We use monadic second-order logic to define two-dimensional subshifts, or
sets of colorings of the infinite plane. We present a natural family of
quantifier alternation hierarchies, and show that they all collapse to the
third level. In particular, this solves an open problem of [Jeandel & Theyssier
2013]. The results are in stark contrast with picture languages, where such
hierarchies are usually infinite.Comment: 12 pages, 5 figures. To appear in conference proceedings of TCS 2014,
published by Springe