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Abstract. This paper deals with particular families of DC optimization problems involving
suprema of convex functions. We show that the specific structure of this type of function allows us to
cover a variety of problems in nonconvex programming. Necessary and sufficient optimality conditions
for these families of DC optimization problems are established, where some of these structural features
are conveniently exploited. More precisely, we derive necessary and sufficient conditions for (global
and local) optimality in DC semi-infinite programming and DC cone-constrained optimization, under
natural constraint qualifications. Finally, a penalty approach to DC abstract programming problems
is developed in the last section.

Key words. DC functions, supremum function, semi-infinite programming, cone-constraint
programming

AMS subject classifications. 90C30, 90C34, 90C26

DOI. 10.1137/19M1303320

1. Introduction. In [34, Chapter 3] the author emphasizes the universality of
DC functions as “virtually all the most frequently encountered functions in practice
are DC.” This claim is supported by the most relevant properties of these functions,
particularly by their stability relative to operations frequently used in optimization.
The class of DC functions is considered in [1] a remarkable subclass of locally Lipschitz
functions, and it is the smallest vector space containing all continuous convex functions
on a given set. Moreover, every continuous function f defined on a compact convex
set K in a normed space can be approached by a sequence of DC functions which
converges to f uniformly on K. Actually, in Rn this property follows from the fact
that polynomials are DC, since every function f ∈ C2(Rn) is DC on any compact
convex set.

In mathematical optimization, several models can be formulated in terms of the
maximum/supremum of a finite/infinite family of data functions. Moreover, many
convex functions, such as the Fenchel conjugate, the sum, the composition with affine
applications, etc., can be expressed as the supremum of affine or convex functions.
Even more, any formula for the subdifferential of the supremum function can be seen
as a useful tool in deriving KKT-type optimality conditions for a convex optimization
problem as any set of convex constraints, even an infinite set, can be replaced by a
unique convex constraint by using the supremum function. For that reason, several
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838 RAFAEL CORREA, M. A. LÓPEZ, AND PEDRO PÉREZ-AROS

authors have focused their research on computing gradients, subdifferentials, and cal-
culus rules via the supremum function, and remarkable contributions to this topic can
be found in the literature, starting in the decades of the 1960s and 1970s of the past
century. In [18], Hiriart-Urruty claimed: “One of the most specific constructions in
convex or nonsmooth analysis is certainly taking the supremum of a (possibly infi-
nite) collection of functions. In the years 1965–1970, various calculus rules concerning
the subdifferential of sup-functions started to emerge; working in that direction and
using various assumptions, several authors contributed to this calculus rule: B.N.
Pshenichnyi, A.D. Ioffe, V.L. Levin, R.T. Rockafellar, A. Sotskov, etc.; however, the
most elaborated results of that time were due to M. Valadier (1969) [35].” Recent con-
tributions in this field are [4, 5, 6, 7, 8, 15, 16, 26, 28, 30, 31] and references therein. On
the other hand, for the class of DC problems there also exist necessary and sufficient
conditions for optimality, many times in terms of (exact/approximate) subdifferen-
tials of the involved DC decomposition (see, e.g., [9, 10, 12, 14, 17, 20, 21, 22] and
references therein). Unfortunately, the class of DC functions is not stable in general
for supremum functions (see Example 2.1). Nevertheless, in this work we restrict our
study to particular families of DC optimization problems involving suprema of convex
functions. In this framework, we combine formulae for the (approximate) subdifferen-
tial of supremum functions and optimality conditions for DC programming to get new
optimality conditions for several classes of optimization problems which are relevant
in mathematical programming.

The rest of the paper is organized as follows: In section 2, we give the main
definitions and notation used in this work; in section 3 we introduce the class of DC
functions on which the paper is focused, and some of their properties are established;
in section 4, we recall and develop formulae for the subdifferential of DC functions
and supremum functions in several specific frameworks; in section 5 we apply our
formulae to provide necessary and sufficient conditions for global and local optimality
of problems related to (nonconvex) semi-infinite programming; in section 6 we show
that general problems in cone-constrained optimization can be translated into our
setting, and with the help of our formulae, we derive necessary and sufficient condi-
tions for (global and local) optimality; in section 7 we focus on general nonconvex
optimization problems with DC objective functions and also provide necessary and
sufficient conditions for optimality; and in section 8 we develop optimality conditions
for perturbations of general nonconvex optimization problems. Finally, the work ends
with some concluding remarks.

2. Notation. Throughout the paper, unless we stipulate something else, we
consider Rn equipped with the Euclidean norm ‖ · ‖. Given a set A ⊂ Rn, we denote
by cl(A), int(A), conv(A), cone(A) the closure, the interior, the convex hull, and the
the convex cone generated by A. By 0n we represent the zero vector in Rn. For two
sets A,B ⊂ Rn we define the following operations,

A+B := {a+ b, a ∈ A and b ∈ B}

and

A	B := {x ∈ Rn : x+B ⊆ A}

with the following standard conventions:

(2.1) A+ ∅ = ∅+B = ∅ and conv(∅) = ∅.
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DC SEMI-INFINITE PROGRAMMING 839

Given a family of sets {Ai}i∈I , in order to avoid possible confusion it is convenient to
adopt the following notation: ⋃

[Ai : i ∈ I] :=
⋃
i∈I

Ai.

If A is convex and ε ≥ 0, we define the ε-normal set to A at x as

Nε
A(x) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε ∀y ∈ A}

if x ∈ A, and Nε
A(x) = ∅ if x /∈ A. If ε = 0, N0

A(x) ≡ NA(x) is the so-called normal
cone to A at x.

If K is a cone, the polar cone of K is

K◦ := {x∗ ∈ X∗ : 〈x∗, y〉 ≤ 0 ∀y ∈ K} ≡ NK(0n).

Given an arbitrary set T , Pf (T ) denotes the family of finite subsets of T.
If Z ⊂ R, by Z(T ) we represent the family of functions λ : T → Z (i.e., λ ∈ ZT )

such that λ(t) ≡ λt = 0 for all t ∈ T except perhaps for finitely many t ∈ T . The
support of λ is defined as suppλ := {t ∈ T : λt 6= 0}. The ε-generalized simplex on T
is the set

∆ε(T ) :=

λ ∈ [0, 1](T ) :
∑
t∈T

λt =
∑

t∈ suppλ

λt = ε

 .

In particular, the generalized simplex on T is ∆1(T ), which is denoted simply by
∆(T ). Furthermore, we also denote ∆ε

n := ∆ε({1, . . . , n}) and ∆n := ∆({1, . . . , n}).
Finally, for a family of sets {Ct}t∈T and λ ∈ R(T ) we define∑

t∈T
λtCt :=

∑
t∈suppλ

λtCt.

Given a function f : Rn → R := R ∪ {+∞}, the (effective) domain and the
epigraph of f are

dom f := {x ∈ Rn : f(x) < +∞} and epi f := {(x, α) ∈ Rn × R : f(x) ≤ α},

respectively. We say that f is proper if dom f 6= ∅.
For ε ≥ 0, the ε-subdifferential (or approximate subdifferential) of f at a point

x ∈ Rn, where f is finite, is the set

∂εf(x) := {x∗ ∈ Rn : 〈x∗, y − x〉 ≤ f(y)− f(x) + ε ∀y ∈ Rn};

if f(x) is not finite, we set ∂εf(x) = ∅. The special case ε = 0 yields the classical
(Moreau-Rockafellar) convex subdifferential, denoted by ∂f(x).

