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Perspectivas múltiples sobre el concepto de probabilidad condicional 

Resumen 

La probabilidad condicional es clave en la teoría subjetiva de la probabilidad; sin embargo juega 

un papel subsidiario en la concepción usual de la probabilidad, donde su contrapartida, es decir, la 

independencia, es de importancia básica. El artículo investiga estos conceptos desde varias 

perspectivas para arrojar luz sobre su carácter multifacético. Incluiremos las perspectivas matemática, 

filosófica y educativa. También se analizará la probabilidad condicional desde los ángulos de las ideas 

que compiten con ella y las estrategias de resolución. Para comprender la probabilidad condicional se 

requiere urgentemente una aproximación más amplia para superar los problemas bien conocidos de 

aprendizaje del concepto, que apenas parecen afectados por la enseñanza. 

Palabras clave. Probabilidad condicional, probabilidad subjetiva, pensamiento probabilístico, 

falacias, paradojas en probabilidad. 

 

Múltiplas perspetivas sobre o conceito de probabilidade condicionada 

Resumo 

A probabilidade condicionada é a chave para a teoria subjetivista de probabilidade; contudo, ela 

desempenha um papel subsidiário na conceção usual de probabilidade onde a sua contraparte, 

nomeadamente a independência, é de importância fundamental. No artigo investigam-se estes conceitos 

de várias perspetivas em ordem a lançar luz sobre o seu caráter multifacetado. Incluem-se as 

perspetivas matemática, filosófica e educacional. Além disso, inspecionamos a probabilidade 

condicionada a partir de ideias concorrentes e estratégias de resolução. Para a compreensão da 

probabilidade condicional é urgentemente necessária uma abordagem mais ampla para vencer os 

problemas bem conhecidos na sua aprendizagem, os quais parecem praticamente não serafetados pelo 

ensino. 

Palavras-chave. Probabilidade condicional; probabilidade subjetiva; pensamento probabilístico; 

falácias; paradoxos em probabilidades. 
 

Multiple perspectives on the concept of conditional probability 

Abstract 

Conditional probability is a key to the subjectivist theory of probability; however, it plays a 

subsidiary role in the usual conception of probability where its counterpart, namely independence is of 
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basic importance. The paper investigates these concepts from various perspectives in order to shed light 

on their multi-faceted character. We will include the mathematical, philosophical, and educational 

perspectives. Furthermore, we will inspect conditional probability from the corners of competing ideas 

and solving strategies. For the comprehension of conditional probability, a wider approach is urgently 

needed to overcome the well-known problems in learning the concepts, which seem nearly unaffected by 

teaching. 

Keywords. Conditional probability, subjective probability, probabilistic thinking, fallacies, 

paradoxes in probability. 

 

Multiples points de vue sur le concept de probabilité conditionnelle 

Résumé 

La probabilité conditionnelle est une des clés de la théorie subjectiviste des probabilités, mais elle 

joue un rôle secondaire dans la conception habituelle de probabilité où sa contrepartie, à savoir 

l'indépendance est d'une importance fondamentale. Cet article examine ces concepts à partir de 

perspectives différentes afin de faire la lumière sur leur caractère multiforme. Nous inclurons les 

perspectives mathématiques philosophiques et pédagogiques. En outre, nous allons inspecter la 

probabilité conditionnelle des angles d'idées concurrentes et les stratégies de résolution. Pour la 

compréhension de la probabilité conditionnelle, une approche plus large est urgente pour surmonter les 

problèmes bien connus dans l'apprentissage des concepts qui semblent presque pas affectée par 

l'enseignement. 

Mots-clés. Probabilité conditionnelle; probabilité subjective; la pensée probabiliste; erreurs; 

paradoxes de la probabilité. 

  

 

1. Introductory remarks 

The usual answer to experienced difficulties in learning is to simplify the concepts 

and the choice with probability is the simulation method, which exploits the close 

relation between probabilities and relative frequencies.  

While with probabilities the connection to relative frequencies might work, 

conditional probabilities remind us of the inherent dual character of probability as it 

adheres as a property to objects while at the same time it forms only a judgement in our 

creative mind: the object-subject duality defies simple reductions to one part. While the 

controversy in the foundations of probability and statistics has lost its fire and the 

philosophers let it unresolved – as in the foundations of mathematics after Gödel’s 

theorems –, and in applications that concept is used, which is more helpful for the 

current problem, yet in teaching a biased approach is pursued, which reduces 

probability and conditional probability completely to some entity close to relative 

frequencies. 

In this paper some ideas presented in an invited lecture at ICME 12 are elaborated 

(Borovcnik, 2012). We will start our analyses with an investigation from the 

mathematical and philosophical perspective (Section 2) and continue with a review of 

difficulties in teaching the concept and the current awareness of the problems (Section 

3). The perspective of competing ideas (Section 4) will embed the rational 

mathematical approach into contending approaches such as causal readings of the 

situation, which are far more attractive to many people. To illustrate matters, we will 

use the Monty Hall problem. The perspective of solving strategies (Section 5) will 

categorize major types of strategies and explain cornerstones of their inherent view. In 
the conclusions (Section 6) we will discuss a programme to find a best teaching method 
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and will provide arguments for using a probabilistic approach instead of a simplifying 

one, as well as for developing a programme for further educational research. 

 

2. A mathematical and philosophical perspective 

What is randomness, or more specific, what is a random situation? The answer to 

this question changed by the development of formal concepts still is sensitive to the 

general cultural background and depends on the school of probability one adheres to. 

We will deal with crucial ingredients of both the objectivist and the subjectivist school, 

their key objects, and the theoretic justification of their basic ideas. Independence and 

conditional probability will accompany us as will Bayes’ formula, which will serve as 

criterion for the adequateness of the like conception of probability. The philosophical 

perspective will lead to a dilemma between the demand of science to be objective and 

the demand of cognition to have a theory and procedures that extend and enhance 

thinking.  

