteration match in the other language.

1The other common category of approaches that were evaluated in the NEWS 2010 shared task on
transliteration mining (Kumaran et al. 2010b) are discriminative approaches which treat the mining
task as a binary classification problem. The discriminative approaches necessitate the construction
and use of a classifier to decide whether a candidate pair of words qualifies as a transliteration pair
or not.

6.4 Experiments using NEWS 2010 shared task setup 125

English name Russian name
1 Chereksky Черекский
2 Oleksandr Александр
2 Palyanytsya Паляница
3 <NULL> <NULL>
4 Mauricio Маурисио
4 Funes Фунес
5 <NULL> <NULL>

Table 6.4: Sample of expected transliteration mining result from the raw Wikipedia topics
of Table 6.3.

following the common definition for transliteration, translations having distinct pho-
netic transcriptions (a feature needed to qualify them as transliteration pairs) on
either side are also not considered as transliterations. For example, although ‘Dis-
trict’ and ‘район’ in the first Wikipedia topic pair in Table 6.3 can be taken as
translations of each other since they refer to a similar entity (pertaining to territorial
administrative divisions) in the respective languages, their respective phonetic tran-
scriptions /dIstrIkt/ and /raion/ (using the International Phonetic Alphabet (IPA))
are very different implying that they can not be treated as transliteration pairs.2

Finally, before training the models, we first convert the datasets (i.e. in the case of
English and Russian) that have uppercase characters to lowercase.

a) Evaluation metrics

We train each Pair HMM using the Baum-Welch algorithm (Chapter 4), and each
context-dependent DBN model using a generalized expectation maximization algo-
rithm (Chapter 5). We then use the trained models to compute transliteration sim-
ilarity between candidate transliteration pairs as described above. After applying
each model, we check a subset of the transliteration similarity scores to enable the
specification of different threshold values. If we specify a low threshold value, we get
many suggestions of potential transliteration pairs returned by the mining system. If
we specify a high threshold value, we get very few suggestions returned by the mining
system. The collection of transliteration pairs whose transliteration similarity scores
beat a given threshold value for each language pair are then evaluated against the
gold set which contains a random selection of manually annotated topic pairs from

2A true Russian transliteration for the English word ‘District’ is ‘Дистрикт’ and it is used to
mean the same entity as in English. Conversely, a true English transliteration for the Russian word
‘район’ is ‘raion’ and it is also used to mean the same entity.

126 6. Applying DBN models in mining transliterations from Wikipedia

the initial set of topic pairs.
We evaluate each edit distance-based DBN model for mining single word translit-

eration pairs from Wikipedia topic pairs using three related metrics as described for
the NEWS 2010 shared task on transliteration mining in Kumaran et al. (2010b,
2010a). The evaluation metrics are: Precision, Recall, and F-score3. With reference
to Figure 6.2, we compute the measures as follows:

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

F-score =
2× Precision× Recall
Precision + Recall

(6.3)

where:

• TP (True Positives) are word pairs that are identified as correct transliterations
by the transliteration mining system and indeed are in the gold standard.

• FP (False Positives) are word pairs that are identified as correct transliterations
but are incorrect transliterations according to the gold standard.

• FN (False Negatives) are word pairs that are identified as incorrect transliter-
ations but are actually correct transliterations according to the gold standard.

• TN (True Negatives) are word pairs that are identified as incorrect translitera-
tions and are indeed incorrect transliterations as per the gold standard. As seen
in the expressions above we do not use these in the computations for Precision
and Recall even when they are part of the result.

The different threshold values as introduced above enable us to plot Precision-
Recall curves for a more general analysis of the transliteration mining results. How-
ever, when comparing the methods on single Precision, Recall, and F-score values, we
set a threshold value that we think will result in an optimal discrimination between
true transliteration pairs and incorrect transliteration pairs. In this case, We analyse
a subset of the results returned by the system and then identify true transliteration
pairs whose similarity scores we use to subjectively set the threshold value.

3We use the F1 score in our evaluations with respect to use for evaluation in the 2010 NEWS
shared task on transliteration mining. But since, the aim of a transliteration mining task is to
acquire only correct transliterations, it is more appropriate to adapt this measure so that more
importance is attached to Precision than Recall

6.4 Experiments using NEWS 2010 shared task setup 127

b) English-Russian transliteration mining results

Table 6.5 shows the first 10 results out of a total of 15 for the transliteration mining
methods that were evaluated on the English-Russian dataset. During the shared
task we applied a Pair HMM with nine distinct transition parameters and distinct
emission parameters (Figure 4.4). We use PHMM9F to denote this Pair HMM in
Table 6.5. When applying PHMM9F, we used the forward algorithm to compute
transliteration similarity. In Table 6.5, we have also included the result for a context-
dependent DBN model which models a dependency of the edit operation variable on
the current target character (CONt1). Since we did not apply the context-dependent
DBN model during the shared task, its result is initially not included in the shared
task report on the English-Russian dataset. However, we applied it to the same
English-Russian datasets as used during the shared task. Table 6.5 specifies two types
of runs: a standard run where only the seed datasets are supposed to be used to train
the transliteration mining systems, and a non-standard run where participants are
allowed to use additional and / or external data to complement the seed datasets. The
results in Table 6.5 alone illustrate the varied applicability of the HMM framework.
These results also suggest a comparable performance of the HMM-based methods to
other state-of-the-art methods. The best method, NED+ (which is an extended form

Run type Description Precision Recall F-Score
**Standard CONt1 0835 0.815 0.825
*Standard PHMM9F 0.780 0.834 0.806
Standard NED+ 0.880 0.869 0.875
Standard HMM + PC 0.813 0.839 0.826
Non-standard LFS + Seed+ 0.797 0.853 0.824
Standard StringKernel 0.746 0.889 0.811
Standard HMM 0.868 0.748 0.804
Standard HMM + PC + IterT 0.843 0.747 0.792
Non-standard 0.730 0.870 0.790
Standard DirecTL+ 0.778 0.795 0.786

Table 6.5: Results of the NEWS 2010 transliteration mining shared task on English and
Russian data (Source: Kumaran et al. (2010b)). During the NEWS 2010 shared task
on transliteration mining, we applied PHMM9F which is the Pair HMM variant with dis-
tinct emission and transition parameters. Here, we used the forward algorithm to compute
transliteration similarity. The two asterisks (**) indicate that the result for CONt1 (a
context-dependent DBN model) was not included in the shared task report since it was
evaluated at a later time after the shared task.

128 6. Applying DBN models in mining transliterations from Wikipedia

of the normalized edit distance (NED) measure) is reported by Jiampojamarn et al.
(2010) to be their baseline method. NED is defined as the ratio of the edit distance
between two strings and the maximum length of the two strings. The relatively good
performance of the NED+ measure and the HMM-based methods suggests that there
may be no gain in using more complex methods to model transliteration similarity
between English and Russian. The use of a context-dependent DBN model led to
an improved F-score value over the Pair HMM approach but still below that for the
simple NED+ approach.

c) English-Hindi transliteration mining results

For English-Hindi, we applied five Pair HMMs and two context-dependent DBN
models. Figure 6.3 shows the Precision-Recall curves for the different models. In
Figure 6.3, PHMM9F denotes the Pair HMM with distinct transition and emission
parameters (Figure 4.4) and where the Pair HMM forward algorithm is used to com-
pute transliteration similarity. PHMM9 refers to the same Pair HMM denoted by
PHMM9F but where we use the Pair HMM forward log-odds algorithm to compute
transliteration similarity. PHMM9IterT refers to the same Pair HMM as PHMM9
but which we train iteratively as described in section 6.4.1 on “acquiring additional
training data”, and where we use the forward log-odds algorithm to compute translit-
eration similarity. PHMM3 refers to the Pair HMM with three transition parameters
between the edit states and where we use the Pair HMM forward log-odds algorithm
to compute transliteration similarity. PHMM3IterT refers to the same Pair HMM
as PHMM3 but which we also train iteratively and where we also use the forward
log-odds algorithm to compute transliteration similarity.

Figure 6.3 shows that the Pair HMMs where the forward log-odds algorithm is
used to compute transliteration similarity (that is PHMM3, PHMM9, PHMM3IterT
and PHMM9IterT) achieve a superior performance as their curves are closer to the
upper right corner of the graph (where Precision and Recall is maximized) compared
to the curves for PHMM9F and the two context-dependent DBN models.

This result is similar to the transliteration detection result for the English-Hindi
language pair in Chapter 5 where a Pair HMM using the forward log-odds algorithm
outperformed the context-dependent DBN models. The transliteration mining result
in this case suggests that the approach of Pair HMMs could be suitable for mining
transliteration English-Hindi transliteration pairs.

In Table 6.6, we present our results for the Pair HMMs and context-dependent
DBN model alongside the first five shared task results for the approaches that were
evaluated in mining English-Hindi transliteration pairs. The notations for the Pair
HMMs and context-dependent DBN models are the same as defined above.

6.4 Experiments using NEWS 2010 shared task setup 129

0.2 0.4 0.6 0.8 1.0

0.
80

0.
85

0.
90

0.
95

1.
00

Recall

P
re

ci
si

on

PHMM3
PHMM3IterT
PHMM9
PHMM9IterT
CONs2
CONt2
PHMM9F

Figure 6.3: Precision-Recall curves for Pair HMMs and context-dependent DBN models
after evaluation on 982 English-Hindi test items at different threshold values. CONs2 (re-
spectively CONt2) is a transduction-based DBN model where there is a dependence of the
edit operation variable on the current and previous characters in the source word (respec-
tively target word). PHMM9F refers to the Pair HMM with distinct transition parame-
ters (PHMM9) where we use the forward algorithm to compute transliteration similarity,
PHMM9 refers to PHMM9 where we use the forward log-odds algorithm. PHMM9IterT
refers to the Pair HMM that we trained iteratively and used the forward log-odds algo-
rithm. PHMM3 refers to the Pair HMM with three transition parameters where we use the
forward log-odds algorithm, and PHMM3IterT refers to the PHMM3 where we train the
model iteratively.

130 6. Applying DBN models in mining transliterations from Wikipedia

Run type Description P R F-score
* Standard PHMM3_FLO 0.930 0.976 0.952
* Standard PHMM3IterT 0.959 0.949 0.954
* Standard PHMM9_FL0 0.934 0.975 0.954
* Standard PHMM9IterT 0.936 0.976 0.955
* Standard CONs2 0.929 0.893 0.911
* Standard CONt2 0.938 0.851 0.893
Standard StringKernel 0.954 0.895 0.924
Standard NED+ 0.875 0.941 0.907
Standard DirecTL+ 0.945 0.866 0.904
Standard (HMM+PC+IterT)+PC 0.953 0.855 0.902
Standard BK-2007 0.883 0.880 0.882

Table 6.6: English-Hindi transliteration mining results for Pair HMMs and context-
dependent DBN models against NEWS 2010 Shared task results (Kumaran et al. 2010b).
P refers to Precision whereas R refers to Recall. We again use an asterisk to indicate that
we evaluated the respective models later after the shared task but on the same dataset.

As Table 6.6 shows4, the Pair HMMs where we use the forward log-odds algorithm
to compute transliteration similarity result in a considerably better F-score value
compared to that for the best performing approach in the shared task and for the
other edit distance-based DBN models. This result is quite surprising considering
that we use the Pair HMMs in their most basic form. Although iterative training of
the models (that is for PHMM3IterT and PHMM9IterT) leads to the best F-score
values, there is only a slight increase over the case where we do not iteratively train
for the same model structures and where we use the same scoring algorithm (that is
for PHMM3 and PHMM9). Probably, the already high F-score values will be hard
to improve using the same model structures with the same algorithms.

d) English-Tamil transliteration mining results

For English-Tamil, we present the results for only four models: two Pair HMMs
and two context-dependent DBN models. The Pair HMMs (PHMM3 and PHMM5)
and the context-dependent DBN models (CONs2 and CONt2) are as defined in the
previous subsection. Figure 6.4 shows the Precision-Recall curves for the four models.
In Figure 6.4, we again see that the Pair HMMs achieve a superior performance as

4Note that the results for the Pair HMMs and context-dependent DBN models in Table 6.6 were
not part of the NEWS 2010 transliteration mining shared task evaluation. Although we used the
same datasets as those provided for the shared task, we conducted transliteration mining experiments
at a later time.

6.4 Experiments using NEWS 2010 shared task setup 131

their curves are closer the upper right corner of the graph compared to the curves
for the context-dependent DBN models. The difference between the curves for the
Pair HMMs and the context-dependent DBN models in Figure 6.4 is even bigger
compared to the difference in Figure 6.3 for the English-Hindi transliteration mining
results.

In Table 6.7, we present transliteration mining results for the Pair HMMs and
the context-dependent DBN models alongside the first five shared task results for
approaches that were evaluated in mining English-Tamil transliteration pairs. As
Table 6.7 shows, the Pair HMMs again result in considerably better F-score values

0.2 0.4 0.6 0.8 1.0

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Recall

P
re

ci
si

on

PHMM3
PHMM5
CONs2
CONt2

Figure 6.4: Precision-Recall curves for Pair HMMs and context-dependent DBN models
after evaluation on 690 English-Tamil test items at different threshold values.

132 6. Applying DBN models in mining transliterations from Wikipedia

Run type Description P R F-score
* Standard PHMM3 0.913 0.966 0.936
* Standard PHMM5 0.923 0.955 0.939
* Standard CONs2 0.782 0.893 0.834
* Standard CONt2 0.872 0.880 0.876
Standard StringKernel 0.923 0.906 0.914

Non-Standard LFS + Seed+ 0.910 0.897 0.904
Standard LFS 0.899 0.814 0.855
Standard LFS 0.913 0.790 0.847
Standard BK-2007 0.808 0.852 0.829

Table 6.7: English-Tamil transliteration mining results for Pair HMMs and context-
dependent DBN models against NEWS 2010 shared task results (Kumaran et al. 2010b).

compared to the best performing approach in the shared task. One of the context-
dependent DBN models (CONt2) achieves a competitive F-score value although not
better than the best shared task result.

e) English-Chinese transliteration mining results

For English-Chinese, we applied two Pair HMMs (PHMM3 and PHMM5) and two
context-dependent DBN models (CONs2 and CONt2). We used the forward log-odds
algorithm to compute transliteration similarity using PHMM3 and PHMM9. The
context-dependent DBN models are also as defined for the previous language pairs.
Table 6.8 shows the transliteration mining results from using the Pair HMMs and
context-dependent DBN models for computing transliteration similarity alongside
results for the approaches used during the NEWS 2010 shared task.

As Table 6.8 shows, none of the edit distance-based DBN models achieve an F-
score value higher than that for the best shared task result. However, considering
the general poor performance in mining English-Chinese transliteration pairs, the
F-score values for the edit distance-based DBN models are very competitive. The
transliteration mining results in Table 6.8 for the edit distance-based DBN models
are slightly different compared to English-Hindi and English-Tamil transliteration
mining results in the two previous subsections. Here, although the best transliteration
mining result is from a Pair HMM, we see a mixed performance. Unlike the case for
English-Hindi and English-Tamil, we see that CONt2 outperforms one of the Pair
HMMs and it achieves an F-score value comparable to that for the best Pair HMM
result. It should also be noted that unlike the case for the other language pairs, we
used an intermediate representation step for English-Chinese data. That is, we first
transcribed Chinese characters to characters of the Latin alphabet using the Pinyin

6.4 Experiments using NEWS 2010 shared task setup 133

Run type Description P R F-score
* Standard PHMM3 0.574 0.337 0.425
* Standard PHMM5 0.526 0.335 0.410
* Standard CONs2 0.435 0.241 0.310
* Standard CONt2 0.546 0.334 0.414
Standard Matching 0.698 0.427 0.530

Non-Standard 0.700 0.430 0.530
Standard (HMM+IterT)+PC 1.000 0.030 0.059
Standard HMM+IterT 1.000 0.026 0.050
Standard HMM+PC 1.000 0.024 0.047
Standard (HMM+PC+IterT)+PC 1.000 0.022 0.044
Standard HMM 1.000 0.016 0.032
Standard HMM+PC+IterT 1.000 0.016 0.032
Standard DirecTL+ 0.045 0.005 0.009

Table 6.8: English-Chinese transliteration mining results for Pair HMMs and context-
dependent DBN models against NEWS 2010 shared task results (Kumaran et al. 2010b).

Romanization system. Transliteration mining results from a preliminary run where
we applied the edit distance-based DBN models on Chinese data in its original or-
thography showed very low F-score values and we do not report them here. We
suspect that the lack of applying a segmentation step for some of the Chinese topics
could have considerably affected transliteration mining qaulity in our experimental
runs. Nonetheless, the English-Chinese transliteration mining results suggest that
the edit distance-based DBN models could also be valuable for languages that use
relatively complex writing systems.

f) English-Arabic transliteration mining results

For English-Arabic, we report on transliteration mining results from applying three
Pair HMMs (PHMM3, PHMM5, and PHMM9) and two context-dependent DBN
models (CONs2 and CONt2). We use the forward log-odds algorithm to compute
transliteration similarity for the Pair HMMs. All the edit distance-based DBN models
are also as defined for the other language pairs in the previous subsections. Table
6.9 shows the transliteration mining results for the edit distance-based DBN models
with the NEWS 2010 transliteration mining shared task results.

As table 6.9 shows, none of the edit distance-based DBN models leads to an F-
score value better than that of the best shared task result. Although the F-score
values for the edit distance-based DBN models are within the range of F-score values

134 6. Applying DBN models in mining transliterations from Wikipedia

Run type Description P R F-score
* Standard PHMM3 0.794 0.877 0.833
* Standard PHMM5 0.821 0.860 0.840
* Standard PHMM9 0.816 0.876 0.845
* Standard CONs2 0.752 0.740 0.746
* Standard CONt2 0.835 0.739 0.784
Standard FST model 0.887 0.945 0.915
Standard FST model 0.859 0.952 0.903
Standard Phonetic distance 0.923 0.830 0.874
Standard HMM+IterT 0.886 0.817 0.850
Standard HMM+PC 0.900 0.796 0.845
Standard (HMM+IterT)+PC 0.818 0.827 0.822
Standard (BK-2007) 0.834 0.798 0.816

Table 6.9: English-Arabic transliteration mining results for two Pair HMMs and two
context-dependent DBN models with the NEWS 2010 shared task results (Kumaran
et al. 2010b).

that were reported for the approaches that participated in mining English-Arabic
transliteration pairs during the shared task, the difference in F-score between the
best shared task result and the best performing DBN model is larger compared to
differences for the other language pairs where the DBN models did not beat the best
shared task result.

