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A Fenchel–Lagrange Duality Approach for a Bilevel
Programming Problem with Extremal-Value Function

Abdelmalek Aboussoror · Samir Adly

Abstract In this paper, for a bilevel programming problem (S) with an extremal-
value function, we first give its Fenchel–Lagrange dual problem. Under appropriate
assumptions, we show that a strong duality holds between them. Then, we provide
optimality conditions for (S) and its dual. Finally, we show that the resolution of
the dual problem is equivalent to the resolution of a one-level convex minimization
problem.

Keywords Two-level optimization · Convex analysis · Conjugate duality ·
Composed programming problems

1 Introduction

We are concerned with the following bilevel nonlinear optimization problem

(S) Min
x∈X

F(x, v(x)),

where v(x) is the optimal value of the lower level problem

P (x) Min
y∈Y

f (x, y).
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F : R
p ×R → R, f : R

p ×R
q → R; X and Y are two compact convex subsets of R

p

and R
q , respectively. The problem (S) is called a bilevel problem with the extremal-

value function v(·). It corresponds to a two-player game in which a leader announces
first a strategy x ∈ X, to minimize his objective function F , and a follower reacts
optimally by selecting a strategy y(x) ∈ Y , to minimize his objective function f . We
assume that the reaction of the follower to the strategies of the leader has no impact on
the constraints of the leader. Then, when the leader evaluates the performance of the
follower by the optimal value v(x), he includes it in the objective function F , which
leads to the formulation considered above. For many applications of such a problem,
we refer, for example, to the interesting book [1]. However, when the performance
of the follower is evaluated by his solutions, we obtain different formulations of the
leader’s problem, as the optimistic and the pessimistic formulations. For these inter-
esting formulations, we refer, for example, to [1–9], respectively. Note that (S) can
be viewed as a composed programming problem. This remark will be the key of our
investigation. As it is well-known, the problem (S) presents difficulties in the theoret-
ical and numerical aspects, since its formulation includes a marginal function which,
in general, is not differentiable. For different approaches concerning such a class of
bilevel programming problems, we refer, for example, to [1, 10–13].

In [10], for the problem (S), global optimality conditions using min-max prob-
lems are given. These optimality conditions are based on a notion of stability of opti-
mization problems and regularity of solutions. Other optimality conditions for some
classes of bilevel programming problems with the extremal-value function using dif-
ferent directional derivatives and the subdifferential of the marginal function v(·) are
given in [1, 11–13]. In this paper, adopting the Fenchel–Lagrange duality, which has
been first introduced by Boţ and Wanka in [14] for ordinary convex programming
problems, we give the so-called Fenchel–Lagrange dual of the bilevel problem (S).
Based on some results given in [15–18], we first show that a strong duality holds
between them. Then, we provide necessary and sufficient optimality conditions for
(S) and its dual. These optimality conditions are given in terms of conjugate func-
tions and subdifferentials, respectively. Finally, we show that the resolution of the
dual problem is equivalent to the resolution of a one-level convex minimization prob-
lem whose objective function is expressed in terms of the conjugates of the functions
involved. Assume that the obtained dual problem is easier to solve than (S). There-
fore, this approach may give a possibility to solve indirectly the problem (S) via a
one-level convex minimization problem.

The paper is organized as follows. In Sect. 2, we recall some fundamental def-
initions and results relating essentially to convex analysis that are needed later. In
Sect. 3, under appropriate assumptions, we show that we have strong duality between
(S) and its Fenchel–Lagrange dual problem. In Sect. 4, we provide optimality condi-
tions for (S) and its dual. Finally, Sect. 5 is devoted to reducing the dual problem to
a one-level convex minimization problem.

