79 research outputs found

    Resource allocation in future green wireless networks : applications and challenges

    Get PDF
    Over the past few years, green radio communication has been an emerging topic since the footprint from the Information and Communication Technologies (ICT) is predicted to increase 7.3% annually and then exceed 14% of the global footprint by 2040. Moreover, the explosive progress of ICT, e.g., the fifth generation (5G) networks, has resulted in expectations of achieving 10-fold longer device battery lifetime, and 1000-fold higher global mobile data traffic over the fourth generation (4G) networks. Therefore, the demands for increasing the data rate and the lifetime while reducing the footprint in the next-generation wireless networks call for more efficient utilization of energy and other resources. To overcome this challenge, the concepts of small-cell, energy harvesting, and wireless information and power transfer networks can be evaluated as promising solutions for re-greening the world. In this dissertation, the technical contributions in terms of saving economical cost, protecting the environment, and guaranteeing human health are provided. More specifically, novel communication scenarios are proposed to minimize energy consumption and hence save economic costs. Further, energy harvesting (EH) techniques are applied to exploit available green resources in order to reduce carbon footprint and then protect the environment. In locations where implemented user devices might not harvest energy directly from natural resources, base stations could harvest-and-store green energy and then use such energy to power the devices wirelessly. However, wireless power transfer (WPT) techniques should be used in a wise manner to avoid electromagnetic pollution and then guarantee human health. To achieve all these aspects simultaneously, this thesis proposes promising schemes to optimally manage and allocate resources in future networks. Given this direction, in the first part, Chapter 2 mainly studies a transmission power minimization scheme for a two-tier heterogeneous network (HetNet) over frequency selective fading channels. In addition, the HetNet backhaul connection is unable to support a sufficient throughput for signaling an information exchange between two tiers. A novel idea is introduced in which the time reversal (TR) beamforming technique is used at a femtocell while zero-forcing-based beamforming is deployed at a macrocell. Thus, a downlink power minimizationscheme is proposed, and optimal closed-form solutions are provided. In the second part, Chapters 3, 4, and 5 concentrate on EH and wireless information and power transfer (WIPT) using RF signals. More specifically, Chapter 3 presents an overview of the recent progress in green radio communications and discusses potential technologies for some emerging topics on the platforms of EH and WPT. Chapter 4 develops a new integrated information and energy receiver architecture based on the direct use of alternating current (AC) for computation. It is shown that the proposed approach enhances not only the computational ability but also the energy efficiency over the conventional one. Furthermore, Chapter 5 proposes a novel resource allocation scheme in simultaneous wireless information and power transfer (SWIPT) networks where three crucial issues: power-efficient improvement, user-fairness guarantee, and non-ideal channel reciprocity effect mitigation, are jointly addressed. Hence, novel methods to derive optimal and suboptimal solutions are provided. In the third part, Chapters 6, 7, and 8 focus on simultaneous lightwave information and power transfer (SLIPT) for indoor applications, as a complementary technology to RF SWIPT. In this research, Chapter 6 investigates a hybrid RF/visible light communication (VLC) ultrasmall cell network where optical transmitters deliver information and power using the visible light, whereas an RF access point works as a complementary power transfer system. Thus, a novel resource allocation scheme exploiting RF and visible light for power transfer is devised. Chapter 7 proposes the use of lightwave power transfer to enable future sustainable Federated Learning (FL)-based wireless networks. FL is a new data privacy protection technique for training shared machine learning models in a distributed approach. However, the involvement of energy-constrained mobile devices in the construction of the shared learning models may significantly reduce their lifetime. The proposed approach can support the FL-based wireless network to overcome the issue of limited energy at mobile devices. Chapter 8 introduces a novel framework for collaborative RF and lightwave power transfer for wireless communication networks. The constraints on the transmission power set by safety regulations result in significant challenges to enhance the power transfer performance. Thus, the study of technologies complementary to conventional RF SWIPT is essential. To cope with this isue, this chapter proposes a novel collaborative RF and lightwave power transfer technology for next-generation wireless networks

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Resource Allocation in Energy Cooperation Enabled 5G Cellular Networks

