Many different definitions of computational universality for various types of
dynamical systems have flourished since Turing's work. We propose a general
definition of universality that applies to arbitrary discrete time symbolic
dynamical systems. Universality of a system is defined as undecidability of a
model-checking problem. For Turing machines, counter machines and tag systems,
our definition coincides with the classical one. It yields, however, a new
definition for cellular automata and subshifts. Our definition is robust with
respect to initial condition, which is a desirable feature for physical
realizability.
We derive necessary conditions for undecidability and universality. For
instance, a universal system must have a sensitive point and a proper
subsystem. We conjecture that universal systems have infinite number of
subsystems. We also discuss the thesis according to which computation should
occur at the `edge of chaos' and we exhibit a universal chaotic system.Comment: 23 pages; a shorter version is submitted to conference MCU 2004 v2:
minor orthographic changes v3: section 5.2 (collatz functions) mathematically
improved v4: orthographic corrections, one reference added v5:27 pages.
Important modifications. The formalism is strengthened: temporal logic
replaced by finite automata. New results. Submitte