3,072 research outputs found

    A Situation Analysis Decision Support System Based on Dynamic Object Oriented Bayesian Networks

    Full text link
    This paper proposes a situation analysis decision support system (SADSS) for safety of safety-critical systems where the operators are stressed by the task of understanding what is going on in the situation. The proposed SADSS is developed based on a new model-driven engineering approach for hazardous situations modeling based on dynamic object oriented Bayesian networks to reduce the complexity of the decision-making process by aiding operators’ cognitive activities. The SADSS includes four major elements: a situation data collection based on observable variables such as sensors, a situation knowledgebase which consists of dynamic object oriented Bayesian networks to model hazardous situations, a situation analysis which shows the current state of hazardous situations based on risk concept and possible near future state, and a humancomputer interface. Finally two evaluation methods for partial and full validation of SADSS are presented

    An intelligent situation awareness support system for safety-critical environments

    Full text link
    Operators handling abnormal situations in safety-critical environments need to be supported from a cognitive perspective to reduce their workload, stress, and consequent error rate. Of the various cognitive activities, a correct understanding of the situation, i.e. situation awareness (SA), is a crucial factor in improving performance and reducing error. However, existing system safety researches focus mainly on technical issues and often neglect SA. This study presents an innovative cognition-driven decision support system called the situation awareness support system (SASS) to manage abnormal situations in safety-critical environments in which the effect of situational complexity on human decision-makers is a concern. To achieve this objective, a situational network modeling process and a situation assessment model that exploits the specific capabilities of dynamic Bayesian networks and risk indicators are first proposed. The SASS is then developed and consists of four major elements: 1) a situation data collection component that provides the current state of the observable variables based on online conditions and monitoring systems, 2) a situation assessment component based on dynamic Bayesian networks (DBN) to model the hazardous situations in a situational network and a fuzzy risk estimation method to generate the assessment result, 3) a situation recovery component that provides a basis for decision-making to reduce the risk level of situations to an acceptable level, and 4) a human-computer interface. The SASS is partially evaluated by a sensitivity analysis, which is carried out to validate DBN-based situational networks, and SA measurements are suggested for a full evaluation of the proposed system. The performance of the SASS is demonstrated by a case taken from US Chemical Safety Board reports, and the results demonstrate that the SASS provides a useful graphical, mathematically consistent system for dealing with incomplete and uncertain information to help operators maintain the risk of dynamic situations at an acceptable level. © 2014 Elsevier B.V. All rights reserved

    The Challenge of Believability in Video Games: Definitions, Agents Models and Imitation Learning

    Full text link
    In this paper, we address the problem of creating believable agents (virtual characters) in video games. We consider only one meaning of believability, ``giving the feeling of being controlled by a player'', and outline the problem of its evaluation. We present several models for agents in games which can produce believable behaviours, both from industry and research. For high level of believability, learning and especially imitation learning seems to be the way to go. We make a quick overview of different approaches to make video games' agents learn from players. To conclude we propose a two-step method to develop new models for believable agents. First we must find the criteria for believability for our application and define an evaluation method. Then the model and the learning algorithm can be designed