2 Preliminaries

In this section, we recall some fundamental definitions and results relating essentially
to convex analysis that we will use in the sequel.
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Let A be a nonempty subset of R
n. We shall denote by ψA and σA the indicator

and the support functions of the set A, respectively, defined on R
n by

ψA(x) :=
{

0, if x ∈ A,

+∞, if x �∈ A,
and σA(d) := sup

x∈A

〈d, x〉,

where 〈·, ·〉, denotes the inner product of two vectors in R
n, i.e., for x = (x1, . . . , xn)

T ,
and y = (y1, . . . , yn)

T , 〈x, y〉 =∑n
i=1 xiyi . The relative interior of A, denoted by

ri(A), is the interior of A relative to the smallest affine set containing A, equipped
with the induced topology of R

n.

Definition 2.1 [16] Let g : R
n → R be a function, where R = R ∪ {±∞}, and let

A be a nonempty subset of R
n. The conjugate function of g relative to the set A is

denoted by g∗
A and defined on R

n by

g∗
A(p) := sup

x∈A

{〈p,x〉 − g(x)
}
.

When A = R
n, we get the usual Legendre–Fenchel conjugate function of g, usually

denoted by g∗.

Definition 2.2 Let g : R
n → R be a function. The function g is said to be R

n+-
increasing iff for any x, y ∈ R

n, x = (x1, . . . , xn)
T , y = (y1, . . . , yn)

T , with xi ≤ yi ,
∀i ∈ {1, . . . , n}, we have g(x) ≤ g(y), where R

n+ denotes the non-negative orthant of
R

n, and the superscript T stands for transpose.

Definition 2.3 Let f1, . . . , fm : R
n → R be functions. The infimal convolution of

f1, . . . , fm is the function denoted by f1� · · ·�fm, and defined on R
n by

(f1� · · ·�fm)(x) := inf
x1,...,xm∈Rn

x1+···+xm=x

{
m∑

i=1

fi(xi)

}
.

For an extended real-valued function f : R
n → R, we shall denote by domf the

effective domain of f , i.e., the set defined by

domf := {x ∈ R
n/f (x) < +∞}.

We say that f is proper if f (x) > −∞ for all x ∈ R
n and domf �= ∅.

Definition 2.4 Let f : R
n → R∪{+∞} be a proper convex function. Let x̄ ∈ domf .

The subdifferential of f at x̄, denoted by ∂f (x̄), is the set defined by

∂f (x̄) := {x∗ ∈ R
n/f (x) ≥ f (x̄) + 〈x∗, x − x̄〉,∀x ∈ R

n
}
,

and any x∗ ∈ ∂f (x̄) is called a subgradient of f at x̄.
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Definition 2.5 Let A be a nonempty subset of R
n, and x̄ ∈ A. The normal cone to A

at x̄ denoted by NA(x̄) is the set defined by

NA(x̄) := {x∗ ∈ R
n/〈x∗, x − x̄〉 ≤ 0,∀x ∈ A

}
.

If A is convex, then ∂ψA(x̄) = NA(x̄) (e.g., see [19]).

Theorem 2.1 [19] Let f1, . . . , fm : R
n → R be proper convex functions. Assume that⋂m

i=1 ri(domfi) �= ∅. Then, for any x ∈ R
n, we have

(
m∑

i=1

fi

)∗
(x) = (f ∗

1 � · · ·�f ∗
m

)
(x) = inf

x1,...,xm∈Rn

x1+···+xm=x

{
m∑

i=1

f ∗
i (xi)

}
,

and the infimum is attained.

3 The Fenchel–Lagrange Duality Approach

In this section, we give a dual problem of (S) involving conjugate functions, called
the Fenchel–Lagrange dual of (S). Then, under appropriate assumptions, we show
that a strong duality holds between them. This interesting duality has been first in-
troduced in [14] for ordinary convex programming problems and afterwards used in
several works (e.g., see [16, 18, 20, 21]).

Let h : R
p → R

p+1 be the function defined by

h(x) := (h1(x), . . . , hp(x),hp+1(x))T = (x, v(x))T ,

i.e., for x = (x1, . . . , xp)T ,
{

hi(x) := xi, for i = 1, . . . , p,

hi(x) := v(x), for i = p + 1,

with v(x) the optimal value of the lower level problem P (x). Then, the problem (S)

can be written as

(S) Min
x∈X

F(h(x)),

which is a composed programming problem. Note that the interesting and wide class
of composed programming problems was extensively studied in the last decade. For
papers dealing with such problems, we refer, for example, to [16, 18] and references
therein. For our approach, the problem (S) will be seen as a composed programming
problem.

