27 research outputs found

    Variational Analysis of Marginal Functions with Applications to Bilevel Programming

    Get PDF
    This paper pursues a twofold goal. First to derive new results on generalized differentiation in variational analysis focusing mainly on a broad class of intrinsically nondifferentiable marginal/value functions. Then the results established in this direction apply to deriving necessary optimality conditions for the optimistic version of bilevel programs that occupy a remarkable place in optimization theory and its various applications. We obtain new sets of optimality conditions in both smooth and smooth settings of finite-dimensional and infinite-dimensional spaces

    Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions

    Get PDF
    This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [5] from our viewpoint of robust Lipschitzian stability. We present meaningful interpretations and practical examples of such models. The main results establish necessary optimality conditions for a broad class of semi-infinite and infinite programs, where objectives are generally described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint inequality systems are indexed by arbitrary sets. The results obtained are new in both smooth and nonsmooth settings of semi-infinite and infinite programming

    A Fenchel-Lagrange Duality Approach for a Bilevel Programming Problem with Extremal-Value Function

    Get PDF
    International audienceIn this paper, for a bilevel programming problem (S) with an extremal-value function, we first give its Fenchel-Lagrange dual problem. Under appropriate assumptions, we show that a strong duality holds between them. Then, we provide optimality conditions for (S) and its dual. Finally, we show that the resolution of the dual problem is equivalent to the resolution of a one-level convex minimization problem

    Constraint Qualifications and Optimality Conditions for Nonconvex Semi-Infinite and Infinite Programs

    Get PDF
    The paper concerns the study of new classes of nonlinear and nonconvex optimization problems of the so-called infinite programming that are generally defined on infinite-dimensional spaces of decision variables and contain infinitely many of equality and inequality constraints with arbitrary (may not be compact) index sets. These problems reduce to semi-infinite programs in the case of finite-dimensional spaces of decision variables. We extend the classical Mangasarian-Fromovitz and Farkas-Minkowski constraint qualifications to such infinite and semi-infinite programs. The new qualification conditions are used for efficient computing the appropriate normal cones to sets of feasible solutions for these programs by employing advanced tools of variational analysis and generalized differentiation. In the further development we derive first-order necessary optimality conditions for infinite and semi-infinite programs, which are new in both finite-dimensional and infinite-dimensional settings.Comment: 28 page

    Robust Stability and Optimality Conditions for Parametric Infinite and Semi-Infinite Programs

    Get PDF
    This paper primarily concerns the study of parametric problems of infinite and semi-infinite programming, where functional constraints are given by systems of infinitely many linear inequalities indexed by an arbitrary set T, where decision variables run over Banach (infinite programming) or finite-dimensional (semi-infinite case) spaces, and where objectives are generally described by nonsmooth and nonconvex cost functions. The parameter space of admissible perturbations in such problems is formed by all bounded functions on T equipped with the standard supremum norm. Unless the index set T is finite, this space is intrinsically infinite-dimensional (nonreflexive and nonseparable) of the l(infinity)-type. By using advanced tools of variational analysis and generalized differentiation and largely exploiting underlying specific features of linear infinite constraints, we establish complete characterizations of robust Lipschitzian stability (with computing the exact bound of Lipschitzian moduli) for parametric maps of feasible solutions governed by linear infinite inequality systems and then derive verifiable necessary optimality conditions for the infinite and semi-infinite programs under consideration expressed in terms of their initial data. A crucial part of our analysis addresses the precise computation of coderivatives and their norms for infinite systems of parametric linear inequalities in general Banach spaces of decision variables. The results obtained are new in both frameworks of infinite and semi-infinite programming

    Necessary and Sufficient Optimality Conditions in DC Semi-infinite Programming

    Get PDF
    This paper deals with particular families of DC optimization problems involving suprema of convex functions. We show that the specific structure of this type of function allows us to cover a variety of problems in nonconvex programming. Necessary and sufficient optimality conditions for these families of DC optimization problems are established, where some of these structural features are conveniently exploited. More precisely, we derive necessary and sufficient conditions for (global and local) optimality in DC semi-infinite programming and DC cone-constrained optimization, under natural constraint qualifications. Finally, a penalty approach to DC abstract programming problems is developed in the last section.The first author was partially supported by ANID Chile under grant Fondecyt Regular 1190110. The second author is supported by Research Project PGC2018-097960-B-C21 from MICINN Spain, and Australian ARC–Discovery Projects DP 180100602. The third author was partially supported by ANID Chile under grants Fondecyt regular 1190110, Fondecyt regular 1200283, and Programa Regional Mathamsud 20-Math-08 CODE: MATH190003
    corecore