The transliteration mining results in Table 6.9 for the edit distance-based DBN
models correspond with the English-Hindi and English-Tamil transliteration mining
results. In Table 6.9, we see that the Pair HMMs outperform the context-dependent
DBN models which is the case for English-Hindi and English-Tamil. However, the
difference in F-score for the English-Arabic case is relatively higher than the dif-
ferences for the English-Hindi and English-Tamil case. For the three language pairs
(English-Arabic, English-Hindi and English-Tamil), the transliteration mining results
suggest that Pair HMMs could be better for computing transliteration similarity in
the process of mining transliterations from noisy data in comparison to using context-
dependent DBN models. Since we have evaluated only two context-dependent DBN
models in each case, the conclusions we make at this point regarding a comparison of
the Pair HMMs and the context-dependent DBN models for mining transliteration
pairs for the three language pairs may be insufficient. Instead, it should be interesting
to evaluate other transduction-based DBN models to determine whether they could
lead to improvements in transliteration mining quality for the three language pairs

6.5 Experiments using comparable article content 135

over the context-dependent DBN models and hence that would contradict translitera-
tion detection results in Chapter 5 where context-dependent DBN models performed
best.

6.5 Experiments using comparable article content

6.5.1 Extracting training data from Wikipedia

For this set of experiments, we use Wikipedia’s topic pairs to automatically acquire
a training set. Instead of searching for every possible topic pair, we restricted the
scope of search to named entities, specifically person names, where we expect to find
correct transliteration matches. We extracted name pairs by exploiting the structured
nature of information in Wikipedia info-boxes (Bouma et al. 2009). We searched for
entries that match a given pattern with respect to a language or country in Wikipedia
categories such as “citizenship”, “nationality”, and “place of birth”, and then extracted
the corresponding titles in the other language using inter-language links which are
on the same Wikipedia page. Despite this restricted search, there were differences
in the representation of names between the two languages and hence necessitating
data pre-processing steps. Firstly, we observed a difference in the order of names.
While most names in English start with the ‘first name’ (e.g. Barack Obama), many
corresponding names in Russian start with a second name followed by a comma
and lastly the first name (e.g. Обама, Барак). Here, we simply changed the order
by swapping the strings preceding and following a comma for all the Russian names.
Secondly, we observed the presence of middle names in some topics. Here, we removed
any abbreviations for middle names and considered only the first and last names. We
used only the last name if the number of names was different between the source and
target language topics and there was only one name in one of the languages. Lastly,
some names had a hyphen in one (for example Shin-ichiro and Синъитиро) or both
topics (for example Cary-Hiroyuki and Кэри-Хироюки). Names that had a hyphen
in both topics were used as provided, but names that had a hyphen in only one topic
(for example Chung-hee and Хи) were filtered out. After pre-processing, we had 3142
corresponding English-Russian names that we designated as training data.

6.5.2 Comparable Wikipedia article content data

There are various criteria we can use to identify cross language Wikipedia article
content for mining transliterations. However, it is important to select article pairs
where we would expect to mine a reasonable number of transliteration pairs. We can
consider, as a plausible premise, that a Wikipedia article with a large number of words

136 6. Applying DBN models in mining transliterations from Wikipedia

has a large number of named entities. We can then evaluate its corresponding article
in the other language to decide whether there is also a sufficient number of words
from which we expect to get a large number of candidate named entities. Here, we
would consider every entity in the content regardless of how the content is structured.
Given the two comparable Wikipedia articles, an estimation of the content size in
them can lead us to a decision of whether to use them for mining transliteration pairs
or not. This approach to extracting comparable Wikipedia articles requires a search
through the whole database and performing a ranking with the aim of selecting article
pairs with the highest number of words.

A different approach that we use in selecting Wikipedia article pairs for mining
transliteration pairs, is to follow clues from Wikipedia’s statistics about articles. In
our case, we use statistics associated with the most accessed English Wikipedia pages
in a given month. We expect that a page that is visited very often, not only generates
a lot of interest but also has a big content size. We also conjecture that the ‘interest’
associated with an article leads to corresponding representations about the same
topic in other language Wikipedias. We also make a rough conclusion that its size
in the other language should be reasonably large as well. Using statistics about the
number of page hits per month for the English Wikipedia articles during the year
2009, we identified some 10 articles that had the highest number of page hits per
day5 for the month of august 2009. We retrieved the corresponding Russian articles
through the Inter-language links on the same page.

Given the English and Russian Wikipedia articles, we identified various written
entities that were not relevant for transliteration mining. The irrelevant entities here
include: temporal and numerical expressions, entities using characters from other
writing systems that are different to the writing system for source or target lan-
guage, punctuation symbols, and different formal expressions such as mathematical
expressions. In the following we present the steps taken to filter out the irrelevant
entities. First, we extracted only those words that were written using the Latin al-
phabet for English and the Cyrillic alphabet for Russian. A simple regular expression
for this purpose is sufficient for removing most of the irrelevant entities. Secondly,
we note that it may not be useful to consider every possible word from each of the
articles as a candidate named entity. Instead, it could be more helpful if we identi-
fied types of words in the article pairs for which transliteration is commonly used.
Named entities are well known to constitute the highest amount of unknown or out of
vocabulary (OOV) words in a given application of a language, and it is often the case
that transliteration is used to deal with them. Therefore, the transliteration mining
process can be simplified, if we can identify and analyse only named entities. For the
experiments in this section, we specified a regular expression for extracting words

5Retrieved from http://wikistats.falsikon.de/latest/wikipedia/en/

6.5 Experiments using comparable article content 137

from each English Wikipedia article that started with an uppercase Latin charac-
ter and was followed by lowercase character(s) irrespective of whether the word was
linked or unlinked. The English named entities extracted in this way formed the set of
candidate transliterations on the English side. It is important to note that depending
on the named entity recognition (NER) requirements, the process of finding named
entities from documents may not be as simple as specified here for our experiments,
it may require the use of a sophisticated NER approach. For the Russian articles,
we extracted only words that were written using Cyrillic characters (both lowercase
and uppercase), also regardless of whether they were linked or unlinked text. From
the set of English and Russian candidate named entities, we hand picked a subset of
single word matches in the two languages to form the Gold standard set. Table 6.10
shows the article titles with the different number of words for the noisy data and
gold set data. As table 6.10 shows, the total number of English words is less than
the total number of Russian words since we also assumed that words starting with
lower case characters were to be treated as candidate named entities on the Russian
side6.

English Wikipedia title
Total # words

gold standard size
English Russian

The Beatles 822 1693 35
Ted Kennedy 1360 517 17
Michael Jackson 1505 2277 47
YouTube 694 1026 5
Perseids 55 330 2
District 9 575 1857 35
Hans Christian Ørsted 161 969 6
Inglourious Basterds 655 2271 41
Lady Gaga 852 1160 23
True Blood 880 732 61
Total of uniq words 4811 9334 264

Table 6.10: Wikipedia article data for English and corresponding Russian articles.

6The reason for including all lowercase Russian words is based on an identification of a topic pair
where we found that the English side used uppercase for the word “atoll” in the topic “Johnston
Atoll” whereas the Russian side had a lower case representation, i.e. “Джонстон (атолл)”. We
allow lowercase words in one language as candidate NEs to avoid a possible early loss of genuine
transliteration pairs. However, we allow lowercase words in only one language and not both languages
since we expect words that are not nouns between the languages to be handled easily by translation.

138 6. Applying DBN models in mining transliterations from Wikipedia

6.5.3 Evaluation setup and results

This task is similar to the first task with only one difference that here we analyse a
higher number of candidate named entities from the article content than from the
topic pairs. We therefore use the same evaluation measures of Precision, Recall,
and F-score as expressed in Equations 6.1, 6.2, and 6.3 respectively. One plausible
evaluation approach is to compute the measures for different cut-offs on the number
of high-ranking pairs of words that are returned after applying a given transliter-
ation mining system. Using these cut-offs should give us a good impression of the
performance of a particular approach in ranking true transliteration pairs before non-
transliteration pairs (Manning and Schütze 1999). We trained the Pair HMMs using
the Baum-Welch EM algorithm as described previously and the transduction-based
DBN models using a generalized expectation maximization algorithm as described in
Chapter 5.

Figure 6.5 shows the precision-recall curves resulting from the different cut-offs af-
ter applying three Pair HMMs (PHMM3, PHMM5, and PHMM9) where the forward
log-odds algorithm is used to compute transliteration similarity, and two context-
dependent DBN models which model a dependency of the edit operation variable on
the current source character (CONs1) and the the current target character (CONt1).
We also plot the F-score values against the cut-offs associated with the different edit
distance-based DBN models as shown in Figure 6.6.

As Figure 6.6 shows, only one edit distance-based DBN model achieves an F-score
value higher than 0.7 which is unlike the case of the English-Russian transliteration
mining results in the first task where a Pair HMM and a context-dependent DBN
model result in F-score values greater than 0.8. In Figure 6.5, we see that at all recall
values, PHMM3 has the lowest precision in comparison to the other Pair HMMs.
PHMM5 results in the best performance of all Pair HMMs and even performs better
than the context-dependent DBN models at higher levels of recall. The differences in
the curves between the Pair HMMs in Figure 6.5 are greater than the differences in
the Precision-Recall curves that we plotted from using Pair HMMs on transliteration
data for English-Hindi and English-Tamil in the first task. It seems that for the
second task in this section where we have a lot of noisy entities in evaluation data,
the use of the forward log-odds algorithm leads to greater changes in transliteration
mining quality with changes in Pair HMM transition parameters compared to the
case for the transliteration detection task in Chapter 4.

The transliteration mining results in Figure 6.5 also suggest that context-dependent
DBN models lead to a better discrimination between true transliteration pairs and
non-transliteration pairs at lower levels of recall where we expect the models to rank
true transliterations higher than non-transliterations. The results at lower levels of

6.5 Experiments using comparable article content 139

recall for this second task concur with the results for the shared task setup in Ta-
ble 6.5 where the use of a context-dependent model leads to an improved F-score
value over the Pair HMM with distinct transition parameters (PHMM9F) where the
forward algorithm is used to compute transliteration similarity. The curves in both

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

PHMM3
PHMM5
PHMM9
CONs1
CONt1

Figure 6.5: Precision-Recall curves for Pair HMMs and context-dependent DBN models
after evaluation on mining transliteration pairs from English-Russian comparable Wikipedia
articles. CONs1 models the dependency of the edit operation variable on the current source
character and CONt1 models the dependency of the edit operation variable on the cur-
rent target character. PHMM3, PHMM5, and PHMM9 have different transition parameter
settings with PHMM3 using three transition parameters, PHMM5 using five transition pa-
rameters, and PHMM9 using nine transition parameters.

140 6. Applying DBN models in mining transliterations from Wikipedia

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Cut−off

F
−

sc
or

e

PHMM3
PHMM5
PHMM9
CONs1
CONt1

Figure 6.6: Graph of F-score against returned cut-off for Pair HMMs and context-dependent
DBN models after evaluation of mining transliteration pairs from English-Russian Wikipedia
articles.

Figures 6.5 and 6.6 suggest that for the edit distance-based DBN models to be valu-
able in mining transliteration pairs, we need to consider only a limited number of the
high ranking candidate transliteration pairs returned by the system.

6.6 Conclusion

This chapter has showed the possibility of applying Pair HMMs and context-dependent
DBNmodels in mining transliterations from real-world data (cross-languageWikipedia

6.6 Conclusion 141

data in our case). The results from the first task associated with mining transliter-
ations from Web-based cross-language topics, show an excellent performance by the
Pair HMMs on the English-Hindi and English-Tamil datasets. The Pair HMMs also
resulted in relatively better transliteration mining quality than the context-dependent
DBN models on the two datasets. A comparison with methods that performed well
in mining transliteration pairs from the inter-language topics in a recent transliter-
ation mining shared task (Kumaran et al. 2010b) showed comparable and in some
cases better F-score values. For the English-Russian dataset, the use of a context-
dependent DBN model resulted in a higher F-score value than a Pair HMM using
distinct transition parameters.

However, we see that the quality of transliteration mining results for the second
task, where we use additional content mainly from the body of each of the cross lan-
guage Wikipedia articles, is not as good as for the first task. Nonetheless, the results
show that the Pair HMMs and context-dependent DBN model can still be valuable if
we consider up to an appropriate limit of the ranked list of potential transliteration
pairs returned by the system. An implication here is that the edit distance-based
DBN models could be useful for mining transliteration pairs not only from Wikipedia
but also from other Web resources such as from bilingual or multilingual News web-
sites which are frequently updated with new articles and where the occurrence of
named entities is higher.

Chapter 7

Applying Pair HMMs in transliteration gen-
eration

7.1 Introduction

This chapter extends our investigation of using Dynamic Bayesian Networks (DBNs)
to compute transliteration similarity for generating candidate transliterations. The
transliteration detection and mining tasks in the previous three chapters required
detecting transliteration pairs from a set of candidate named entities (NEs). The
transliteration generation task in this chapter requires converting an input NE from
a ‘source’ language to one or more representative ‘target language’ NEs. Although
the transliteration detection and mining results in the previous three chapters show
that various Pair Hidden Markov Models (Pair HMMs) and transduction-based DBN
models lead to high transliteration detection and mining accuracy, in this chapter we
aim to determine whether using Pair HMMs in generating candidate transliterations
given source words and vice versa could result in a transliteration generation per-
formance similar to that for the transliteration detection and mining tasks. The
transliteration generation task is, however, more challenging than the transliteration
detection or mining tasks, since without knowledge about candidate NEs, the search
space for a representative target language candidate transliteration given a source
language input NE is many times larger.

The transliteration generation process relies on two main stages, each of which
can easily affect output quality. The first stage is concerned with the segmentation of

This chapter is an extended version of the following publications:
P. Nabende – Transliteration System using Pair HMMs and weighted FSTs, Proceedings of the 2009
Named Entities Workshop, pp. 100–103, Suntec, Singapore.
J. Tiedemann and P. Nabende – Translating Transliterations, International Journal of Computing
and ICT Research, 03(1):34–43.

144 7. Applying Pair HMMs in transliteration generation

an input string and the second is concerned with the mapping of each segment to a
correct representation in the target writing system. Although the latter stage can be
addressed through a transliteration model such as the ones we are about to investi-
gate, there is an increased level of ambiguity in mapping characters from one writing
system to another in comparison to the transliteration detection or mining tasks. In
the transliteration generation process, the number of choices that we can associate
with character relationships, can in theory be approximated to the product of the
size of the character vocabularies between the source and target language including
transformations involving an empty symbol. It is also often the case that character
transformations in writing systems could be one-to-many (for example, the Russian
〈ч〉 to the English 〈ch〉) and many-to-many. Recent work on transliteration genera-
tion does take this into account and alignment algorithms that induce different kinds
of relationships have been developed (Jiampojamarn et al. 2010). In this chapter, our
main interest is in the use of Pair HMM parameters for generating transliterations.
Pair HMMs were initially designed for sequence alignment (Durbin et al. 1998), but
their capacity to relate source and target elements using probabilistic values enables
us to specify them as weighted finite state automata that we can use for translit-
eration generation. More specifically, we can represent the probabilistic values that
relate pairs of source and target language elements in the edit operation states of a
Pair HMM as transduction parameters. We can therefore represent the probabilistic
values as Weighted Finite State Transducers (WFSTs) which can be used in decoding
candidate target transliterations for a given input source word. In that regard, we
would like to know whether the use of Pair HMM parameters when represented as
WFSTs can lead to any gains in transliteration generation.

Traditionally, transliteration generation involves different writing systems, and
we shall first evaluate the models on standard transliteration generation corpora (Li
et al. 2009, Li et al. 2010) where each language in a pair uses a different writing
system. Apart from the traditional view of transliteration generation, we also in-
troduce a task that according to our knowledge has not yet been addressed in the
transliteration generation literature. As we noted in section 4.4, the output of cross-
lingual applications when encountering ‘unknown’ words between two languages with
the same writing system is affected in the same way as between two languages with
different writing systems. We also propose to use the traditional transliteration gen-
eration setup in dealing with ‘unknown’ words between languages that use the same
writing system in addition to using the traditional transliteration detection setup. In
section 7.2, we continue with the descriptions for the two tasks; in section 7.3.1, we
introduce finite state automata concepts and show how to represent Pair HMMs as
such; later we evaluate several weighted finite state automata including Pair HMM-
based WFST models.

7.2 Transliteration generation tasks 145

7.2 Transliteration generation tasks

7.2.1 Traditional machine transliteration task

The traditional transliteration generation task emphasizes the mapping of symbols
from one writing system to symbols in another writing system. A survey of the
language pairs involved in all three shared tasks on transliteration generation so far
(Li et al. 2009, Li et al. 2010, Zhang et al. 2011) clearly shows that each language
pair involves languages that use different writing systems. In many cases, automatic
transliteration generation involves a language that uses the Latin alphabet. Again,
a good case in point is with all the three shared tasks on transliteration generation
where each language pair dataset consists of English data as source or target language
data. The vast amount of research on automatic transliteration generation for which
the Latin alphabet is involved may be attributed to not only the Latin alphabet’s wide
usage, but also to the simplicity that is associated with processing Latin characters.
However, with recent advances on the part of the digital encoding of symbols from
various writing systems (such as with the UTF8 encoding system), there is now some
research on automatic transliteration generation between different writing systems
that do not involve the Latin alphabet (Malik 2006, Malik et al. 2008). For this task,
we shall experiment with standard transliteration corpora from the NEWS 2009 and
NEWS 2010 shared tasks on transliteration generation (Li et al. 2009, Li et al. 2010).