In the sequel, in order to give the dual of the bilevel programming problem (S),
we adopt the procedure given by Boţ et al. in [16] for composed programming prob-
lems. Then, we start our duality approach by considering the following minimization
problem

(S′) Min
x∈X,y∈Rp+1

h(x)≤y

F (y).
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We will make the following assumptions.

Assumption 3.1 The function F is R
p+1
+ -increasing.

Assumption 3.2 The function F is convex on R
p+1.

Assumption 3.3 The function f is convex on R
p × R

q .

Remark 3.1 Under the above assumptions, the remarks are quite obvious, especially
in the particular case.

1. The Assumption 3.1 is extensively used in the study of composed programming
problems. It allows us to establish a relation between the problems (S) and (S′),
and to preserve the convexity of functions under composition.

2. From the convexity of the set Y and the function f , we deduce that the marginal
function v(·) is convex on R

p . It follows that the vector function h is also convex
on R

p . If, moreover, the Assumptions 3.1 and 3.2 are satisfied, then the problem
(S) is convex.

3. Under the Assumption 3.3, we deduce that, for any x ∈ R
p , v(x) is a finite real

number. This follows from the continuity of the function f (x, ·) and the compact-
ness of Y . Furthermore, v(·) is continuous on R

p as a finite convex function.
Let inf(S) and inf(S′) denote the infimal values of the problems (S) and (S′),

respectively. Then, we have the following result.

Proposition 3.1 Let the Assumptions 3.1–3.3 hold. Then,

1. The problem (S) has at least one solution,
2. inf(S) = inf(S′).

Proof 1. First, note that F is continuous on R
p+1 as a finite convex function. Then,

the result follows from the continuity of the composed function F ◦ h, and the com-
pactness of the set X. It follows that inf(S) is a finite real number.

2. Let x ∈ X. Then, (x,h(x)) is a feasible point to (S ′). Hence, inf(S′) ≤ F(h(x)),
and

inf(S′) ≤ inf
x∈X

F(h(x)) = inf(S).

Conversely, let (x, y) be a feasible point of (S′). Then, x ∈ X, i.e., x is feasible
for (S). Since h(x) ≤ y, it follows from Assumption 3.1 that F(h(x)) ≤ F(y). Hence
inf(S) ≤ F(h(x)) ≤ F(y). Since (x, y) is an arbitrary feasible point of (S′), it follows
that

inf(S) ≤ inf(S′). �

Let (D) be the Lagrangian dual problem to (S′), i.e.,

(D) Max
α≥0

α∈Rp+1

inf
x∈X

y∈Rp+1

{
F(y) + 〈α,h(x) − y〉},
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and consider the following maximization problem in which the objective function is
expressed in terms of the conjugate functions of F , αT h and ψX

(D∗) Max
α∈R

p+1
+

β∈Rp

{−F ∗(α) − (αT h
)∗

(β) − ψ∗
X(−β)

}
,

where for α = (α1, . . . , αp+1)
T ∈ R

p+1, αT h denotes the function defined on R
p and

valued in R, by

αT h(x) = 〈α,h(x)〉 =
p+1∑
i=1

αihi(x) =
p∑

i=1

αixi + αp+1v(x),

with x = (x1, . . . , xp)T . Using the fact that ψ∗
X = σX , the dual problem (D∗) can also

be written as

(D∗) Max
α∈R

p+1
+

β∈Rp

{−F ∗(α) − (αT h
)∗

(β) − σX(−β)
}
,

which is the formulation that we adopt in the sequel. In the literature, (D∗) is called
the Fenchel–Lagrange dual problem to (S) (see [14, 18]).