The multi-faceted character of probability as seen from a mathematical and 

philosophical perspective has been analyzed in several important works. Our 

background is formed by sources like Batanero, Henry, & Parzysz (2005), or Kapadia 

and Borovcnik (1991), and Borovcnik and Kapadia (2013a); for the controversy in the 

foundations of probability we learnt from Hacking (1975; 1990) and Stegmüller 

(1973). The bridge to history, especially to the history of physics is laid by von Plato 

(1994). 

 

2.1. Objectivist setting of the theory of probability 

Historically, probability was closely related to provability: the more reasons one 

could find for a statement as compared to reasons against it, the more provable the 

statement was. Jacob Bernoulli (1713/1987) may be seen as tipping point in the 

emergence of probability as expressed by a number (between 0 and 1), which is bound 

to an object. Yet, a whole chapter of his Ars conjectandi is still devoted to the art of 

combining reasons for and against a statement (Shafer, 1996). 

For the objectivists probability is separated from a person’s judgements; it is a 

property inherent to an object like a physical property of it. The situations where such 

probabilities apply are indirectly determined by the axiomatic theory of Kolmogorov 

(1933/1957). Amongst others, the (weak) law of large numbers – already proven by 

Bernoulli – with the implicit assumption of an independently repeated binary 

experiment determines these situations. The relative frequency assumes a central 

function to measure probability replacing subjective weighing procedures as the 

corresponding random variable “converges” to the underlying probability.  

This extends the scope of probability far beyond symmetric situations as in games 

of chance where weighing the evidence was essentially undisputed. It shifts also away 

the connotation from provability to probability as a property of the object as specified 

in the experiment. The repetition of random experiments is conceptualized by the 

concept of independence. While independence and dependence are defined by the 

same way via conditional probability, there is hardly an interest of its own in 

dependence within an objectivist framework or in investigating the interrelations 

between the unconditional, the joint, and the conditional probability. 
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For an event E with positive probability (i.e., P(E) > 0) the conditional probability 

of any (feasible) event in the sample space is defined as a probability measure, i.e., by 

.
)(

)(
)|()(

EP

EAP
EAPAPE


  

This concept is justified completely by stating that the defined function PE fulfils 

all the axioms of a probability measure and therefore is a probability (measure). 

For an objectivist conception of probability, independence is key and crux 

The special case of conditional and unconditional probabilities being equal, i.e., 

)()( APAPE   is called independence: A is called independent of E.  

Independence enables the mathematician to develop a model for the repeated 

stochastic experiment which amounts to the basic paradigm of the objectivist position 

(A would then be an event described by the second and E by the first repetition of the 

experiment). Consistently, independence is the key assumption of central theorems as 

the law of large numbers or the central limit theorem (the convergence of standardized 

sums of random variables towards the normal distribution).  

The rationale behind is mathematical consistency: Such a mathematical foundation 

helps to escape the trap of intuitions, which are abundant with probability. In terms of 

real situations where probability should be applied, independence is simply 

“explained” by a total lack of causal influence. Furthermore, a possibility for a 

validation of models is offered by statistical tests on experimental data to check 

whether independence applies or not in a specific situation. Critique against the 

concept and its usual justification within an objectivist framework is manifold.  

First, the axiomatic approach of probability does not include statistical inference; 

this extension requires additional terms and criteria, which are disputed in the 

controversy about the foundations of statistics with a resulting dilemma of either 

accepting the irreparable gaps in the logical basis or admitting a subjectivist character 

of probability.  

Second, statistical tests have to use such ambiguous criteria, which are multiplied 

with tests for independence as the main ingredients, which constitute tests (like the 

formulation of statistical alternatives and the control or optimizing for power) are not 

applicable.  

Third, independence is an idealization which is void of an experimental test and is 

only justified by almost mystic arguments, or is set as an assumption (as opposed to a 

model): what happens if we assume the experiments were independent. 

Fourth, as key concept, there should be some link to mental images or reference 

situations with independence – not only for the learner but also for an analysis within 

the philosophy of science. Any theory should justify specific interpretations of the key 

concepts and an analysis from this perspective has to check whether the theory can 

support the interpretation aimed for. 

Fifth, for someone trained in the mathematics of objectivist probability, 

conditional probability – and independence – is a permanent source of confusion. The 

direct argument about lack of causal influence is vague and the validation argument by 

tests is theoretical and of little help to enhance the concept.   
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2.2. Subjectivist setting of the theory of probability 

For a subjectivist, probability still is closer to provability: it is the personal 

expression of a degree of credibility of a statement, which forms the subjectivist 

counterpart of an event. A judgement of this credibility can be based on various types 

of information: i. Relative frequencies of relevant experiments in the past are one type 

of information, which is the sole input accepted by objectivists. ii. Information may 

also stem from expert knowledge: engineers, e.g., have failure data of technical units in 

an accelerated life test and re-transfer it to failure at normal stress; or, biometricians 

combine similar but differing empirical studies in a meta-analysis. iii. Such a degree 

can also be built up by personal expectations and therefore may be subjective.  

The subjectivist position is also justified axiomatically. The axioms (de Finetti 

1937; 1974) refer to rational behaviour and describe criteria for our preferences; the 

paradigmatic situation is betting on uncertain statements. Amongst others, preferences 

have to be transitive (if one prefers A to B and B to C then one has to prefer A to C) and 

one has to avoid bets that will cause a sure loss whatever is true. Calculating new from 

given probabilities is done in a mathematical manner; the difference to objectivist 

probabilists lies in the basis for probabilities, as beyond relative frequencies other 

ingredients play a role in the judgement of events. 

Objectivists criticize this conception as the defined notion of probability is 

subjective and, furthermore, it is void of an empirical control by random experiments, 

which is a crucial requirement from the empiricist perspective on science. As reply to 

such a critique, there are three main arguments: i. For enough empirical data, 

subjectivists come to the same conclusions; ii. The theory by de Finetti has the same 

scientific status as the Kolmogorov theory as it is justified by the same method and it is 

also free of contradictions; and iii. Any judgement may be improved by further 

information and thus the probabilities get a more authoritative character on the way. 