7.2.2 Translating transliterations task

In this section, we argue that the transliteration generation task need not be restricted
to the case where the source and target language use different writing systems. This
is mainly because the limitations of NLP systems for which transliteration is used
across writing systems are similar to those involving different languages that use
the same writing system. Specifically, ‘unknown’ entities will affect a cross-lingual
application that involves languages that use the same writing system in a similar
way that they affect a cross-lingual application that involves different writing sys-
tems. However, to the best of our knowledge, the handling of ‘unknown’ entities in a
cross-lingual application where the source and target language use the same writing
system in the context of using the traditional transliteration generation setup has
yet to be addressed in literature. In this chapter, we are mainly concerned with the
case where transliterated names originating from a different writing system differ
across languages using the same writing system. Consider the examples in Table 7.1
where Russian names have been transliterated into: English, French, German, and
Dutch. As can be seen, the transliterated names are spelt differently although the
four languages use the same alphabet. Such spelling variations given the same

146 7. Applying Pair HMMs in transliteration generation

English French German Dutch
Alexander Pushkin Alexandre Pouchkine Alexander Puschkin Aleksandr Poesjkin
Nikita Khrushchev Nikita Chruschtschow Nikita Khrouchtchev Nikita Chroesjtsjov
Yuri Andropov Iouri Andropov Juri Andropow Joeri Andropov
Leonid Brezhnev L’eonid Brejnev Leonid Breschnew Leonid Brezjnev

Table 7.1: Transliterated Russian names in four European languages that use the Latin
alphabet.

original name arise due to language specific differences.
The problems addressed in the traditional machine transliteration framework

should apply here as well. The different spelling variants try to match the under-
lying phonetic description for the original word and are very likely to be unknown
by a cross-language application regardless of whether the languages involved use the
same writing system or not. We expect a dedicated module for transliterating the
‘unknown’ transliterated words to improve the performance of a cross-language pro-
cessing system between languages using the same writing system in the same way
we expect a transliteration module to improve system performance across writing
systems.

7.3 Using Pair HMMs in transliteration generation

Hidden Markov Models (HMMs) have been applied before in statistical machine
translation to align words (Vogel et al. 1996). In a manner similar to that of apply-
ing classic HMMs to word alignment, we use Pair HMMs to estimate parameters for
relating source and target language characters which we use for suggesting candidate
transliterations given a source language word. A transliteration generation module is
obviously needed to help use the Pair HMM parameters as transliteration generation
parameters. One natural option is to develop our own decoding module using Pair
HMM parameters. This module would be required to facilitate the representation of
the edit states of a Pair HMM and the emission parameters encoded there. Although
Pair HMM emission parameters (Section 4.3) relate source and target string elements
and may be sufficient for modeling transliteration generation, the transliteration de-
tection results in Chapter 4 suggested the importance of using Pair HMM transition
parameters for computing transliteration similarity. Therefore, it is important that
the decoding module also facilitates incorporating Pair HMM transition parameters
to compute transliteration similarity for suggesting candidate transliterations.

Instead of developing our own transliteration generation module, we follow a plau-

7.3 Using Pair HMMs in transliteration generation 147

sible approach of using Pair HMMs as finite state automata. We have already applied
Pair HMMs in a manner similar to how a finite state automaton (acceptor) would be
used to accept or reject input. Since a Pair HMM relates elements from source and
target vocabularies, we can use them (Pair HMMs) for generating transliterations
if they are represented as finite state transducers. Pair HMMs find their origins as
word alignment finite state automata, and the reverse process of representing them
(Pair HMMs) as finite transducers should not be difficult to achieve. One advantage
of following the approach of representing Pair HMMs as automata is that there al-
ready exist various software tools that enable the implementation of different types
of finite state automata and therefore our only task would be to specify how a given
software tool would implement an automaton that corresponds to a given Pair HMM.
The requirements for transliteration generation that have been noted in the previous
paragraph for a transliteration generation module apply here as well. In the next
subsection we review the concepts associated with finite state automata, and later
we describe how we have represented Pair HMMs as finite state transducers.

7.3.1 Finite state automata

A finite state automaton is defined as a mathematical abstraction which refers to a
model consisting of a finite number of states, a set of transitions between the states,
and actions (Jurafsky and Martin 2009). Each transition is described by a condition
that needs to be fulfilled so as to enable a state change, and an action describes an
activity that is to be performed at a given moment.

Finite state automata are broadly categorized into two: finite state acceptors
(FSAs) and finite state transducers (FSTs). The difference between the two is asso-
ciated with the representation on the transition arcs of the the automaton: an FSA
is used to only accept or reject input elements and an FST is used to map from an
input element to an output element. Hence, an FSA defines a model only for input
elements on the arcs and an FST defines a model that relates input and output el-
ements. Automata from each of these categories can be applied in a transliteration
generation framework. Of course, we can apply a finite state transducer to generate
a target string from some source string. And we can apply a finite state acceptor
to check whether the target string that was generated conforms to the spelling (or
pronunciation) regularities of the target language.

It is often convenient to represent finite state automata using state transition
diagrams where nodes denote states and edges are labeled with symbols. Figure 7.1
is a state transition diagram illustrating a finite state acceptor that will accept any
combination of the symbols ‘a’ and ‘b’ from a two symbol alphabet {a,b} if and only
if the first symbol is an ‘a’. In order to use a finite state acceptor, the following

148 7. Applying Pair HMMs in transliteration generation

q0start q1 q2 q3
a

a

b

a

b

Figure 7.1: An example of a finite state acceptor that will accept only strings that start
with the symbol ‘a’ using a two symbol alphabet {a,b}. Following usual convention, the
start state q0 is represented with an incoming arrow and the final or accepting state is
represented by the double circle.

parameters need to be defined (Jurafsky and Martin 2009):

• a finite set of states Q = q0, q1, ..., qn

• a finite set corresponding to the input alphabet Σ

• the start state q0

• the set of final states, F ⊆ Q

• the transition function δ(q, i) or transition matrix between states. The transi-
tion function defines a mapping to a new state q′ ∈ Q given a state q ∈ Q and
an input symbol i ∈ Σ.

The transliteration generation task mainly requires the use of finite state transducers.
A finite state transducer defines a relation between sets of strings and therefore
enables a mapping from one representation to another. Jurafsky and Martin (2009)
summarize four ways of perceiving an FST as follows:

• An FST as a recognizer. In this case an FST takes a pair of strings as input
and outputs; and accepts the strings if the string-pair is in the string-pair
language, and rejects if it is not. This view of a transducer can be adapted and
applied to the transliteration identification and mining tasks in the previous
three chapters.

• An FST as a generator. In this case the FST outputs pairs of strings of the
language with a corresponding ‘yes’ or ‘no’.

• An FST as a set relator. In this case, an FST is used to compute relations
between sets.

7.3 Using Pair HMMs in transliteration generation 149

q0start q1

а:a
б:b

··
·

я:ia

Figure 7.2: An FST for a standard Cyrillic romanization system.

• An FST as a translator. In this case the FST reads a string and outputs another
string. This view of an FST is the most suitable for fulfilling the transliteration
generation requirements and it is the one we shall use for the task.

Of the four metaphors, the ‘FST as translator’ metaphor relates more to using an
FST as a transliterator. In the most basic case, a standard transliteration system
can be represented as an FST. The incomplete Figure 7.2 illustrates a two state
transducer where the start state is used to map characters from the Cyrillic alphabet
to the Latin alphabet using the post-2010 Passport system1 for romanizing Russian.
In Figure 7.2, the arcs are labeled with input-output elements seperated by a colon.

In order to use a finite state transducer, the following parameters need to be
defined (Jurafsky and Martin 2009):

• a finite set of states Q = q0, q1, ..., qn

• a finite set corresponding to the input alphabet Σ

• a finite set corresponding to the output alphabet ∆

• the start state q0 ∈ Q

• the set of final states F ⊆ Q

• the transition function δ(q, w) between states. δ(q, w) returns a set of new
states Q′ ∈ Q given the current state q and an input string w ∈ Σ∗.

• the output function σ(q, w) for determining the set of all possible output strings
for each state. σ(q, w) gives a set of output strings o′ ∈ ∆∗ given the current
state q ∈ Q and an input string w ∈ Σ∗.

1http://en.wikipedia.org/wiki/Romanization_of_Russian#New_system_2010

http://en.wikipedia.org/wiki/Romanization_of_Russian#New_system_2010

150 7. Applying Pair HMMs in transliteration generation

Finite state automata of the type in Figure 7.1 and 7.2 can only be useful for a limited
number of applications. In the transliteration generation process where we encounter
a lot of ambiguity in mapping symbols from one writing system to another, there is
need to use a probabilistic approach. A natural approach that is commonly used to
achieve probabilistic modeling involves the augmentation of a finite state automaton
such that each arc is associated with a probability representing the likelihood of
taking a given path, and that the probability of all arcs leaving a given state sums
to one. An FSA (respectively FST) that associates each arc with a probability is
referred to as a weighted finite state acceptor (WFSA) (respectively weighted finite
state transducer (WFST)). WFSAs and WFSTs are formally defined as tuples over
a semiring K.

A WFSA is defined as a 7-tuple 〈Σ, Q, q0, F, E, λ, ρ〉 where Σ, Q, q0, and F are as
defined above. E ⊆ Q × (Σ ∪ {ε}) ×K × Q, refers to the set of transitions; λ ∈ K,
refers to the initial weight ; and ρ : F 7→ K, refers to the final weight function.

AWFST is a 8-tuple 〈Σ,∆, Q, q0, F, E, λ, ρ〉 where Σ,∆, Q, q0 and F are as defined
above. E ⊆ Q× (Σ ∪ {ε})×K ×Q, refers to the set of transitions; λ ∈ K, refers to
the initial weight; and ρ : F 7→ K, refers to the final weight function mapping final
states to elements in K.

In Chapter 2, we reviewed one of the earliest application of weighted finite state
automata in transliteration generation, that is for Japanese Katakana to English
back-transliteration (Knight and Graehl 1997). In some of the experiments we will
test various weighted finite state automata while applying them in a manner similar
to how they have been previously applied to generate transliterations. However, a
major aim in this chapter is to determine the value associated with representing Pair
HMMs as WFSTs and using the resulting Pair HMM-based WFSTs for transliteration
generation.

7.3.2 Representing Pair HMMs as WFSTs

The emission states of a Pair HMM encode (like in a transducer) the relationship be-
tween source and target language elements. In order to use the Pair HMM parameters
as transduction parameters, we first specify an FST structure which approximates
that of a Pair HMM; and later specify the integration of Pair HMM emission and
transition parameters on the arcs of the FST structure. Figure 7.3 shows a finite state
automaton that approximates the Pair HMM with distinct emission and transition
parameters (see Figure 4.4). In Figure 7.3, the Pair HMM emission parameters for a
particular edit state are represented on the transition arcs that are directed towards
a similar state in the automaton. The transition parameters between Pair HMM
states are represented on corresponding transition arcs between similar states of the

7.3 Using Pair HMMs in transliteration generation 151

FST. Therefore, the probability that relates source and target elements in the FST of
Figure 7.3 is the product of the Pair HMM transition probability from the previous
state to the state (where the relationship is modeled) and the Pair HMM emission
probability associated with the pair of symbols. For example, assuming that pxi,yj is
an emission probability which relates the source element (xi) and the target element
(yj) in the Pair HMM substitution state (M); the probability associated with relating
these two symbols for a transition from the deletion state (X) to the match state (M)
in the corresponding FST is specified as (1− εX − λX − τX)× pxi,yj . In Figure 7.3,

Sstart M

X

Y

End

e : e (εM)

e : e
(δX

)

e : e (δY)

x
i

:
y j

(ε
M
p
x
y
) x i
: e

(δX
· p x
e
)

e
: y
j (δ

Y · p
ey)

e : e (τM)

x i
: y
j
(δX

M

· p x
y
)

xi : e (εX · pxe)

e
:
y j

(λ
Y
· p
e
y
)

e
: e

(τ
X)

x
i : y

j (δ
Y
M · p

xy)

e : yj (εY · pey)

x
i

:
e

(λ
X
· p
x
e
)

e
: e

(τ Y
)

Figure 7.3: A finite state transducer approximation of the Pair HMM with nine transition
parameters. The input and output elements separated by a colon are shown just before the
parentheses on each arc of the transducer. e is used to represent the empty symbol. The
combination of Pair HMM transition and emission parameters are as shown on each arc.
The emission probabilities (p..) correspond to the emission probabilities in the Pair HMM
edit states that model the relationship between the input and output elements.

152 7. Applying Pair HMMs in transliteration generation

we also define a start state to explicitly capture the starting parameters for the Pair
HMM. In the transliteration detection and mining tasks, we assumed the Pair HMM
to start in any of the three edit operation states using the transition parameters from
the substitution state to each of the respective three edit states. We assume the same
setup of starting parameters for the transliteration generation task.

7.4 Experiments using NEWS 2009-2010 shared task
data

7.4.1 Data

The NEWS 2009-2011 shared tasks on transliteration generation datasets involved
different writing systems between language pairs, with English being either a source
or target language for each language pair. As shown in Table 7.2 we use seven
of the 12 language pairs that were provided: English→Bengali, English→Hindi,
English→Kannada, English→Russian, English→Tamil, English→Thai, and Thai→
English.2

Language pair Training Development Testing
English→Bengali (En-Be) 13000 1000 1000
English→Hindi (En-Hi) 10014 2099 1000
English→Kannada (En-Ka) 8065 2108 1000
English→Russian (En-Ru) 5977 943 1000
English→Tamil (En-Ta) 8037 2184 1000
English→Thai (En-Th) 27668 1948 2000
Thai→English (Th-En) 24051 1793 1994

Table 7.2: Size of training, development, and testing datasets per language pair. Source:
NEWS 2009 and NEWS 2010 transliteration generation shared task data (Li et al. 2009, Li
et al. 2010)

a) Data pre-processing

To help reduce on data sparseness, we ensured only lowercase representation for lan-
guages (English and Russian) where conversion to only lowercase was necessary. For

2The other language pairs from the two shared tasks include: English→Chinese,
Chinese→English, English→Japanese Katakana, English→Japanese Kanji, and English→Korean
Hangul. Apart from the English→Chinese and Chinese→English datasets, we did not use the other
three datasets because they were expensive to purchase.

7.4 Experiments using NEWS 2009-2010 shared task data 153

some language pairs, some source language words had at least two transliteration
variants in the training dataset. During training each variant was matched to the
source word and used individually as a training pair. Some data sets also contained
some multi-word sequences. We followed an approach similar to the one used by
Finch and Sumita (2010) in handling multi-word sequences. For those multi-word se-
quences where the number of words in the source and target word sequences matched,
we split the word sequences into individual words; during training, we matched words
in the same word position in the source and target word sequence and used the re-
sulting individual word pairs as training data; during testing, each source word from
the multi-word sequence was transliterated individually, and the n-best translitera-
tion lists associated with all the individual words in the source word sequence were
subsequently combined into a single output transliteration sequence. For the other
multi-word sequences in the training data where the numbers of words in the source
and target word sequences differed, we introduced a 〈space〉 token into the sequence,
and treated it as one long sequence.3

7.4.2 Transliteration models

a) WFST Parameter estimation

We apply two sets of WFSTs to transliteration generation. First, we apply WFSTs
in the usual way. The second set of WFSTs are approximate representations of Pair
HMMs. Both sets of WFSTs use the notion of edit distance.

We varied the first set of WFSTs in terms of the states and their possible emis-
sions. For one of these WFSTs, we use a structure corresponding to that of a Pair
HMM (Figure 7.4). As Figure 7.4 shows, this WFST also uses separate states for
substitutions, insertions and deletions. In this type of WFST, we introduce some
kind of model bias by restricting the type of emissions to be of a certain kind at each
state. In a different setting, we removed this bias by allowing all possible types of
emissions (including insertions on the source and target side) from any state of the
WFST. The idea in this case is to let the training procedure decide how to make use
of the hidden layer of states without defining the function of each state. This is basi-
cally a test to see if the forward-backward parameter estimation procedure (which is
used for training the WFSTs) is capable of learning some underlying structure which
is not given to the system when training its parameters. However, we still have to
define the number of states to be used in the WFST before training its parameters.
In our experiments, we applied WFSTs with one to five states (excluding start and

3The other option that we could have followed for multi-word sequences where the number of
words differed would have been to just ignore them during training as is the case in Jiampojamarn
et al.’s work (2010).

154 7. Applying Pair HMMs in transliteration generation

Sstart M

X

Y

End

e : e P S−Me,e

e : e
P
S−
X

e,e

e : e P S−Ye,e

x
i

:
y j
P
M
−
M

x
i
,y

j

x i
: e
P
M
−X

x i
,e

e
: y
j P M
−
Y

e,y
j

e : e PM−Ee,e

x i
: y
j
P
X
−M

x i
,y

j

xi : e PX−Xxi,e

e
:
y j
P
X
−
Y

e
,y

j

e
: e
P X
−
E

e,e

x
i : y

j
P Y−

M
x
i ,y

j

e : yj P
Y−Y
e,yj

x
i

:
e
P
Y
−
X

x
i
,e

e
: e
P
Y
−E

e,
e

Figure 7.4: An edit distance-based WFST. xi and yj represent elements from the source
and target vocabulary. e is an empty symbol and P q−q′

·,· represents the probability of a
relationship between the source and target elements from state q to state q’.

end state) and a fully connected graph with uniform initial settings. Furthermore,
we also ran the training procedure with three additional randomly chosen initial
parameters. For this set of WFST models, we used a publically available finite state
automata toolkit called CARMEL4 for parameter estimation.

For the second set of WFST models, we first estimate Pair HMM parameters as
described in Chapter 3; the Pair HMM parameters are then transformed into WFST
transliteration generation parameters as described above and represented in a format
suitable for use by the CARMEL software toolkit.

4http://www.isi.edu/licensed-sw/carmel

http://www.isi.edu/licensed-sw/carmel

7.4 Experiments using NEWS 2009-2010 shared task data 155

b) Phrase-based statistical machine translation

In addition to the WFSTs, we also tested the use of a phrase-based statistical ma-
chine translation approach on the English→Russian language pair. Phrase-based
statistical machine translation (PSMT) is the current state of the art in data-driven
machine translation, and has recently been applied to transliteration generation
(Matthews 2007, Finch and Sumita 2008). It is based on the well-known IBM models
which are trained on large parallel corpora but use bilingual phrase tables instead
of word link probabilities and fertility parameters. In the PSMT approach, various
components are usually combined in a log-linear model (translation models, reverse
translation model, word and phrase penalties, language models, distortion parame-
ters, etc) with weights optimized using minimum error rate training (MERT). Various
tools are available for training such a model and “decoding” (translating) input strings
according to the model. In our case, we used the publicly available toolkit Moses
(Koehn et al. 2007) with its connected tools: GIZA++ (Och and Ney 2003) and
IRSTLM (Federico et al. 2008). As a requirement of the transliteration generation
task, we split the names on the character level. Machine translation applications
usually require output word / phrase re-ordering. But for character-based transla-
tion / transliteration, we expect a monotonic ordering in the output that corresponds
to the input. We therefore ensured that the PSMT system uses monotonic decod-
ing. We left the other parameters for the Moses PSMT decoder unchanged. The
model therefore uses the standard settings for character alignment with GIZA++,
standard heuristics for the extraction and scoring of phrase alignments (character
n-grams with a maximum length of 7 characters) and standard settings for the min-
imum error rate training (MERT) when tuning the models. The language model for
the English-Russian case is a 5-gram model which we estimated from the target lan-
guage side of the training dataset using the Witten-Bell smoothing technique which
is implemented in the IRSTLM toolkit. There are various fixed parameters that can
be tuned in the PSMT models. Among others, we could change the maximum size
of phrases to be considered, various phrase extraction techniques can be used and
language model parameters can be modified. In our setup, we did not tune these
training specific parameters.