    Knowledge Acquisition Analytical Games: games for cognitive systems design

    Get PDF
    Knowledge discovery from data and knowledge acquisition from experts are steps of paramount importance when designing cognitive systems. The literature discusses extensively on the issues related to current knowledge acquisition techniques. In this doctoral work we explore the use of gaming approaches as a knowledge acquisition tools, capitalising on aspects such as engagement, ease of use and ability to access tacit knowledge. More specifically, we explore the use of analytical games for this purpose. Analytical game for decision making is not a new class of games, but rather a set of platform independent simulation games, designed not for entertainment, whose main purpose is research on decision-making, either in its complete dynamic cycle or a portion of it (i.e. Situational Awareness). Moreover, the work focuses on the use of analytical games as knowledge acquisition tools. To this end, the Knowledge Acquisition Analytical Game (K2AG) method is introduced. K2AG is an innovative game framework for supporting the knowledge acquisition task. The framework introduced in this doctoral work was born as a generalisation of the Reliability Game, which on turn was inspired by the Risk Game. More specifically, K2AGs aim at collecting information and knowledge to be used in the design of cognitive systems and their algorithms. The two main aspects that characterise those games are the use of knowledge cards to render information and meta-information to the players and the use of an innovative data gathering method that takes advantage of geometrical features of simple shapes (e.g. a triangle) to easily collect players\u2019 beliefs. These beliefs can be mapped to subjective probabilities or masses (in evidence theory framework) and used for algorithm design purposes. However, K2AGs might use also different means of conveying information to the players and to collect data. Part of the work has been devoted to a detailed articulation of the design cycle of K2AGs. More specifically, van der Zee\u2019s simulation gaming design framework has been extended in order to account for the fact that the design cycle steps should be modified to include the different kinds of models that characterise the design of simulation games and simulations in general, namely a conceptual model (platform independent), a design model (platform independent) and one or more implementation models (platform dependent). In addition, the processes that lead from one model to the other have been mapped to design phases of analytical wargaming. Aspects of game validation and player experience evaluation have been addressed in this work. Therefore, based on the literature a set of validation criteria for K2AG has been proposed and a player experience questionnaire for K2AGs has been developed. This questionnaire extends work proposed in the literature, but a validation has not been possible at the time of writing. Finally, two instantiations of the K2AG framework, namely the Reliability Game and the MARISA Game, have been designed and analysed in details to validate the approach and show its potentialities

    Spectators’ aesthetic experiences of sound and movement in dance performance

    Get PDF
    In this paper we present a study of spectators’ aesthetic experiences of sound and movement in live dance performance. A multidisciplinary team comprising a choreographer, neuroscientists and qualitative researchers investigated the effects of different sound scores on dance spectators. What would be the impact of auditory stimulation on kinesthetic experience and/or aesthetic appreciation of the dance? What would be the effect of removing music altogether, so that spectators watched dance while hearing only the performers’ breathing and footfalls? We investigated audience experience through qualitative research, using post-performance focus groups, while a separately conducted functional brain imaging (fMRI) study measured the synchrony in brain activity across spectators when they watched dance with sound or breathing only. When audiences watched dance accompanied by music the fMRI data revealed evidence of greater intersubject synchronisation in a brain region consistent with complex auditory processing. The audience research found that some spectators derived pleasure from finding convergences between two complex stimuli (dance and music). The removal of music and the resulting audibility of the performers’ breathing had a significant impact on spectators’ aesthetic experience. The fMRI analysis showed increased synchronisation among observers, suggesting greater influence of the body when interpreting the dance stimuli. The audience research found evidence of similar corporeally focused experience. The paper discusses possible connections between the findings of our different approaches, and considers the implications of this study for interdisciplinary research collaborations between arts and sciences

    What is neurorepresentationalism?:From neural activity and predictive processing to multi-level representations and consciousness

    Get PDF
    This review provides an update on Neurorepresentationalism, a theoretical framework that defines conscious experience as multimodal, situational survey and explains its neural basis from brain systems constructing best-guess representations of sensations originating in our environment and body (Pennartz, 2015)

    Human-in-the-loop situational understanding via subjective Bayesian networks

    Get PDF
    In this paper we present a methodology to exploit human-machine coalitions for situational understanding. Situational understanding refers to the ability to relate relevant information and form logical conclusions, as well as identifying gaps in information. This process requires the ability to reason inductively, for which we will exploit the machines’ ability to ‘learn’ from data. However, important phenomena are often rare in occurrence, thus severely limiting the availability of instance data for training, and hence the applicability of many machine learning approaches. Therefore, we present the benefits of Subjective Bayesian Networks—i.e. Bayesian Networks with imprecise probabilities—for situational understanding; and the potential role of conversational interfaces for supporting decision makers in the evolution of situational understanding
    • 

    corecore