The Fréchet subdifferential of f at x ∈ domf is the set

∂̂f(x) :=

{
x∗ ∈ Rn : lim inf

h→0n

f(x+ h)− f(x)− 〈x∗, h〉
‖h‖

≥ 0

}
,

and its elements, usually called (Fréchet) subgradients (also regular subgradients [33]),

are affine functions “supporting” f from below. The set ∂̂f(x) is closed and convex
and generalizes simultaneously the notions of Fréchet derivative and subdifferential of
a convex function.
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840 RAFAEL CORREA, M. A. LÓPEZ, AND PEDRO PÉREZ-AROS

The following sum rule is applied in the paper (see, e.g., [25, Proposition 1.107]):
If the function g is Fréchet differentiable at x, and f is finite at this point, then

∂̂(f + g)(x) = ∂̂f(x) +∇g(x).(2.2)

Moreover, for a mapping F : Rn → Rm which is calm at x, i.e., such that

‖F (u)− F (x)‖ ≤ ` ‖u− x‖ ,

for some ` > 0 and u in a certain neighborhood of x, the Fréchet co-derivative of F
at x is given by the set-valued map D̂F (x) : Rm ⇒ Rn defined as

D̂F (x)(y∗) := ∂̂ (〈y∗, F (·)〉) (x),

where 〈y∗, F (·)〉 is the scalar function defined by 〈y∗, F (·)〉(u) := 〈y∗, F (u)〉.
Given the set A ⊂ Rp, the characteristic function and the indicator function

are, respectively, defined as follows:

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A, δA(x) :=

{
0 if x ∈ A,

+∞ if x /∈ A.

Since some of the result concerning a representation of difference of a convex
function is local, we introduce a precise notation for the space of functions that we
are dealing with.

Consider a convex set U ⊆ Rn. First, we denote by Γ0(U) the family of all the
lower semicontinuous proper convex functions f : U → R, and by DC(U) the family
of functions f which are a difference of two convex functions in Γ0(U), i.e., such that
there exist two functions g, h ∈ Γ0(U) such that f(x) = g(x)−h(x) for all x ∈ U, with
the conventions +∞− (+∞) = +∞. When there is no ambiguity in U , we simply
say that f is a DC function or that f belongs to DC.

Given a family of functions {ft, t ∈ T} ⊆ RT , in this paper we are especially
interested in the supremum function

f := sup
t∈T

ft.

Given a point x̄ ∈ dom f and ε ≥ 0, the following set of indices is a key tool in our
approach:

T fε (x̄) := {t ∈ T : ft(x̄) ≥ f(x̄)− ε},
T f (x̄) := {t ∈ T : ft(x̄) = f(x̄)}.

We simply use Tε(x̄) and T (x̄) when there is no ambiguity in f .
The following example shows that the class of DC functions is, in general, not

stable under the supremum operation and pointwise convergence.

Example 2.1. Let f(x) = 1 −
√
|(1/2)− x| with x ∈ [0, 1]. Since the function f

is not locally Lipschitz it cannot be DC over [0, 1] (see [1, p. 974] for more details).
Consider a sequence of polynomials (pn)n∈N which converges uniformly to f on [0, 1];
we can assume that ∑

k∈N
‖pk − pk+1‖∞ < +∞.
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DC SEMI-INFINITE PROGRAMMING 841

Now, we define the sequence of functions

fn(x) := pn(x)−
∞∑
k=n

‖pk − pk+1‖∞, n ∈ N.

We have fn ≤ fn+1 as

fn(x)− fn+1(x) = pn(x)− pn+1(x)− ‖pn − pn+1‖∞ ≤ 0,

yielding
sup
n∈N

fn(x) = lim
n→∞

fn(x) = f(x),

and this leads us to the desired conclusion.

In contrast to Example 2.1, the following proposition shows a criterion to ensure
that the supremum of DC functions is still a DC function.

Consider families of functions gt, ht ∈ Γ0(Rn) with t ∈ T . Given F ∈ Pf (T ) we
denote by

gF (x) := max
t∈F

(
gt(x) +

∑
s∈F\{t}

hs(x)

)
, hF (x) :=

∑
s∈F

hs(x),

and the supremum functions

g(x) := sup
F∈Pf (T )

gF (x), h(x) := sup
F∈Pf (T )

hF (x).(2.3)

Proposition 2.2. Consider a family of functions ft = gt − ht, where gt, ht ∈
Γ0(Rn), t ∈ T, which are all nonnegative. Then, f := supt∈T ft is a DC function over
domh. Furthermore, f(x) = g(x)− h(x) for all x ∈ domh, where g and h are defined
in (2.3).

Proof. Let us notice first that, for every F1 ⊆ F2,

(2.4)
∑
s∈F1

hs(x) ≤
∑
s∈F2

hs(x).

Given F ∈ Pf (T ) and x ∈ Rn, we denote by t(F, x) an index in F such that

gF (x) = gt(F,x)(x) +
∑

s∈F\{t(F,x)}

hs(x).

For any t ∈ T and F ∈ Pf (T ) we have

ft = gt − ht = gt +
∑

s∈F\{t}

hs −
∑

s∈F∪{t}

hs ≤ gF∪{t} − hF∪{t}.

Now, fix x ∈ domh and ε > 0. On the one hand, there exists F ∈ Pf (T ) such that
h(x) ≤

∑
s∈F hs(x) + ε ≤

∑
s∈F∪{t} hs(x), where the last inequality is justified by

(2.4), so for any t ∈ T ,

ft(x) ≤ gF∪{t} − hF∪{t} ≤ g(x)− h(x) + ε.
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Since ε > 0 and t ∈ T were arbitrarily chosen we get f(x) ≤ g(x)−h(x). To prove the
opposite inequality, we assume that g(x) ∈ R (otherwise the equality holds trivially),
so there exist F ∈ Pf (T ) such that g(x) ≤ gF (x) + ε. Hence,

g(x)− h(x) ≤ gF (x)− hF (x) + ε

= gt(F,x)(x) +
∑

s∈F\{t(F,x)}

hs(x) + ε− hF∪{t(F,x)}}(x)

= gt(F,x)(x)− ht(F,x)(x) + ε ≤ f(x) + ε.

Since ε > 0 was arbitrarily chosen we get g(x)− h(x) ≤ f(x), and we are done.

3. The class Γh(Rn). We introduce now a class of DC functions, which play
a crucial role in the paper. If U is a convex set in Rn and h ∈ Γ0(U), we define the
family of functions

Γh(U) := {f : U → R : f + h ∈ Γ0(U)}.

For example, x3 ∈ Γx2([−1/3,+∞[). Obviously, Γh(U) ⊂ DC(U), and we can also
write Γh(U) = Γ0(U) − h. We say that h is a control function for the functions in
Γh(U).

The following result is a simple criterion to guarantee that a function f belongs
to Γh(Rn). For that purpose, we need a concept of second-order derivative. Given an
open set U and a function f : U → R which is C1+ at x̄ (i.e., f is differentiable at x̄
with locally Lipschitz continuous gradient), we define the generalized Hessian of f at
x̄ by

Hf (x̄) := {A ∈ Rn×n : ∃xn → x̄ such that ∇2f(xn)→ A}.

It has been proved that the generalized Hessian is a nonempty and compact set
of symmetric matrices (see, e.g., [33, Theorem 13.52] and also [2, 3]). Furthermore, it
can be used to provide the following characterization of convexity for not necessary
C2-functions.