A major advantage of the PSMT approach over the weighted finite state trans-
ducers described above is that the extracted phrase tables (character n-grams) cover
a lot of contextual dependencies found in the data. By exploiting these, we hope to
find better transformations by translating sequences of characters instead of single
characters. Furthermore, we do not have to model insertions and deletions explic-
itly but leave it to the translation table to change the lengths of translated strings.
Another advantage is the explicit inclusion of a target language model to weight the

156 7. Applying Pair HMMs in transliteration generation

possible outcomes of the system. In the transducer model, this is not easily possible
as we include deletion operations. The reason being that the language model would
always prefer shorter strings and therefore force the system to over-use the deletion
operations when transforming strings. Of course, we do not expect the WFSTs to
perform better than the PSMT approach in the transliteration generation tasks. The
use of a PSMT system, however, gives us an idea of the extent to which translit-
eration generation quality is affected by the limitations of the WFSTs and whether
trying to address some of these limitations could lead to improved quality.

7.4.3 Evaluation metrics

We follow the same evaluation setup as used for the NEWS 2009 and NEWS 2010
shared tasks on transliteration generation. For each source language word in the test
set, a participating system was required to generate and submit 10 best candidate
transliterations. For cases where a source language word had alternative translitera-
tions, all the alternatives were treated equally in the evaluation process. In the NEWS
2009 shared task on transliteration generation, six measures were used to evaluate
transliteration generation quality. These include (Li et al. 2009): accuracy, fuzziness
in Top 1 (mean F-score), mean reciprocal rank (MRR), mean average precision for
reference transliterations (MAPRef), mean average precision in 10 best candidate
transliterations (MAP10), mean average precision for the system (MAPsys). We use
the same notation in Li et al. (2009) to define the evaluation metrics:

• N: total number of names (source words) in the test set

• ni: number of reference transliterations for ith name in the test set (ni ≥ 1)

• ri,j : jth reference transliteration for ith name in the test set (1 ≤ j ≤ ni)

• Ki: number of candidate transliterations produced by a transliteration system

• ci,k: kth candidate transliteration (output by the transliteration system) for
the ith name in the test set (k ≤ Ki).

a) Word accuracy in Top-1 (ACC)

This measures the correctness of the first transliteration candidate in the n-best
candidate list produced by a transliteration system. ACC = 1 means that all top
candidates are correct transliterations, that is, they match one of the references, and
ACC = 0 means that none of the top candidates are correct.

ACC =
1

N

N∑
i=1

{1 if ∃ri,j : ri,j = ci,1; 0 otherwise} (7.1)

7.4 Experiments using NEWS 2009-2010 shared task data 157

Sometimes, the related metric of word error rate (WER) is used instead.

WER = 1−ACC (7.2)

b) Fuzziness in Top-1 (mean F-score)

The mean F-score measures how different, on average, the top transliteration is from
its closest reference. F-score for each source word is a function of Precision and Recall
and equals 1 when the top candidate matches one of the references and 0 when there
are no common characters between the candidate and any of the references. Precision
and Recall are calculated based on the length of the longest common subsequence
(LCS) between a candidate transliteration and the reference transliteration:

LCS(c, r) =
1

2
(length(c) + length(r)− ED(c, r)) (7.3)

where ED(c, r) is the edit distance. For example, the longest common subsequence
between “abcd” and “afcde” is “acd” and its length is 3. The best matching reference,
that is, the reference for which the edit distance has the minimum is used. If the best
matching reference ri,m is given as ri,m = argmin

i
(ED(ci,1, ri,j)), then Recall (Ri)

and Precision (Pi) are calculated as follows:

Ri =
LCS(ci,1, ri,m)

length(ri,m)
Pi =

LCS(ci,1, ri,m)

length(ci,1)

The F-score is computed as the harmonic mean of Precision and Recall (see Equation
6.3), sometimes referred to as F1 score.

c) Mean reciprocal rank

Is obtained by averaging the reciprocal ranks of true transliterations. MRR closer
to 1 implies that many correct transliterations are produced close to the top of the
n-best lists. If a candidate that matches one of the references is in the jth position
in the n-best list, its rank is j and its reciprocal rank is 1/j. Here, we would like
the value for j to be as minimal as possible. If none of the suggested transliterations
matches any of the reference transliterations, we assume a reciprocal rank of 0 based
on the non-matching suggested transliterations for a particular source name in the
test set.

MRR =
1

N

N∑
i=1

{
min
j

1

j
if ∃ri,j , ci,k : ri,j = ci,k; 0 otherwise

}
(7.4)

158 7. Applying Pair HMMs in transliteration generation

d) Mean Average Precisionreference (MAPreference)

Measures the precision in the n-best candidates for the ith source name, for which ni
reference transliterations are available. If all the references are produced, then MAP
is 1.

MAPref =
1

N

N∑
i=1

1

ni

(
ni∑
k=1

number of correct candidates for ith word in k-best
k

)

e) Mean Average Precision10 (MAP10)

MAP10 measures the precision in the 10 best candidates for the ith source name
suggested by the transliteration generation system. In general, the higher MAP10 is,
the better is the quality of the transliteration system in capturing multiple references.
The number of reference transliterations may be more or less than 10. If the number
of reference transliterations is less than 10, then MAP10 can never be equal to 1.
Only if the number of reference transliterations for every source word is at least 10,
then MAP10 could possibly be equal to 1.

MAP10 =
1

N

N∑
i=1

1

10

(
10∑
k=1

number of correct candidates for ith word in k-best
k

)

f) Mean Average Precisionsystem (MAPsys)

MAPsys measures the precision of the top Ki-best candidates produced by the system
for the ith source name, for which ni reference transliterations are available. This
measure allows the systems to produce a variable number of transliterations, based
on their confidence in suggesting correct transliterations. If all the ni references are
produced in the top-ni candidates (that is Ki = ni, and all of them are correct), then
MAP is 1.

MAPsys =
1

N

N∑
i=1

1

Ki

(
Ki∑
k=1

number of correct candidates for ith word in k-best
k

)

7.4.4 Results

a) English→Bengali, English→Hindi and English→Kannada results

For English→Bengali, English→Hindi and English→Kannada, we applied three Pair
HMM-based WFST models as shown in Table 7.3. phmm0wfst refers to the WFST
that captures only the emission parameters of a Pair HMM. We applied phmm0wfst
with the aim of determining whether using only Pair HMM emission parameters

7.4 Experiments using NEWS 2009-2010 shared task data 159

would suffice for the transliteration generation task. phmm5wfst refers to the WFST
model that captures the parameters of a Pair HMM that uses five transition pa-
rameters (See Figure 4.2). phmm9wfst refers to the WFST model that captures the
parameters of a Pair HMM that uses distinct transition parameters (See Figure 4.4).

Table 7.3 shows the results for three language pairs associated with the use of Pair
HMM parameters in standard runs for the respective datasets. A standard run in
this case refers to the use of only the training data that was provided for the NEWS
2010 shared task on transliteration generation. There is also a non-standard run,
where participants can use additional external datasets. Table 7.3 results suggest
that Pair HMM parameters based on one-to-one character alignments are not good
at all for transliteration generation. None of the Pair HMM-based WFST models
achieve accuracies comparable to those from the systems that participated in the
NEWS 2010 shared task on the datasets for the three language pairs. A review of
the participating systems in the NEWS 2010 shared task puts the ‘basic’ application
of Pair HMM parameters at a clear disadvantage. All the participating systems
including a phrase-based statistical machine translation (PSMT) approach (Finch
and Sumita 2010), n-gram and joint source channel-based models (Das et al. 2010),
and an online sequence prediction model based on many-to-many alignments modeled
far more information than that represented in Pair HMM parameters. All models
used by the shared task systems represented some character context information
which was not represented in the Pair HMM parameters. However, the LCS-based
F-score values suggest that the Pair HMM-based WFST approach seems to result in

Language pair model accuracy F-score MRR MAPref

English→Bengali
phmm0wfst 0.021 0.641 0.035 0.021
phmm5wfst 0.100 0.713 0.135 0.100
phmm9wfst 0.100 0.713 0.132 0.100

English→Hindi
phmm0wfst 0.009 0.614 0.017 0.009
phmm5wfst 0.030 0.654 0.052 0.030
phmm9wfst 0.030 0.654 0.050 0.030

English→Kannada
phmm0wfst 0.010 0.621 0.012 0.010
phmm5wfst 0.015 0.614 0.021 0.015
phmm9wfst 0.015 0.614 0.030 0.015

Table 7.3: Standard run transliteration generation results for three language Pairs.
phmm0wfst is the WFST that uses parameters from a Pair HMM with no transition param-
eters between edit states; phmm5wfst is a WFST that uses parameters from a Pair HMM
with five transition parameters (Figure 4.2); and phmm9wfst uses parameters from a Pair
HMM with distinct emission and transition parameters (Figure 4.4).

160 7. Applying Pair HMMs in transliteration generation

many correct character conversions. We can see that even for the worst performance
on accuracy, none of the Pair HMM - based models had below 60% F-score. The
table also shows that the use of Pair HMM transition parameters between edit states
leads to an improvement in transliteration generation quality over the case when they
are not used.

b) English→Russian transliteration generation results

For English→Russian transliteration generation, we also present results for models
that participated in the NEWS 2009 shared task on transliteration generation (Li
et al. 2009). Table 7.4 shows results from the application of different WFST models
and the PSMT approach. The results for the models that participated are marked
with an asterisk. The models with the extension _rules refer to the case where
we modeled for English vowel bi-gram combinations and bi-grams associated with
Cyrillic romanization, and a post-processing step that involved the use of a few
transformation rules. When using development data, a check on the transliterations
that were generated using Pair HMM parameters when applied in the most ‘basic’ way
showed consistent mistransliterations. For example, in all cases where the Russian

Model
accuracy F-score MRR MAPref

Standard runs
phmm0wfst 0.055 0.758 0.069 0.055
phmm9wfst 0.298 0.856 0.346 0.298
phmm5wfst* 0.293 0.845 0.325 0.293
phmm5wfst_rules* 0.354 0.869 0.394 0.354
Moses_PSMT* 0.509 0.908 0.619 0.509

Non-standard runs
phmm5wfst* 0.341 0.776 0.368 0.341
phmm5wfst_rules* 0.515 0.821 0.571 0.515
edit_WFST* 0.321 0.768 0.403 0.321
edit_WFST_rules* 0.466 0.808 0.525 0.466
Moses_PSMT* 0.612 0.845 0.660 0.612

Table 7.4: Results for English→Russian transliteration generation. Models marked with
an asterisk participated in the NEWS 2009 shared task on transliteration generation.
phmm0wfst, phmm5wfst, and phmm9wfst are as defined in the caption of the previous
Table. edit_WFST refers to the WFST that uses separate states for the different edit
operations as shown in Figure 7.4. the extension _rules indicates the additional use of
transformation rules in a post-processing step.

7.5 Experiments on translating transliterations 161

character л ‘l’ precedes the Russian soft sign ъ ‘”, the Russian soft sign was missing.
For example крефелд and билбао were generated instead of крефелъд ‘krefeld’ and
билъбао ‘bilbao’ respectively. This affected transliteration generation quality. For
such cases, simple transformation rules such as “л→лъ” were used on the generated
transliterations in a post processing step. 25 transformation rules were specified
to help deal with some of the mistransliterations. The Moses_PSMT system was
used with the settings described in subsection c.) above on ‘Phrase-based statistical
machine translation’. Although the performance of the Pair HMMs is lower than
that for the PSMT system, the results in Table 7.4 show that the use of contextual
information in the Pair HMMs and the application of contextual rules in a post-
processing stage improves transliteration generation quality. In both cases the F-score
for Pair HMMs that use the additional information approaches that of the PSMT
system. These results also prove that Pair HMM transition parameters are important
for transliteration generation. For the non-standard runs we used additional English-
Russian data from the geonames database (Chapter 3) to train the models. As results
show, the use of additional data leads to a general improvement in transliteration
generation quality for all models, and the Pair HMM-based method where some
context is used with post-processing transformation rules results in a relatively greater
improvement.

7.5 Experiments on translating transliterations

In this set of experiments, we investigate the application of transliteration models
similar to those that we applied in the previous section. Here we evaluate the models
on translating transliterations between English and Dutch, and between English and
French. For some models, we investigate further settings in addition to those that
have been used in the previous subsection.

7.5.1 Data

We extracted the datasets for this set of experiments from an English Wikipedia data
dump from 2008/07/24 in the same way we extracted corresponding named entities
for training edit distance-based DBN models in the second transliteration mining task
in Chapter 5. We also used simple patterns to identify Russian names looking at the
structured information in Wikipedia info-boxes. We looked at entries that match the
pattern (Russian|Russia|Soviet) in categories such as “citizenship”, “nationality” and
“place of birth”. Translations of these names are taken from Wikipedia inter-language
links (WILs) which exist on every source page. We collected all names potentially
from Russian origin and their correspondences in other languages. We saved all name

162 7. Applying Pair HMMs in transliteration generation

pairs for the language pairs we were interested in, performing some extra normaliza-
tion similar to that described in Chapter 5. This includes: normalizing of names that
had abbreviations (e.g. “George H.W. Bush”) and / or a middle name (e.g. “Nikita
Sergejewitsch Chruschtschow”); and switching the order of first and family names
(e.g. “Clinton, William Jefferson” instead of “William Jefferson Clinton”). These
pre-processing steps, however, resulted in a small dataset for each language pair. We
obtained 199 pairs of names for English-Dutch and 372 pairs for English-French. We
did not manually check them and, therefore, this data includes names which are not
typically Russian (such as Marc Chagall, born in the Russian empire as a son of a
Jewish family). However, we assume that there are only very few of these exceptions.
From each of our datasets, we designated 50 name pairs for testing. Each test set is
used for evaluating all the models described in the next subsection. The remaining
pairs were used for training and / or tuning model parameters.

7.5.2 Transliteration models

a) WFST parameter estimation

The WFSTs in this set of experiments are trained just as described in the previous
task. For this set of experiments, we ran the training procedure with a uniform initial
model and five other randomly chosen initial models which are aimed at reducing
the likelihood of ending up in a suboptimal model. We first applied the edit distance
model (see Figure 7.3) which implements separate states for substitutions, insertions,
and deletions. Then, we also applied various FSTs where we varied the number of
states while letting the training procedure decide on how to use the hidden layer of
states. We also modified the source and target language alphabets by changing the
way of splitting strings into symbol sequences. Previously, we simply used character
sequences for training and testing. For this task, we split the words into sequences
of vowel or non-vowel n-grams. The training procedure for the latter case is similar
to that in the previous cases.

b) Phrase-based statistical machine translation

For this task, we concentrated on modifying the PSMT models in the following ways:
firstly, we changed the training data in such a way that the set for tuning is part of
the training set instead of keeping a separate set for tuning. In our basic setting,
we remove 50 additional name pairs from the training set to be used for tuning the
SMT model parameters. In another setting, we simply used them for training as
well. Here, we were interested in seeing how increasing the training set influences
the performance before training (especially with our tiny training set). Furthermore,

7.5 Experiments on translating transliterations 163

we would also like to know if tuning on parts of the training set may still lead to
improvements on the test set.

Secondly, we changed the pre-processing step from character splitting to vowel/non-
vowel splitting as described in the previous subsection for the WFST models. Here,
we do not expect a similar effect on the results as we expect for the WFSTs. This
is because contextual information is already integrated in the phrase-based SMT
model to a large extent and important character combinations already appear in the
extracted phrase table with appropriate scores.

A last modification we investigated is the application of a larger language model.
It is well-known that SMT models produce better results in general when increasing
the language model. However, the transliteration task is different from the sentence
translation task for which the Europarl corpus is usually used. For the transliteration
task, common character combinations in the target language may not necessarily be
as common in named entities. Hence, we like to test the impact of adding data from
a larger set of target language strings to estimate the character language model for
our task.

7.5.3 Evaluation metrics

We use two metrics to evaluate the translations that are generated. The first mea-
sure which is commonly used is accuracy for which we compute the proportion of
correctly transliterated names in the test set. Accuracy, as seen from the results in
the previous task, is a very strict measure for character-based translation where one
single mismatch is counted in the same way as a completely dissimilar pair of strings.
Furthermore, for many transliterated names, several alternatives may be acceptable
in a language (for example, “Chrushchev” instead of “Khrushchev”) but only one ref-
erence is given in our data. In the previous task, we used an F-score measure that
is based on the longest common subsequence between the candidate and reference
transliterations. For this task, we use the longest common subsequence ratio (LCSR)
as our main evaluation measure. Given a pair of strings, LCSR in this case is defined
as the ratio of the length of the longest common subsequence and the length of the
longer string. LCSR equal to 1 indicates a perfect match between the two strings.

7.5.4 Results

Let us first have a look at the baseline for this task. A common technique in machine
translation for handling unknown words is to leave them untouched and to copy them
to the target output. For names (usually a large portion of unknown words) this is
certainly a good strategy if the writing system of the source and target language is

164 7. Applying Pair HMMs in transliteration generation

Method
Dut→Eng Eng→Dut Fre→Eng Eng→Fre

LCSR ACC LCSR ACC LCSR ACC LCSR ACC
Baseline 0.88 0.32 0.88 0.32 0.89 0.26 0.89 0.26
editWFST 0.88 0.22 0.87 0.20 0.90 0.28 0.89 0.24
1 state 0.88 0.22 0.87 0.18 0.90 0.26 0.89 0.24
2 states 0.79 0.00 0.88 0.18 0.79 0.02 0.88 0.14
3 states 0.81 0.12 0.80 0.04 0.85 0.14 0.81 0.00
4 states 0.81 0.06 0.85 0.22 0.78 0.02 0.81 0.02
5 states 0.78 0.02 0.78 0.02 0.79 0.04 0.83 0.04
vow/non-vow 0.83 0.20 0.84 0.28 0.88 0.30 0.87 0.20
phmm9wfst 0.88 0.22 0.87 0.18 0.90 0.26 0.89 0.24
phmm9wfstD+ 0.88 0.32 0.88 0.26 0.90 0.28 0.89 0.24

Table 7.5: LCSR and accuracy results associated with the use of weighted finite state
transducers for character-based translation between English and Dutch, and between English
and French. Bolded values indicate better performance over the baseline result.

very similar. The baseline for our task refers to this strategy of copying the strings
even for transliterated names.