Remark 3.2 By weak duality, we have inf(S′) ≥ sup(D), where sup(D) denotes the
supremum of the dual problem (D).

The following proposition establishes that problems (D) and (D∗) have the same
supremum. The proof corresponding to an ordinary composed programming problem
can be found, for example, in [16, 18]. For the convenience of the reader, we give the
proof corresponding to our case.

Proposition 3.2 Let the Assumptions 3.2 and 3.3 hold. Then,

sup(D) = sup(D∗).

Proof We have

inf
x∈X

y∈Rp+1

{
F(y) + 〈α,h(x) − y〉}

= inf
y∈Rp+1

{
F(y) − 〈α,y〉}+ inf

x∈X
〈α,h(x)〉

= − sup
y∈Rp+1

{〈α,y〉 − F(y)
}− sup

x∈X

{〈0, x〉 − 〈α,h(x)〉}

= −F ∗(α) − (αT h
)∗
X
(0).

On the other hand, since X is a nonempty convex set, we have ri(X) �= ∅ (see [19]).
So that

ri(domαT h) ∩ ri(domψX) = R
p ∩ ri(X) = ri(X) �= ∅.
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Therefore, by Theorem 2.1, we have

(
αT h

)∗
X
(0) = (αT h + ψX

)∗
(0) = (αT h

)∗�(ψX)∗(0)

= inf
β∈Rp

{(
αT h

)∗
(β) + (ψX)∗(−β)

}

= inf
β∈Rp

{(
αT h

)∗
(β) + σX(−β)

}
.

Then,

sup
α∈R

p+1
+

inf
x∈X

y∈Rp+1

{
F(y) + 〈α,h(x) − y〉}

= sup
α∈R

p+1
+

{− F ∗(α) − inf
β∈Rp

{(
αT h

)∗
(β) + σX(−β)

}}

= sup
α∈R

p+1
+

β∈Rp

{−F ∗(α) − (αT h
)∗

(β) − σX(−β)
}
.

That is,

sup(D) = sup(D∗). �

Corollary 3.1 Let the Assumptions 3.1–3.3 hold. Then, the weak duality holds be-
tween (S) and (D∗).

Proof The result is deduced by using Remark 3.2, and Propositions 3.1 and 3.2.
Let g : R

p × R
p+1 → R

p+1 be the function defined by

g(x, y) := (g1(x, y), . . . , gp(x, y), gp+1(x, y)
)T = h(x) − y,

that is,

{
gi(x, y) = xi − yi, for i = 1, . . . , p,

gi(x, y) = v(x) − yi, for i = p + 1,

with x = (x1, . . . , xp)T and y = (y1, . . . , yp, yp+1)
T . Assume that the marginal func-

tion v(·) is not affine, which is the case, in general. So, the function gp+1 is not affine.
Let

{
L := {i ∈ {1, . . . , p + 1}/gi is an affine function},
N := {1, . . . , p + 1} \ L.

It follows that

L = {1, . . . , p} and N = {p + 1}. �
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Remark 3.3 If v(·) is affine, then L = {1, . . . , p + 1
}

and N = ∅.

Consider the following constraint qualifications
(CQ) ∃x = (x1, . . . , xp)T ∈ ri(X), ∃y = (y1, . . . , yp, yp+1)

T ∈ R
p+1, ∃z ∈ Y such

that

xi ≤ yi, i = 1, . . . , p and f (x, z) < yp+1,

(CQ) ∃x ∈ riX,∃y ∈ R
p+1 such that

{
gi(x, y) ≤ 0, for i ∈ L,

gi(x, y) < 0, for i ∈ N .

Note that the constraint qualification (CQ) is well-known in the literature and
is used to ensure strong Lagrange duality for an ordinary convex program with its
Lagrange dual (see [19, 22]). On the other hand, it is not difficult to show that the
constraint qualifications (CQ) and (CQ) are equivalent.