Proposition 3.1 ([19, Example 2.2]). A C1+-function f defined on the convex
open set U is convex if and only if for all x ∈ U and all A ∈ Hf (x) one has A < 0
(i.e., 〈Au, u〉 ≥ 0 for all u ∈ Rn).

Using the above result we can establish the following characterization of DC
functions.

Proposition 3.2. Let U be a convex open set in Rn. Consider a C1+-function
f : U → R and a C2-convex function h : U → R. Then, if

A < −∇2h(x) ∀x ∈ U and ∀A ∈ Hf (x),

we have f ∈ Γh(U).

Proof. We need to show that the function g := f+h is convex. Since the function
g is C1+ and h is C2 it is not difficult to show that

Hg(x) = Hf (x) +∇2h(x) ∀x ∈ U.

Consequently, every B ∈ Hg(x) is a positive semidefinite matrix, and this implies the
convexity of g on U in virtue of Proposition 3.1.
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One important class of DC functions is the class ΓρJ(Rn), where J is the so-called
duality function, that is, J(x) = 1

2‖x‖
2. For the sake of brevity, we represent this class

by Γρ(Rn). Let us recall here that

(3.1) ∂εJ(x) = B(x,
√

2ε).

Thanks to Proposition 3.2 it is not difficult to prove that any C2-function belongs
to Γρ(K) over every bounded set K (for some ρ ≥ 0). More generally, Proposition
3.2 also can be used to show that the class of lower-C2 functions satisfies the same
property. Formally, the class of lower-C2 functions is defined as follows.

Definition 3.3. A function f : U → R, where U ⊂ Rn is an open set, is said
to be lower-C2 on U if, for every x̄ ∈ U, there exists a neighborhood V of x̄ where f
admits a representation

f(x) = sup
t∈T

ft(x),

where T is a compact space and ft(x), ∇ft(x), and ∇2ft(x) depend continuously
jointly on (t, x) ∈ T × V.

Any finite convex function is lower-C2 (see, e.g., [33, Theorem 10.33]). It has been
shown that if the function f is lower-C2 on a convex open set U , then f belongs to
Γρ(K) over each convex compact set K ⊆ U (see, e.g., [36, Proposition 3.3]).

4. Mixing supremum and DC formulae. This section starts by recalling a
well-known formula for the ε-subdifferential of DC functions and continues by es-
tablishing some results for ε-subdifferential of the supremum of a family of convex
functions. These formulae will be our working horse to establish different optimality
conditions in the next sections.

Proposition 4.1 ([24, Theorem 1]). Let g, h ∈ Γ0(Rn) such that both are finite
at x. Then, for every ε ≥ 0

∂ε (g − h) (x) =
⋂
η≥0

(∂η+εg(x)	 ∂ηh(x)) .

Next we provide characterizations of the subdifferential and the ε-subdifferential
of the supremum function of a family of convex functions {gt, t ∈ T}. The first
result, which is a Valadier-type formula (see [35, Theorem 2]), follows directly from [6,
Corollary 3.13], and the second one, given in Theorem 4.3, is a corollary of [28,
Theorem 5.4].

Proposition 4.2 ([6, Corollary 3.13]). Let {gt, t ∈ T} ⊆ Γ0(Rn), and suppose
that g := supt∈T gt is finite and continuous at x̄. Assume additionally that for some
γ0 > 0,

(i) the set Tγ0(x̄) is compact,
(ii) for every z ∈ domg, the function t 7→ gt(z) is upper semicontinuous on Tγ0(x̄).

Then

∂g(x̄) = co

( ⋃
t∈T (x̄)

∂gt(x̄)

)
.

In the proof of the next theorem we need the following result established in [28,
Theorem 5.1] (see [29] for a corrected proof).
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Proposition 4.3. Consider a family of functions {gt, t ∈ T} ⊂ Γ0(Rn), together
with the supremum function g := supt∈T gt, and suppose that dom g has a nonempty
interior. Then for every ε ≥ 0 one has, for all x̄ ∈ Rn,

(4.1) ∂εg(x̄) =
⋃

(ε1,ε2)∈∆ε
2

(
S(x̄, ε1) + Nε2

domg(x̄)
)
,

where

S(x̄, ε1) :=
⋂
γ>0

cl

⋃ ∑
t∈suppλ

λt∂νt+γgt(x̄) :
λ ∈ ∆(T ), ρ ∈ ∆ε1(T ), ν ∈ R(T )

+ ,
and gt(x̄) + ρt/λt + γ ≥ g(x̄) + νt

 .

Let us notice that if ε1 ≤ ε′1 and ε2 ≤ ε′2 we have S(x̄, ε1) ⊆ S(x̄, ε′1) and

Nε2
domg(x̄) ⊆ N

ε′2
domg(x̄). Consequently, (4.1) also holds with the union over all ε1, ε2 ≥ 0

and ε1 + ε2 ≤ ε. Moreover, if g is finite on Rn, and so continuous on the whole space,
Nε2

domg(x̄) ={0n} for all ε2 ≥ 0, and (4.1) collapses to

(4.2) ∂εg(x̄) = S(x̄, ε).

Theorem 4.4. Consider a family of functions {gt, t ∈ T} ⊂ Γ0(Rn) and suppose
that g := supt∈T gt is finite on Rn. Let x̄ ∈ Rn be such that for all γ > 0,

(i) the set Tγ(x̄) is compact,
(ii) for every z ∈ Rn the function t 7→ gt(z) is upper-semicontinuous on Tγ(x̄).
Then, for all ε > 0,

(4.3) ∂εg(x̄) =
⋃[∑

t∈T
λt∂ηtgt(x̄) : (λ, η) ∈ Λε((gt)t∈T , x̄)

]
,

where

(4.4) Λε((gt)t∈T , z) :=

{
(λ, η) ∈ ∆(T )× R(T )

+ :
∑

t∈suppλ

λt (g(z)− gt(z) + ηt) ≤ ε

}
.

Proof. First, let us prove that the right-hand side of (4.3) is contained in ∂εg(x̄).
Indeed, consider (λ, η) ∈ Λε((gt)t∈T , x̄) and u∗ =

∑
t∈suppλ λtu

∗
t with u∗t ∈ ∂ηtgt(x̄).

Then, for every y ∈ Rn we have that

〈u∗, y − x̄〉 =
∑

t∈suppλ

λt〈u∗t , y − x̄〉 ≤
∑

t∈ suppλ

λt (gt(y)− gt(x̄) + ηt)

≤ g(y)− g(x̄) +
∑

t∈suppλ

λt (g(x̄)− gt(x̄) + ηt)

≤ g(y)− g(x̄) + ε,

and u∗ ∈ ∂εg(x̄).
Second, consider u∗ ∈ ∂εg(x̄). Since domg = Rn, (4.2) holds, i.e.,

∂εg(x̄) = S(x̄, ε).

Now, let us consider a sequence of positive scalars (γk)k∈N converging to 0. We divide
the proof into three claims.
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Claim 1. We can take a sequence of multipliers (λ1,k, . . . , λn+1,k) ∈ ∆n+1, to-
gether with numbers (ρ1,k, . . . , ρn+1,k) ∈ ∆ε

n+1, (ν1,k, . . . , νn+1,k) ∈ Rn+1
+ , subgradi-

ents u∗i,k ∈ ∂νi,k+γkgti,k(x̄), and points ti,k ∈ T, i = 1, . . . , n+ 1, k ∈ N, such that

(4.5) u∗ = lim
k→+∞

n+1∑
i=1

λi,ku
∗
i,k,

and, for i = 1, . . . , n+ 1 and k ∈ N,

(4.6) g(x̄) + νi,k ≤ gti,k(x̄) + ρi,k/λi,k + γk.