Table 7.5 shows the translation results for the WFST models with those for the
Baseline at the top. As we can see in Table 7.5, the LCSR baseline scores for both
Dutch↔English and French↔English transliteration are quite high already, which
means that Dutch and English, or French and English spellings of Russian names

are not so different from each other. Even the accuracy is also high considering the
strict nature of this measure. According to these results, the WFST models do not
perform very well. None of the WFSTs actually improves the baseline LCSR nor
accuracy for translation between Dutch and English. The translation performed by
the WFSTs in this case would harm an SMT system that uses the baseline technique.
For French→English, there is a slight improvement in LCSR and accuracy when the
edit distance WFST is used. The use of Pair HMM parameters result in a slight
improvement only on the LCSR measure for French→English translation. The vowel
/ non-vowel WFST model performs better than the baseline on the accuracy measure.
We can also see that the edit distance WFST does not have a clear advantage over a
single-state WFST for translation between the languages in the two language pairs.
There is only a slight gain in accuracy for English→Dutch and French→English
translation, otherwise the LCSR and ACC values are the same. It is also clear from
Table 7.5 that the training procedure is not capable of learning a hidden underlying
structure from the data. However, considering the size of our datasets, this should

7.5 Experiments on translating transliterations 165

not be expected. Looking at the large differences in the resulting LCSR and ACC
for various numbers of states, it seems that the learning algorithm easily gets stuck
in suboptimal maxima. Finally, the string splitting strategy of vowel/non-vowel
sequences does not improve transliteration generation quality. On the contrary, it
actually hurts the model, which is a bit surprising. One reason might be the increased
sparseness of our dataset including larger sets of input and output symbols, which now
contain character n-grams. The only improvement associated with the vowel/non-
vowel WFST when compared with the other WFSTs can be seen for English→Dutch
and French→English translation, albeit only on the accuracy measure. The accuracy
for English→Dutch translation, is still below the baseline.

Table 7.6 shows the results from the phrase-based SMT system. We can see a
clear improvement in the translation generation quality with regard to the LCSR
measure. Except for the non-tuned models with large language models, all LCSR
values are above the baseline LCSR value. The importance of training data can be
seen in the values for translation between Dutch and English where the tuning set
is included in the otherwise very small training data set. For these experiments,
we obtain the highest LCSR and accuracy for translation in both directions. For
translation between English and French where we have a larger training set, we do

PSMT
Dut→Eng Eng→Dut Fre→Eng Eng→Fre

LCSR ACC LCSR ACC LCSR ACC LCSR ACC

Baseline 0.88 0.32 0.88 0.32 0.89 0.26 0.89 0.26
without tuning 0.89 0.24 0.90 0.28 0.91 0.22 0.88 0.14
tuned 0.92 0.30 0.90 0.28 0.93 0.46 0.91 0.28
{tune} ⊂ {train}
without tuning 0.91 0.40 0.92 0.32 0.91 0.28 0.89 0.18
tuned 0.93 0.34 0.91 0.40 0.91 0.38 0.90 0.28
vow/non-vow
without tuning 0.90 0.28 0.91 0.48 0.93 0.46 0.90 0.28
tuned 0.89 0.32 0.92 0.44 0.93 0.44 0.91 0.36
large LM
without tuning 0.82 0.06 0.82 0.06 0.76 0.02 0.84 0.02
tuned 0.91 0.26 0.92 0.44 0.90 0.22 0.90 0.22

Table 7.6: LCSR and accuracy results associated with the use of a phrase-based statistical
machine translation (PSMT) approach for a character-based translation between English
and Dutch, and between Dutch and English. The descriptions for the PSMT models can be
found in the text. Bolded values indicate better performance over the baseline result.

166 7. Applying Pair HMMs in transliteration generation

not see a similar behavior. A separate development set seems to be preferable. Also,
the impact of tuning is mixed and it is not clear how MERT is affected by a setting
where the development set is not kept apart from training.

The strategy of splitting characters into vowel/non-vowel sequences makes the
PSMT system perform quite well for English→Dutch translation. However, a clear
advantage of this strategy over the standard pre-processing technique can not be
seen.

In the final test, we included English, French and Dutch Europarl data (Koehn
2005) for estimating character-based language models (Table 7.6). We can clearly see
that the additional data sets harm the translation process and only after tuning does
LCSR and accuracy get back to the level of other models using the small language
models from the parallel training data. Looking at the weights after tuning, we can
also see that the language model weights are very low when using the large datasets.
This seems to suggest that the overall influence of a language model on transliteration
quality is rather low in our case.

Table 7.7 shows some examples of translations from the Dutch / English test
set. In these examples, we can see typical problems especially of the WFST model.
In particular, we can see the problem of consistent erroneous character substitu-
tions without considering local context. For example, in the WFST translation,
‘i ’ is consistently translated into ‘i ’ in English and ‘j ’ into ‘y ’. For the PSMT
model, contextual dependencies are covered better due to the character n-grams in
the translation table. However, there are still some ambiguities causing problems like
‘tsjechov ’→‘chechov ’ (instead of ‘Chekhov ’).

Dutch input Correct English WFST English PSMT English
Andrej Tarkovski Andrei Tarkovsky Andrey Tarkovski Andrey Tarkovsky
Anna Koernikova Anna Kournikova Anna Koernikova Anna Kurnikova

Aleksandr Aleksandr Aleksandr Alexandr
Solzjenitsyn Solzhenitsyn Solzenitsyn Solzhenitsyn

Anton Tsjechov Anton Chekhov Anton Tsyekhov Anton Chechov
Andrej Sacharov Andrei Sakharov Andrey Sakharov Andrei Sakharov

Dmitri Dmitri Dmitri Dmitri
Sjostakovitsj Shostakovich Syostakovitsy Sjostakovich

Leonid Brezjnev Leonid Brezhnev Leonid Brezynev Leonid Bruzhnev

Table 7.7: Examples from the Dutch-English test set showing some typical problems of
translating transliterations with the models.

7.6 Conclusion 167

7.6 Conclusion

In this chapter, we have used the framework of weighted finite state automata to
represent Pair HMMs for transliteration generation. The results associated with
English→Russian transliteration generation suggested that the Pair HMM-based
WFST models led to better transliteration generation quality compared to the usual
application of WFSTs. However, the results also show that the performance from
all the WFST models reported in this chapter is still lagging behind the state-of-
the-art phrase-based statistical machine translation (PSMT) approach. This is ob-
viously attributed to the lack of contextual information in the WFST models as
compared to the case for the PSMT approach. On finding that the Pair HMM-
based WFST models generated consistent mistransliterations after analyzing results
from English→Russian transliteration, the use of some contextual information in the
WFST models and the specification of a few contextual transformation rules in a
post-processing step resulted in a large improvement in transliteration generation
quality, but still below that of the PSMT-based system. The use of additional data
also led to improved transliteration generation quality, with a larger improvement
associated with the additional modifications to the Pair HMM-based WFST models.

We have also looked at the problem of translating transliterated names between
languages that use the same writing system. We again applied WFST and PSMT-
based models for transliteration generation between English and Dutch, and between
English and French. We trained the models on name pairs of Russian origin extracted
fromWikipedia. The PSMT-based approach performed best as expected, consistently
beating the baseline of copying strings across the languages. The results in this case
show that specialized models like the ones we have tested may help handle ‘unknown’
words in cross-lingual applications between languages using the same writing system
when used in a transliteration generation framework.

We have only managed to use Pair HMM parameters in transliteration genera-
tion. The limitations that we associated with the Pair HMMs could be captured by
the context-dependent transduction-based DBN models, however, we have not yet
developed an interface that transforms the transduction-based DBN parameters to
a format that is suitable for use in transliteration generation. The results suggested
improved transliteration generation quality in regard to using contextual information
in the Pair HMM - based WFSTs, it would be interesting to determine whether pa-
rameters from context-dependent DBN models (Chapter 5) could result in improved
transliteration generation quality.

Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, we have evaluated several edit distance-based Dynamic Bayesian Net-
work (DBN) models for computing transliteration similarity in the tasks of translit-
eration detection and generation. We proposed to evaluate two edit distance-based
DBN modeling approaches based on an observation of their successful applications in
Natural Language Processing (NLP) tasks whose requirements are similar to those
for transliteration detection. The first approach defines Pair Hidden Markov Models
(Pair HMMs) which extend the classic Hidden Markov Models (HMMs) by enabling
the representation of two observation sequences instead of one. The second approach
which was initially developed for automatic speech recognition uses DBN templates
to represent several types of transduction-based DBN models. The overall goal was to
determine whether using models from the two edit distance-based DBN approaches
for computing transliteration similarity could lead to improvements in transliteration
detection and generation over state-of-the-art methods. In the following, we summa-
rize the different stages of our investigation and present the resulting contributions.

We start with the first research question where we wanted to know whether ex-
isting methods for transliteration detection and generation suffice. To address this
question, we have provided a literature review on transliteration detection and gener-
ation. In undertaking the literature review, we aimed for the following: defining the
general setups used for the transliteration detection and generation tasks, identifying
methods that have already been proposed and applied in the two tasks ranging from
the earliest to current state-of-the-art, and establishing the necessity to apply the
edit distance-based DBN models proposed in this thesis. As answers to the first re-
search question, we found out the following. Firstly, that the large body of research
on transliteration detection and generation included many attempts at addressing
various factors that are important in modeling transliteration similarity. However,

170 8. Conclusions and future work

based on recent evaluations of several systems, reports on the recent shared tasks
on transliteration mining and generation (Li et al. 2009, Li et al. 2010, Kumaran
et al. 2010b) showed that state-of-the-art methods are still far from achieving high
accuracy. Secondly, that DBN models had already been used in the processes of de-
tecting and generating transliterations but mostly in the form of the classic HMMs.
To the best of our knowledge, there existed no report associated with using the edit
distance-based DBN approaches proposed in this thesis in the two tasks of translit-
eration detection and generation.

For the second research question, we wanted to know whether there would be any
gains in transliteration detection accuracy by following assumptions that were used
to specify edit distance-based DBN models in the tasks where they had been success-
fully applied. If the assumptions from previous work did not hold for transliteration
detection, we wanted to know whether modifications of the edit distance-based DBN
models that meet requirements for computing transliteration similarity could lead
to better transliteration detection quality. To address this research question, we
first of all presented a conceptual framework describing our adaptations of differ-
ent Pair HMMs (in Chapter 4) and transduction-based DBN models (in Chapter 5)
for computing transliteration similarity. Based on ideas presented there, we evalu-
ated the use of various parameterizations of the edit distance-based DBN models in
experimental transliteration detection tasks using standard transliteration datasets.
Results showed that Pair HMMs achieve considerable transliteration detection accu-
racy gains if we specify them to capture the differences in the writing systems of the
source and target languages. More specifically, Chapter 4 results showed that Pair
HMMs have a lower cross entropy (less uncertainty) on an English-Russian translit-
eration corpus if their emission parameters are based on the writing systems of the
source and target language compared to being based on one writing system that
combines the source and target language writing systems.

For the third research question, we wanted to know what features were critical in
using the edit distance-based DBN models for computing transliteration similarity.
To answer this research question, we began by investigating the effects of changing
Pair HMM transition parameters on transliteration detection quality. Chapter 4 re-
sults showed that in addition to using emission parameters, it is important to use all
standard Pair HMM transition parameters for computing transliteration similarity.
In all transliteration detection experiments, we also evaluated the use of different Pair
HMM algorithms for computing transliteration similarity. This includes: the Forward
and Viterbi algorithms, and their log-odds versions obtained in combination with a
random Pair HMM. Results showed that the log-odds versions of the Forward and
Viterbi algorithms result in better transliteration detection quality compared to the
base algorithms and that their transliteration detection performance is stable even

8.1 Conclusions 171

with changes in Pair HMM transition parameters. In Chapter 5, we adapted four
generalizations of transduction-based DBN models initially proposed by Filali and
Bilmes (2005) to compute transliteration similarity. Each generalization is used to
define specific types of temporal dependencies which we hypothesize to be important
for computing transliteration similarity. Three main classes of temporal dependen-
cies include: edit operation memory dependencies; character context dependencies
in source and / or target words; and edit operation length dependencies. We evalu-
ated eight transduction-based DBN models using the same standard transliteration
datasets that we used for the Pair HMMs. Results from transliteration detection
experiments for seven language pairs showed that context-dependent DBN models
perform better than the other transduction-based DBN models. A comparison with
Pair HMMs showed that context-dependent DBN models perform better than Pair
HMMs for 5/7 language pairs. The good performance of context-dependent DBN
models here underlines the importance of representing context in DBN models for
computing transliteration similarity. Despite the good transliteration detection per-
formance from using context-dependent DBN models, results showed that there was
still room for improvement. An error analysis on a sample of the transliteration de-
tection results where atleast one context-dependent model failed to detect the correct
transliterations at first rank, showed that improvements in transliteration detection
accuracy would result if we combined the models. Based on this observation, a simple
combination scheme of using the average transliteration similarity estimates of the
combined DBN models resulted in improvements in transliteration detection accuracy
over ‘individual’ application of the DBN models.

For the transliteration generation task, we have also provided a conceptual frame-
work for representing Pair HMMs as Weighted Finite State Transducers (WFSTs)
which enable an evaluation of using Pair HMM parameters for suggesting candidate
transliterations. The Pair HMM-based WFSTs, however, are disadvantaged by the
lack of source and / or target character contextual information in their parameters
compared to state-of-the-art transliteration generation methods such as phrase-based
statistical machine transliteration (PSMT) (Matthews 2007, Finch and Sumita 2008)
and approaches that first induce many-to-many alignments (Jiampojamarn et al.
2010). It is not surprising that the Pair HMM-based WFSTs did not perform better
than the state-of-the-art methods which used a lot of character context information
in their models. An error analysis on a sample of English→Russian transliteration
generation results from development data showed consistent mistransliterations from
using Pair HMM parameters. A post-processing step where we used a few trans-
formation rules aimed at dealing with the consistent mistransliterations resulted in
improved transliteration generation quality on test data. Also, a pre-specification
of identified character combinations aimed at representing some contextual informa-

172 8. Conclusions and future work

tion in the Pair HMM parameters led to improved English→Russian transliteration
generation quality to the extent that it approached that for state-of-the-art methods
mentioned above.

For the fourth research question, we wanted to know whether using the edit
distance-based DBN models could improve transliteration mining and generation
quality compared to state-of-the-art methods. To address this question, we first eval-
uated a selection of Pair HMMs and context-dependent DBN models against state-of-
the-art approaches in mining transliterations from standard Wikipedia paired topics
which were provided as standard corpora for evaluating language-independent sys-
tems in the NEWS 2010 shared tasks on transliteration mining (Kumaran et al.
2010b). Chapter 6 results suggest that the transliteration mining performance from
using the edit distance-based DBN models is comparable to that for state-of-the-art
methods (Nabende 2010c). Chapter 6 results also show considerable improvements in
transliteration mining quality from using Pair HMMs over state-of-the-art approaches
on transliteration corpora for two language pairs: English-Hindi and English-Tamil.
In addition to using only Wikipedia paired topics, we also proposed to apply the
DBN models in mining transliterations from the main content of comparable, bilin-
gual Wikipedia pages. Based on the premise that the number of words contained
in the article content exceed the number of words in the topics by a multiple, we
expected increased coverage by extracting transliteration pairs from the article con-
tent. Research on mining transliterations from Wikipedia commonly involves the use
of training data that is prepared from an external source. In our case, we also show
that it is possible to use only Wikipedia data for mining transliterations. Specifically,
we have applied a method from related work where we search for only particular types
of Wikipedia topics such as person names which are in most cases standard transla-
tions across languages and used them as training data. Chapter 6 results suggested
a promising application of the Pair HMMs and context-dependent DBN models in
mining transliterations from the very ‘noisy’ comparable Wikipedia article content.

Finally, previous work on transliteration mining and generation emphasizes map-
ping from one writing system to another. However, cross-language processing between
languages that use the same writing system, with the presence of unknown entities,
is affected in a manner similar to the case where the languages use different writing
systems. We therefore proposed the usual application of the transliteration mining
and generation framework to that where the languages use the same writing system.
To the best of our knowledge, this task had not yet been addressed in transliteration
mining and generation literature. After testing various models, Chapter 7 results
show that the usual transliteration generation setup leads to considerable accuracy
gains over the standard baseline of copying strings from the source language to the
target language.

8.2 Future work 173

8.2 Future work

Although our conclusions show a valuable application of DBN models in transliter-
ation mining, a number of interesting research directions can follow from the work
presented in the thesis. First of all, we begin with what is unfinished.

For the transliteration mining task, we proposed an investigation into several
DBN model settings. But as is described in the thesis, the DBN approaches offer
a limitless model space for which we have not exhaustively explored. For the edit
distance based DBN modeling approach in particular, we propose an investigation
into the application of additional models. We also evaluated the DBN models against
the state-of-the-art methods on only five language pairs. It should be interesting to
evaluate their performance on real-world data for additional language pairs.

For the transliteration generation task, we have only investigated the use of Pair
HMM parameters in transliteration generation. One interesting research direction is
to investigate the use of the parameters for the transduction-based DBN models in
the transliteration generation task. Since the transduction-based DBN models are
based on a representation of a stochastic memoryless transducer, we postulate that
a transformation of the DBN models to finite state automata representations should
be possible so as to enable the evaluation of the use of DBN model parameters for
transliteration generation.

There are other research directions that can be followed in addition to our unfin-
ished work above. Here, we would like to note that our investigation into the use of
the transduction-based DBN models was mostly affected by processing speed during
inference based on the models. We have reported in the use of the Frontier algorithm,
but there are other algorithms that have been proposed to improve computational
efficiency while maintaining and in some cases improving effectiveness in using DBN
models. It should be interesting to investigate the use of other inference algorithms
for the transduction-based DBN models.

Our work is just but an additional application of the two DBN approaches in
machine transliteration. Our successful application of the DBN models in mining
transliterations from noisy Wikipedia data suggests the application of the DBN mod-
els to problems where there is need to handle ‘noise’ in sequences. It should also be
interesting to investigate the application of the DBN approaches presented in this
thesis to address a variety of problems based on edit operations.