    Get PDF
    PhD thesisIn fifth generation (5G) networks, more base stations (BSs) and antennas have been deployed to meet the high data rate and spectrum efficiency requirements. Heterogeneous and ultra dense networks not only pose substantial challenges to the resource allocation design, but also lead to unprecedented surge in energy consumption. Supplying BSs with renewable energy by utilising energy harvesting technology has became a favourable solution for cellular network operators to reduce the grid energy consumption. However, the harvested renewable energy is fluctuating in both time and space domains. The available energy for a particular BS at a particular time might be insufficient to meet the traffic demand which will lead to renewable energy waste or increased outage probability. To solve this problem, the concept of energy cooperation was introduced by Sennur Ulukus in 2012 as a means for transferring and sharing energy between the transmitter and the receiver. Nevertheless, resource allocation in energy cooperation enabled cellular networks is not fully investigated. This thesis investigates resource allocation schemes and resource allocation optimisation in energy cooperation enabled cellular networks that employed advanced 5G techniques, aiming at maximising the energy efficiency of the cellular network while ensuring the network performance. First, a power control algorithm is proposed for energy cooperation enabled millimetre wave (mmWave) HetNets. The aim is to maximise the time average network data rate while keeping the network stable such that the network backlog is bounded and the required battery capacity is finite. Simulation results show that the proposed power control scheme can reduce the required battery capacity and improve the network throughput. Second, resource allocation in energy cooperation enabled heterogeneous networks (Het- Nets) is investigated. User association and power control schemes are proposed to maximise the energy efficiency of the whole network respectively. The simulation results reveal that the implementation of energy cooperation in HetNets can improve the energy efficiency and the improvement is apparent when the energy transfer efficiency is high. Following on that, a novel resource allocation for energy cooperation enabled nonorthogonal multiple access (NOMA) HetNets is presented. Two user association schemes which have different complexities and performances are proposed and compared. Following on that, a joint user association and power control algorithm is proposed to maximise the energy efficiency of the network. It is confirmed from the simulation results that the proposed resource allocation schemes efficiently coordinate the intra-cell and inter-cell interference in NOMA HetNets with energy cooperation while exploiting the multiuser diversity and BS densification. Last but not least, a joint user association and power control scheme that considers the different content requirements of users is proposed for energy cooperation enabled caching HetNets. It shows that the proposed scheme significantly enhances the energy efficiency performance of caching HetNets

    Benefits and limits of machine learning for the implicit coordination on SON functions