Any probability is conditional and updated by new evidence 

While the basic character of probabilities is influenced by qualitative information, 

the subjectivist school of probability strives to increase the validity of – prior – 

probabilities used with various approaches: First, probabilities are updated by new 

evidence via Bayes’ formula. Second, one should get enough data to minimize the 

influence of prior probabilities. Thirdly (e.g., Berger, 1993), a range of priors may be 

analyzed for its impact on the final decision and one speaks of robust priors if the 

influence is small for even larger changes of the prior probabilities. 

As the evaluation of probabilities may be subjectively influenced, it becomes vital 

to integrate new knowledge – information – to form a better – updated – judgement of 

probability. This updating is ensured by Bayes’ formula, which plays a central role: 

always unconditional (priors), joint, and conditional probabilities in both “directions” 

have to be regarded simultaneously. There is no wonder that Bayesians represent their 

key formula in a different way using odds as this fits better to the updating procedure. 

On the contrary, while Bayes’ formula plays a key role in the subjectivist theory it 

seems to be a trivial theorem in Kolmogorov terms.  

A further remark is due for the character of the theory and the meaning of concepts 

and statements: At least for less extreme representatives of the subjectivist school it is 

feasible to rewrite the subjectivist axiomatic theory in a form that parallels the 

Kolmogorov theory. However, the interpretation would remain different as would be 
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the approach to statistical inference. Unknown parameters of a distribution would have 

a prior distribution in the subjectivist setting and thus be a random variable; the relative 

likelihood of parameters with respect to an event E would be the value of evidence of 

E. The event E would be interpreted as statement, on which one could place a bet and 

which would thus have a probability. 

Odds – relative weights instead of probabilities 

Before Bernoulli it was usual to compare the cases in favour and the cases against 

an event: for a six with an ordinary die this yields a ratio of 1 to 5, or 1:5. This way of 

describing probabilities conforms also better to the wide-spread qualitative search for 

reasons for and against to judge the provability of a statement in situations outside 

games of chance. With his golden theorem about the “convergence” of relative 

frequencies towards an unknown underlying probability, relative frequencies were 

upgraded and it became popular to denote probabilities by a number between 0 and 1; 

this calibration on a normalized scale was perceived as conceptual progress. 

For many applications, however, a probability still may be better expressed by 

odds, i.e., the relative probabilities of an event to occur or fail to occur. For the six, the 

odds are 1:5 so that the fair stakes are easily derived as 5:1. While for additive 

probability calculations odds are clumsy, for joint and conditional probabilities odds 

allow for an easy calculus. We will restrict ourselves to the special case of two events 

Hi which form a partition of the fundamental set. We will refer to these events as 

hypotheses or simply states.  

Bayes’ formula with odds for calculating the posterior (conditional) odds – the 

number of reasons for H1 as compared to against H1 (i.e., for H2) – relative to empirical 

evidence E reads as:  
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Compare the formula to its standard notation 
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and try to trace back or forward the influence of changes in the prior probabilities 

P(Hi), the likelihoods P(E | Hi) and the posterior probabilities P(Hi | E): Neither the 

structural influence of single input factors, nor direction or the size of changes will be 

clear. On the contrary – with odds – the formula is well-adapted to the multiplicative 

structure of the situation: If prior odds or likelihood ratios double, posterior odds 

double; the higher the likelihood ratio
)|(

)|(

2

1

HEP

HEP
, the more probable is E under the state 

H1 as compared to H2. If a posterior probability is intuitively too small, this can be due 

to a very small prior, or due to weak evidence.  

The consequence for the modelled situation is highly different depending on which 

of these factors is operative. For example, a diagnosing procedure in medicine is not 

per se ineffective if it leads to a posterior (after a positive result of the test) probability 
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to have the disease, which is too small. While the strength of evidence of a positive 

result may be very high, the final result may not be sufficient as the prevalence (the 

prior) is extraordinarily small as is with screening for HIV. 

 

2.3. The philosophical dilemma 

The subjectivist position is criticized for being subjective (!) while the objectivist 

side has gaps in the foundations of inferential statistics. The objectivist conception 

seems closer to the ideal of objectivity while the subjectivist theory embraces the 

inferential statistics with the help of Bayes’ theorem. In the controversy on the 

foundations the decision was in favour of the objectivist conception in order to avoid 

any subjective connotation of probability (Stegmüller, 1973, or Hacking, 1975; 1990). 

In applications, statisticians nowadays use whatever is better for their problem and to a 

certain extent any application has subjective features.  

 

3. An educational perspective on conditional probabilities 

Conditional probability for objectivists is a special case of probability; it is 

justified as probability as it fulfils the axioms. Independence based on conditional 

probability is used for the formation of the theory: i. It is the key concept to define 

probability on infinite-dimensional spaces; ii. It is the key assumption to central 

theorems; iii. It is the basic ingredient of the concept of samples. For subjectivists, 

conditional probability is the basic concept per se: any probability is conditional to 

available information and is intrinsically tied to the idea of revising it by new evidence.  

The Bayesian approach is much closer to how people think and can thus better 

explain the part of conditional probabilities. The clash between the philosophical 

schools overshadows the educational debate and blurs teaching efforts. We open this 

section by philosophical issues and how these are received within the mathematical 

community. Ensuing we note the exclusion of Bayesian ideas from curricula and 

round-off by some sources of difficulties to perceive conditional probability. 

 

3.1. Awareness of philosophical debates within the mathematics community 

The frequency interpretation of probability has an outstanding acceptance within 

mathematical statisticians, in spite of the famous and lively discussion by Berry 

(1997), Albert (1997), Moore (1997), and Witmer, Short, Lindley, Freedman, and 

Scheaffer (1997) in the American Statistician.  

Consistently, teaching probability is dominated by the frequency idea. As it is not 

thus easy, amongst others the simulation approach has been developed and is now 

extensively used. While it enhances the relation between relative frequencies and 

probability, it enlarges the bias towards a frequency interpretation. Yet, the endeavour 

breaks down with conditional probabilities as many empirical studies show (e.g., 

Huerta, 2009; Díaz, & Batanero, 2009).  