Bibliography

Abduljaleel, N. and Larkey, L.: 2003, Statistical transliteration for English-Arabic cross
language information retrieval, Proceedings of the twelfth international conference on
Information and knowledge management, ACM, New Orleans, LA, USA, pp. 139–146.

Adafre, S. and de Rijke, M.: 2006, Finding similar sentences across multiple languages,
Proceedings of the EACL Workshop on NEW TEXT Wikis and blogs and other dynamic
text sources, Trento, Italy, pp. 62–69.

Al-Onaizan, Y. and Knight, K.: 2002, Machine transliteration of names in Arabic text, Pro-
ceedings of the ACL-02 workshop on Computational approaches to semitic languages,
pp. 1–13.

Arbabi, M., Fischtal, S., Cheng, V. and Bart, E.: 1994, Algorithms for Arabic name translit-
eration, IBM J. Res. Develop. 38(2), 183–193.

Arfken, G.: 1985, Mathematical methods for physicists, Academic Press.

Arribas-Gil, A., Gassiat, E. and Matias, C.: 2006, Parameter estimation in Pair-hidden
Markov Models, Scandinavian Journal of Statistics 33(4), 651–671.

Baum, L.: 1972, An inequality and associated maximization technique in statistical estima-
tion of probabilistic functions of a Markov process, Inequalities 3.

Baum, L., Petrie, T., Soules, G. and Weiss, N.: 1970, A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains, The Annals of
Mathematical Statistics 41(1), 164–171.

Bilmes, J.: 2002, The graphical models toolkit – Documentation, Technical Documentation
on the Web.

176 Bibliography

Bilmes, J. and Zweig, G.: 2002, The graphical models toolkit: an open source software
system for speech and time-series processing, Proceedings of IEEE International con-
ference on Acoustics, Speech, and Signal processing.

Borman, S.: 2004, The Expectation Maximization algorithm – A short tutorial. Inotroduces
the Expectation Maximization (EM) algorithm and fleshes out the basic mathemat-
ical results, including a proof of convergence. The Generalized EM algorithm is also
introduced.

Bouma, G., Duarte, S. and Islam, Z.: 2009, Cross-lingual alignment and completion of
Wikipedia Templates, Proceedings of the third International workshop on cross lingual
information access: addressing the need of multilingual societies, Boulder, Colorado,
pp. 21–29.

Boyen, X., Friedman, N. and Koller, D.: 1999, Discovering the hidden structure of com-
plex dynamic systems, Proceedings of the 15th annual conference on Uncertainty in AI
(UAI), pp. 206–215.

Brown, P., Pietra, S., Pietra, V. and Mercer, R.: 1993, The mathematics of statistical
machine translation: parameter estimation, Computational Linguistics 19(2), 263–311.

Chen, K.-J. and Bai, M.-H.: 1998, Unknown word detection for chinese by a Corpus-
based Learning Method, Computational Linguistics and Chinese Language Processing
3(1), 27–44.

Chinnakotla, M., Damani, O. and Satoskar, A.: 2010, Transliteration for resource-scarce
languages, ACM Transactions on Asian Language Information Processing 9(4), article
14.

Covington, M.: 1996, An algorithm to align words for historical comparison, Computational
Linguistics 22(4), 481–496.

Darwiche, A.: 2008, Bayesian networks, in F. v. Harmelen, V. Lifschitz and B. Porter (eds),
Handbook of Knowledge Representation, Vol. 3 of Foundations of Artificial Intelligence,
Elsevier, pp. 467–509.

Darwish, K.: 2010, Transliteration mining with phonetic conflation and iterative training,
Proceedings of the 2010 Named Entities Workshop, ACL 2010, Association for Com-
putational Linguistics, Uppsala, Sweden, pp. 53–56.

Das, A., Saikh, T., Mondal, T., Ekbal, A. and Bandyopadhyay, S.: 2010, English to In-
dian languages machine transliteration system at NEWS 2010, Proceedings of the 2010
Named Entities Workshop, Uppsala, Sweden, pp. 71–75.

Dijkstra, E.: 1959, A note on two problems in connexion with graphs, Numerische Mathe-
matik 1.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G.: 1998, Biological sequence analysis: Prob-
abilistic models of proteins and nucleic acids, Cambridge University Press, Cambridge,
UK.

Ekbal, A., Naskar, S. and Bandyopadhyay, S.: 2006, A modified joint source-channel model
for transliteration, Proceedings of COLING/ACL, Sydney, Australia, pp. 191–198.

Bibliography 177

Erdmann, M., Nakayama, K., Hara, T. and Nishio, S.: 2008, An approach for extracting
bilingual terminology from wikipedia, Proceedings of the 13th international conference
on Database Systems for advanced applications, New Delhi, India, pp. 380–392.

Federico, M., Bertoldi, N. and Cetolo, M.: 2008, Irstlm: An open source toolkit for han-
dling large scale language models, Proceedings of Interspeech, Melbourne, Australia,
pp. 1618–1621.

Filali, K. and Bilmes, J.: 2005, A Dynamic Bayesian framework to model context and mem-
ory in edit distance learning: an application to pronunciation classification, Proceedings
of the Association for Computational Linguistics (ACL), Ann-Arbor, Michigan.

Finch, A. and Sumita, E.: 2008, Phrase-based machine transliteration, Proceedings of the
Workshop on Technologies and corpora for Asia-Pacific speech translation, Hyderabad,
India, pp. 13–18.

Finch, A. and Sumita, E.: 2010, Transliteration using a phrase-based statistical machine
translation system to re-score the output of a joint multigram model, Proceedings of
the 2010 Named Entities Workshop, Uppsala, Sweden, pp. 48–52.

Freeman, A., Condon, S. and Ackerman, C.: 2006, Cross linguistic name matching in english
and arabic, Proceedings of the Human Language Technology conference of the NAACL,
New York city, USA, pp. 471–478.

Gao, W., Wong, K.-F. and Lam, W.: 2005, Phoneme-based transliteration of foreign names
for OOV problem, IJCNLP, LNAI 3248, Springer-Verlag, Berlin Heidelberg, pp. 110–
119.

Ghahramani, Z.: 1998, Learning dynamic bayesian networks, Adaptive Processing of Se-
quences and Data Structures, Springer-Verlag, pp. 168–197.

Ghahramani, Z.: 2001, An introduction to Hidden Markov models and Bayesian networks,
IJPRAI 15(1), 9–42.

Goto, I., Kato, N., Uratani, N. and Ehara, T.: 2003, Transliteration considering context
information based on the maximum entropy method, Proceedings of MT-Summit IX,
pp. 125–132.

He, X.: 2007, Using word dependent transition models in HMM based word alignment for
statistical machine translation, Proceedings of 2nd ACL workshop on statistical machine
translation, Prague, Czech Republic, pp. 80–87.

Hetland, M. L.: 2004, Data mining in time series databases, World scientific.

Jensen, F. and Nielsen, T.: 2007, Bayesian networks and decision graphs, Springer Publish-
ing company, Incorporated.

Jensen, J.: 1906, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta
Mathematica 130(1), 175–193.

Jeong, K., Myaeng, S., Lee, J. and Choi, K.-S.: 1999, Automatic identification and back-
transliteration of foreign words for information retrieval, Information Processing and
Management 35(4), 523–540.

178 Bibliography

Jiampojamarn, S., Bhargava, A., Dou, Q., Dwyer, K. and Kondrak, G.: 2009, DirectL:
a language-independent approach to transliteration, Proceedings of the 2009 Named
Entities Workshop: Shared task on transliteration, pp. 28–31.

Jiampojamarn, S., Dwyer, K., Bergsma, S., Bhargava, A., Dou, Q., Kim, M.-Y. and Kon-
drak, G.: 2010, Transliteration generation and mining with limited training resources,
Proceedings of the 2010 Named Entities Workshop, Association for Computational Lin-
guistics, Uppsala, Sweden, pp. 39–47.

Jung, S., Hong, S. and Paek, E.: 2000, An English to Korean transliteration model of
extended markov window, Proceedings of the 18th conference on Computational Lin-
guistics, Saarbrucken, Germany, pp. 383–389.

Jurafsky, D. and Martin, J.: 2009, Speech and language processing, Pearson Education, Inc.,
Upper Saddle River, New Jersey.

Kang, B. and Choi, K.-S.: 2000, Automatic transliteration and back-transliteration by
decision tree learning, Proceedings of the 2nd International Conference on Language
Resources and Evaluation, pp. 1135–1411.

Kang, I. and Kim, G.: 2000, English-to-Korean transliteration using multiple unbounded
overlapping phoneme chunks, Proceedings of the 18th International conference on Com-
putational Linguistics, pp. 418–424.

Karimi, S., Scholar, F. and Turpin, A.: 2011, Machine transliteration survey, ACM Comput.
Surv. 43(3), 17:1–17:46.

Karimi, S., Turpin, A. and Scholer, F.: 2006, English to Persian transliteration, in
F. Crestani, P. Ferragina and M. Sanderson (eds), String Processing and Information
Retrieval, Vol. 4209 of Lecture Notes in Computer Science, Springer Berlin / Heidel-
berg, pp. 255–266.

Karimi, S., Turpin, A. and Scholer, F.: 2007, Collapsed consonant vowel models: new ap-
proaches for English-Persian transliteration and back-transliteration, Proceedings of the
45th Annual meeting of the Association of Computational Linguistics, Czech Republic,
pp. 648–655.

Kawtrakul, A., Deemagarn, A., Thumkanon, C., Khantonthong, N. and McFetridge, P.:
1998, Backward transliteration for Thai document retrieval, Proceedings of IEEE Asia
Pacific Conference on Circuits and Systems, Chiang-mai, Thailand, pp. 563–566.

Khapra, M., Udupa, R., Kumaran, A. and Bhattacharyya, P.: 2010, PR + RQ almost equal
to PQ: Transliteration mining using Bridge language, AAAI, Atlanta, Georgia, USA,
pp. 1346–1351.

Kim, J., Lee, J. and Choi, K.: 1999, Pronunciation unit based automatic English-Korean
transliteration model using neural network, Proceedings of Korea Cognitive Science
Association, pp. 247–252.

Kirschenbaum, A. and Wintner, S.: 2010, A general method for creating a bilingual translit-
eration dictionary, Proceedings of the seventh international conference on Language
Resources and Evaluation Conference (LREC-2010), Valletta, Malta, pp. 3389–3392.

Bibliography 179

Klementiev, A. and Roth, D.: 2006, Named entity transliteration and discovery from multi-
lingual comparable corpora, Proceedings of the Human Languages Technology Confer-
ence of the NAACL, Main Conference, New York City, USA, pp. 82–88.

Knight, K. and Graehl, J.: 1997, Machine transliteration, Proceedings of the 35th Annual
meeting of the ACL and Eighth Conference of the European chapter of the ACL, Madrid,
Spain, pp. 128–135.

Koehn, P.: 2005, Europarl: A parallel corpus for statistical machine translation, Conference
proceedings: the tenth Machine Translation summit, Phuket, Thailand, pp. 79–86.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,
Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A. and Herbst, E.:
2007, Moses: open source toolkit for statistical machine translation, Proceedings of the
45th Annual meeting of the ACL, Prague, Czech Republic, pp. 177–180.

Koehn, P., Och, F., Franz, J. and Marcu, D.: 2003, Statistical phrase-based translation,
Proceedings of the 2003 conference on the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, Edmonton, Canada,
pp. 48–54.

Koller, D. and Friedman, N.: 2009, Probabilistic Graphical models: Principles and Tech-
niques, MIT Press.

Kondrak, G. and Sherif, T.: 2006, Evaluation of several phonetic similarity algorithms on
the task of cognate identification, Proceedings of the Workshop on Linguistic Distances,
LD ’06, Sydney, Australia, pp. 43–50.

Kumaran, A., Khapra, M. and Li, H.: 2010a, Report of NEWS 2010 shared task on translit-
eration mining, Proceedings of the 2010 Named Entities Workshop, Association for
Computational Linguistics, Uppsala, Sweden, pp. 21–28.

Kumaran, A., Khapra, M. and Li, H.: 2010b, Whitepaper of NEWS 2010 shared task on
transliteration mining, Proceedings of the 2010 Named Entities Workshop, Association
for Computational Linguistics, Uppsala, Sweden, pp. 29–38.

Kuo, J.-S., Li, H. and Yang, Y.-K.: 2007, A phonetic similarity model for automatic ex-
traction of transliteration pairs, ACM Trans. Asian Language Information Processing
6(2), article 6.

Lafferty, J., McCallum, A. and Pereira, F.: 2001, Conditional Random Fields: Probabilistic
models for segmenting and labeling sequence data, Proceedings of the 18th international
conference on machine learning, Williamstown, MA, USA, pp. 282–289.

Lee, C.-J. and Chang, J.: 2003, Acquisition of English-Chinese transliterated word pairs
from parallel-aligned texts using a statistical machine transliteration model, Proceed-
ings of the HLT-NAACL 2003 Workshop on Building and using parallel texts: data
driven machine translation and beyond, HLT-NAACL-PARALLEL ’O3, Edmonton,
Canada, pp. 96–103.

Lee, J. and Choi, K.-S.: 1998, English to Korean statistical transliteration for Information
Retrieval, Computer Processing of Oriental Languages 12(1), 17–37.

180 Bibliography

Li, H., Kumaran, A., Pervouchine, V. and Zhang, M.: 2009, Report of NEWS 2009 machine
transliteration shared task, Proceedings of the 2009 Named Entities Workshop: Shared
Task on Transliteration, Suntec, Singapore, pp. 1–18.

Li, H., Kumaran, A., Zhang, M. and Pervouchine, V.: 2010, Report of NEWS 2010 translit-
eration generation shared task, Proceedings of the 2010 Named Entities Workshop,
Association for Computational Linguistics, Uppsala, Sweden.

Li, H., Sim, K., Kuo, J.-S. and Dong, M.: 2007, Semantic transliteration of personal names,
Proceedings of the 45th Annual meeting of the association of computational linguistics,
Prague, Czech Republic, pp. 120–127.

Li, H., Zhang, M. and Su, J.: 2004, A joint source-channel model for machine transliteration,
Proceedings of the 42nd meeting of the Association for Computational Linguistics (ACL
’04), Barcelona, Spain, pp. 159–166.

Lin, T., Wu, J.-C. and Chang, J.: 2004, Extraction of name and transliteration in monolin-
gual and parallel corpora, AMTA, pp. 177–186.

Lindén, K.: 2006, Multilingual modeling of cross-lingual spelling variants, Information Re-
trieval 9(3), 295–310.

Mackay, W.: 2004, Word similarity using Pair HMMs, Master’s thesis, University of Alberta,
Alberta, Canada.

Mackay, W. and Kondrak, G.: 2005, Computing word similarity and identifying cognates
with Pair Hidden Markov models, Proceedings of the ninth Conference on Computa-
tional Natural Language Learning (CONLL 2005), Ann Arbor, Michigan, pp. 40–47.

Malik, M.: 2006, Punjabi machine transliteration, Proceedings of the 21st International
conference on computational linguistics, Sydney, Australia, pp. 1137–1144.

Malik, M., Boitet, C. and Bhattacharyya, P.: 2008, Hindi Urdu machine transliteration
using finite-state transducers, Proceedings of the 22nd International Conference on
Computational Linguistics, Manchester, United Kingdom, pp. 537–544.

Manning, C. and Schütze, H.: 1999, Foundations of statistical Natural Language Processing,
MIT Press, Cambridge, MA.

Matthews, D.: 2007, Machine transliteration of proper names, Master’s thesis, School of
Informatics, University of Edinburgh.

Meng, H., Wai-Kit, L., Berlin, C. and Tang, K.: 2001, Generating phonetic cognates to
handle named entities in English-Chinese cross-language spoken document retrieval,
Proceedings of IEEE workshop on Automatic Speech Recognition and Understanding,
Madonna di Campiglio, Italy, pp. 311–314.

Mihajlovic, V. and Petkovic, M.: 2001, Dynamic Bayesian Networks: A state of the art.
DMW-Project.

Mohammadi, M. and GhasemAghaee, N.: 2010, Building bilingual parallel corpora based
on Wikipedia, International Conference on Computer Engineering and Applications
2, 264–268.

Bibliography 181

Murphy, K.: 2002, Dynamic Bayesian Networks: Representation, Inference and Learning,
PhD thesis, UC Berkeley, Computer Science Division.

Nabende, P.: 2009a, Evaluation of Dynamic Bayesian Network models for entity name
transliteration, Proceedings of the 18th annual Belgian-Dutch Conference on machine
learning, Tilburg, The Netherlands, pp. 99–100.

Nabende, P.: 2009b, Transliteration system using Pair HMM with weighted FSTs, Pro-
ceedings of the 2009 named entities workshop: shared task on transliteration, Suntec,
Singapore, pp. 100–103.

Nabende, P.: 2010a, Applying a Dynamic Bayesian Network framework to transliteration
identification, Proceedings of the 7th International Conference on Language Resources
and Evaluation, Valletta, Malta, pp. 244–251.

Nabende, P.: 2010b, Comparison of applying Pair HHMs and DBN models in translitera-
tion identification, Proceedings of the 20th Computational Linguistics in Netherlands
conference, Utrecht, The Netherlands, pp. 107–122.

Nabende, P.: 2010c, Mining transliterations from Wikipedia using pair HMMs, Proceedings
of the 2010 Named Entities Workshop, Uppsala, Sweden, pp. 76–80.

Nabende, P.: 2011, Mining transliterations from Wikipedia using Dynamic Bayesian Net-
works, Proceedings of the international conference on recent advances in natural lan-
guage processing, Hissar, Bulgaria, pp. 385–391.

Nabende, P., Tiedemann, J. and Nerbonne, J.: 2010, Pair Hidden Markov Model for named
entity matching, Innovations and Advances in Computer Sciences and Engineering,
Springer, Heildelberg, pp. 497–502.

Noeman, S. and Madkour, A.: 2010, Language independent transliteration mining system
using finite state automata framework, Proceedings of the 2010 Named Entities Work-
shop, Uppsala, Sweden.

Och, J. and Ney, H.: 2003, A systematic comparison of various statistical alignment models,
Computational Linguistics 29(1), 19–51.

Oh, J.-H. and Choi, K.-S.: 2002, An English-Korean transliteration model using pronunci-
ation and contextual rules, Proceedings of the 19th International conference on compu-
tational linguistics, COLING ’02, Taipei, Taiwan, pp. 1–7.