Remark 3.4

1. Under the Assumptions 3.2 and 3.3 and the data of problem (S), the constraint
qualification (CQ) is always satisfied. This follows principally from the fact that
for any x ∈ X, v(x) is a finite real number (Remark 3.1). Indeed, since ri(X) is
nonempty, let x = (x1, . . . , xp)T ∈ ri(X), and let z be a point in the compact set
Y such that v(x) = f (x, z). Then, any point y = (y1, . . . , yp, yp+1)

T ∈ R
p+1,

verifying

xi ≤ yi, i = 1, . . . , p and f (x, z) < yp+1,

is suitable. That is, the constraint qualification (CQ) is fulfilled.
2. Let the Assumptions 3.1–3.3 hold. From Proposition 3.1, we have inf(S) =

inf(S ′). Since inf(S) ∈ R, it follows that inf(S′) > −∞.

The following theorem establishes that a strong duality between (S) and (D∗)
holds.

Theorem 3.1 Let the Assumptions 3.1–3.3 hold. Then, a strong duality holds between
(S) and (D∗), i.e.,

(i) inf(S) = sup(D∗);
(ii) The dual (D∗) admits solutions.

Proof (i) As quoted in the above remark, the constraint (CQ) is satisfied. Hence, since
(CQ) is equivalent to (CQ) and inf(S′) > −∞ [see 2. of Remark 3.4], it follows that
a strong duality holds between (S′) and (D) (e.g., see [19, 22]). Therefore,

inf(S) = inf(S ′) = sup(D) = sup(D∗),

where the first and the last inequalities follow from Proposition 3.1 and Proposi-
tion 3.2, respectively.

(ii) See, for example, [16, 18]. �
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4 Optimality Conditions for (S) and (D∗)

In this section, under the Assumptions 3.1–3.3 and exploiting our duality, we provide
optimality conditions for (S) and its dual (D∗). These optimality conditions are ex-
pressed in terms of conjugate functions and subdifferentials, respectively. Since the
problems (S) and (D∗) are convex, we are only concerned with global solutions. On
the other hand, recall that the problem (S) admits solutions (Proposition 3.1), and
that (S) and (D∗) are in strong duality (Theorem 3.1).

The following theorems give respectively necessary and sufficient optimality con-
ditions for (S) and its dual. The proofs can be found in [15]. Similar proofs are given
in [17] for the case of the Fenchel–Rockafellar duality.

Theorem 4.1 (Necessary optimality conditions) Let the Assumptions 3.1–3.3 hold.
Let x̄ ∈ X and (ᾱ, β̄) ∈ R

p+1
+ × R

p be solutions to (S) and (D∗), respectively. Then,
x̄ and (ᾱ, β̄) satisfy the following necessary optimality conditions

F(h(x̄)) + F ∗(ᾱ) = 〈ᾱ, h(x̄)〉, (1)

〈ᾱ, h(x̄)〉 + (ᾱT h
)∗

(β̄) = 〈β̄, x̄〉, (2)

σX(−β̄) + 〈β̄, x̄〉 = 0. (3)

Theorem 4.2 (Sufficient optimality conditions) Let the Assumptions 3.1–3.3 hold.
Let x̄ and (ᾱ, β̄) be feasible points to (S) and (D∗), respectively. Assume that they
satisfy the conditions (1)–(3) in Theorem 4.1. Then, x̄ solves (S) and (ᾱ, β̄) solves
(D∗).

The following corollaries give the main results of this section. They provide nec-
essary and sufficient optimality conditions for (S) and (D∗).

Corollary 4.1 Let the Assumptions 3.1–3.3 hold. Let x̄ and (ᾱ, β̄) be feasible points
to (S) and (D∗), respectively. Then, x̄ and (ᾱ, β̄) solve (S) and (D∗), respectively, if
and only if the conditions (1)–(3) are satisfied.

Proof The result follows by using Theorems 4.1 and 4.2. �

In terms of the subdifferentials, we have the following result.

