1,903 research outputs found

    Chromatic roots and minor-closed families of graphs

    Get PDF
    Given a minor-closed class of graphs G\mathcal{G}, what is the infimum of the non-trivial roots of the chromatic polynomial of GGG \in \mathcal{G}? When G\mathcal{G} is the class of all graphs, the answer is known to be 32/2732/27. We answer this question exactly for three minor-closed classes of graphs. Furthermore, we conjecture precisely when the value is larger than 32/2732/27.Comment: 18 pages, 5 figure

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P_G(q) for the generalized theta graphs \Theta^{(s,p)} are, taken together, dense in the whole complex plane with the possible exception of the disc |q-1| < 1. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z_G(q,v) outside the disc |q+v| < |v|. An immediate corollary is that the chromatic zeros of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.Comment: LaTeX2e, 53 pages. Version 2 includes a new Appendix B. Version 3 adds a new Theorem 1.4 and a new Section 5, and makes several small improvements. To appear in Combinatorics, Probability & Computin

    On chromatic roots of large subdivisions of graphs

    Get PDF
    AbstractGiven a graph G, we derive an expression for the chromatic polynomials of the graphs resulting from subdividing some (or all) of its edges. For special subfamilies of these, we are able to describe the limits of their chromatic roots. We also prove that for any ε>0, all sufficiently large subdivisions of G have their chromatic roots in |z−1|<1+ε. A consequence of our work will be a characterization of the graphs having a subdivision whose chromatic polynomial has a root with negative real part

    Triangle-free intersection graphs of line segments with large chromatic number

    Full text link
    In the 1970s, Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer kk, we construct a triangle-free family of line segments in the plane with chromatic number greater than kk. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number.Comment: Small corrections, bibliography updat

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P-G(q) for the generalized theta graphs Theta((s.p)) are taken together, dense in the whole complex plane with the possible exception of the disc \q - l\ < l. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z(G)(q,upsilon) outside the disc \q + upsilon\ < \upsilon\. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem oil the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof

    Generalized Kneser coloring theorems with combinatorial proofs

    Full text link
    The Kneser conjecture (1955) was proved by Lov\'asz (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results, namely the Borsuk-Ulam theorem and its extensions. Only in 2000, Matou\v{s}ek provided the first combinatorial proof of the Kneser conjecture. Here we provide a hypergraph coloring theorem, with a combinatorial proof, which has as special cases the Kneser conjecture as well as its extensions and generalization by (hyper)graph coloring theorems of Dol'nikov, Alon-Frankl-Lov\'asz, Sarkaria, and Kriz. We also give a combinatorial proof of Schrijver's theorem.Comment: 19 pages, 4 figure
    corecore