Oh, J.-H., Choi, K.-S. and Isahara, H.: 2006, A comparison of different machine transliter-
ation models, Journal of artificial intelligence research 27(2006), 119–151.

Oh, J., Uchimoto, K. and Torisawa, K.: 2009, Machine transliteration using target-language
grapheme and phoneme: multi-engine transliteration approach, Proceedings of the 2009
Named Entites Workshop: Shared Task on Transliteration, pp. 36–39.

Quinlan, J.: 1986, Induction Decision trees, Machine Learning 1(1), 81–106.

Rabiner, L.: 1989, A tutorial on Hidden Markov models and selected applications in Speech
Recognition, Proceedings of the IEEE, pp. 257–286.

Ristad, E. and Yianilos, P.: 1997, Learning string edit distance, IEEE Transactions on
Pattern analysis and machine intelligence 20, 522–532.

182 Bibliography

Roger, M.: 1992, A description of a computer-usable dictionary file based on the Oxford
advanced learner’s dictionary of current English, Oxford Text Archive.

Rosenblatt, F.: 1958, A probabilistic model for information storage and organization in the
brain, Psychological review 65.

Shannon, C.: 1948, A mathematical theory of communication, Bell System Technical Jour-
nal 27, 379–423, 623–656.

Sherif, T. and Kondrak, G.: 2007a, Bootstrapping a stochastic transducer for Arabic-English
transliteration extraction, Proceedings of the 45th Annual meeting of the Association
of Computational Linguistics, Prague, Czech Republic, pp. 864–871.

Sherif, T. and Kondrak, G.: 2007b, Substring-based transliteration, Proceedings of the 45th
annual meeting of the Association for Computational Linguistics, Prague, Czech Re-
public, pp. 944–951.

Song, Y., Kit, C. and Zhao, H.: 2010, Reranking with multiple features for better transliter-
ation, Proceedings of the 2010 Named Entities Workshop, Uppsala, Sweden, pp. 62–65.

Sproat, R., Tao, T. and Zhai, C.: 2006, Named entity transliteration with comparable
corpora, Proceedings of the 21st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computational Linguistics, Sydney,
Australia, pp. 73–80.

Stalls, B. and Knight, K.: 1998, Translating names and technical terms in Arabic text,
Proceedings of the COLING/ACL Workshop on computational approaches to semitic
languages, pp. 34–41.

Surana, H. and Singh, A.: 2008, A more discerning and adaptable multilingual translit-
eration mechanism for Indian languages, Proceedings of the third International Joint
Conference on Natural Language Processing (IJCNLP), Asian Federation of Natural
Language Processing, Hyderabad, India.

Tiedemann, J. and Nabende, P.: 2009, Translating transliterations, International journal of
computing and ICT research 3(1), 33–41.

Udupa, R., Saravanan, K., Kumaran, A. and Jagarlamudi, J.: 2009, MINT: A method for
effective and scalable mining of named entity transliterations from large comparable
corpora, Proceedings of the 12th Conference of the European Chapter of the ACL,
Athens, Greece, pp. 799–807.

Virga, P. and Khudanpur, S.: 2003, Transliteration of proper names in cross-lingual informa-
tion retrieval, Proceedings of the ACL 2003 Workshop on multiple and mixed language
named entity recognition, Sapporo, Japan, pp. 57–64.

Vogel, S., Ney, H. and Tillmann, C.: 1996, HMM-based word alignment in statistical trans-
lation, Proceedings of the 16th conference on computational linguistics, Copenhagen,
Denmark, pp. 836–841.

Wan, S. and Verspoor, C.: 1998, Automatic English-Chinese name transliteration for de-
velopment of multilingual resources, Proceedings of the 36th annual meeting of the
Association for computational linguistics, Montreal, Quebec, Canada, pp. 1352–1356.

Bibliography 183

Wieling, M., Leinonen, T. and Nerbonne, J.: 2007, Inducing sound segment differences
using Pair Hidden Markov models, in J. Nerbonne, M. Ellison and G. Kondrak (eds),
Computing and Historical Phonology: 9th Meeting of ACL Special Interest Group for
Computational Morphology and Phonology Workshop, Prague, pp. 48–56.

Zelenko, D. and Aone, C.: 2006, Discriminative methods for transliteration, Proceedings
of the 2006 conference on Empirical methods in Natural Language Processing, Sydney,
Australia, pp. 612–617.

Zhang, M., Kumaran, A. and Li, H.: 2011, Whitepaper of NEWS 2011 shared task on
machine transliteration, Proceedings of the 2011 Named Entities Workshop, Chiang
Mai, Thailand.

Zhang, M., Li, H. and Su, J.: 2004, Direct orthographical mapping for machine translit-
eration, Proceedings of the 20th international conference on computational linguistics,
COLING ’O4, Geneva, Switzerland, p. Article 716.

Zhao, B., Bach, N., Lane, I. and Vogel, S.: 2007, A log-linear block transliteration model
based on bi-stream HMMs, Proceedings of NAACL HLT 2007, Rochester, NY, pp. 364–
371.

Zhou, Y.: 2009, Maximum n-gram HMM-based name transliteration: Experiment in NEWS
2009 on English-Chinese corpus, Proceedings of the 2009 Named Entities workshop,
ACL-IJCNLP, Suntec, Singapore.

Zweig, G.: 1996, A forward-backward algorithm for inference in Bayesian networks and an
empirical comparison with HMMs, Master’s thesis, Dept. Comp. Sci., U.C. Berkeley.

Zweig, G. and Russell, S.: 1999, Probabilistic modeling with Bayesian networks for Au-
tomatic Speech Recognition, Australian Journal of Intelligent Information Processing
Systems 5(4), 253–260.

Index

2-TBN, 43

Backward algorithm (Pair HMMs), 64
Backward transliteration, 9
Baum-Welch algorithm, 69
Bayesian networks, 38
Bi-stream HMM, 55

Chunk frame, 96
Comparable corpora, 11, 16
Context-dependent DBN template, 101
Corpus cross entropy, 75
Cross entropy, 74
Cross validation accuracy, 78
Cross validation MRR, 78

DBN parameter learning, 47
DBN structure learning, 46
Dynamic Bayesian Network, 43

Entropy, 73
Epilogue frame, 96
Expectation Maximization algorithm, 48

F-score, 126
Finite state acceptor, 147
Finite state automaton, 147
Finite state transducer, 147, 148
Forward algorithm (Pair HMMs), 64
Forward transliteration, 9
Frame, 96
Frontier algorithm, 104

Generalized EM algorithm, 50, 106

Hidden Markov model, 44, 54
Hidden variables, 39

Inference (Bayesian networks), 41
Inference (DBNs), 45
Iterative training, 123

Length DBN template, 102
Log-odds algorithm (Pair HMMs), 66
Longest common subsequence, 157
Longest common subsequence ratio, 163

MAP10, 158

186 Index

MAPreference, 158
MAPsys, 158
Maximum n-gram HMM, 55
MCI DBN template, 96
Mean reciprocal rank, 78
MEM DBN template, 100
Memoryless stochastic transducer, 94

Non-standard run, 127

Observation variables, 39

Pair Hidden Markov model, 57
Parallel corpora, 11, 14
Perplexity, 74
Precision, 126
Prologue frame, 96

Random Pair HMM, 67
Recall, 126
Romanization, 9

Standard run, 127

Transliteration, 2
Transliteration detection accuracy, 76
Transliteration generation, 19, 143
Transliteration mining, 10

Viterbi algorithm (Pair HMMs), 65

Weighted finite state acceptor, 150
Weighted finite state transducer, 150
Wikipedia, 116
Wikipedia inter-language link, 116

Summary

Automated transliteration detection and generation are Natural Language Process-
ing (NLP) tasks aimed at improving performance in related NLP applications such
as Machine Translation (MT) and Cross Language Information Retrieval (CLIR).
Currently, there is a growing body of research on identifying methods that can im-
prove transliteration detection and generation quality including annual shared tasks
(Li et al. 2009, Li et al. 2010, Kumaran et al. 2010b, Zhang et al. 2011). In this
thesis, we propose applying two edit distance-based approaches of Dynamic Bayesian
Network (DBN) models for computing transliteration similarity in the two tasks of
transliteration detection and generation. The first approach uses Pair Hidden Markov
Models (Pair HMMs) which are a generalization of the classic Hidden Markov mod-
els (HMMs). The second approach, which is inspired by work on Automatic Speech
Recognition (ASR), uses DBN templates to define several classes of transduction-
based DBN models. The Pair HMMs and the transduction-based DBN models have
been applied successfully in NLP tasks that have requirements similar to those for
transliteration detection and generation. The Pair HMMs were applied successfully in
cognate identification (Mackay and Kondrak 2005) and dialect comparison (Wieling
et al. 2007), whereas the tranduction-based DBN models were applied successfully
in pronunciation classification (Filali and Bilmes 2005) and cognate identification
(Kondrak and Sherif 2006).

We explore the effects of several factors represented by the DBN models on

188 Summary

transliteration detection and generation quality. From the approach of Pair HMMs,
we first evaluate assumptions that were previously proposed and used in the NLP
tasks mentioned above. That is, we evaluate the use of Pair HMM parametric struc-
tures similar to those used in previous work. For the transliteration detection ex-
periments at this stage, we use our own pre-processed transliteration data consisting
of geographic name pairs extracted from the online Geonames database for four lan-
guage pairs: English-Dutch, English-French, English-German, and English-Russian.
As the language pair names suggest, we explore the use of the traditional translit-
eration detection and generation setups in cases where source and target language
use the same writing system; to the best of our knowledge, this had not yet been
addressed in machine transliteration literature. Results at this preliminary stage
suggest the importance of using Pair HMMs that adequately capture the differences
in the writing systems of source and target languages. For example, that the Pair
HMM emission parameters should be based on the writing systems of the source
and target language rather than being based on one writing sytem that combines
the source and target language writing systems. We then investigate the effect of
changes in Pair HMM transition parameters on transliteration detection and gen-
eration quality. Each Pair HMM transition parameter encodes the probability of
transition from one edit operation state to another or back to the same state. In
the transliteration detection experiments, we evaluate the performance of the Pair
HMMs against a standard baseline of using pair n-gram information for computing
transliteration similarity. Here, we use standard transliteration data from the 2009
and 2010 Named Entities Workshop (NEWS) shared tasks on transliteration gen-
eration for seven language pairs: English-Bengali, English-Chinese, English-Hindi,
English-Kannada, English-Russian, English-Tamil, and English-Thai. Results sug-
gest that the use of Pair HMM transition parameters results in considerably better
transliteration detection quality than when no transition parameters are used. In
all transliteration detection experiments for the Pair HMMs, we evaluate the use of
different algorithms for computing transliteration similarity including: the Forward
and Viterbi algorithms, and their log-odds versions obtained in combination with
a random Pair HMM. Results show that the log-odds versions of the Forward and
Viterbi algorithms result in better transliteration detection quality compared to the
base algorithms and that their transliteration detection performance is stable even
with changes in transition parameters. The Pair HMMs also post the best translit-
eration detection accuracy and Mean Reciprocal Rank (MRR) results compared to
the standard baseline of Pair n-gram information for six of the seven language pairs.
The results at this point suggest that Pair HMMs could be valuable in searching for
transliterations.

The second approach of DBN models is founded on the representation of a mem-

Summary 189

oryless stochastic transducer from Ristad and Yianilos (1997) as a Memoryless and
Context-Independent (MCI) DBN model. We adapt the MCI DBN model from Filali
and Bilmes (2005) to compute transliteration similarity for transliteration detection.
Based on the MCI DBN model we adapt and evaluate the use of three generalizations
of transduction-based DBN models. Each generalization is used to define specific
types of temporal dependencies which we hypothesize to be important for comput-
ing transliteration similarity. The three classes of temporal dependencies include:
edit operation memory dependencies; character context dependencies in the source
and / or target words; and edit operation length dependencies. We use standard
transliteration data from the 2009 and 2010 shared tasks on transliteration gener-
ation as described in the previous paragraph to evaluate eight transduction-based
DBN models for computing transliteration similarity in the same experimental setup
of transliteration detection as used for the Pair HMMs. Results from the translitera-
tion detection experiments for the seven language pairs show that context-dependent
DBN models perform better than the other transduction-based DBN models. A com-
parison with Pair HMMs shows that context-dependent DBN models outperform Pair
HMMs for 5/7 language pairs. The context-dependent DBN models also outperform
the standard baseline of using Pair n-gram information for all language pairs. The
results here underline the importance of representing context in DBN models for com-
puting transliteration similarity. An error analysis associated with the application
of transduction-based DBN models showed that there was still room for improve-
ment in transliteration detection quality if there is a way to combine the application
of the DBN models. Based on that, we applied a simple combination scheme of
using the average transliteration similarity estimate computed from the translitera-
tion similarity estimates of the combined DBN models for detecting transliteration
pairs. We evaluated several combinations of transliteration similarity estimates from
context-dependent DBN models and results showed improved transliteration detec-
tion accuracy and MRR over ‘individual’ application of the DBN models.

Based on the aim of further establishing the value of using DBN models to
compute transliteration similarity for transliteration detection and generation, we
evaluated the performance of some Pair HMMs and context-dependent DBN mod-
els against state-of-the-art methods by following the same evaluation setup used
in the 2009 and 2010 shared tasks on transliteration generation (Li et al. 2009, Li
et al. 2010) and transliteration mining (Kumaran et al. 2010a). For the translit-
eration mining task, we applied Pair HMMs and context-dependent DBN models
in mining single word transliteration pairs from standard Wikipedia topic pairs ob-
tained from Wikipedia inter-language links for five language pairs: English-Arabic,
English-Chinese, English-Hindi, English-Russian, and English-Tamil. Results show
that the Pair HMMs using log-odds ratio to compute transliteration similarity con-

190 Summary

siderably improve f-score values for mining English-Hindi and English-Tamil translit-
erations compared to the best results from state-of-the-art systems. The Pair HMMs
and context-dependent DBN models also posted competitive f-score values for min-
ing English-Arabic, English-Chinese, and English-Russian transliteration pairs. For
transliteration generation, we evaluated the use of Pair HMM parameters as weighted
transduction parameters for generating candidate transliterations given a ‘source lan-
guage’ word. Here, we proposed Weighted Finite State Transducer (WFST) mod-
els to approximate corresponding Pair HMMs. We evaluated the Pair HMM-based
WFST models against state-of-the-art methods using standard transliteration data
from the 2009 and 2010 shared tasks on transliteration generation (Li et al. 2009, Li
et al. 2010) as described above. Results show that the transliteration generation
quality of the Pair HMM-based WFSTs on all language pairs still lags behind that
of state-of-the-art approaches such as Phrase-based statistical machine translitera-
tion (PSMT). One disadvantage of the Pair HMM-based WFST models as compared
to state-of-the-art approaches is the lack of representation for source and / or tar-
get character contextual information. From an error analysis on the results of the
transliteration generation task for English to Russian, we found out that the Pair
HMM-based WFSTs resulted in consistent mistransliterations. A specification of a
few contextual transformation rules in a post-processing step resulted in a large im-
provement in transliteration generation quality but still below that of state-of-the-art
approaches like the PSMT approach.

Samenvatting

Automatische transliteratie en generatie zijn nuttig voor het verbeteren van de pres-
tatie van machinaal vertalen en meertalige information retrieval. Op dit moment
wordt er veel onderzoek gedaan naar automatische selectie en generatie van correcte
transliteraties, onder andere in het kader van jaarlijkse competities (Li et al. 2009, Ku-
maran et al. 2010b, Zhang et al. 2011). In dit proefschrift bespreken we twee versies
van Dynamische Bayesiaanse Netwerken (DBN) toegepast op automatische selectie
en generatie van transliteraties. De eerste versie gebruikt Pair Hidden Markovmo-
dellen (Pair HMMs), een algemene versie van de klassieke Hidden Markovmodel-
len. De tweede versie is geïnspireerd op spraakherkenning en gebruikt DBNsjablonen
voor de definitie van verschillende klassen van DBNmodellen gebaseerd op trans-
ductie. Zowel de Pair HMMs als de transductieve DBNmodellen zijn met succes
toegepast op taalverwerkingstaken die vergelijkbaar zijn met automatische translite-
ratie. Pair HMMs werkten goed voor de herkenning van etymologisch verwante woor-
den (Mackay and Kondrak 2005) en vergelijking van dialecten (Wieling et al. 2007).
Transductieve DBNmodellen deden het goed bij het classificeren van uitspraak (Filali
and Bilmes 2005) en eveneens bij herkenning van etymologisch verwante woorden
(Kondrak and Sherif 2006).

We onderzochten welke invloed het varieëren van de eigenschappen van DBN-
modellen heeft op hun toepassing voor automatische transliteratie. We begonnen
met de instellingen voor Pair HMMs die in de literatuur werden genoemd (Mackay

192 Samenvatting

and Kondrak 2005, Wieling et al. 2007). Bij dit experiment gebruikten we onze
eigen transliteratiedata bestaande uit paren van geografische namen verkregen uit
de online Geonamesdatabase1. We kozen voor vier taalparen: Engels-Nederlands,
Engels-Frans, Engels-Duits en English-Russisch. We wilden ook automatische trans-
literatie onderzoeken voor taalparen met hetzelfde schrift, iets dat voor zover wij
weten niet eerder was gedaan. De eerste resultaten gaven aan dat het belangrijk
was om Pair HMMs te gebruiken die de verschillen tussen brontaal en doeltaal goed
konden modelleren. Zo bleek dat de emissieparameters van de Pair HMMs moesten
worden gebaseerd op het schrift van de brontaal of dat van de doeltaal en niet op een
gecombineerde versie hiervan.

Vervolgens hebben de invloed op de taak onderzocht van de transitieparameters
van de Pair HMMs. Deze optionele parameters bepalen de kansen op een transitie van
een edittoestand in de modellen naar een andere. Bij dit experiment gebruikten we
data van de transliteratiecompetities van de edities van de Named Entities Workshop
van 2009 en 2010, te weten de taalparen Engels-Bengaals, Engels-Chinees, Engels-
Hindi, Engels-Kannada, Engels-Russisch, Engels-Tamil en Engels-Thai. De uitkom-
sten van dit experiment hebben we vergeleken met een standaardbaseline gebaseerd
op n-grammen. Modellen die de transliteratieparameters gebruikten, bleken beter te
werken dan modellen die ze niet gebruikten.