Corollary 4.2 Let the Assumptions 3.1–3.3 hold. Let x̄ and (ᾱ, β̄) be feasible points
to (S) and (D∗), respectively. Then, x̄ and (ᾱ, β̄) solve (S) and (D∗), respectively, if
and only if the following conditions are satisfied

ᾱ ∈ ∂F (h(x̄)), (1′)

β̄ ∈ ∂(ᾱT h)(x̄), (2′)

−β̄ ∈ ∂ψX(x̄) = NX(x̄). (3′)
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Proof The conditions (1) and (2) are obviously equivalent to (1′) and (2′), respec-
tively. Furthermore, remarking that ψX(x̄) = 0 (since x̄ ∈ X), and using the fact that
σX = ψ∗

X , the condition (3) can be written as

ψX(x̄) + ψ∗
X(−β̄) = 〈−β̄, x̄〉,

which is equivalent to

−β̄ ∈ ∂ψX(x̄) = NX(x̄). �

5 Reduction of (D∗) to a One-level Convex Minimization Problem

In this section, exploiting the particular form of the dual problem (D∗), and via the
conjugacy operation, we will show that the resolution of the dual problem is equiva-
lent to the resolution of two single-level (one-level) convex minimization problems.

First, let us give the conjugate of the marginal function v(·) which will be needed
in the sequel.

Proposition 5.1 Let the Assumption 3.3 hold. Let x∗ ∈ R
p . Then,

v∗(x∗) = f ∗
Rp×Y (x∗,0).

Proof First, recall that for any x ∈ R
p , v(x) is a finite real number (Remark 3.1). Let

x∗ ∈ R
p . We have

v∗(x∗) = sup
x∈Rp

{〈x∗, x〉 − v(x)
}

= sup
x∈Rp

{〈x∗, x
〉− inf

y∈Y
f (x, y)

}

= sup
(x,y)∈Rp×Y

{〈(
x∗

0

)
,

(
x

y

)〉
− f (x, y)

}
= f ∗

Rp×Y (x∗,0). �

As remarked, the dual problem (D∗) has an objective function which contains
the conjugate function (αT h)∗. However, the function αT h depends on the marginal
function v(·) which is an output of the lower level problem. So, in the following, we
try to avoid such a dependence. This allows us to formulate the dual problem (D∗)
only in terms of the data of the problem (S). Then, we have the following result.

Proposition 5.2 Let the Assumptions 3.1–3.3 hold. Then, the resolution of the dual
(D∗) is equivalent to the resolution of the following one-level maximization problems

(D∗
1) Max

α1≥0,...,αp≥0

β=(α1,...,αp)T

{− F ∗(α1, . . . , αp,0) − σX(−β)
}

10



and

(D∗
2) Max

α=(α1,...,αp,αp+1)T

α1≥0,...,αp≥0
αp+1>0

β∈Rp

{
− F ∗(α) − αp+1f

∗
Rp×Y

(
β − (α1, . . . , αp)

αp+1
,0

)
− σX(−β)

}

in the sense that

• sup(D∗) = max{sup(D∗
1), sup(D∗

2)}, and
• (α,β) solves (D∗) if and only if (α,β) solves (D∗

i ), with sup(D∗
i ) ≥ sup(D∗

j ),
i �= j , i, j ∈ {1,2}.

Proof Replacing h(x) by its expression (x, v(x)) in the formulation of the dual prob-
lem (D∗), we get

(D∗) Max
α=(α1,...,αp,αp+1)T

α1≥0,...,αp≥0
αp+1≥0

β∈Rp

{
− F ∗(α) −

(
p∑

i=1

αihi + αp+1v(·)
)∗

(β) − σX(−β)

}
.

So that

sup(D∗) = sup

{
sup

α1≥0,...,αp≥0

β∈Rp

{
− F ∗(α1, . . . , αp,0) −

(
p∑

i=1

αihi

)∗
(β)

︸ ︷︷ ︸
A(α1,...,αp)(β)

−σX(−β)

}
,

sup
α=(α1,...,αp,αp+1)T

α1≥0,...,αp≥0
αp+1>0

β∈Rp

{
− F ∗(α) −

(
p∑

i=1

αihi + αp+1v(·)
)∗

(β) − σX(−β)

}}
.

