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On chromatic roots of large subdivisions of graphs
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Abstract

Given a graph G, we derive an expression for the chromatic polynomials of the graphs resulting
from subdividing some (or all) of its edges. For special subfamilies of these, we are able to
describe the limits of their chromatic roots. We also prove that for any �¿0, all su5ciently
large subdivisions of G have their chromatic roots in |z−1|¡1+ �. A consequence of our work
will be a characterization of the graphs having a subdivision whose chromatic polynomial has a
root with negative real part. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The chromatic polynomial, �(G; x), of a graph G is the polynomial whose value at
each positive integer x is the number of functions f :V →{1; : : : ; x} such that uv∈E
implies f(u) �=f(v), where V and E are the sets of vertices and edges of G, respec-
tively. The roots of �(G; x) are the chromatic roots of G, and in general a chromatic
root is any (complex) number which is a root of some chromatic polynomial. The study
of chromatic roots has emerged as a rather fascinating topic in its own right, having
attracted considerable attention (cf. [2,3,5–8,12,13,16,17]). We are interested here in
the chromatic roots of large subdivisions of graphs. If e is an edge of a graph G, then
by subdividing e we mean replacing e by a path, the length of which is its number of
edges. A subdivision of G is any graph formed by subdividing (one or more) edges in
G. We shall derive an expression for the resulting chromatic polynomials; this expres-
sion simpliDes considerably in the case of uniform subdivisions of G (cf. Section 4).
Their chromatic polynomials form what is known as a recursive family of polynomials
(cf. Section 2), and we will apply a theorem of Beraha et al. [3] to describe the limits
of their roots. We will see that the circle |z− 1|=1 plays a key role in describing the
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Fig. 1. The chromatic roots of a subdivision of K4 − e with |z − 1|=1.

limits of chromatic roots of uniform subdivisions of a graph, and is itself among those
limits (Fig. 1 shows the roots of a subdivision (a theta graph with paths of length 10,
10 and 11) of K4 − e along with the circle |z − 1|=1).
We will derive two interesting consequences of our work here. Firstly, Farrell [10]

conjectured in 1980 that there are no chromatic roots with negative real part, but recent
results [8,13–15] have provided families of graphs that do have chromatic roots of
negative real part. A corollary of our expansion of chromatic polynomials of uniform
subdivisions of graphs leads to, in fact, a complete characterization of those graphs
which have a subdivision having a chromatic root with negative real part.
Secondly, experimental evidence of chromatic roots of subdivisions leads to the

observation that the roots tend to be drawn towards the unit circle centered at z=1.
We show that in fact for any �¿0, the chromatic roots of all large subdivisions of a
graph have their roots in |z − 1|¡1 + � (herein improving a recent result [6] which
only proves some subdivision has its roots in this region).

2. Background: recursive families of polynomials

Before we proceed onto a discussion of the roots of chromatic polynomials of subdi-
visions of graphs, we need to state (in detail) an analytic results on particular families
of polynomials (namely, recursive families). We begin with the following deDnition.
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De�nition 2.1. If {fn(x)} is a family of (complex) polynomials, we say that a number
z ∈C is a limit of roots of {fn(x)} if either fn(z)= 0 for all su5ciently large n or z
is a limit point of the set R({fn(x)}), where R({fn(x)}) is the union of the roots of
the fn(x).

Now (as in [3]) a family {fn(x)} of polynomials is a recursive family of polynomials
if the fn(x) satisfy a homogeneous linear recurrence

fn(x)=
k∑

i= 1

ai(x)fn−i(x); (1)

where the ai(x) are Dxed polynomials, with ak(x) �≡ 0. The number k is the order of
the recurrence.
We can form from (1) its associated characteristic equation

�k − a1(x)�k−1 − a2(x)�k−2 − · · · − ak(x)= 0; (2)

whose roots �= �(x) are algebraic functions, and there are exactly k of them counting
multiplicity (cf. [1,11]).
If these roots, say �1(x); �2(x); : : : ; �k(x), are distinct, then the general solution to (1)

is known [3] to be

fn(x)=
k∑

i= 1

�i(x)�i(x)n; (3)

with the ‘usual’ variant (cf. [3]) if some of the �i(x) are repeated. The functions �1(x);
�2(x); : : : ; �k(x) are determined from the initial conditions, that is, the k linear equations
in the �i(x) obtained by letting n=0; 1; : : : ; k − 1 in (3) or its variant. The details are
found in [3].
Beraha et al. [3] proved the result below on recursive families of polynomials and

their roots.