Indeed, to prove this claim we notice that by definition of S(x̄, ε) for every k ∈ N
there is y∗k ∈ Aγk such that ‖x∗ − y∗k‖ ≤ k−1, where

Aγ :=
⋃ ∑

t∈suppλ

λt∂νt+γgt(x̄) :
λ ∈ ∆(T ), ρ ∈ ∆ε1(T ), ν ∈ R(T )

+

and gt(x̄) + ρt/λt + γ ≥ g(x̄) + νt

 .
Due to the definition of Aγ , we can write y∗k as

y∗k =
∑

t∈suppλt,k

λt,ku
∗
t,k

for some multipliers λk ∈ ∆(T ) and u∗t,k ∈ ∂νt,k+γkgt(x̄) with ρk ∈ ∆ε1(T ), νk ∈ R(T )
+ ,

and gt(x̄)+ρt,k/λt,k+γk ≥ g(x̄)+νt,k. Now, by Carathéodory’s theorem, the cardinal
number of suppλk is bounded by n + 1. Therefore, relabelling the sequences we get
the proof of the claim.

Claim 2. There exist (λ1, . . . , λn+1) ∈ ∆n+1, (ρ1, . . . , ρn+1) ∈ ∆ε
n+1, (u∗1, . . . , u

∗
n+1)

∈ (Rn)n+1 and (t1, . . . , tn+1) ∈ Tn+1 such that for all i = 1, . . . , n+ 1

λi,k → λi, ρi,k → ρi, and u∗i,k → u∗i as k →∞,

and for all i ∈ I
ti,k → ti as k →∞,

where
I := {i ∈ {1, . . . , n+ 1} : λi 6= 0}.

Let us prove Claim 2. Since ∆n+1 and ∆ε
n+1 are compact sets we can assume that

λi,k → λi and ρi,k → ρi as k → ∞ with (λ1, . . . , λn+1) ∈ ∆n+1, (ρ1, . . . , ρn+1) ∈
∆ε
n+1. Let us consider the constant

r := sup

{
ρi,k
λi,k

: i ∈ I, k ∈ N
}

+ sup {γk : k ∈ N} < +∞.

Hence, by (4.6) we have that

ti,k ∈ Tr(x̄) ∀k ∈ N ∀i ∈ I.

Thus, the compactness of Tr(x̄) allows us to assume without loss of generality (w.l.o.g.)
that ti,k → tk for all i ∈ I (via, perhaps, a subnet). For i ∈ {1, . . . , n+ 1}�I we can
take ti as any element in T .
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Now we proceed by proving that the subgradients u∗k,i are bounded uniformly.
Indeed, let M be such that

g(x̄+ h) ≤M ∀h ∈ B.

Then, for all i = 1, . . . , n+ 1, k ∈ N, and all h ∈ B,

〈u∗i,k, h〉 ≤ gti,k(x̄+ h)− gti,k(x̄) + νi,k + γk ≤M − gti,k(x̄) + νi,k + γk.

Then, using (4.6) we get that

(4.7) ‖u∗i,k‖ ≤M − g(x̄) + r + sup {γk : k ∈ N} ∀k ∈ N,∀i = 1, . . . , n+ 1.

Hence, by (4.7) we can assume w.l.o.g. that u∗i,k → u∗i for i = 1, . . . , n + 1. This
concludes the proof of Claim 2.

It is important to notice that there could exist i 6= j such that the limiting
points of the sequences (or of some subnets) (ti,k) coincide, i.e., ti = tj for i 6= j.
Consequently, we define

It := {i ∈ {1, . . . , n+ 1} : ti = t and λi 6= 0} .

Using this set we denote

λt :=

{ ∑
i∈It

λi if It 6= ∅,

0 if It = ∅,
ρt :=

{ 1
λt

∑
i∈It

ρi if It 6= ∅,

0 if It = ∅,

ηt :=

{
gt(x̄)− g(x̄) + ρt if It 6= ∅,

0 if It = ∅,
u∗t :=

{ 1
λt

∑
i∈It

λiu
∗
i if It 6= ∅,

0n if It = ∅.

Then, let us conclude the proof of the theorem proving the following claim.
Claim 3. For these λ and η, we have (λ, η) ∈ Λε((gt)t∈T , x̄), and

u∗ =
∑

t∈suppλ

λtu
∗
t and u∗t ∈ ∂ηtgt(x̄) ∀t ∈ suppλ.

To prove Claim 3, let us show first that (λ, η) ∈ Λε((gt)t∈T , x̄). Indeed, by (4.6) we
have, for all t with It 6= ∅ and all i ∈ It,

0 ≤ lim sup
k→∞

(
gti,k(x̄)− g(x̄) + ρi,k/λi,k + γk

)
≤ gt(x̄)− g(x̄) + ρi/λi,

where the last inequality is a consequence of the upper semicontinuity of the function
t 7→ gt(z). Thus,

ηt = gt(x̄)− g(x̄) + ρt =
1

λt

(
λtgt(x̄)− λtg(x̄) +

∑
i∈It

ρi

)

=
1

λt

(∑
i∈It

λi (gt(x̄)− g(x̄) + ρi/λi)

)
≥ 0,

which means that η ∈ R(T )
+ . Furthermore,

∑
t∈T

λt =

n+1∑
i=1

λi = 1,

which implies that λ ∈ ∆(T ).
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Now, using again the definition of λ and η, we have that∑
t∈suppλ

λt (g(x̄)− gt(x̄) + ηt) =
∑

t∈suppλ

λtρt =
∑

t∈suppλ

∑
i∈It

ρi

=
∑
i|λi 6=0

ρi ≤
n+1∑
i=1

ρi = ε.

In this way, we concluded that (λ, η) ∈ Λε((gt)t∈T , x̄).
Second, using (4.5) we have

u∗ =

n+1∑
i=1

λiu
∗
i =

∑
t∈T

∑
i∈It

λiu
∗
i =

∑
t∈suppλ

λt

(
1

λt

∑
i∈It

λiu
∗
i

)
=

∑
t∈suppλ

λtu
∗
t .

Finally, let us check that u∗t ∈ ∂ηtgt(x̄) for all t ∈ suppλ. Indeed, for a fixed t ∈
suppλt, and all i ∈ It, k ∈ N,

〈u∗i,k, y − x̄〉 ≤ gtk,i
(y)− gtk,i

(x̄) + νi,k + γk ∀y ∈ Rn.

Whence, for all y ∈ Rn,〈∑
i∈It

λi,ku
∗
i,k, y − x̄

〉
≤
∑
i∈It

λi,kgtk,i
(y)(4.8)

+
∑
i∈It

λi,k
(
−gtk,i

(x̄) + νi,k + γk
)
.

Now, the upper semicontinuity of the function t 7→ gt(z) entails (recall that ti,k → t
for all i ∈ It)

lim sup
k→∞

∑
i∈It

λi,kgtk,i
(y) ≤

∑
i∈It

λi lim sup
k→∞

gtk,i
(y)(4.9)

≤
∑
i∈It

λigt(y) = λtgt(y).

Moreover, by (4.6) we have∑
i∈It

λi,k
(
−gtk,i

(x̄) + νi,k
)
≤
∑
i∈It

λi,k (−g(x̄) + ρi,k/λi,k + γk) .