The reduction of probability to a one-sided notion tightly connected to frequencies 

cuts out only a small part of the multi-faceted concept of probability. As often, a 

simplified concept may be easier at first sight but by the end the learned concepts are 

misunderstood and abandoned later – not a good prospect for teaching. 
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It is remarkable how Bayesian ideas are excluded from curricula and even from 

didactic research, which may be seen from a discussion on urgent problems of teaching 

probability after a lecture at the ICMI/IASE Joint Study Conference in 2008 (see 

Borovcnik, 2011): Only one point of the elaborated agenda explicitly referred to 

subjective probability; conditional probability was not on the list even if it would pave 

the way to understand statistical inference. The analysis of Carranza and Kuzniak 

(2008) reveals the negative impact of neglecting Bayesian views in the curricula. 

However, it marks a solitary research piece amongst a community that strives for 

simplification. 

 

3.2. Empirical evidence of difficulties  

Conditional probability is known as a difficult concept. Context and used language 

of problems play a crucial role for the perception and reconstruction of the tasks. An 

overlap with causal thinking is often provoked if the context allows for such relations. 

Furthermore, a confusion of difficult mathematics with private thoughts may be traced 

with see-saw steps between these “worlds” as may be seen from a complexity analysis 

of items used in empirical research in Borovcnik and Bentz (1991). 

Carranza and Kuzniak (2008) compose an educational dilemma from their analysis 

of curricula and textbooks: while the courses solely focus on the objectivist 

interpretation of probability as connected to frequencies, examples use extensively 

Bayes’ formula and ask for a subjectivist concept. Studies by Díaz and Batanero (2009) 

reveal that mathematical knowledge does not really help; especially with problems of 

conditional probability there seems hardly a transfer of general features so that each 

problem and context has to be learned from anew. For us, this is a strong indication that 

education fails to reveal the inherent structure of such problems. 

Language issues and problems of accepting mathematics  

Language and idiosyncrasies including emotions are vital ingredients for the 

perception of situations with conditional probabilities. Empirical research suggests 

amongst others the following influence factors: slight variations in wording, the format 

(absolute numbers, proportions, percentages, or probabilities) of given and asked data, 

the context of the problems, and personal involvement both in context and solution. 

All these factors influence how the students perceive a problem, what method they 

use to solve it, the way how they interpret the result and, finally, whether they accept 

the result. The matter of accepting is different from understanding and may block every 

attempt to teach or learn and is highly dependent on context: On the one hand, 

applications of conditional probability are nearly undisputed in medicine or law. Some 

rare cases have reached more public attention as the Simpson case (see Gigerenzer, 

2002). On the other hand, problems like the Monty Hall (see below) arouse an unusual 

degree of emotions even by mathematicians involved – with an unjustified rejection of 

the official solution, which reveals a wide-spread lack of understanding the concept of 

conditional probability.  
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4. The perspective of competing ideas 

Gut decisions are relatively successful (Gigerenzer, 2007). This seems surprising 

at first sight but in fact, there is no guarantee that a mathematical method would be 

more successful.  

We will review three different types of ideas that are competing with a 

probabilistic approach: a direct prediction approach, captured by Konold (1989) in his 

outcome approach; the causal alternative to randomness and probability which seems 

very attractive for many people (Batanero, Henry, & Parzysz, 2005); a mixture of 

private conceptions and (partially understood) mathematical concepts. We will use 

extensively the Falk urn and the Monty Hall problem to illustrate our ideas. Finally, we 

will discuss paradoxical features of the tasks. 

 

4.1. The prediction problem and Konold’s outcome approach 

An important criterion for a method for situations under uncertainty is that the 

method allows for an (exact) prediction of the next outcome. For this next outcome the 

probabilistic procedure and a private approach are compared by the degree to which 

they are comprehensible, by their potential to solve the prediction problem, and by the 

success afterwards.  

A “wrong conception” might lead to success while a “correct model” might fail 

(see Borovcnik, 2011). After a failure of a private model a tendency for an excuse may 

be noted (“anyway it was only luck” etc.) and the next decision situation is perceived 

completely as new. Even if a series of such single-off decisions is re-evaluated after a 

while as something that belongs together, a bias in recall from memory will yield a 

useless measure for actual success. 

There is yet the attractiveness of a strategy before the decision is made. The 

mathematical concepts fail to predict the next outcome (with certainty) and it is hard to 

understand what they really serve for. Another strategy might respond to the strong 

intuitive demand and predict the next outcome. According to Konold (1989), people 

tend to reformulate any probability statement into a direct (and absolutely certain) 

prediction of the outcome in question. He termed this idea “outcome approach”.  

 

4.2. The causal alternative to randomness 

Assume the statement C is perceived causally and E is regarded as effect. Two 

ways of confusion are likely with the statement )|( ECP : 

 The cause is thought to be independent of the effect: )()|( CPECP  .   

This reasoning is favoured in a time bound context when the cause precedes the 

effect and is dealt with below in the Falk urn example. 

 Conditional probabilities are reversed as )|()|( CEPECP  .   

This phenomenon may be seen from an example on medical diagnosis by 

Tversky and Kahneman (1980). 
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Causes have to precede the effect: The Falk urn  

Draw twice from an urn with two white and two black marbles (Figure 1). The 

drawn marble is not replaced. Two questions are posed (Falk and Konold, 1992): 

1. You see the first marble to be white. What is the probability that the second 

marble will be white, too? 

2. The first marble is temporarily hidden. Then, a second marble is drawn and 

proves to be white. What is the probability that the first marble is white? 

 

 

 

Figure 1. Falk urn with two white and two black marbles 

 

While for the first problem the situation is directly represented by an urn yielding 

odds of 1:2 for white according to the current composition of the urn whence the 

probability is 1/3, for the second problem such an urn representation is missing. A 

variety of personal strategies are popular, especially an interference with causal 

perceptions (Borovcnik & Bentz, 2003, p. 49):  

“As for the first draw there were 2 white and 2 black marbles, the probability has to be 2/4 

= 1/2 and the later events cannot influence the probability of the earlier.”  