Theorem 2.2 (Beraha et al. [3]). If {fn(x)} is a recursive family of polynomials; then
a complex number z is a limit of roots of {fn(x)} if and only if there is a sequence
{zn} in C such that fn(zn)= 0 for all n and zn → z as n→∞.

The main result of their paper characterizes precisely the limits of roots of a recursive
family of polynomials.

Theorem 2.3 (Beraha et al. [3]). Under the non-degeneracy requirements that in (3)
no �i(x) is identically zero and that for no pair i �= j is it true that �i(x) ≡ !�j(x) for
some complex number ! of unit modulus; then z ∈C is a limit of roots of {fn(x)}
if and only if either

(i) two or more of the �i(z) are of equal modulus; and strictly greater (in modulus)
than the others; or
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(ii) for some j; �j(z) has modulus strictly greater than all the other �i(z) have; and
�j(z)= 0.

This result has found application to the chromatic roots of recursive families of
graphs [5], that is, families of graphs whose Tutte (and therefore chromatic) polyno-
mials satisfy a homogeneous linear recurrence; see [2,13] for some examples. It is also
proved in [3] that the Drst non-degeneracy requirement in the statement of the theo-
rem is equivalent to fn(x) satisfying no lower order (homogeneous, linear) recurrence.
What we shall need in this paper is the following.

Corollary 2.4. Suppose {fn(x)} is a family of polynomials such that
fn(x)= �1(x)�1(x)n + �2(x)�2(x)n + · · ·+ �k(x)�k(x)n; (4)

where the �i(x) and �i(x) are 6xed non-zero polynomials; such that for no pair i �= j
is �i(x) ≡ !�j(x) for some !∈C of unit modulus. Then the limits of roots of {fn(x)}
are exactly those z satisfying (i) or (ii) of Theorem 2:3.

Proof. It is enough to show that fn(x) satisDes a kth-order homogeneous linear recur-
rence, for then Theorem 2.3 applies as the non-degeneracy requirements are satisDed
here. Such a recurrence is

fn(x)= a1(x)fn−1(x) + a2(x)fn−2(x) + · · ·+ ak(x)fn−k(x) (n¿ k)

together with the initial polynomials

fj(x)=
k∑

i= 1

�i(x)�i(x)j (j=0; : : : ; k − 1);

where the ai(x) are such that

(�− �1(x)) · · · (�− �k(x)) ≡ �k − a1(x)�k−1 − a2(x)�k−2 − · · · − ak(x):

This completes the proof.

In the next section, we derive an expression for the chromatic polynomial of subdi-
visions of a graph, that when restricted to the uniform case, provides a recursive family
of polynomials. The Beraha–Kahane–Weiss Theorem will then allow us to derive some
precise information on the limit points of these chromatic roots.