    Get PDF
    Bedingt durch die Einführung neuer Netzfunktionen in den Mobilfunknetzen der nächsten Generation, z. B. Slicing oder Mehrantennensysteme, sowie durch die Koexistenz mehrerer Funkzugangstechnologien, werden die Optimierungsaufgaben äußerst komplex und erhöhen die OPEX (OPerational EXpenditures). Um den Nutzern Dienste mit wettbewerbsfähiger Dienstgüte (QoS) zu bieten und gleichzeitig die Betriebskosten niedrig zu halten, wurde von den Standardisierungsgremien das Konzept des selbstorganisierenden Netzes (SON) eingeführt, um das Netzmanagement um eine Automatisierungsebene zu erweitern. Es wurden dafür mehrere SON-Funktionen (SFs) vorgeschlagen, um einen bestimmten Netzbereich, wie Abdeckung oder Kapazität, zu optimieren. Bei dem konventionellen Entwurf der SFs wurde jede Funktion als Regler mit geschlossenem Regelkreis konzipiert, der ein lokales Ziel durch die Einstellung bestimmter Netzwerkparameter optimiert. Die Beziehung zwischen mehreren SFs wurde dabei jedoch bis zu einem gewissen Grad vernachlässigt. Daher treten viele widersprüchliche Szenarien auf, wenn mehrere SFs in einem mobilen Netzwerk instanziiert werden. Solche widersprüchlichen Funktionen in den Netzen verschlechtern die QoS der Benutzer und beeinträchtigen die Signalisierungsressourcen im Netz. Es wird daher erwartet, dass eine existierende Koordinierungsschicht (die auch eine Entität im Netz sein könnte) die Konflikte zwischen SFs lösen kann. Da diese Funktionen jedoch eng miteinander verknüpft sind, ist es schwierig, ihre Interaktionen und Abhängigkeiten in einer abgeschlossenen Form zu modellieren. Daher wird maschinelles Lernen vorgeschlagen, um eine gemeinsame Optimierung eines globalen Leistungsindikators (Key Performance Indicator, KPI) so voranzubringen, dass die komplizierten Beziehungen zwischen den Funktionen verborgen bleiben. Wir nennen diesen Ansatz: implizite Koordination. Im ersten Teil dieser Arbeit schlagen wir eine zentralisierte, implizite und auf maschinellem Lernen basierende Koordination vor und wenden sie auf die Koordination zweier etablierter SFs an: Mobility Robustness Optimization (MRO) und Mobility Load Balancing (MLB). Anschließend gestalten wir die Lösung dateneffizienter (d. h. wir erreichen die gleiche Modellleistung mit weniger Trainingsdaten), indem wir eine geschlossene Modellierung einbetten, um einen Teil des optimalen Parametersatzes zu finden. Wir nennen dies einen "hybriden Ansatz". Mit dem hybriden Ansatz untersuchen wir den Konflikt zwischen MLB und Coverage and Capacity Optimization (CCO) Funktionen. Dann wenden wir ihn auf die Koordinierung zwischen MLB, Inter-Cell Interference Coordination (ICIC) und Energy Savings (ES) Funktionen an. Schließlich stellen wir eine Möglichkeit vor, MRO formal in den hybriden Ansatz einzubeziehen, und zeigen, wie der Rahmen erweitert werden kann, um anspruchsvolle Netzwerkszenarien wie Ultra-Reliable Low Latency Communications (URLLC) abzudecken.Due to the introduction of new network functionalities in next-generation mobile networks, e.g., slicing or multi-antenna systems, as well as the coexistence of multiple radio access technologies, the optimization tasks become extremely complex, increasing the OPEX (OPerational EXpenditures). In order to provide services to the users with competitive Quality of Service (QoS) while keeping low operational costs, the Self-Organizing Network (SON) concept was introduced by the standardization bodies to add an automation layer to the network management. Thus, multiple SON functions (SFs) were proposed to optimize a specific network domain, like coverage or capacity. The conventional design of SFs conceived each function as a closed-loop controller optimizing a local objective by tuning specific network parameters. However, the relationship among multiple SFs was neglected to some extent. Therefore, many conflicting scenarios appear when multiple SFs are instantiated in a mobile network. Having conflicting functions in the networks deteriorates the users’ QoS and affects the signaling resources in the network. Thus, it is expected to have a coordination layer (which could also be an entity in the network), conciliating the conflicts between SFs. Nevertheless, due to interleaved linkage among those functions, it is complex to model their interactions and dependencies in a closed form. Thus, machine learning is proposed to drive a joint optimization of a global Key Performance Indicator (KPI), hiding the intricate relationships between functions. We call this approach: implicit coordination. In the first part of this thesis, we propose a centralized, fully-implicit coordination approach based on machine learning (ML), and apply it to the coordination of two well-established SFs: Mobility Robustness Optimization (MRO) and Mobility Load Balancing (MLB). We find that this approach can be applied as long as the coordination problem is decomposed into three functional planes: controllable, environmental, and utility planes. However, the fully-implicit coordination comes at a high cost: it requires a large amount of data to train the ML models. To improve the data efficiency of our approach (i.e., achieving good model performance with less training data), we propose a hybrid approach, which mixes ML with closed-form models. With the hybrid approach, we study the conflict between MLB and Coverage and Capacity Optimization (CCO) functions. Then, we apply it to the coordination among MLB, Inter-Cell Interference Coordination (ICIC), and Energy Savings (ES) functions. With the hybrid approach, we find in one shot, part of the parameter set in an optimal manner, which makes it suitable for dynamic scenarios in which fast response is expected from a centralized coordinator. Finally, we present a manner to formally include MRO in the hybrid approach and show how the framework can be extended to cover challenging network scenarios like Ultra-Reliable Low Latency Communications (URLLC)
    corecore