This time-bound thinking is characteristic for the causal paradigm; the cause has to 

be first, the consequence later. Furthermore, variations to the Falk urn indicate that 

there seems to be a hierarchy between competing ideas: Private (often emotionally 

bound) reasons have the highest rank followed by logical reasons, then causal schemes, 

and at the lowest rank, probabilistic reasoning (Borovcnik & Peard, 1996). 

Conditional probabilities simply reversed 

For a disease D perceived as causing a positive medical test and a conditional 

probability of 99.0)|(  DP  people tend to equate 99.0)|( DP  (Kahneman and 

Tversky, 1980). Of course, the reversed conditional probability depends on the 

prevalence of the disease; its value may be calculated by Bayes’ formula. Such a 

prevalence differs hugely between subgroups. 

Given that the calculus of conditional probabilities does correspond so badly to 

people’s intuitions, competing non-probabilistic strategies or a mixture of probabilistic 

and other conceptions take over in Bayesian problems. Teaching strategies have to 

make it plausible that conditional probabilities have no link whatsoever to time and 

causes – they amount to a wider concept to integrate information of whatever kind into 

the probability evaluation of a statement. 
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4.3. A mixture of private and mathematical conceptions  

Other private conceptions play a vital role and it is not easy to convince people of 

the lack of effectiveness of their strategies (Lysø, 2008). A mixture of partially 

understood mathematical concepts and intuitions can lead to re-formulations of the 

problems; furthermore, it can lead to a high confidence in a wrong perception of the 

situation. We will exemplify the situation by the well-known Monty Hall problem (see 

for example, Batanero, Fernandes, & Contreras, 2009; a valuable source for similar 

problems is Gardner, 1959, or 2006, and Székely, 1986). 

Monty Hall problem 

The main prize – a car – is hidden behind one of 3 curtains (doors) while behind the 

other curtains there is a goat (Figure 2). All curtains are closed at the beginning. The 

candidate chooses one. The moderator reveals a goat and offers to the candidate to 

change the initial choice. 

 

                 

Figure 2. Monty Hall – behind the curtains  

 

As a good notation for a start, let A, B, C denote the doors and cA signify the state 

that the car is behind door A. We assume that the candidate has chosen door A and the 

moderator has opened door C showing a goat. What is the probability that the candidate 

has selected that door with the car, i.e., what is the probability for cA?  

 
my choice = A c A … car is behind door A …

c A c B c C

A 0 0 0 0

B  1/6 0  1/3  1/2

C  1/6  1/3 0  1/2 

 1/3  1/3  1/3 1

states

moderator 

opens

 

Figure 3. Contingency table for Monty Hall if candidate chose door A 

 

The solution may easily be read off from Figure 3. To fill in the entries in the table, 

we start with 1/3 in the margin at the bottom according to the random selection of a 

door. If the moderator has no preference for the other doors in case the candidate has 

chosen the car door, then doors B and C are opened with probability 1/2 so that the 

corresponding cells in the first column carry the entries of 1/6 each. The shaded cells 

are forbidden as the moderator never opens that door with the car. The solution can be 

read off the row related to the door the moderator opened; if C is opened, this yields 

3/1)”“|(
2/1
6/1 CcP A . Thus it would be better to change the initial choice. 
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What is paradoxical?  

A fierce discussion followed the solution by vos Savant (n.d.). The degree of 

emotions is remarkable. Yet, there is a trap of equiprobability and the illusion to have 

logically exempted all information available and thus reached at the “correct” solution.  

Emotions and responsibility. The more people are emotionally involved in the 

context, the more they are inclined to reconstruct the situation to their view. As may be 

seen from the many websites on this problem, people strongly tend to reject the idea – 

after a door is opened showing a goat – to change their initial choice.  

Instead of analyzing the situation rationally – they start to think about why the 

option to change is offered to them; they want to know the deeper motives behind. 

They might also compare the situation afterwards: If they miss the car by their initial 

selection, then it is only bad luck; however, if they miss the car by their decision to 

change then it is their responsibility. Staying with the initial choice relieves the 

candidate from taking responsibility for personal decisions (Borovcnik, 2011, p. 77). 

Illusion of using all information available. The information about the open door 

with the goat can be used to eliminate this door. Thus the fundamental space is reduced. 

Beforehand there were equal probabilities for all cases; it is tempting to regard the 

remaining doors as equally likely. This corroborates the private concern referred to 

above. At a logical basis – as people already reduced the space to two doors – this 

nourishes the illusion that all information has been utilized.  

However, there is more evidence available to re-evaluate the remaining doors as 

the information differentiates between the remaining states. As that what has been 

observed has a considerably different probability under these states, the observation 

changes the equal probabilities.  

A further source of confusion is that the presented solution refers to states rather 

than to where the car really is. If the candidate has chosen door A, cA is often mistaken 

as “the candidate has the car” while it signifies that there is a probability of 1/3 that the 

candidate has chosen the car door. The solution proceeds only by hypothetical (and not 

real) states and the ensuing probabilities in the sense of “what happens if ...?” 

 

5. The perspective of solving strategies 

Solving strategies convey a lot about the concepts involved. There is also a close 

feedback and engrossing of understanding the concepts by following a particular 

strategy. Some strategies are more accessible to one type of learner, others are more 

successful to derive safely at a correct solution, others may enhance the concepts; some 

strategies are more promising at first sight but have their drawbacks later for 

conceptual progress. 

Therefore, we will review a great variety of solving strategies and discuss their 

relative merits in the context of the Monty Hall problem. As above we denote the three 

different states (hypotheses) as cA, cB and cC, the candidate has chosen door A while the 

moderator opened door C with a goat behind (statement gC). The conditional 

probabilities of what we can see behind the opened door may be seen from Figure 5.  
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5.1. Naïve approaches and equally likely arguments 

Here we will review some wrong strategies that are either personal or are 

characterized by a mixture of private and mathematical arguments. 