3. An expression for the chromatic polynomials of subdivisions

Before we proceed onto the main chromatic expansion, we will need a few basic
facts about chromatic polynomials (all of which are discussed in [4]). Let G be a
graph, possibly containing parallel edges or loops. Parallel edges have no eNect on
the chromatic polynomial, and it follows directly from the deDnition (cf. Section 1)
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that if G has a loop then indeed �(G; x) ≡ 0. The well-known deletion–contraction
reduction states that for e any edge of G; �(G; x)= �(G − e; x) − �(G · e; x), where
G · e is the contraction of e in G, and is obtained by removing e and identifying its
end vertices. It is not hard to verify that the formula holds even if e is a parallel
edge or loop. We sometimes rewrite the deletion–contraction �(G − e; x)= �(G; x) +
�(G · e; x). Also, if G and H intersect exactly on a complete graph, Kp, of order p, then
�(G ∪ H; x)= �(G; x)�(H; x)=�(Kp; x); this is sometimes referred to as the Complete
Cutset Theorem. Finally, the chromatic polynomials of Kn, Tn (any tree of order n),
and Cn (the cycle of order n) are given by x(x − 1) · · · (x − n + 1), x(x − 1)n−1, and
(−1)n(1 − x)((1 − x)n−1 − 1), respectively. Now let us assume, for the remainder of
the paper, that G is a graph, without loops, which may indeed have parallel edges; its
vertex and edge sets V and E have cardinalities n and m, the order and size of G,
respectively. Also, any parallel edges and=or loops resulting from the contraction of an
edge at any time are not to be thrown away.
We derive now a rather technical expression of the chromatic polynomial of a general

subdivision of a graph. What is crucial is the expansion of this polynomial in terms
of powers of 1− x and coe5cients that depend only on the underlying graph (and not
the exact subdivision we have taken).

Theorem 3.1. Let E′ = {e1; : : : ; ek}⊆E; and Ge1 ; :::; ek
l1 ;:::;lk

be the graph obtained from G by
subdividing edge ei into a path of length li (i=1; : : : ; k). Then

�(Ge1 ; :::; ek
l1 ;:::;lk

; x) =
(−1)

∑k
i = 1li

xk

{
�(G − E′; x)(1− x)

∑k
i = 1li

−
∑

16 i1¡···¡ik−16 k

fi1 ;:::;ik−1 (x)(1− x)
∑k−1

j = 1lij

+
∑

16 i1¡···¡ik−26 k

fi1 ;:::;ik−2 (x)(1− x)
∑k−2

j = 1lij − · · ·

+(−1)k−1
∑

16 i16 k

fi1 (x)(1− x)li1 + (−1)kgE′(x)

}
;

where

gE′(x) = �(G; x) + (1− x)
k∑

i= 1

�(G · ei; x)

+ (1− x)2
∑

16 i1¡i26 k

�(G · ei1 · ei2 ; x) + · · ·

+(1− x)k−1
∑

16 i1¡···¡ik−16 k

�(G · e1 · · · · · ek−1; x)

+ (1− x)k�(G · e1 · · · · · ek ; x) (5)
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and the f’s (and clearly gE′) are polynomials that depend on G and E′ = {e1; : : : ; ek};
but not on l1; : : : ; lk .

This can be proved by induction on k. Let us examine the cases k =1 and 2, the
latter being su5ciently descriptive of the general argument which is tedious but no
more di5cult. Because of the degree of symbolism involved, it will be convenient, for
the remainder of this section only, to denote the chromatic polynomial �(H; x) of a
graph H by the symbol H itself, and it will be clear from the context whether we are
actually referring to the graph or its chromatic polynomial.
For k =1, we are subdividing a single edge, e, of G into a path of length l, say.

Tossing e into the graph Ge
l , and contracting, we have

Ge
l =(Ge

l + e) + (Ge
l + e) · e:

Now, Ge
l+e creates a cycle of length l+1, intersecting G exactly on e, while (Ge

l+e) · e
produces a cycle of length l which intersects G · e on a single vertex. Hence,

Ge
l =

Cl+1 · G
x(x − 1)

+
Cl · G · e

x

=
(−1)l+1(1− x)((1− x)l − 1)G

x(x − 1)
+

(−1)l(1− x)((1− x)l−1 − 1)G · e
x

=
(−1)l

x
{(G + G · e)(1− x)l − (G + (1− x)G · e)}; (6)

which establishes the result for k =1.
Now for k =2, we want an expression for the chromatic polynomial of Ge;f

l; s , the
graph resulting from subdividing edges e and f of G into paths of length l and s,
respectively. This we derive from the case k =1 (more speciDcally, from (6)):

Ge;f
l; s =(Ge

l )
f
s =

(−1)s

x
{(Ge

l + Ge
l ·f)(1− x)s − (Ge

l + (1− x)Ge
l ·f)}:

