184 research outputs found

    Subshifts as Models for MSO Logic

    Full text link
    We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of tilings, and of universal sentences in terms of combinations of "pattern counting" subshifts. Conversely, we characterise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts). Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier by Giammarresi et al.Comment: arXiv admin note: substantial text overlap with arXiv:0904.245

    Subshifts, MSO Logic, and Collapsing Hierarchies

    Full text link
    We use monadic second-order logic to define two-dimensional subshifts, or sets of colorings of the infinite plane. We present a natural family of quantifier alternation hierarchies, and show that they all collapse to the third level. In particular, this solves an open problem of [Jeandel & Theyssier 2013]. The results are in stark contrast with picture languages, where such hierarchies are usually infinite.Comment: 12 pages, 5 figures. To appear in conference proceedings of TCS 2014, published by Springe

    Decidability and Universality in Symbolic Dynamical Systems

    Full text link
    Many different definitions of computational universality for various types of dynamical systems have flourished since Turing's work. We propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined as undecidability of a model-checking problem. For Turing machines, counter machines and tag systems, our definition coincides with the classical one. It yields, however, a new definition for cellular automata and subshifts. Our definition is robust with respect to initial condition, which is a desirable feature for physical realizability. We derive necessary conditions for undecidability and universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have infinite number of subsystems. We also discuss the thesis according to which computation should occur at the `edge of chaos' and we exhibit a universal chaotic system.Comment: 23 pages; a shorter version is submitted to conference MCU 2004 v2: minor orthographic changes v3: section 5.2 (collatz functions) mathematically improved v4: orthographic corrections, one reference added v5:27 pages. Important modifications. The formalism is strengthened: temporal logic replaced by finite automata. New results. Submitte

    Enumeration Reducibility in Closure Spaces with Applications to Logic and Algebra

    Full text link
    In many instances in first order logic or computable algebra, classical theorems show that many problems are undecidable for general structures, but become decidable if some rigidity is imposed on the structure. For example, the set of theorems in many finitely axiomatisable theories is nonrecursive, but the set of theorems for any finitely axiomatisable complete theory is recursive. Finitely presented groups might have an nonrecursive word problem, but finitely presented simple groups have a recursive word problem. In this article we introduce a topological framework based on closure spaces to show that many of these proofs can be obtained in a similar setting. We will show in particular that these statements can be generalized to cover arbitrary structures, with no finite or recursive presentation/axiomatization. This generalizes in particular work by Kuznetsov and others. Examples from first order logic and symbolic dynamics will be discussed at length

    The large scale geometry of strongly aperiodic subshifts of finite type

    Full text link
    A subshift on a group G is a closed, G-invariant subset of A^G, for some finite set A. It is said to be a subshift of finite type (SFT) if it is defined by a finite collection of 'forbidden patterns', to be strongly aperiodic if all point stabilizers are trivial, and weakly aperiodic if all point stabilizers are infinite index in G. We show that groups with at least 2 ends have a strongly aperiodic SFT, and that having such an SFT is a QI invariant for finitely presented torsion free groups. We show that a finitely presented torsion free group with no weakly aperiodic SFT must be QI-rigid. The domino problem on G asks whether the SFT specified by a given set of forbidden patterns is empty. We show that decidability of the domino problem is a QI invariant.Comment: 23 pages, 6 figures. The proof of the main theorem has been simplified and some new corollaries deduce

    Subshifts as Models for MSO Logic

    Get PDF
    We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of tilings, and of universal sentences in terms of combinations of ''pattern counting'' subshifts. Conversely, we characterise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts). Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier by Giammarresi et al
    • …
    corecore