Let us calculate the value of A(α1,...,αp)(β). We have

A(α1,...,αp)(β) = sup
t∈Rp

{〈β, t〉 − (α1h1 + · · · + αphp)(t)
}

= sup
t∈Rp

{〈β, t〉 − (α1t1 + · · · + αptp)
}

= sup
t∈Rp

〈
β − (α1, . . . , αp)T , t

〉

=
{+∞, if β �= (α1, . . . , αp),

0, if β = (α1, . . . , αp),
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with t = (t1, . . . , tp)T . So that

sup(D∗) = sup

{
sup

α1≥0,...,αp≥0

β=(α1,...,αp)T

{− F ∗(α1, . . . , αp,0) − σX(−β)
}
,

sup
α=(α1,...,αp+1)T

α1≥0,...,αp≥0
αp+1>0

β∈Rp

{
−F ∗(α) −

(
p∑

i=1

αihi + αp+1v(·)
)∗

(β) − σX(−β)

}}
.

On the other hand, for αp+1 > 0, we have

(
p∑

i=1

αihi + αp+1v(·)
)∗

(β) = sup
t∈Rp

{
〈β, t〉 − α1t1 − · · · − αptp − αp+1v(t)

}

= αp+1 sup
t∈Rp

{〈
β − (α1, . . . , αp)T

αp+1
, t

〉
− v(t)

}

= αp+1v
∗
(

β − (α1, . . . , αp)T

αp+1

)

= αp+1f
∗
Rp×Y

(
β − (α1, . . . , αp)T

αp+1
,0

)
,

where the last equality follows from Proposition 5.1. Now, consider the following
maximization problems

(D∗
1) Max

α1≥0,...,αp≥0

β=(α1,...,αp)T

{
− F ∗(α1, . . . , αp,0) − σX(−β)

}

and

(D∗
2) Max

α=(α1,...,αp,αp+1)T

α1≥0,...,αp≥0
αp+1>0

β∈Rp

{
−F ∗(α)−αp+1f

∗
Rp×Y

(
β − (α1, . . . , αp)

αp+1
,0

)
−σX(−β)

}
.

Then, we have

sup(D∗) = max
{

sup(D∗
1), sup(D∗

2)}.
It follows that (α,β) is a solution of (D∗) if and only if (α,β) is a solution of (D∗

i )

with sup(D∗
i ) ≥ sup(D∗

j ), i �= j , i, j ∈ {1,2}. �

12



Remark 5.1

1. Remark that the objective functions of problems (D∗
1) and (D∗

2) are expressed in
terms of the conjugate functions of F , f and ψX (since σX = ψ∗

X).
2. As it is well-known, the functions F ∗, f ∗ and σX are convex. Besides, the con-

straint sets of problems (D∗
1) and (D∗

2) are also convex. It follows that (D∗
1)

and (D∗
2) are concave maximization problems (equivalent to convex minimiza-

tion problems).

Consequently, the resolution of the problem (D∗) is equivalent to the resolution of
the two single-level concave maximization problems (D∗

1) and (D∗
2). Therefore, the

problem (D∗) is reduced to a single-level convex minimization problem.
For illustration, we give the following simple example.

Example 5.1 Let X = Y = [0,1], f and F be the functions defined on R
2 by

f (x, y) = 1

2
x2 + y + 1

4
y4 and F(x, t) =

{
1
2x2 + 1

2 t2, if x ≥ 0, t ≥ 0,

0, otherwise.

Then, the Assumptions 3.1–3.3 are satisfied. For x ∈ X, we have

inf P (x) = v(x) = 1

2
x2.