It is clear that Ge
l ·f=(G ·f)el . Thus, from (6),

Ge
l + Ge

l ·f =
(−1)l

x
{(G + G · e + G ·f + G ·f · e)(1− x)l

− (G + G ·f + (1− x)(G · e + G ·f · e))};

and

Ge
l + (1− x)Ge

l ·f =
(−1)l

x
{(G + G · e + (1− x)(G ·f + G · e))(1− x)l

− (G + (1− x)(G · e + G ·f)

+ (1− x)2G ·f · e)}:
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Hence, we have

Ge;f
l; s =

(−1)s+l

x2
{(G + G · e + G ·f + G ·f · e)(1− x)s+l

− (G + G ·f + (1− x)(G · e + G ·f · e))(1− x)s

− (G + G · e + (1− x)(G ·f + G · e))(1− x)l

+(G + (1− x)(G · e + G ·f) + (1− x)2G ·f · e)}:
The ‘coe5cient’ of (1− x)s+l above is exactly G− e−f, as G+G · e=G− e and

G ·f + G ·f · e=(G ·f)− e, and clearly (G ·f)− e=(G − e) ·f, giving
G + G · e + G ·f + G ·f · e = (G − e) + (G − e) ·f

= (G − e)− f:

This establishes the case k =2 from the previous case (k =1).

We will see that Theorem 3.1 has some deep consequences in terms of the loca-
tion of chromatic roots, especially when restricted to the natural subfamily of uniform
subdivisions.

4. Uniform subdivisions and the limits of their chromatic roots

When subdividing each edge of E′ the same number of times, Theorem 3.1 special-
izes to the following.

Theorem 4.1. Let E′ = {e1; : : : ; ek}⊆E; and GE′
l the graph obtained from G by sub-

dividing each edge of E′ into a path of length l. Then

�(GE′
l ; x) =

(−1)kl

xk
{�(G − E′; x)(1− x)kl − fk−1(x)(1− x)(k−1)l

+fk−2(x)(1−x)(k−2)l− · · · +(−1)k−1f1(x)(1−x)l+(−1)kgE′(x)};

(7)

where gE′ is given by (5); and the f’s (again) are polynomials that depend on G
(and E′) but not on l.

The key point is that expansion (7) expresses �(GE′
l ; x) as a recursive family, and

hence we can employ the power of the Beraha–Kahane–Weiss Theorem. In doing so,
we Dnd all of the limit points of the chromatic roots of the uniform subdivisions
{GE′

l : l¿ 1} of G (without explicitly Dnding the chromatic roots of each of these
graphs!).
We need yet one bit of technical notation; Ẽ

′
will denote the edges of E′ that are

not bridges.
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Theorem 4.2. If E′ is a subset of E containing at least one edge that is not a bridge
of G; then the limits of the chromatic roots of the family {GE′

l } are exactly
(i) the circle |z − 1|=1;
(ii) the roots of �(G − Ẽ

′
; x) outside |z − 1|=1; and

(iii) the roots of gẼ′(x) inside |z − 1|=1.

Proof. Let us Drst examine the case where E′ contains no bridges, in which case
Ẽ
′
=E′. Clearly, �(G−E′; x) is not identically zero. And neither is gE′(x), for suppose

gE′(x) ≡ 0. Then, from (7), we would have that (1− x)l divides GE′
l . However, it is

well known (cf. [17]) that the multiplicity of 1 as a chromatic root of a graph is the
number of blocks in the graph. Since E′ contains no bridges, for each l the graph GE′

l
has the same number of blocks as G, so that the multiplicity of 1 as a chromatic root
of GE′

l cannot possibly go to inDnity with l, a contradiction.
Now ignoring the factor (−1)kl=xk in (7) and rewriting (−1)kgE′(x) as (−1)kgE′(x)1l,

we can apply Corollary 2.4, and therefore (i) and (ii) of Theorem 2.3, to get the limits
of the chromatic roots of {GE′

l }.
Applying (i) of Theorem 2.3, note that we immediately get the circle |z − 1|=1 as

limits, by setting all of the |�i(z)| equal, i.e.,
|1− z|k = |1− z|k−1 = · · · = |1− z|=1:

