5,535 research outputs found

    Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.

    Get PDF
    BackgroundBridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking.MethodsThis study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment.ResultsDespite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s).ConclusionsSSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Comparison of PSDA and CCA detection methods in a SSVEP-based BCI-system

    Get PDF
    Using steady-state visually evoked potential (SSVEP) in brain-computer interface (BCI) systems is the subject of a lot of research. One of the most popular and widely used detection method is using a power spectral density analysis (PSDA). Lately there have been some new methods emerging, one of them is using canonical correlation analysis (CCA) which seems to have some promising improvements and advantages compared to traditional SSVEP detection methods, like better signal-to-noise ratio (SNR), lower inter-subject variability and the possibility to use harmonic frequencies, i.e., a serie of frequencies which have the same fundamental frequency. In this research two different SSVEP detection methods, one using PSDA and one using CCA are compared. The results show that the CCA-based detection method performs significantly better than the PSDA-based detection method. The increase of performance can in particular be seen when using harmonic frequencies. While the PSDA-based detection method has difficulties detecting harmonic frequencies, the CCA-based detection method is able to detect harmonic frequencies

    Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real EEG data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from ten healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Robotic Vehicle Control Using Brain Computer Interface

    Get PDF
    Brain Computer Interface (BCI) is an interfacing device that interacts with external device or computer. The principle of Brain Computer interface is based on Electroencephalography. Under the influence of external stimuli, human brain generates some responses on distinctive areas of the brain. These responses appear in the EEG signals captured from corresponding electrode positions on the scalp of the human subject. The responses appear in the EEG signal as a feature in the time domain, or a feature in the frequency domain depending upon the periodic nature of the stimuli. These features are then detected classified and then control signal is generated by an external device. This enables the subject to directly control an external device from the brain using the signals generated in response to stimulation. Brain-computer Interfcae has shown promising application to aid patients with Locked-in syndrome, Spinal Cord Injury (SCI), Acute Inflammatory Demyelinating Polyradiculoneuropathy (AIDP), Lock-down Syndrome and Amyotrophic Lateral Sclerosis (ALS). Until now, these patients needed human assistance to communicate. Brain-computer interface also has promising application for wheelchair control. Where these patients would be able to control electric wheelchairs using Brain Computer interface. In this work, a working model of Brain Computer Interface has been developed using PowerLab 16/35 and ML-138 bio-amplifier. The BCI is based on Steady State Visually Evoked Potential (SSVEP). SSVEP response is generated from the visual cortex of the subject when the subject is exposed to a flickering light source. A model robotic platform has also been controlled using the detected SSVEP Signal

    The cost of space independence in P300-BCI spellers.

    Get PDF
    Background: Though non-invasive EEG-based Brain Computer Interfaces (BCI) have been researched extensively over the last two decades, most designs require control of spatial attention and/or gaze on the part of the user. Methods: In healthy adults, we compared the offline performance of a space-independent P300-based BCI for spelling words using Rapid Serial Visual Presentation (RSVP), to the well-known space-dependent Matrix P300 speller. Results: EEG classifiability with the RSVP speller was as good as with the Matrix speller. While the Matrix speller’s performance was significantly reliant on early, gaze-dependent Visual Evoked Potentials (VEPs), the RSVP speller depended only on the space-independent P300b. However, there was a cost to true spatial independence: the RSVP speller was less efficient in terms of spelling speed. Conclusions: The advantage of space independence in the RSVP speller was concomitant with a marked reduction in spelling efficiency. Nevertheless, with key improvements to the RSVP design, truly space-independent BCIs could approach efficiencies on par with the Matrix speller. With sufficiently high letter spelling rates fused with predictive language modelling, they would be viable for potential applications with patients unable to direct overt visual gaze or covert attentional focus

    Toward a semi-self-paced EEG brain computer interface: decoding initiation state from non-initiation state in dedicated time slots.

    Get PDF
    Brain computer interfaces (BCIs) offer a broad class of neurologically impaired individuals an alternative means to interact with the environment. Many BCIs are "synchronous" systems, in which the system sets the timing of the interaction and tries to infer what control command the subject is issuing at each prompting. In contrast, in "asynchronous" BCIs subjects pace the interaction and the system must determine when the subject's control command occurs. In this paper we propose a new idea for BCI which draws upon the strengths of both approaches. The subjects are externally paced and the BCI is able to determine when control commands are issued by decoding the subject's intention for initiating control in dedicated time slots. A single task with randomly interleaved trials was designed to test whether it can be used as stimulus for inducing initiation and non-initiation states when the sensory and motor requirements for the two types of trials are very nearly identical. Further, the essential problem on the discrimination between initiation state and non-initiation state was studied. We tested the ability of EEG spectral power to distinguish between these two states. Among the four standard EEG frequency bands, beta band power recorded over parietal-occipital cortices provided the best performance, achieving an average accuracy of 86% for the correct classification of initiation and non-initiation states. Moreover, delta band power recorded over parietal and motor areas yielded a good performance and thus could also be used as an alternative feature to discriminate these two mental states. The results demonstrate the viability of our proposed idea for a BCI design based on conventional EEG features. Our proposal offers the potential to mitigate the signal detection challenges of fully asynchronous BCIs, while providing greater flexibility to the subject than traditional synchronous BCIs
    corecore