Then, taking the limit as k →∞ we get that

(4.10)

lim sup
k→+∞

(∑
i∈It

λi,k
(
−gtk,i

(x̄) + νi,k
))
≤
∑
i∈It

λi (−g(x̄) + ρi/λi)

= −λtgt(x̄) + λt (gt(x̄)− g(x̄) + ρt)

= −λtgt(x̄) + λtηt.

Therefore, taking the limits in (4.8), and using inequalities (4.9) and (4.10), we obtain

λt〈u∗t , y − x̄〉 ≤ λt (gt(y)− gt(x̄) + ηt) ∀y ∈ Rn,

and, dividing the last inequality by λt, we are done.
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Remark 4.5. Observe that while Proposition 4.2 provides an expression for the
∂g(x̄) under the compacity/upper semicontinuity assumptions (i) and (ii), Proposition
4.3 and Theorem 4.4 provide formulas for ∂εg(x̄), which is a rather more complicated
issue as g is a supremum function. Formula (4.1) given in Proposition 4.3 only re-
quires that int(dom g) 6= ∅, whereas Theorem 4.4 assumes that dom g = Rn, and the
compactness of all the sets Tγ(x̄), γ > 0 to avoid the use of ε-normal sets and compute
the estimation with exact multipliers (λ, η) ∈ Λε((gt)t∈T , x̄). Finally, condition (i) in
Theorem 4.4 is actually implied by the compactness of the whole index set T together
with assumption (ii).

Next we establish some corollaries under additional assumptions on the data
functions.

Corollary 4.6. In the setting of Theorem 4.4, assume that the functions gt are
affine, i.e., gt(x) = 〈ct, x〉+ αt with ct ∈ Rn and αt ∈ R. Then, we have

∂εg(x̄) =
⋃[∑

t∈T
λtct :

(λt) ∈ ∆(T ) and∑
t∈T

λt (g(x̄)− 〈ct, x̄〉 − αt) ≤ ε

]
.

Corollary 4.7. In the setting of Theorem 4.4, assume that T is a convex set of
a linear space and that the function t 7→ gt(z) is concave for all z ∈ Rn. Then, we
have

(4.11) ∂εg(x̄) =
⋃[

∂ηgt(x̄) :
η ≥ 0 and t ∈ T such that
g(x̄)− gt(x̄) ≤ ε− η

]
.

Proof. First consider u∗ in the right-hand side of (4.11), i.e., then there exist
t ∈ T and η ≥ 0 such that u∗ ∈ ∂ηgt(x̄) and g(x̄) − gt(x̄) ≤ ε − η. Then, for all
y ∈ Rn,

〈u∗, y − x〉 ≤ gt(y)− gt(x̄) + η

≤ g(y)− g(x̄) + ε,

which implies that u∗ ∈ ∂εg(x̄).
Conversely, consider u∗ ∈ ∂εg(x̄). Then, by Theorem 4.4, there exists (λ, η) ∈

∆(T )× R(T )
+ such that u∗ =

∑
t∈T λtu

∗
t for some u∗t ∈ ∂ηtgt(x̄) and∑

t∈suppλ

λt (g(x̄)− gt(x̄) + ηt) ≤ ε.

Let us take

t∗ :=
∑

t∈suppλ

λtt ∈ T

and

η∗ :=
∑

t∈suppλ

λt (ηt + gt∗(x̄)− gt(x̄)) .

By the concavity of t 7→ gt(x̄) we have that
∑
t∈suppλ λtgt(x̄) ≤ gt∗(x̄), and con-

sequently η∗ ≥ 0. Furthermore, by the definition of η∗ and the fact that (λ, η) ∈
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DC SEMI-INFINITE PROGRAMMING 849

Λε((gt)t∈T , x̄), we obtain

g(x̄)− gt∗(x̄) = g(x̄)−
∑

t∈suppλ

λtgt(x̄) +
∑

t∈suppλ

λtgt(x̄)− gt∗(x̄)

=
∑

t∈suppλ

λt (g(x̄)− gt(x̄) + ηt)−
∑

t∈suppλ

λt (ηt + gt∗(x̄)− gt(x̄))

≤ ε− η∗.

Finally, let us check that u∗ ∈ ∂η∗gt(x̄). Indeed, if we consider y ∈ Rn, by the
concavity of t 7→ gt(y) we have

∑
t∈suppλ λtgt(y) ≤ gt∗(y), and

〈u∗, y − x〉 =
∑

t∈suppλ

λt〈u∗t , y − x〉 ≤
∑

t∈suppλ

λt (gt(y)− gt(x̄) + ηt)

≤ gt∗(y)− gt∗(x̄) +
∑

t∈suppλ

λt (ηt + gt∗(x̄)− gt(x̄))

≤ gt∗(y)− gt∗(x̄) + η∗.

Following the same arguments as in the above result we can establish the following
result for the exact subdifferential, in the framework of Proposition 4.2.

Corollary 4.8. In the setting of Proposition 4.2, assume that T is a convex set
of a linear space and the function t 7→ gt(z) is concave for all z ∈ dom g. Then, we
have

∂g(x̄) :=
⋃

t∈T (x̄)

∂gt(x̄).

5. Semi-infinite programming. In this section we consider the following class
of semi-infinite programming problems with DC data functions:

(5.1)
minψ(x)

s.t. ϕt(x) ≤ 0 ∀t ∈ T.

The multipliers associated with ψ are distinguished by using the symbol “ˆ” over
the multiplier, that is, λ̂, η̂, etc. In what follows we appeal to the set.

Tε(x̄) := {t ∈ T : ϕt(x̄) ≥ sup
s∈T

ϕs(x̄)− ε}.

If sups∈T ϕs(x̄) = 0, the indices in Tε(x̄) are called ε-active at x̄.
We divide this section into two parts devoted to studying global minima and local

minima of the (5.1) separately.

5.1. Global minima. In this section we provide necessary and sufficient opti-
mality conditions for nonconvex optimization problems with DC data functions, where
we benefit from results established in the previous section applied to a supremum func-
tion (4.4) involving all the data functions. Let us establish the main assumptions over
the data functions.

Assumption 5.1. Our data functions ϕt, t ∈ T, and ψ belong to Γh(Rn) for some
convex function h : Rn → R, and the following hold:

• All of them are finite-valued, that is, ψ,ϕt : Rn → R, t ∈ T .
• For all z ∈ Rn the function t 7→ ϕt(z) is upper-semicontinuous.
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• The supremum function supt∈T ϕt is finite-valued.

Theorem 5.2. Let x̄ be a feasible point of (5.1). Suppose that Assumption 5.1
holds and additionally that, for all ε ≥ 0, the set Tε(x̄) is compact. Then, if x̄ is a

minimum of (5.1), for every ε ≥ 0 and all u ∈ ∂εh(x̄) there are (λt), (ηt) ∈ R(T )
+ ,

λ̂, η̂ ∈ R+,
∑
t∈T λt + λ̂ = 1, such that

(5.2) u ∈ λ̂∂η̂(ψ + h)(x̄) +
∑
t∈T

λt∂ηt(ϕt + h)(x̄)

with

(5.3)
∑
t∈T

λt (ηt − ϕt(x̄)) + λ̂η̂ ≤ ε.

The converse is true provided that x̄ is a feasible point of (5.1) and (5.2) always holds

with multiplier λ̂ 6= 0.

Consider a point t̂ /∈ T and define T̂ := T ∪ {t̂} together with the functions

{gt, t ∈ T̂}, given by

gt :=

{
ϕt + h if t ∈ T,
ψ + h if t = t̂.

Consider now the supremum function

g := sup
t∈T̂

gt,

and the following unconstrained DC optimization problem:

(5.4) min
x∈Rn

(g − h) .