Private reconstructions 

Many people change the rules of the game insisting that only this perception of the 

rules is appropriate and the more emotional they react the higher is this tendency:  

 The offer to change the initial choice seems unusual, the candidate might try to 

find a reason for it;  

 The candidate does not like to take over any responsibility – the first selection is 
luck, a change of doors is an action and may be wrong; 

 The candidate may have an emotional binding to the first choice – as if it were 
perceived as divine judgement and it were not advisable to challenge it. 

Little room is left here for mathematical arguments. While the first strategy is 

surely more helpful in many similar situations, the other two remind us to universal 

strategies that embed probability in a general cultural background. In fact, chance was 

used since ancient times to outsource crucial decisions. 

Equally likely arguments 

On a logical level the opened door is eliminated. The two remaining doors “are” 

equally likely as they have been equiprobable from the beginning. This leads to 1/2 for 

both remaining doors and the conclusion that it is irrelevant whether one changes or 

remains with the first decision (Figure 4).  

The approach is marked by a mixture of mathematical and private thinking. The 

logical exclusion is mixed with deep-seated equiprobability considerations. It gives 

them the illusion that they depleted all information. All these arguments might explain 

why people are highly convinced that they are right. Yet, the information is used only 

on a logical level to exclude the third door but it may serve further as an indication 

between the remaining doors. 

 

equally likely

c A c B c C

new information: C  open

new possible states c A c B c C ▪ not possible 

 - as door C  is open

equally likely ▪ the choice of the candidate

1 1 1

1 1
 

Figure 4. Equally likelihood arguments  

 



Multiple Perspectives on the Concept of Conditional Probability 

18 - AIEM, 2012, Número 2   

5.2. Probabilistic strategies  

We will review here mathematical strategies to solve the problem; one type centres 

around Bayes’ formula, the other uses contingency tables for simplification. 

Strategies based on Bayes’ formula 

The Monty Hall problem is a classical example of a Bayesian problem with prior 

probabilities for the three doors at the first stage and with empirical evidence at the 

second stage. One has only to fill in the corresponding (conditional) probabilities 

according to the context. We support this process by a tree diagram (Figure 5). The 

stages of the tree correspond to time: first the candidate chooses, then the moderator 

opens one door. As the moderator never opens the car door, there remains a free choice 

only if the candidate has hit the car by his choice A (i.e., cA). From Figure 5, we read 

off: 

6
1

2
1

3
1   for cAgC and 

2
1

3
1

3
1

2
1

3
1 01   for gC whence P(cA|gC) = 

3
1

2
1

6
1 /  . 

possibilities

c A c B c C

conditional prob

doors to open g B g C g B g C g B g C

▪ the choice of the candidate □    mark for information given

2
1

2
1 1

 

3

1  

3

1  

3

1

010

 

Figure 5. Bayes’ formula in standard representation enhanced by tree diagrams  

 

With odds the calculations proceed as follows: The prior odds of 1:1 for the 

possible states (hypotheses about whether the car is behind door A or not) and the 

likelihood ratio of 1/2:1 of the states under the evidence of door C open are transformed 

to posterior odds of 1/2:1 or 1:2 yielding a posterior probability of 1/3 for the candidate 

to have chosen the car door (see Figure 6).  

prior

c A c B c C

likelihoods

g B g C g C g B ▪ the choice of the candidate

□    mark for information given

posterior

or

1 1 1

2

2
11 :

1 :

2
1

2
1 1 1

1

 

Figure 6. Bayes’ formula in odds representation – enhanced by a tree diagram  

 

This representation reveals more of the implicit structure of Bayesian problems 

and clarifies that the final – posterior – probability depends on the prior probability of 

the possible states (hypotheses) and the likelihood of the states relative to the evidence.  
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Strategies based on contingency tables 

It is possible to use two-way tables, optionally with probabilities (as explained in 

Figure 3) or with absolute numbers to avoid the technicalities of Bayes’ formula. In the 

following scenario expected numbers of a “statistical village of N people playing the 

game” are inserted according to the rules of the game (Figure 7):  

 From N =300 experiments one “expects” 100 for each of the states as the car is 

behind each door with the same probability.  

 From the 100 cases with state cB, i.e., the car is behind door B, all times the 
moderator has to open door C and show the goat there. From row C one may 

read off the solution as 50/150 = 1/3.  my choice = A c A ... car is behind door A …

c A c B c C

A 0 0 0 0

B 50 0 100 150

C 50 100 0 150

100 100 100 300

states

moderator 

opens

 

Figure 7. Contingency table for Monty Hall with absolute numbers if candidate chose door A 

 

In the unit square method, the proportions of a contingency table are graphically 

represented. We identify absolute areas in the whole unit square and relative area in 

smaller figures (see Figure 8):  

 Vertically, the initial states allocate stripes of 1/3 proportional to their 

probability (left hand figure);  

 In a second step, and horizontally, conditional probabilities of the evidence 
(goat behind door C) split the stripes in two parts.  

The total shaded area stands for the evidence. The conditional probability of one 

state is represented by the corresponding shaded area within the stripe related to that 

state relative to the whole shaded area. Here, the shaded area has three equal parts, one 

of which corresponds to cA. Thus, the conditional probability to have the car is 1/3.  

 

c A c B c C

g B

g C

                   

c A c B c C

g B

g C

 

Figure 8. Unit square method – the two hierarchic steps to split the figure if the candidate 

chose door A 
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5.3. Adequate non-probabilistic strategies 

Here, two correct strategies are reviewed, which solve the problem without explicit 

use of probabilities. 

Tree diagrams with absolute numbers 

As with the contingency tables in the last example, we can use tree diagrams with 

absolute numbers as a graphical representation of possible cases. This strategy may be 

pursued without using probabilities. At the first level the split is between the three 

states, at the second the split is according to the rules (see Figure 9). If the car is behind 

door A (the candidate’s choice) then there is a random choice between doors B and C. 

100 100 100

c A c B c C

50 50 0 100 100 0

g B g C g B g C g B g C  

Figure 9. Tree diagrams with absolute numbers if candidate chose door A 

 

In the containers corresponding to the opened door C there are all in all 150; from 

these 50 come from the candidate’s choice whence the solution is 50/150 = 1/3. With 

the idea of random selection this fraction may be interpreted as probability. 