And this is the only situation where (i) of Theorem 2.3 gives any limits, for setting
any fewer than all of the |�i(z)| equal here will, upon applying (i), amount to Dnding
values z such that |z − 1|=1 and |z − 1|¿1, which is impossible.
Moving on to (ii) of Theorem 2.3, one application gives the roots z of �(G−E′; x)

such that

|1− z|k¿|1− z|i for all i=0; 1; : : : ; k − 1;

that is, the roots z of �(G − E′; x) such that |1 − z|¿1. Another application of (ii)
gives the roots z of gE′ such that

1¿|1− z|i for all i=1; 2; : : : ; k;

that is, the roots z of gE′ such that |1− z|¡1.
Finally, applying (ii) to any j such that 0¡j¡k would amount to Dnding roots z

of fj such that |1− z|¡1 and |1− z|¿1, which is clearly impossible.
Now for the case where E′ does contain some bridges, note that subdividing a bridge

e∈E′ is merely the replacement of a bridge by a path, from which it follows (quite
easily, using the complete cutset theorem) that �(GE′

l ; x) = (x − 1)l−1�(GE′−e
l ; x).

Repeating this argument recursively over all the bridges in E′, we have that the limits
of the chromatic roots of {GE′

l } are exactly those of {GẼ′
l }, from which the result

follows from the previous case. This completes the proof.

When E′ =E, it is clear that G− Ẽ
′
is a forest, therefore having no chromatic roots

outside |z − 1|=1. Also, we write g̃(x) instead of gẼ(x).
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Corollary 4.3. Let Gl be the graph obtained from G by subdividing each edge into a
path of length exactly l. Then; if G is not a forest; the limits of the chromatic roots
of the family Gl are exactly:

(i) the circle |z − 1|=1;
(ii) the roots of g̃(x) inside |z − 1|=1.

Based on direct calculation for various small graphs, it appears that (ii) of Corollary
4.3 simply never happens, except of course for the point z=1 which is clearly a root
of g̃(x). In fact, we conjecture that if z is a root of g̃(x), then |z− 1| is either 0 or 1.

5. Application I: chromatic roots with negative real part

Our Drst application of our investigation of subdivisions concerns chromatic roots
with negative real part.
Very little is known about the chromatic roots lying in the left-half plane. It was

conjectured [10] in 1980 that in fact there are none at all. However, Read and Royle
[13] showed recently by direct calculation with cubic graphs that they do exist. Inde-
pendently, in [14,15,8] the existence of in6nitely many chromatic roots with negative
real part was demonstrated. In particular, in [8] it was shown that the graph "a;a;a

has a chromatic root with negative real part for each a¿ 8, and that the moduli of
these roots get arbitrarily small (the symbol "a;b;c refers to the graph consisting of
two vertices (called terminals) joined by three internally disjoint paths of lengths a, b,
and c, and is called a generalized theta graph).
Of course, theta graphs are very speciDc graphs. But it turns out they are the key

ingredient in characterizing the graphs in general which have a subdivision having a
chromatic root with negative real part. It is from Theorem 4.2 that we are able to
make this connection, and is perhaps a bit surprising that indeed most graphs have
a subdivision having a chromatic root with negative real part. We say that G has
a "-subgraph if G has a subgraph isomorphic to some generalized theta graph. The
co-rank (or cycle rank) of a graph H (V; E) is |E| − |V | + c, where c is the number
of components of H .

Theorem 5.1. The following are equivalent.

(i) G has a subdivision having a chromatic root with negative real part;
(ii) G has a block of co-rank at least 2;
(iii) G has a "-subgraph.

