1,135 research outputs found

    Computer-aided design and distributed system technology development for large space structures

    Get PDF
    Proposed large space structures have many characteristics that make them difficult to analyze and control. They are highly flexible, with components mathematically modeled by partial differential equations or very large systems of ordinary differential equations. They have many resonant frequencies, typically low and closely spaced. Natural damping may be low and/or improperly modeled. Coupled with stringent operational requirements of orientation, shape control, and vibration suppression, and the inability to perform adequate ground testing, these characteristics present an unconventional identification and control design problem to the systems theorist. Some of the research underway within Langley's Spacecraft Control Branch, Guidance and Control Division aimed at developing theory and algorithms to treat large space structures systems identification and control problems is described. The research areas to be considered are computer-aided design algorithms, and systems identification and control of distributed systems

    Analysis of Implicit Uncertain Systems. Part II: Constant Matrix Problems and Application to Robust H2 Analysis

    Get PDF
    This paper introduces an implicit framework for the analysis of uncertain systems, of which the general properties were described in Part I. In Part II, the theory is specialized to problems which admit a finite dimensional formulation. A constant matrix version of implicit analysis is presented, leading to a generalization of the structured singular value μ as the stability measure; upper bounds are developed and analyzed in detail. An application of this framework results in a practical method for robust H2 analysis: computing robust performance in the presence of norm-bounded perturbations and white-noise disturbances

    Identification of parametric models in the frequency-domain through the subspace framework under LMI constraints

    Get PDF
    International audienceIn this paper, an algorithm to identify parametric systems with an affine (or polynomial) parameter dependence through the subspace framework is proposed. It stands as an extension of the standard subspace-based algorithm which is well established in the Linear Time Invariant (LTI) case. The formulation is close to the LTI identification scheme and simply involves frequency-domain data obtained at different operating points (the parameters are frozen during each experiment). The proposed algorithm allows to identify directly a parameter-dependent model instead of interpolating multiple local models as in traditional local approaches. Another contribution is that it is possible to impose the poles location through Linear Matrix Inequalities (LMI) constraints, extending what has been done in the LTI case. This technique is applied to a numerical example and to real industrial frequency-domain data originating from an open-channel flow simulation for hydroelectricity production

    Maximum Entropy Vector Kernels for MIMO system identification

    Full text link
    Recent contributions have framed linear system identification as a nonparametric regularized inverse problem. Relying on â„“2\ell_2-type regularization which accounts for the stability and smoothness of the impulse response to be estimated, these approaches have been shown to be competitive w.r.t classical parametric methods. In this paper, adopting Maximum Entropy arguments, we derive a new â„“2\ell_2 penalty deriving from a vector-valued kernel; to do so we exploit the structure of the Hankel matrix, thus controlling at the same time complexity, measured by the McMillan degree, stability and smoothness of the identified models. As a special case we recover the nuclear norm penalty on the squared block Hankel matrix. In contrast with previous literature on reweighted nuclear norm penalties, our kernel is described by a small number of hyper-parameters, which are iteratively updated through marginal likelihood maximization; constraining the structure of the kernel acts as a (hyper)regularizer which helps controlling the effective degrees of freedom of our estimator. To optimize the marginal likelihood we adapt a Scaled Gradient Projection (SGP) algorithm which is proved to be significantly computationally cheaper than other first and second order off-the-shelf optimization methods. The paper also contains an extensive comparison with many state-of-the-art methods on several Monte-Carlo studies, which confirms the effectiveness of our procedure

    Mathematical correlation of modal parameter identification methods via system realization theory

    Get PDF
    A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification

    Fractional - order system modeling and its applications

    Get PDF
    In order to control or operate any system in a closed-loop, it is important to know its behavior in the form of mathematical models. In the last two decades, a fractional-order model has received more attention in system identification instead of classical integer-order model transfer function. Literature shows recently that some techniques on fractional calculus and fractional-order models have been presenting valuable contributions to real-world processes and achieved better results. Such new developments have impelled research into extensions of the classical identification techniques to advanced fields of science and engineering. This article surveys the recent methods in the field and other related challenges to implement the fractional-order derivatives and miss-matching with conventional science. The comprehensive discussion on available literature would help the readers to grasp the concept of fractional-order modeling and can facilitate future investigations. One can anticipate manifesting recent advances in fractional-order modeling in this paper and unlocking more opportunities for research

    Controllability analysis of industrial processes : towards the industrial application

    Get PDF
    • …
    corecore