Graphical representation of the possible cases 

By a symmetry argument, the possible actual constellations of the choice of the 

candidate may be reduced to the three equally likely cases shown in Figure 10. For the 

attribution of “goat, car, goat” to the doors A to C, the candidate chooses without 

preferences so that the three lines of the figure represent equally likely cases. The trick 

of using a schematic spatial drawing allows to look behind the scenes (doors). Only in 

the second line (candidate has hit the car), the moderator has a free choice to open a 

door. Now in two of three (equal) cases, changing doors wins while remaining with the 

first decision only one of three cases is favourable whence the probability to have the 

car is 1/3 (Gigerenzer, 2002). 

 

 

Moderator opens C;   
change doors wins. 
 

 
 

Moderator opens door A or C;   
change doors loses. 

 
 
 

Moderator opens A;   
change doors wins. 

Figure 10. Solution by a schematic plot of all cases 
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6. Conclusions 

We start our conclusions with a debate on the old didactic vision to find a best 

teaching strategy. We advocate for probabilistic approaches towards conditional 

probabilities, at least from intermediary steps onwards. An agenda for further 

educational research will touch also more general points beyond conditional 

probabilities.  

 

6.1. Search for a best teaching method 

Gigerenzer designed a programme to investigate, which embodiment is easier to 

understand and with co-workers he performed many empirical studies (Hoffrage, 

Gigerenzer, Krauss, & Martignon, 2002; Sedelmeier & Gigerenzer, 2001). The tree 

diagram with absolute numbers is found most effective followed by tables with abso-

lute numbers
1
. Both methods avoid the calculus of Bayes’ formula; they reformulate a 

probability task in terms of frequencies, solve it by numbers and re-interpret the solu-

tion legitimately as probability. They do not even explicitly use conditional probabili-

ties as the reference set is clear from the context.  

Nonetheless, the approach misses:  

 To clarify the structure of the situation  (e.g., why a conditional probability is so 
small);  

 To offer an iterative application as is required often in Bayesian problems; 

 To investigate the influence of variations of input parameters on the result 
(often only unreliable estimates are available); 

 To provide possibilities to check for a change in the assumptions (e.g., a change 
of prior probabilities).  

Of course, the basic correct solution is a strong argument for Gigerenzer’s natural 

frequencies and the tree approach. Yet, more investigations and deliberations have to 

be done how to shape the curriculum as progress in stability to derive a numerically 

correct solution is only one criterion for success.  

The value of the various methods depends highly on the aim of teaching – 

conceptual or numerical progress – and even on the person to teach. Tree diagrams 

have a distinct order and distort the symmetry between the two characteristics since 

order of levels are not open to reverse. Two-way tables (with absolute numbers) allow 

for interchanging rows and columns which corresponds to the symmetric character of 

conditional probabilities. Also, either causal or diagnostic, both “directions” are 

conceptualized by conditional probabilities. Another feature of Bayesian reasoning is 

its iterated application, which is better captured by the odds representation. 

 

6.2. Probabilistic strategies to teach conditional probabilities 

At higher steps some fluency with – conditional – probability rules gets required 

and will be missing if the method is avoided earlier. Probabilities and frequencies are 

                                                 
1
 In fact, a discretized form of the unit square was found even better but required technological support. 
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on a complete different conceptual level. The absolute numbers represent an expected 

value; as a natural number it gives the illusion of exactness, which conceals that the 

source often is an estimate of the probability with a big margin of statistical error.  

For small probabilities this problem is enlarged as the quality of data is unreliable: 

First, the assumptions of a random sample are rarely met. Second, the variation in the 

sample (if it were random) is big. For a probability of p = 10
-4

, among a sample of 

10000 there is a 36.8% chance to get no one with the property with an estimate of 

0ˆ p , a further 36.8% for an estimate of 0001.0ˆ p  (exact), 18.4% for an estimate of 

0002.0ˆ p  (doubles the value), 6.1% for 0003.0ˆ p  (triples it) and 1.9% for an 

estimate more than four times the underlying value.  

Furthermore, numbers attract the character of facts while in many cases 

probabilities reflect more or less the status of – controversial – hypotheses. Thus, for 

teaching it is vital to deliberate and re-consider the aim. Simplifying helps the majority 

to success for the short term but may bias the concept.  

Several strategies may enhance learning of conditional probabilities and the 

Bayesian formalism. 

 Implicit or hidden lotteries (Freudenthal, 1973; Bentz, 1983). The lottery on the 
choice of the doors (which door hides the car) is symmetric but the implicit 

lottery on the choice of the moderator violates symmetry. 

 The favour concept (Falk & Bar-Hillel, 1983; Borovcnik, 1987). This concept 

discusses qualitative relations between circumstantial evidence and states, 

which are essential for inductive reasoning. The actually opened door does not 

favour (nor disfavour) to have the car whence its probability remains unaltered 

with 1/3. However, the open door is circumstantial evidence for the still closed 

door to host the car. 

 Re-presentation of formalism (Borovcnik & Peard 1996). Bayes’ formula with 
odds fits better to the idea of revising probabilities and connects objectivist and 

subjectivist conceptions more closely. Given evidence has a strong power to 

separate between the states if it has a high (conditional) probability under one of 

the states and low probabilities under the other states. 

If the perspective of teaching conditional probability is to improve probabilistic 

thinking (Borovcnik 2006), teaching strategies should also react to Carranza and 

Kuzniak’s (2008) fundamental critique that subjectivist connotations have to become 

an integral part of probability teaching.  

 

6.3. A programme for further educational research 

Here, some points of an agenda will be depicted, which might enrich the discussion 

about teaching conditional probability. 

Competing ideas and conceptions – clarify or dismiss? 

It is inconsistent to ignore other approaches or dismiss them simply as irrational. 

Yet often in teaching mathematics, intuitions or private conceptions are regarded as a 

hindrance to direct access to the concepts. With probability, the negative effect of such 

an attitude is even worse as it is well-known that learners resort to their old – nearly 
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unchanged – conceptions in out-of-school contexts.  