Before presenting the proof of Theorem 5.2 we establish the relationship between
problems (5.1) and (5.4). From now on, we shall assume w.l.o.g. that ψ(x̄) = 0.

Lemma 5.3. If x̄ is a minimum of (5.1), then x̄ is a minimum of (5.4).

Proof. The key is the relation

(5.5) g − h = sup {ϕt, t ∈ T ; ψ} .

Suppose that x̄ is a minimum of (5.1) and, reasoning by contradiction, let x ∈ Rn be
such that

(g − h)(x) < (g − h)(x̄) = ψ(x̄) = 0.

Then, by (5.5),

ϕt(x) < 0 ∀t ∈ T,

and x is feasible for (5.1). Moreover,

(g − h)(x̄) = ψ(x̄) ≤ ψ(x) = ψ(x) + h(x)− h(x)

≤ g(x)− h(x),

which constitutes a contradiction, and x̄ is also a minimum of (5.4).
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Proof of Theorem 5.2. By Lemma 5.3 we have that x̄ is a minimum of (5.4). Now,
by the definition of subdifferential, we have that x̄ is a minimum of (5.4) if and only
if

0n ∈ ∂ (g − h) (x̄),

and, by Proposition 4.1, this happens if and only if

(5.6) ∂εh(x̄) ⊆ ∂εg(x̄) ∀ε ≥ 0.

Now, Theorem 4.4 allows us to express the ε -subdifferential of g at x̄, as t̂ is an
isolated point of any T̂ε(x̄) . In fact, inclusion (5.6) is equivalent to having that, for

all ε ≥ 0 and every u ∈ ∂εh(x̄), there exist ((λt)t∈T , λ̂, (ηt)t∈T , η̂) ∈ Λε((gt)t∈T̂ , x̄)
such that

u ∈ λ̂∂η̂(ψ + h)(x̄) +
∑
t∈T

λt∂ηt(ϕt + h)(x̄).

Finally, let us check that the elements of Λε((gt)t∈T̂ , x̄) satisfy (5.3). Indeed,

((λt)t∈T , λ̂, (ηt)t∈T , η̂) ∈ Λε((gt)t∈T̂ , x̄) if and only if (λt), (ηt) ∈ R(T )
+ , λ̂, η̂ ∈ R+,∑

t∈T λt + λ̂t = 1, and

(5.7)
∑
t∈T

λt (g(x̄)− gt(x̄) + ηt) + λ̂ (g(x̄)− gt̂(x̄) + η̂) ≤ ε.

Then, using in the last inequality that g(x̄)−h(x̄) = ψ(x̄) = 0, we see that (5.7) gives
rise to (5.3).

Now, to prove the converse, consider y ∈ Rn, a feasible point of the optimization
problem (5.1), that is, ϕt(y) ≤ 0 for all t ∈ T . On the one hand, by the continuity of
h, there exists x∗ ∈ ∂h(y), so

h(y)− h(x̄) = 〈x∗, y〉 − h∗(x∗)− h(x̄)

= 〈x∗, y − x〉 − (h∗(x∗) + h(x̄)− 〈x∗, x̄〉)
= 〈x∗, y − x̄〉 − ε, with ε := h∗(x∗) + h(x̄)− 〈x∗, x̄〉 ≥ 0.

By the definition of the ε-subdifferential, we have that x∗ ∈ ∂εh(x̄). Therefore, we
conclude that

(5.8) h(y)− h(x̄) + ε = 〈x∗, y − x̄〉 for some x∗ ∈ ∂εh(x̄).

On the other hand, by (5.2), for some suitable numbers (λt), (ηt) ∈ R(T )
+ , λ̂, η̂ ∈ R+,

we have

〈x∗, y − x̄〉 ≤ λ̂ (ψ(y) + h(y)− ψ(x̄)− h(x̄) + η̂)

+
∑

t∈supλt

λt (ϕt(y) + h(y)− ϕt(x̄)− h(x̄) + ηt)

≤ λ̂ (ψ(y)− ψ(x̄)) + λ̂ (h(y)− h(x̄)) + λ̂η̂

+
∑

t∈supλt

λt (−ϕt(x̄) + ηt) +
∑

t∈supλt

λt (h(y)− h(x̄))

= λ̂ (ψ(y)− ψ(x̄)) + (h(y)− h(x̄)) +
∑
t∈T

λt (ηt − ϕt(x̄)) + λ̂η̂

≤ λ̂ (ψ(y)− ψ(x̄)) + (h(y)− h(x̄)) + ε.
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So, we conclude that

(5.9) 〈x∗, y − x̄〉 ≤ λ̂ (ψ(y)− ψ(x̄)) + (h(y)− h(x̄)) + ε.

Hence, combining (5.8) and (5.9), we yield 0 ≤ λ̂ (ψ(y)− ψ(x̄)). Finally, using our

extra assumption we have that necessarily λ̂ 6= ∅, which concludes the proof.

Remark 5.4. We can provide a characterization of optimal solutions to problems
with an abstract constraint

minψ(x)

s.t. ϕt(x) ≤ 0 ∀t ∈ T,
x ∈ C

with C being a closed convex set, by using the characterization given in Proposi-
tion 4.3.

Since one of the most important classes of DC functions corresponds to the class
Γρ(Rn), in the following corollary we deal with the particular case when the data
belongs to this family of functions.

Corollary 5.5. Assume that the data functions ψ, ϕt, t ∈ T, belong to Γρ(Rn)
for some ρ > 0. In the setting of Theorem 5.2, if x̄ is a minimum of (5.1), then

for every ε ≥ 0 and every u ∈ B(x̄,
√

2ε
ρ ) there are (λt), (ηt) ∈ R(T )

+ , λ̂, η̂ ∈ R+,∑
t∈T λt + λ̂ = 1, satisfying (5.3) and such that

(5.10) ρu ∈ λ̂∂η̂(ψ + ρJ)(x̄) +
∑
t∈T

λt∂ηt(ϕt + ρJ)(x̄).

The converse is true provided that x̄ is a feasible point of (5.1) and (5.10) always

holds with multiplier λ̂ 6= 0.

Proof. The proof follows from Theorem 5.2 by taking into account that ∂εJ(x̄) =
B(x̄,

√
2ε) for all ε ≥ 0.

Remark 5.6. It is worth mentioning that the assumptions of the above results
are weaker than the classical assumptions for nonconvex semi-infinite programming
where, in a majority of cases, a certain assumption of continuity of the function
(t, x) 7→ ∇xϕt(x) is made (see, e.g., [23]). Other weaker conditions are also assumed
in diverse works, but they are also stronger that our assumptions. Let us provide a
very simple example. Considering a function c : [0, 1] → R, which is not continuous,
but upper-semicontinuous, for instance, c(t) := 1[ti,1], where ti is some point in ]0, 1[.
Consequently, the function t 7→ c(t)z2 is just upper-semicontinuous for every z ∈ R.

The following corollary is the application of the above result and Proposition 3.2,
which constitutes a criterion to determine when the function belongs to Γh(Rn).

Corollary 5.7. Under the Assumption 5.1, assume that ψ, ϕt, t ∈ T, belong to
C2(Rn), and suppose that there exists a C2(Rn)-convex function h such that, for all
x ∈ Rn,

(5.11)
∇2ϕt(x) < −∇2h(x) ∀t ∈ T,
∇2ψ(x) < −∇2h(x).
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Then, in the setting of Theorem 5.2, if x̄ is a minimum of (5.1), then for every

ε ≥ 0 and every u ∈ ∂εh(x) there are (λt), (ηt) ∈ R(T )
+ , λ̂, η̂ ∈ R+,

∑
t∈T λt + λ̂t = 1,

satisfying (5.3)and such that

(5.12) u ∈ λ̂∂η̂ (ψ + h) (x̄) +
∑
t∈T

λt∂ηt (ϕt + h) (x̄).