Proof. We prove the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii). It is easy to see that connected graphs of co-rank 0 are trees, and of

co-rank 1 are cycles. Thus, if no block of G has co-rank larger than 1, then the blocks
of G are simply bridges and cycles. Hence, the blocks of any subdivision of G are
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K2’s and cycles as well. And since neither K2 nor any cycle has a chromatic root with
negative real part, neither do the subdivisions of G.
(ii) ⇒ (iii). Without loss of generality, assume that G is 2-connected and has co-rank

at least 2. Let e be an edge of G. Clearly, e is not a bridge, and therefore lies on a
cycle, say C1, of G. Now G must have an edge, say e′, other than those of C1 (or
else G=C1 and G has co-rank 1). Since G is 2-connected, e and e′ both belong to a
cycle C2( �=C1) and e∈C1 ∩C2. Now, C1 together with a component of C1 ⊕C2 (the
symmetric diNerence) is a %-subgraph of G, as required.
(iii) ⇒ (i). It easy to see (from the complete cutset theorem) that it is enough to

show the result holds for 2-connected graphs. So we assume G is 2-connected. Start
with a "-subgraph of G, and subdivide it into "a;a;a for some Dxed a¿ 8, obtaining
a subdivision H of G containing as a subgraph H0 ="a;a;a. Now, let E′ be the edges
of H that do not lie on H0. Then H − E′ consists exactly of H0 and possibly some
isolated vertices, a graph which we know [8] has a chromatic root with negative real
part. Thus if E′ is empty, then we are done. And if not, then consider the family
{HE′

l }. Since E′ has no bridges and H − E′ has a chromatic root z with negative real
part, then by (ii) of Theorem 4.2, z will be a limit of the chromatic roots of {HE′

l }.
The HE′

l ’s are indeed subdivisions of G, and it follows that for l su5ciently large,
HE′

l has a chromatic root with negative real part.

From this theorem, we immediately deduce the following.

Corollary 5.2. Every non-empty graph has a series–parallel extension having a chro-
matic root with negative real part.

We can sometimes make use of subdivisions to generate, from a single chromatic
root with negative real part, an inDnite cluster of such chromatic roots. For suppose e
is an edge of G which is not a bridge, and that G − e has a chromatic root z with
negative real part. Then, from (ii) of Theorem 4.2, z is a limit of the chromatic roots
of the family {Ge

l}. If, in addition, z is not a chromatic root of G · e, then, from (6),
z will not be a chromatic root of any Ge

l , and so in fact must be a limit point of the
chromatic roots of the family {Ge

l}. Together with Theorem 2.2, we Dnd a sequence
{zl} in C\{z} such that �(Ge

l ; zl)= 0 and zl → z.
Fix any a¿ 8, for instance, and let F ="a;a;a+uv, where u and v are the terminals

of "a;a;a. Then F−uv="a;a;a, which we know [8] has a chromatic root z with negative
real part, while F · uv is just three cycles intersecting on a single vertex, a graph having
no chromatic roots with negative real part whatsoever, as the chromatic roots of cycles
lie on the disk |z−1|=1. Thus, {Fuv

l } is a family of graphs producing inDnitely many
chromatic roots with negative real part.

6. Application II: bounding the chromatic roots of large subdivisions

Our second application of our investigation of chromatic roots of subdivisions centers
on the location of the roots of large subdivisions of a graph. A few plots of the
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chromatic roots of subdivisions of several small graph will indicate that subdividing
edges tends to draw the chromatic roots closer to the disk |z − 1|6 1. It was shown
in [7] that co-rank is an upper bound for |z − 1| where z is any chromatic root of
the graph. The roots of any subdivision of G, therefore, are bounded by 1 plus the
co-rank of G. However, more is true; in [6] it was proven that for any �¿0, there is
some subdivision of G having all its chromatic roots in |z− 1|¡1+ �. This belies the
empirical evidence that all large subdivisions have its chromatic roots in the salient
disc. Our results here are indeed strong enough to prove this fact.

Theorem 6.1. For any �¿0; there is an L=L(G; �) such that; if we subdivide each
edge of G into a path of length at least L; then all chromatic roots of the resulting
graph G′ lie in |z − 1|¡1 + �.