To use an interventional interview in early phases of teaching probability may 

provoke the learners to openly discuss about their conceptions. This is an opportunity 

to confront them with variations of the context, with other problems or ideas to show 

the limitations of their thought. Such a strategy was suggested by Borovcnik and Peard 

(1996) and is used by Lysø (2008).  

Modelling ideas – clarify or complicate matters? 

With modelling, more mathematics usually is needed; rote learning never really 

helps but clearly fails with modelling. Yet, modelling may clarify the concepts better: 

First, the purpose of probabilistic methods seems widely misunderstood. It is not 

possible to predict an outcome with certainty as people would expect intuitively. 

However, according to Konold (1989) any probability statement is reformulated to 

enable such a prediction.  

Second, rarely, tasks are posed where students experience how modelling 

improves a situation for a decision according to a specified criterion; most tasks ask to 

calculate some probabilities and interpret them in a – nearly arbitrary – context. 

Borovcnik and Kapadia (2011), e.g., illustrate the modelling potential of probability.  

Third, probability is a modelling entity; it is not a property of real objects. The 

probability for a six with dices is often misread as 1/6. It is not 1/6! We get 1/6 only if 

we use a model of equiprobability. We could use another model which might better 

reflect the asymmetric figure of the holes in the die.  

Some basic conceptual confusion 

First, a confusion between hypotheses and data: For coin tossing, e.g., the model 

used comprises independent trials with equal probabilities. Based on this model, data 

with four heads in a series, has no effect on the next outcome. If the model is strong, 

then data induces no re-evaluation of it. Yet, in applications, awkward data offers a 

challenge to re-consider the model used: students react and use the pattern of the past to 

predict the next outcome. The crucial question from a modelling perspective is, when 

does the data indicate that the model should be altered? 

Second, the confusion of ideally repeated situations and one-off decisions: Most 

situations – even in games of chance – are either one-off or perceived as such by 

people. By the sole focus on the frequentist interpretation (and on simulation) in 

teaching, misleading conceptions are shaped: either students are confused or return to 

private strategies in their decision making. For a discussion of the problem of taking 

out an insurance policy under this perspective, see Borovcnik (2006). 

Third, the confusion of subjective and subjectivist: Subjectivist probabilities are 

dismissed as arbitrary, although usually subjectivist probabilities are based on expert 

knowledge. As a consequence, subjectivist connotations are ignored in teaching but 

may help to overcome many paradoxes especially those linked to conditional 

probabilities. It seems a prime goal to develop a blended approach of subjectivist and 

objectivist elements. Barnett (1973) has undertaken a comparative approach as a 

potential to understand both and appreciate their relative merits but only recently, 

Vancsó (2009) designed a parallel course developing classical and Bayesian statistics 

side by side following a similar intention. 

Fourth, the merging of probability and impact: To make probability more 
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challenging, more recently suggestions have been made to start probability teaching by 

risk evaluations (Kent, Pratt, Levinson, Yogui, & Kapadia, 2010). With their 

experiments, Kahneman and Tversky (1979) have shown that people react highly 

sensibly to changes in the setting regarding to small probabilities if they are related to 

high impacts. Their “irrational” choices in such settings may be taken as an indication 

that for learning, the internal probability scale has to be calibrated first before we can 

proceed to integrate impact into teaching. The dilemma obviously lies in the fact that 

only in abstract settings a perception of impact – attributed to the situation by the 

persons within their own reconstruction – may be avoided. Thus, the task of calibrating 

one’s probability scale meets the superposition of impact to some degree. 

Orientation of research towards empirical studies vs ideas  

In our data-driven world any knowledge has to be evidence-based. Consistently, 

current educational research is strongly oriented towards empirical investigations. 

Methodologically sloppy steps in planning and performing such “educational 

experiments” and the confounding factor of an experiment with – groups of – human 

beings reduce the value of the final conclusions considerably.  

Huerta (2009), e.g., has convincingly shown that empirical research on conditional 

probability is limited in scope as the types of problems in studies exhaust only a 

minority of the huge variety of problems. Furthermore, pedagogic considerations are 

extended into the discipline (of mathematics) leaving their scope and potential behind 

them. To re-establish a balance between the subject and its pedagogy is an urgent point 

of an agenda to shape teachers’ knowledge.  The value of a rational discourse on ideas 

behind the concepts from a perspective of integrating philosophy of science, 

mathematics, history, cognitive psychology, etc. has to be re-considered in comparison 

to the dominating evidence-based orientation of research. 

Clarify the conditional character of basic probabilities in statistical inference 

Many researchers as Borovcnik (2011) insist that a sound understanding of 

conditional probability is vital for probability education, “Clarification and 

demystification of conditional probability from concurrent causal ideas is a 

pre-requisite for understanding concepts of inferential statistics like type I and II errors, 

or p values” (Borovcnik, 2011, p. 80).  

The usual approach in teaching statistical inference by simulation studies 

obfuscates their character as conditional probabilities: First, the effect of causal 

connotations is ignored. Second, the frequentist meaning of probabilities is valid only 

within an artificial context that misfits the test situation; the discrepancy between the 

real situation and the model actually used is amplified in this iid scenario
 2
 to all other 

repetitions of the selected model. Third, the simulated numbers camouflage their tight 

connection to the assumptions underlying the simulation study, which blurs the 

genuine conditional character of the simulated probabilities. 

The ongoing puzzles
 3
 linked to conditional probability (see e.g., Vancsó, 2009) 

are a sign that the restriction of probability to (the limit of) relative frequencies fails to 

                                                 
2
  Iid: independently and identically distributed is the paradigmatic assumption to random experiments. 

3
  The reader might find more about the value of paradoxes to build probabilistic concepts in Borovcnik 

and Kapadia (2013b). 
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build stable conceptions in the learners. Despite the current trend towards data 

handling in international curricula, probability - and especially conditional probability 

- is still relevant as may be seen from Jones (2005). More deliberations are needed how 

to integrate subjectivist ideas into the probabilistic curricula in order to overcome the 

well-known shortcomings of current approaches. 
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