The converse is true provided that x̄ is a feasible point of (5.1) and (5.12) always

holds with multiplier λ̂ 6= 0.

Proof. By (5.11) and Proposition 3.2 we have that the functions ψ, ϕt, t ∈
T, belong to Γh(R). Thus, Theorem 5.2 yields the result.

Example 5.8. Consider a family of n× n-symmetric matrices A(t), n-vectors b(t)
and d, and numbers c(t), with t ∈ T , and define the following optimization problem:

min 〈d, x〉
s.t. (1/2) 〈A(t)z, z〉+ 〈b(t), z〉+ c(t) ≤ 0 ∀t ∈ T.(5.13)

An easy criterion to verify (5.11) is that the infimum of the smallest eigenvalues of
the matrices A(t) be finite. This condition, formulated as an optimization problem,
is given by

inf
(z,t)∈Sn−1×T

z>A(t)z > −∞,

where

Sn−1 :=

{
z ∈ Rn :

n∑
i=1

z2
i = 1

}
.

Consequently, under the assumptions of Theorem 5.2, in particular, that the function

t 7→ ϕt(z) := (1/2) 〈A(t)z, z〉+ 〈b(t), z〉+ c(t)

is upper-semicontinous for all z ∈ Rn, and supt∈T ϕt is finite-valued, a necessary and
sufficient condition for optimality of (5.13) is given by Corollary 5.7. Indeed, consider

ρ := max

{
0,− inf

(z,t)∈Sn−1×T
z>A(t)z

}
,

as well as the convex function h(x) = ρ
2‖x‖

2, where ‖ ·‖ is the Euclidean norm. Then,
we have that for all t ∈ T

∇2ϕt(x) = A(t) < −∇2h(x) = −ρId,

where Id represents the identity matrix.

5.2. Local minima. In this section we study local minima of (5.1), with func-
tions ψ, ϕt, t ∈ T, defined on Rn and values in R = R ∪ {+∞}. Let us establish
our main assumptions in this subsection, which are similar to Assumptions 5.1, but
of local nature.

Assumption 5.9 (at x̄). There exists a convex closed neighborhood U of x̄ such
that ψ, ϕt, t ∈ T, belong to Γh(U) for some function h ∈ Γ0(Rn) which is Fréchet
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differentiable at x̄. Additionally the following hold:
• The data functions ψ, ϕt, t ∈ T, are finite-valued on U .
• For some ε0 > 0, the set Tε0(x̄) is compact.
• For all z ∈ U the function t 7→ ϕt(z) is upper-semicontinuous on Tε0(x̄).
• For all z ∈ U, we have supt∈T ϕt(z) < +∞.

Theorem 5.10. Under the Assumption 5.9, let x̄ be a local minimum of (5.1).
Then,

(5.14) 0n ∈ co
(
∂̂ψ(x̄) ∪

⋃[
∂̂ϕt(x̄) : t ∈ T (x̄)

])
.

In addition, if 0n /∈ co(
⋃

[∂̂ϕt(x̄) : t ∈ T (x̄)]), then

(5.15) 0n ∈ ∂̂ψ(x̄) + cone
(⋃[

∂̂ϕt(x̄) : t ∈ T (x̄)
])
.

Proof. Without loss of generality we can assume that ψ(x̄) = 0, that U is small
enough to guarantee that h is finite on U, and that x̄ is a minimum of (5.1) over U .
As in the proof of Theorem 5.2, we consider a point t̂ /∈ T and define T̂ = T ∪{t̂} and
the functions {gt}t∈T̂

gt :=

{
ϕt + h+ δU if t ∈ T,

ψ + h if t = t̂,

as well as the supremum function

g := sup
t∈T̂

gt.

Now, by Lemma 5.3 we know that x̄ is a minimum of the optimization problem

min
x∈Rn

(g − h) (x),

and, consequently, 0n ∈ ∂ (f − g) (x̄). Then, using Proposition 4.1 we have that

(5.16) ∇h(x̄) ∈ ∂g(x̄).

Now, applying Proposition 4.2 to the function g (t̂ is isolated of Tε0(x̄)) we get

(5.17) ∂g(x̄) = co

( ⋃
t∈T̂ (x̄)

∂gt(x̄)

)
,

where

T̂ (x̄) =
{
t ∈ T̂ : gt(x̄) = g(x̄)

}
= {t ∈ T : gt(x̄) = g(x̄) = h(x̄)} ∪

{
t̂
}
,

since we are assuming that ψ(x̄) = 0 and x̄ is feasible for (5.1). Moreover, since h is
Fréchet differentiable at x̄ and due to the sum rule (2.2), we have that

(5.18)
∂ (ϕt + h) (x̄) = ∂̂ϕt(x) +∇h(x̄),

∂ (ψ + h) (x̄) = ∂̂ψ(x) +∇h(x̄).
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Thus, combining (5.17) and (5.18) we obtain

∂g(x̄) = co

(
∂(ψ + h)(x̄) ∪

⋃
t∈T (x̄)

∂ (ϕt + h+ δU ) (x̄)

)

= co
(
∂̂ψ(x̄) ∪

⋃[
∂̂ϕt(x̄) : t ∈ T (x̄)

])
+∇h(x̄),

where
T (x̄) = {t ∈ T : gt(x̄) = g(x̄)} .

Therefore, using the above equality and (5.16) we get that (5.14) holds. Finally, by

(5.14) there exits λ̂ ∈ R and (λt) ∈ R(T )
+ such that

(5.19) 0n ∈ λ̂∂̂ψ(x̄) +
∑
t∈T

λt∂̂ψt(x̄),

and if 0n /∈ co(
⋃

[∂̂ϕt(x̄) : t ∈ T (x̄)]), we have that necessarily λ̂ 6= 0. Thus, dividing

(5.19) by λ̂ we conclude that (5.15) is fulfilled.

The following corollary represents a tighter necessary optimality condition when
the data functions are smooth.

Corollary 5.11. In the setting of Theorem 5.10 assume that the data ψ, ϕt, t ∈
T, are differentiable at x̄. Then,

0n ∈ co ({∇ψ(x̄)} ∪ {∇ϕt(x̄) : t ∈ T (x̄)}) .

In addition, if 0n /∈ co {∇ϕt(x̄) : t ∈ T (x̄)}, then

−∇ψ(x̄) ∈ cone {∇ϕt(x̄) : t ∈ T (x̄)} .