Proof. Let �¿0 be given. Suppose E= {e1; : : : ; em} are the edges of G, and that we
subdivide edge ei into a path of length li; i=1; : : : ; m. We obtain a graph
Ge1 ; :::; em

l1 ;:::;lm , whose chromatic polynomial, by Theorem 3.1, is �(Ge1 ; :::; em
l1 ;:::;lm ; x)=

((−1)
∑k

i = 1li =xm)Fl1 ;:::;lm(x), where

Fl1 ;:::;lm(x) = �(G − E; x)(1− x)
∑m

i = 1li

−
∑

16 i1¡···¡im−16 k

fi1 ;:::;im−1 (x)(1− x)
∑m−1

j = 1 lij

+
∑

16 i1¡···¡im−26 k

fi1 ;:::;im−2 (x)(1− x)
∑m−2

j = 1 lij − · · ·

+(−1)m−1
∑

16 i16m

fi1 (x)(1− x)li1 + (−1)mgE(x)

is the expression (in braces) in Theorem 3.1 (with k replaced by m).
As we remarked earlier, the roots of �(Ge1 ; :::; em

l1 ;:::;lm ; x), and therefore of Fl1 ;:::;lm , are
bounded by the co-rank ( of G. Let C =C(G; �)¿0 be a bound for the maximum
modulus of the f’s and gE on 1 + �6 |1 − z|6 (. Choose L¿0 large enough that
(�n(1 + �)L)=C¿2m − 1. Suppose that l1; : : : ; lm are all larger than L, and, without loss
of generality, l16 l26 · · · 6 lm. Let z be such that 1+ �6 |1− z|6 (; we will show
that |Fl1 ;:::;lm(z)|¿0.
To that end, note that �(G−E; z)= zn, whose modulus is at least �n. Set y= |1− z|.

Then, by the triangle inequality,

|Fl1 ;:::;lm(z)| ¿ |z|n y
∑m

i = 1li −
∑

16 i1¡···¡im−16m

|fi1 ;:::;ik−1 (z)|y
∑m−1

j = 1 lij

−
∑

16 i1¡···¡im−26m

|fi1 ;:::;ik−2 (z)|y
∑m−2

j = 1 lij − · · ·
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−
∑

16 i1¡i26m

|fi1 ;i2 (z)|yli1+li2 −
∑

16 i1¡m

|fi1 (z)|yli1 − |gE(z)|

¿ �n y
∑m

i = 1li −
∑

16 i1¡···¡im−16m

C y
∑m−1

j = 1 lij

−
∑

16 i1¡···¡im−26m

C y
∑m−2

j = 1 lij − · · · −
∑

16 i1¡i26m

C yli1+li2

−
∑

16 i1¡m

C yli1 − C:

Note that on the right-hand side of the above there are exactly 2m − 1 terms in y
(without combining any terms of like degree). We rewrite the expression as

C
(
�n

C
yn1 − yn2 − · · · − ynp − 1

)
;

where p=2m−1 and n1¿ n2¿ · · · ¿ np. In particular, n1 =
∑m

i= 1 li and n2 =
∑m

i= 2 li.
Then

|Fl1 ;:::;lm(z)|
C

¿
�n

C
yn1 − yn2 − · · · − ynp − 1

= ynp

(
�n

C
yn1−np − yn2−np − · · · − ynp−1−np − 1

)
− 1

= ynp

(
ynp−1−np

(
�n

C
yn1−np−1 − yn2−np−1 − · · ·

−ynp−2−np−1 − 1
)− 1

)− 1

...