Daarna hebben we ook verschillende met Pair HMMs geassocieerde algoritmes
vergeleken: zowel het forwardalgoritme en het Viterbialgoritme als hun log-oddsvariant
in combinatie met een willekeurig geïnitialiseerde Pair HMM. De log-oddsversies
leverden hogere transliteratiekwaliteit op dan de standaardversies van het forwardal-
goritme en het Viterbialgoritme. Daarnaast weren de scores van de log-oddsversies
niet beïnvloed door de waarden van de transitieparameters. De Pair HMMs haalden
in de generatietaak voor zes van de zeven taalparen betere accuraatheden en Mean
Reciprocal Rankscores dan de baseline. Deze resultaten geven aan dat Pair HMMS
waardevol zijn bij het automatisch zoeken naar transliteraties.

Onze tweede methode voor automatische transliteratie gebruikt Dynamische Ba-
yesiaanse Netwerken (DBN). Deze zijn gebaseerd op het werk van Ristad en Yian-
ilos (1997), die een geheugenvrije stochastische transducer representeerden als een
geheugenvrij context-onafhankelijk DBNmodel. We gebruiken de versie van dit model
uit Filali en Bilmes (2005) voor het berekenen van de overeenkomst tussen woord-
paren en zetten het in voor het selecteren van transliteraties. Op basis van dit
model maken we drie generalisaties van transductiegebaseerde DBNmodellen. Elk
van deze generalisaties gebruikt een specifiek type van temporele afhankelijkheid
waarvan we aannemen dat die belangrijk is voor automatische transliteratie. De drie
afhankelijkheden zijn geheugenafhankelijkheid van de editoperaties, lengteafhankeli-

1http://www.geonames.org

Samenvatting 193

jkheid van de editoperaties en tekencontextafhankelijkheden in de brontaalwoorden
en de doeltaalwoorden. We hebben acht transductiegebaseerde DBNmodellen geë-
valueerd op competitiedata uit 2009 en 2010 beschreven in de vorige alinea’s. Ook de
opzet van de experimenten was gelijk aan de selectie-experimenten met Pair HMMs.

Van de geëvalueerde DBNmodellen kwamen de contextgevoelige modellen als
beste uit de bus. Deze modellen haalden ook voor vijf van de zeven taalparen betere
scores dan de beste Pair HMMs. Daarnaast deden zij het beter dan de baseline
voor alle zeven taalparen. Deze resultaten tonen het belang aan van het gebruik van
context in DBNmodellen. Uit een analyse van de door de modellen gemaakte fouten
bleek dat een beter prestatie mogelijk was als de keuzes van de verschillende modellen
zouden worden gecombineerd. In een vervolgexperiment met combinatiemethodes
gebaseerd op gemiddelde transliteratieafstand van de DBNmodellen bleken combi-
naties van modellen inderdaad betere accuraatheden en MRR-scores te bereiken dan
individuele DBNmodellen.

Vervolgens hebben we enkele van onze Pair HMMs toegepast op transliteratiegen-
eratie en de resultaten vergeleken met die van de state-of-the-artmodellen uit de com-
petities van 2009 en 2010 (Li et al. 2009, Li et al. 2010). Daarbij hebben we de pa-
rameters van de modellen gemodelleerd als gewogen transductieparameters die kandi-
daatwoorden genereerden op basis van woorden in de brontaal. In deze experimenten
hebben we Weighted Finite State Transducers (WFST) ingezet als benaderingen van
Pair HMMs. De prestaties van deze modellen deden onder voor de generatieresultaten
van de state-of-the-artmodellen, zoals bijvoorbeeld die van phrase-based statistical
machine translation (PSMT). Een nadeel van Pair HMM-gebaseerde WFST-modellen
ten opzichte van deze PSMT-modellen is het onbreken van contextinformatie voor
de bron- en doeltaal. Uit een foutanalyse bleek dat de WFST-modellen consequent
dezelfde fouten maakten. Het toepassen van enkele transformatieregels op de uitvoer
van de modellen leidde tot een grote prestatieverbetering, zij het nog niet tot de
beoogde state-of-the-artresultaten.

Tenslotte pasten we enkele van onze Pair HMMs en contextgevoelige DBNmod-
ellen toe op de data van de transliteratiedetectiecompetitie van Kumaran et al 2010a.
Deze data bestond uit paren van titels van Wikipedia-artikelen voor de taalparen
Engels-Arabisch, Engels-Chinees, Engels-Hindi, Engels-Russisch en Engels-Tamil.
Zowel de Pair HMMs als de DBNmodellen haalden goede scores voor de taalparen
Engels-Arabisch, Engels-Chinees en Engels-Russisch. Voor de taalparen Engels-Hindi
en Engels-Tamil presteerden de Pair HMMs gebaseerd op log-odds zelfs beter dan de
state-of-the-artmodellen gepresenteerd in Kumaran et al. (2010b).

Groningen Dissertations in Linguistics (Grodil)

1. Henriëtte de Swart (1991). Adverbs of Quantification: A Generalized Quantifier Approach.

2. Eric Hoekstra (1991). Licensing Conditions on Phrase Structure.

3. Dicky Gilbers (1992). Phonological Networks. A Theory of Segment Representation.

4. Helen de Hoop (1992). Case Configuration and Noun Phrase Interpretation.

5. Gosse Bouma (1993). Nonmonotonicity and Categorial Unification Grammar.

6. Peter Blok (1993). The Interpretation of Focus: an epistemic approach to pragmatics.

7. Roelien Bastiaanse (1993). Studies in Aphasia.

8. Bert Bos (1993). Rapid User Interface Development with the Script Language Gist.

9. Wim Kosmeijer (1993). Barriers and Licensing.

10. Jan-Wouter Zwart (1993). Dutch Syntax: A Minimalist Approach.

11. Mark Kas (1993). Essays on Boolean Functions and Negative Polarity.

12. Ton van der Wouden (1994). Negative Contexts.

13. Joop Houtman (1994). Coordination and Constituency: A Study in Categorial Grammar.

14. Petra Hendriks (1995). Comparatives and Categorial Grammar.

15. Maarten de Wind (1995). Inversion in French.

16. Jelly Julia de Jong (1996). The Case of Bound Pronouns in Peripheral Romance.

17. Sjoukje van der Wal (1996). Negative Polarity Items and Negation: Tandem Acquisition.

18. Anastasia Giannakidou (1997). The Landscape of Polarity Items.

19. Karen Lattewitz (1997). Adjacency in Dutch and German.

196 GRODIL

20. Edith Kaan (1997). Processing Subject-Object Ambiguities in Dutch.

21. Henny Klein (1997). Adverbs of Degree in Dutch.

22. Leonie Bosveld-de Smet (1998). On Mass and Plural Quantification: The Case of French
‘des’/‘du’-NPs.

23. Rita Landeweerd (1998). Discourse Semantics of Perspective and Temporal Structure.

24. Mettina Veenstra (1998). Formalizing the Minimalist Program.

25. Roel Jonkers (1998). Comprehension and Production of Verbs in Aphasic Speakers.

26. Erik F. Tjong Kim Sang (1998). Machine Learning of Phonotactics.

27. Paulien Rijkhoek (1998). On Degree Phrases and Result Clauses.

28. Jan de Jong (1999). Specific Language Impairment in Dutch: Inflectional Morphology and
Argument Structure.

29. H. Wee (1999). Definite Focus.

30. Eun-Hee Lee (2000). Dynamic and Stative Information in Temporal Reasoning: Korean
Tense and Aspect in Discourse.

31. Ivilin Stoianov (2001). Connectionist Lexical Processing.

32. Klarien van der Linde (2001). Sonority Substitutions.

33. Monique Lamers (2001). Sentence Processing: Using Syntactic, Semantic, and Thematic
Information.

34. Shalom Zuckerman (2001). The Acquisition of “Optional” Movement.

35. Rob Koeling (2001). Dialogue-Based Disambiguation: Using Dialogue Status to Improve
Speech Understanding.

36. Esther Ruigendijk (2002). Case Assignment in Agrammatism: a Cross-linguistic Study.

37. Tony Mullen (2002). An Investigation into Compositional Features and Feature Merging for
Maximum Entropy-Based Parse Selection.

38. Nanette Bienfait (2002). Grammatica-onderwijs aan allochtone jongeren.

39. Dirk-Bart den Ouden (2002). Phonology in Aphasia: Syllables and Segments in Level-specific
Deficits.

40. Rienk Withaar (2002). The Role of the Phonological Loop in Sentence Comprehension.

41. Kim Sauter (2002). Transfer and Access to Universal Grammar in Adult Second Language
Acquisition.

42. Laura Sabourin (2003). Grammatical Gender and Second Language Processing: An ERP
Study.

43. Hein van Schie (2003). Visual Semantics.

44. Lilia Schürcks-Grozeva (2003). Binding and Bulgarian.

45. Stasinos Konstantopoulos (2003). Using ILP to Learn Local Linguistic Structures.

46. Wilbert Heeringa (2004). Measuring Dialect Pronunciation Differences using Levenshtein
Distance.

47. Wouter Jansen (2004). Laryngeal Contrast and Phonetic Voicing: A Laboratory Phonology
Approach to English, Hungarian and Dutch.

GRODIL 197

48. Judith Rispens (2004). Syntactic and Phonological Processing in Developmental Dyslexia.

49. Danielle Bougaïré (2004). L’approche communicative des campagnes de sensibilisation en
santé publique au Burkina Faso: les cas de la planification familiale, du sida et de l’excision.

50. Tanja Gaustad (2004). Linguistic Knowledge and Word Sense Disambiguation.

51. Susanne Schoof (2004). An HPSG Account of Nonfinite Verbal Complements in Latin.

52. M. Begoña Villada Moirón (2005). Data-driven identification of fixed expressions and their
modifiability.

53. Robbert Prins (2005). Finite-State Pre-Processing for Natural Language Analysis.

54. Leonoor van der Beek (2005). Topics in Corpus-Based Dutch Syntax.

55. Keiko Yoshioka (2005). Linguistic and gestural introduction and tracking of referents in L1
and L2 discourse.

56. Sible Andringa (2005). Form-focused instruction and the development of second language
proficiency.

57. Joanneke Prenger (2005). Taal telt! Een onderzoek naar de rol van taalvaardigheid en
tekstbegrip in het realistisch wiskundeonderwijs.

58. Neslihan Kansu-Yetkiner (2006). Blood, Shame and Fear: Self-Presentation Strategies of
Turkish Women’s Talk about their Health and Sexuality.

59. Mónika Z. Zempléni (2006). Functional imaging of the hemispheric contribution to language
processing.

60. Maartje Schreuder (2006). Prosodic Processes in Language and Music.

61. Hidetoshi Shiraishi (2006). Topics in Nivkh Phonology.

62. Tamás Biró (2006). Finding the Right Words: Implementing Optimality Theory with Simu-
lated Annealing.

63. Dieuwke de Goede (2006). Verbs in Spoken Sentence Processing: Unraveling the Activation
Pattern of the Matrix Verb.

64. Eleonora Rossi (2007). Clitic production in Italian agrammatism.

65. Holger Hopp (2007). Ultimate Attainment at the Interfaces in Second Language Acquisition:
Grammar and Processing.

66. Gerlof Bouma (2008). Starting a Sentence in Dutch: A corpus study of subject- and object-
fronting.

67. Julia Klitsch (2008). Open your eyes and listen carefully. Auditory and audiovisual speech
perception and the McGurk effect in Dutch speakers with and without aphasia.

68. Janneke ter Beek (2008). Restructuring and Infinitival Complements in Dutch.

69. Jori Mur (2008). Off-line Answer Extraction for Question Answering.

70. Lonneke van der Plas (2008). Automatic Lexico-Semantic Acquisition for Question Answer-
ing.

71. Arjen Versloot (2008). Mechanisms of Language Change: Vowel reduction in 15th century
West Frisian.

72. Ismail Fahmi (2009). Automatic term and Relation Extraction for Medical Question An-
swering System.

198 GRODIL

73. Tuba Yarbay Duman (2009). Turkish Agrammatic Aphasia: Word Order, Time Reference
and Case.

74. Maria Trofimova (2009). Case Assignment by Prepositions in Russian Aphasia.

75. Rasmus Steinkrauss (2009). Frequency and Function in WH Question Acquisition. A Usage-
Based Case Study of German L1 Acquisition.

76. Marjolein Deunk (2009). Discourse Practices in Preschool. Young Children’s Participation
in Everyday Classroom Activities.

77. Sake Jager (2009). Towards ICT-Integrated Language Learning: Developing an Implemen-
tation Framework in terms of Pedagogy, Technology and Environment.

78. Francisco Dellatorre Borges (2010). Parse Selection with Support Vector Machines.

79. Geoffrey Andogah (2010). Geographically Constrained Information Retrieval.

80. Jacqueline van Kruiningen (2010). Onderwijsontwerp als conversatie. Probleemoplossing in
interprofessioneel overleg.

81. Robert G. Shackleton (2010). Quantitative Assessment of English-American Speech Rela-
tionships.

82. Tim Van de Cruys (2010). Mining for Meaning: The Extraction of Lexico-semantic Knowl-
edge from Text.

83. Therese Leinonen (2010). An Acoustic Analysis of Vowel Pronunciation in Swedish Dialects.

84. Erik-Jan Smits (2010). Acquiring Quantification. How Children Use Semantics and Prag-
matics to Constrain Meaning.

85. Tal Caspi (2010). A Dynamic Perspective on Second Language Development.

86. Teodora Mehotcheva (2010). After the fiesta is over. Foreign language attrition of Spanish
in Dutch and German Erasmus Students.

87. Xiaoyan Xu (2010). English language attrition and retention in Chinese and Dutch university
students.

88. Jelena Prokić (2010). Families and Resemblances.

89. Radek Šimík (2011). Modal existential wh-constructions.

90. Katrien Colman (2011). Behavioral and neuroimaging studies on language processing in
Dutch speakers with Parkinson’s disease.

91. Siti Mina Tamah (2011). A Study on Student Interaction in the Implementation of the Jigsaw
Technique in Language Teaching.

92. Aletta Kwant (2011). Geraakt door prentenboeken. Effecten van het gebruik van prenten-
boeken op de sociaal-emotionele ontwikkeling van kleuters.

93. Marlies Kluck (2011). Sentence amalgamation.

94. Anja Schüppert (2011). Origin of asymmetry: Mutual intelligibility of spoken Danish and
Swedish.

95. Peter Nabende (2011). Applying Dynamic Bayesian Networks in Transliteration Detection
and Generation.

Grodil
Secretary of the Department of General Linguistics
Postbus 716
9700 AS Groningen
The Netherlands

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Research goal
	1.3 Research approach
	1.4 Overview of the rest of the thesis

	2 A review on machine transliteration
	2.1 Introduction
	2.2 Transliteration Detection
	2.2.1 Data resources and transliteration detection methods
	2.2.2 Discussion

	2.3 Transliteration generation
	2.3.1 Phonetic-based transliteration generation
	2.3.2 Orthographic-based transliteration generation
	2.3.3 Discussion

	2.4 Conclusion

	3 Dynamic Bayesian Networks
	3.1 Introduction
	3.2 Bayesian networks
	3.2.1 Representation
	3.2.2 A transliteration example
	3.2.3 Bayesian networks – inference
	3.2.4 Bayesian Networks - Limitation

	3.3 Dynamic Bayesian Networks
	3.3.1 DBNs – representation
	3.3.2 Transliteration example
	3.3.3 DBNs – Inference
	3.3.4 DBNs – Learning

	3.4 Conclusion

	4 Pair HMMs for transliteration detection
	4.1 Introduction
	4.2 Hidden Markov Models
	4.2.1 A brief review on representation
	4.2.2 Recent use of HMMs in machine transliteration

	4.3 Pair Hidden Markov Models
	4.3.1 Origins
	4.3.2 Pair HMMs for modeling word similarity
	4.3.3 Pair HMMs for modeling transliteration similarity
	4.3.4 Pair HMMs – Inference
	4.3.5 Pair HMMs – parameter estimation

	4.4 Transliteration detection experiments using geographic names data
	4.4.1 Data
	4.4.2 Evaluation setup and results

	4.5 Experiments using NEWS 2009 and 2010 shared task data
	4.5.1 Data
	4.5.2 Evaluation setup and results

	4.6 Conclusion

	5 Transduction-based DBN models for transliteration detection
	5.1 Introduction
	5.2 Transduction-based DBN models
	5.2.1 The memoryless stochastic transducer
	5.2.2 Representing the RY transducer as a DBN
	5.2.3 DBN templates for modeling transliteration similarity
	5.2.4 Inference

	5.3 Experiments (NEWS 2009 and 2010 shared task data)
	5.3.1 Data
	5.3.2 Evaluation setup and results
	5.3.3 Error Analysis
	5.3.4 Computing transliteration similarity based on ensembles of DBN models

	5.4 Conclusion

	6 Applying DBN models in mining transliterations from Wikipedia
	6.1 Introduction
	6.2 Wikipedia – A source for transliteration mining
	6.2.1 Transliteration mining using Wikipedia inter-language links
	6.2.2 Transliteration mining using comparable Wikipedia article text

	6.3 DBN model selection for transliteration mining
	6.3.1 Pair HMMs
	6.3.2 Transduction-based context-dependent DBN models

	6.4 Experiments using NEWS 2010 shared task setup
	6.4.1 Wikipedia inter-language link data
	6.4.2 Evaluation setup and results

	6.5 Experiments using comparable article content
	6.5.1 Extracting training data from Wikipedia
	6.5.2 Comparable Wikipedia article content data
	6.5.3 Evaluation setup and results

	6.6 Conclusion

	7 Applying Pair HMMs in transliteration generation
	7.1 Introduction
	7.2 Transliteration generation tasks
	7.2.1 Traditional machine transliteration task
	7.2.2 Translating transliterations task

	7.3 Using Pair HMMs in transliteration generation
	7.3.1 Finite state automata
	7.3.2 Representing Pair HMMs as WFSTs

	7.4 Experiments using NEWS 2009-2010 shared task data
	7.4.1 Data
	7.4.2 Transliteration models
	7.4.3 Evaluation metrics
	7.4.4 Results

	7.5 Experiments on translating transliterations
	7.5.1 Data
	7.5.2 Transliteration models
	7.5.3 Evaluation metrics
	7.5.4 Results

	7.6 Conclusion

	8 Conclusions and future work
	8.1 Conclusions
	8.2 Future work

	Bibliography
	Index
	Summary
	Samenvatting
	Grodil