The bilevel programming problem that we consider is

(S) Min
x∈X

F
(
x, v(x)

)= 1

2
x2 + 1

8
x4

whose unique solution is obviously x̄ = 0 and inf(S) = 0. Let us verify this by using
our duality approach. Note that, in this example, we have strong duality between (S)

and its Fenchel–Lagrange dual problem (D∗) (Theorem 3.1). Let us calculate f ∗
R×Y

and F ∗. By simple calculation, we find

f ∗(x∗, y∗) =

⎧⎪⎪⎨
⎪⎪⎩

1
2x∗2 + y∗ − 5

4 , if y∗ > 2, x∗ ∈ R,

1
2x∗2 + 5

4 (y∗ − 1)
4
3 , if 1 ≤ y∗ ≤ 2, x∗ ∈ R,

1
2x∗2, if y∗ < 1, x∗ ∈ R,

and

F ∗(x∗, t∗) =
{

+∞, if (x∗, t∗) �= (0,0),

0, if (x∗, t∗) = (0,0).

On the other hand, for problems (D∗
i ), i = 1,2, we have

sup(D∗
2) = −∞ and sup(D∗

1) = 0,

where sup(D∗
1) is attained at (

(ᾱ1,ᾱ2)
T

β̄
). So that sup(D∗) = sup(D∗

1) = 0, attained at

(
(ᾱ1,ᾱ2)

T

β̄
) = ( (0,0)T

0
). By strong duality, we have sup(D∗) = inf(S) = 0.
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Let us calculate the solution of (S) by using the conditions in Corollary 4.1. We
have h(x) = (x, 1

2x2)T . Then, x̄ ∈ X is a solution of (S) if and only if

F(h(x̄)) + F ∗(ᾱ) = 〈ᾱ, h(x̄)〉, (4)

〈ᾱ, h(x̄)〉 + (ᾱT h)∗(β̄) = 〈β̄, x̄〉, (5)

σ[0,1](−β̄) + 〈β̄, x̄〉 = 0, (6)

with ᾱ = (ᾱ1, ᾱ2)
T . So that, from the first equation, we have

x̄2
(

1 + 1

4
x̄2
)

= 0,

whose unique solution is x̄ = 0. Besides, x̄ satisfies with ᾱ and β̄ (5) and (6). Hence,
x̄ is the unique solution of (S).

Remark 5.2

1. The same duality approach can be applied via appropriate modifications to the
case where the constraints of the leader depend on the optimal value of the fol-
lower, i.e., the case

(S) Min
x∈X

G(x,v(x))≤0

F(x, v(x)),

where G : R
p × R → R.

2. Viewing (S) as a composed programming problem, other duality approaches can
be applied to (S), as Lagrange duality and Fenchel duality. Relations between
these dualities and the Fenchel–Lagrange duality are given in [18].

6 Conclusions

The bilevel programming problem (S) which, in general, is not differentiable is dif-
ficult to solve in view of the existence of the marginal function v(·) in its formula-
tion. For such a problem, we have considered a duality approach by introducing its
Fenchel–Lagrange dual problem (D∗). This type of dual problem has been first intro-
duced by Boţ and Wanka in [14] for ordinary convex programming problems. Under
appropriate assumptions, and based on some results given in the literature for com-
posed programming problems, we have shown that a strong duality holds between (S)

and (D∗). Then, for problem (S) and its dual we have provided optimality conditions
which are expressed in terms of conjugate functions and subdifferentials, respec-
tively. Finally, in Proposition 5.2, we have reduced the dual problem to a one-level
convex minimization problem. Therefore, this duality approach gives the possibility
to solve the bilevel programming problem (S) via a one-level convex minimization
programming problem.
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16. Boţ, R.I., Hodrea, I.B., Wanka, G.: Farkas-type results for inequality systems with composed convex
functions via conjugate duality. J. Math. Anal. Appl. 322, 316–328 (2006)
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18. Wanka, G., Boţ, R.I., Vargyas, E.: On the relations between different duals assigned to composed
optimization problems. Math. Methods Oper. Res. 66, 47–68 (2007)

19. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
20. Boţ, R.I.: Conjugate duality in convex optimization. In: Lecture Notes in Economics and Mathemati-

cal Systems, vol. 637. Springer, Berlin, Heidelberg (2010)
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