= ynp

(
ynp−1−np

(
ynp−2−np−1 · · ·yn3−n4 (yn2−n3 (

�n

C
yn1−n2 − 1)

−1) · · · − 1)− 1)− 1:

Now, n1 − n2 = l1¿L and y¿ 1 + �¿1. Hence,

|Fl1 ;:::;lm(z)|
C

¿
�n

C
(1 + �)L −1− 1 · · · − 1− 1− 1︸ ︷︷ ︸

p such

=
�n

C
(1 + �)L︸ ︷︷ ︸
¿p

−p

¿ 0;

which completes the proof.
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Direct calculations with generalized theta graphs suggests that this may be only
half of the story. More speciDcally, we conjecture that the region |z − 1|¡1 + � in
Theorem 6.1 can be replaced by {z ∈C : 1− �¡|z − 1|¡1 + �} ∪ {1}.
Returning to the proof of the theorem, note that all we really needed of G− E was

the fact that it has no roots on 1¡|z − 1|¡(, for then we knew it is bounded away
from zero on 1+ �6 |z− 1|6 ( for any Dxed �¿0. So in fact any subset E′ of E for
which every root of G − E′ lies in |z − 1|6 1 will do. Conversely, if E′ is a subset
of edges such that G − E′ has a root on |z − 1|¿1, then by (ii) of Theorem 4.2 and
the remark immediately following the theorem, there will certainly be an �¿0 and an
l such that GE′

l has a root on |z− 1|¿ 1+ �. Hence, in the statement of Theorem 6.1,
we can restrict to subdividing only edges in E′ if and only if the graph G−E′ has all
its chromatic roots in |z − 1|6 1.

7. Concluding remarks

While we were interested here in large subdivisions, we ask whether subdividing
each edge of G at least once is enough to guarantee that there are no real roots to the
right of 2. This can be established for generalized theta graphs (cf. [9]), and what we
can prove in general is the following.

Theorem 7.1. If we subdivide each edge of G into a path of even length; then no
real chromatic root of the resulting graph is 2 or more.

Proof. For convenience, we will denote the chromatic polynomial �(H; x) of a graph H
by the symbol H itself. We argue by induction on the number m of edges in a graph.
For m=1, the result is clear. Now, let m¿ 2 and suppose the result holds for all
graphs of size at most m−1. Let G be a graph with m edges e1; : : : ; em. Subdividing ei
into a path of even length li (i=1; : : : ; m), we obtain a graph Ge1 ; :::; em

l1 ;:::;lm , whose chromatic
polynomial, by Eq. (6), is given by

Ge1 ; :::; em
l1 ;:::;lm = (Ge1 ; :::; em−1

l1 ;:::;lm−1
)emlm

=
(−1)lm

x


(Ge1 ;:::;em−1

l1 ;:::;lm−1
+ Ge1 ;:::;em−1

l1 ;:::;lm−1
· em)︸ ︷︷ ︸

G
e1 ;:::;em−1
l1 ;:::;lm−1

−em

(1− x)lm

− (Ge1 ;:::;em−1

l1 ;:::;lm−1
+ (1− x)Ge1 ;:::;em−1

l1 ;:::;lm−1
· em)︸ ︷︷ ︸

(G
e1 ;:::;em−1
l1 ;:::;lm−1

−em)−x G
e1 ;:::;em−1
l1 ;:::;lm−1

· em




=
(−1)lm

x
((Ge1 ; :::; em−1

l1 ;:::;lm−1
− em)((1− x)lm − 1) + x(Ge1 ; :::; em−1

l1 ;:::;lm−1
· em));
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and for x¿ 2, this is indeed positive, as Ge1 ; :::; em−1

l1 ;:::;lm−1
− em =(G − em)

e1 ; :::; em−1

l1 ;:::;lm−1
and

Ge1 ; :::; em−1

l1 ;:::;lm−1
· em =(G · em)e1 ; :::; em−1

l1 ;:::;lm−1
are both positive, by assumption, and (1 − x)lm − 1

is positive since lm is even.

The number 2 here is best possible, for consider the graph "1;1;1. Among its even
subdivisions (in the sense of Theorem 7.1) are the graphs "2l;2l;2l (l¿ 1), whose
chromatic polynomials are given (cf. [8]) by

�("2l;2l;2l; x)=
1− x
x

((1− x)6l−1 − 3(x − 1)2l + 2− x):

With this expression, we can verify that, for any given �¿0, the graph "2l;2l;2l will
have a real chromatic root between 2− � and 2 for l su5ciently large.
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