139,170 research outputs found

    Subjective Causality and Counterfactuals in the Social Sciences

    Get PDF
    The article explores the role that subjective evidence of causality and associated counterfactuals and counterpotentials might play in the social sciences where comparative cases are scarce. This scarcity rules out statistical inference based upon frequencies and usually invites in-depth ethnographic studies. Thus, if causality is to be preserved in such situations, a conception of ethnographic causal inference is required. Ethnographic causality inverts the standard statistical concept of causal explanation in observational studies, whereby comparison and generalization, across a sample of cases, are both necessary prerequisites for any causal inference. Ethnographic causality allows, in contrast, for causal explanation prior to any subsequent comparison or generalization

    Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule

    Full text link
    In this paper, a likelihood based evidence acquisition approach is proposed to acquire evidence from experts'assessments as recorded in historical datasets. Then a data-driven evidential reasoning rule based model is introduced to R&D project selection process by combining multiple pieces of evidence with different weights and reliabilities. As a result, the total belief degrees and the overall performance can be generated for ranking and selecting projects. Finally, a case study on the R&D project selection for the National Science Foundation of China is conducted to show the effectiveness of the proposed model. The data-driven evidential reasoning rule based model for project evaluation and selection (1) utilizes experimental data to represent experts' assessments by using belief distributions over the set of final funding outcomes, and through this historic statistics it helps experts and applicants to understand the funding probability to a given assessment grade, (2) implies the mapping relationships between the evaluation grades and the final funding outcomes by using historical data, and (3) provides a way to make fair decisions by taking experts' reliabilities into account. In the data-driven evidential reasoning rule based model, experts play different roles in accordance with their reliabilities which are determined by their previous review track records, and the selection process is made interpretable and fairer. The newly proposed model reduces the time-consuming panel review work for both managers and experts, and significantly improves the efficiency and quality of project selection process. Although the model is demonstrated for project selection in the NSFC, it can be generalized to other funding agencies or industries.Comment: 20 pages, forthcoming in International Journal of Project Management (2019

    Beyond subjective and objective in statistics

    Full text link
    We argue that the words "objectivity" and "subjectivity" in statistics discourse are used in a mostly unhelpful way, and we propose to replace each of them with broader collections of attributes, with objectivity replaced by transparency, consensus, impartiality, and correspondence to observable reality, and subjectivity replaced by awareness of multiple perspectives and context dependence. The advantage of these reformulations is that the replacement terms do not oppose each other. Instead of debating over whether a given statistical method is subjective or objective (or normatively debating the relative merits of subjectivity and objectivity in statistical practice), we can recognize desirable attributes such as transparency and acknowledgment of multiple perspectives as complementary goals. We demonstrate the implications of our proposal with recent applied examples from pharmacology, election polling, and socioeconomic stratification.Comment: 35 page

    Interoceptive inference, emotion, and the embodied self

    Get PDF
    The concept of the brain as a prediction machine has enjoyed a resurgence in the context of the Bayesian brain and predictive coding approaches within cognitive science. To date, this perspective has been applied primarily to exteroceptive perception (e.g., vision, audition), and action. Here, I describe a predictive, inferential perspective on interoception: ‘interoceptive inference’ conceives of subjective feeling states (emotions) as arising from actively-inferred generative (predictive) models of the causes of interoceptive afferents. The model generalizes ‘appraisal’ theories that view emotions as emerging from cognitive evaluations of physiological changes, and it sheds new light on the neurocognitive mechanisms that underlie the experience of body ownership and conscious selfhood in health and in neuropsychiatric illness

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    An Account of Opinion Implicatures

    Full text link
    While previous sentiment analysis research has concentrated on the interpretation of explicitly stated opinions and attitudes, this work initiates the computational study of a type of opinion implicature (i.e., opinion-oriented inference) in text. This paper described a rule-based framework for representing and analyzing opinion implicatures which we hope will contribute to deeper automatic interpretation of subjective language. In the course of understanding implicatures, the system recognizes implicit sentiments (and beliefs) toward various events and entities in the sentence, often attributed to different sources (holders) and of mixed polarities; thus, it produces a richer interpretation than is typical in opinion analysis.Comment: 50 Pages. Submitted to the journal, Language Resources and Evaluatio

    Comment: Expert Elicitation for Reliable System Design

    Full text link
    Comment: Expert Elicitation for Reliable System Design [arXiv:0708.0279]Comment: Published at http://dx.doi.org/10.1214/088342306000000547 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multiple perspectives on the concept of conditional probability

    Get PDF
    Conditional probability is a key to the subjectivist theory of probability; however, it plays a subsidiary role in the usual conception of probability where its counterpart, namely independence is of basic importance. The paper investigates these concepts from various perspectives in order to shed light on their multi-faceted character. We will include the mathematical, philosophical, and educational perspectives. Furthermore, we will inspect conditional probability from the corners of competing ideas and solving strategies. For the comprehension of conditional probability, a wider approach is urgently needed to overcome the well-known problems in learning the concepts, which seem nearly unaffected by teaching

    A General Framework for Updating Belief Distributions

    Full text link
    We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered under the special case of using self information loss. Modern application areas make it is increasingly challenging for Bayesians to attempt to model the true data generating mechanism. Moreover, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our proposed framework uses loss-functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known, yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.Comment: This is the pre-peer reviewed version of the article "A General Framework for Updating Belief Distributions", which has been accepted for publication in the Journal of Statistical Society - Series B. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archivin

    Active inference and oculomotor pursuit: the dynamic causal modelling of eye movements.

    Get PDF
    This paper introduces a new paradigm that allows one to quantify the Bayesian beliefs evidenced by subjects during oculomotor pursuit. Subjects' eye tracking responses to a partially occluded sinusoidal target were recorded non-invasively and averaged. These response averages were then analysed using dynamic causal modelling (DCM). In DCM, observed responses are modelled using biologically plausible generative or forward models - usually biophysical models of neuronal activity
    corecore