6. DC cone-constraint optimization. This section is devoted to establishing
necessary and sufficient conditions for cone-constraint optimization problems. More
precisely we consider the following optimization problem:

(6.1) minψ(x) s.t. F (x) ∈ K,

where ψ : Rn → R, F : Rn → Rm is a vector-valued mapping, and K ⊂ Rm is a
closed convex cone with nonempty interior. We also consider the following basis of
the polar cone K◦:

K◦1 :=

{
y∗ ∈ K◦ :

m∑
i=1

|y∗i | ≤ 1

}
≡ K◦ ∩ B1,

where B1 is the closed unit ball for the norm ‖ · ‖1.
Definition 6.1. The mapping F : U ⊆ Rn → Rm is called a DC vector valued

mapping on the open set U if there exists convex function h : U → R, called a control
function, such that for all y∗ ∈ Rm with

∑m
i=1 |y∗i | = 1 the function

x 7→ 〈y∗, F (x)〉+ h(x)

is convex on U .
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Remark 6.2. In the original definition of vector valued DC function, given in [37],
the authors consider a vector valued function F : U ⊆ X → Y , where X and Y are
Banach spaces, and U is an open set. In this work the mapping F is said to be a
delta-convex function if and only if there exists a convex function h : U → R such
that for all y∗ ∈ Y ∗ with ‖y∗‖ = 1 the function x 7→ 〈y∗, F (x)〉 + h(x) is convex. It
is not difficult to prove that, in the Euclidean space, both definitions are equivalent.
Indeed, consider another norm ‖ · ‖, and let us suppose that there exists C > 0 such
that ‖x∗‖1 ≤ C‖x∗‖ for all x∗ ∈ Rn. Then, for every ‖x∗‖ = 1 we have that

〈x∗, F (x)〉+ Ch(x) = ‖x∗‖1
(〈

x∗

‖x∗‖1
, F (x)

〉
+ h(x)

)
+ (C − ‖x∗‖1)h(x),

which is a convex function; therefore F is a DC function with control function Ch.

The next theorem establishes necessary and sufficient conditions of optimality of
problem (6.1).

Theorem 6.3. Assume that F is a DC vector valued function on Rn with control
function h and that ψ ∈ Γh(Rn). Then, if x̄ is a minimum of (6.1), then we have for
every ε ≥ 0

(6.2) ∂εh(x̄) ⊆
⋃[

∂η (〈y∗, F 〉+ λψ + h) (x̄) :
∃(y∗, λ) ∈ C, ∃η ≥ 0 s.t.
η ≤ 〈y∗, F 〉(x̄) + ε

]
,

where 〈y∗, F 〉(x) := 〈y∗, F (x)〉 and

C = co ((K◦1 × {0}) ∪ {(0m, 1)}) .

The converse is true when x̄ is a feasible point of (6.1) and inclusion in (6.2)
holds with the set in the right-hand side with multiplier λ 6= 0.

In the proof of Theorem 6.3 we also assume that ψ(x̄) = 0.
Now, for every (y∗, λ) ∈ C we define the function g(y∗,λ) : Rn → R defined by

g(y∗,λ)(x) := 〈y∗, F (x)〉+ λψ(x) + h(x).

Here, it is important to point out that, for each (y∗, λ) ∈ C, the function g(y∗,λ) is
convex, because it can be written as the sum of convex functions. Actually, if y∗ = 0m,
we have

(6.3) g(0m,λ)(x) = (1− λ)h(x) + λ (ψ(x) + h(x)) ,

and g(0m,λ) is sum of two convex functions. Alternatively, y∗ 6= 0m, and then λ < 1.
Considering z∗ = (1 − λ)−1y∗ and defining µ :=

∑m
i=1 |z∗i | ∈ (0, 1], we have that

x 7→ 〈µ−1z∗, F 〉(x) + h(x) is convex, and consequently

g(y∗,λ)(x) = 〈y∗, F (x)〉+ λψ(x) + h(x)

= (1− λ)µ
(
〈µ−1z∗, F (x)〉+ h(x)

)
(6.4)

+ (1− λ)(1− µ)h(x) + λ (ψ(x) + h(x)) ,

which shows that g(y∗,λ) is again sum of convex functions. Therefore, g(y∗,λ) is a
convex function for all (y∗, λ) ∈ C.

Our approach in this section also relies on a supremum function; this is

g := sup
(y∗,λ)∈C

g(y∗,λ).

Furthermore, the function (y∗, λ) 7→ g(y∗,λ)(z) is affine for all z ∈ Rn.
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Now, let us consider once again the unconstrained optimization problem

(6.5) min
x∈Rn

(g(x)− h(x)) ,

where
g(x)− h(x) = sup

(y∗,λ)∈C
{〈y∗, F (x)〉+ λψ(x)} .

We notice that, due to the fact that (0m, 0) ∈ C,

(6.6) g(x)− h(x) ≥ 0 ∀x ∈ Rn.

Next we formally establish the relation between problems (6.1) and (6.5). The proof
of this lemma follows similar arguments to the proof of Lemma 5.3, so we omit the
proof.

Lemma 6.4. If x̄ is a minimum of (6.1), then x̄ is a minimum of (6.5).

Proof. Suppose that x̄ is a minimum of (6.1), and remember that we are assuming
that ψ(x̄) = 0. Since g(x̄)−h(x̄) = 0, and by (6.6), it turns out that x̄ is a a minimum
of (6.5).

Proof of Theorem 6.3. By Lemma 6.4 we have that x̄ is a minimum of (6.5), and
this happens if and only if 0n ∈ ∂ (g − h) (x̄). Thus, by Proposition 4.1 we have that
x̄ is a minimum of (6.5) if and only if

(6.7) ∂εh(x̄) ⊆ ∂εg(x̄) ∀ε ≥ 0.

Finally, using Corollary 4.7 we can express the subdifferential of g at x̄, that is,

(6.8) ∂εg(x̄) =
⋃[

∂ηg(y∗,λ)(x̄) :
∃η ≥ 0, (y∗, λ) ∈ C such that
g(x̄)− g(y∗,λ)(x̄) ≤ ε− η

]
.

From the fact that g(x̄)− h(x̄) = ψ(x̄) = 0, we get that

(6.9)

g(x̄)− g(y∗,λ)(x̄) ≤ ε− η
⇔ h(x̄)− 〈y∗, F (x̄)〉 − h(x̄) ≤ ε− η
⇔ −〈y∗F (x̄)〉 ≤ ε− η,
⇔ η ≤ 〈y∗, F (x̄)〉+ ε.

Thus, using (6.7), (6.8), and (6.9), we get the result.
The converse follows similar arguments to the one given in Theorem 5.2, so we

omit the proof.

Now, we focus on necessary optimality conditions for a local optimal solution of
problem (6.1). We refer to [27] and the references therein for similar results.

Theorem 6.5. Assume that F is a DC mapping on an open convex neighborhood
U of x̄, with control function h which is differentiable at x̄. Assume also that ψ ∈
Γh(U). Then, if x̄ is a local minimum of (6.1), then there exists u∗ ∈ K◦ such that
either

(6.10) 0 = 〈u∗, F (x̄)〉 and 0n ∈ D̂F (x̄)(u∗)

or

(6.11) 0 = 〈u∗, F (x̄)〉 and 0n ∈ D̂F (x̄)(u∗) + ∂̂ψ(x̄).
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Proof. We proceed similarly to the proof of Theorem 6.3. Thus, using the same
notation as in such a theorem, we have that 0n ∈ ∂ (g − h) (x̄). Thus, applying
Proposition 4.1, if x̄ is a local minimum of (6.1), then

∇h(x̄) ∈ ∂g(x̄).

Now, we use Corollary 4.8 to get the existence of (y∗, λ) ∈ C, where

C = co (K◦1 × {0} ∪ {(0m, 1)}) ,

such that
g(x̄)− h(x̄) = 0 = 〈y∗, F (x̄)〉

and

(6.12) ∇h(x̄) ∈ ∂ (〈y∗, F 〉+ λψ + h) (x̄).

Now, let us compute the right-hand side of the above inclusion. We analyze first the
case y∗ = (1− λ)z∗, z∗ ∈ B1�{0m}, and λ ∈ [0, 1[.

If we define µ :=
∑m
i=1 |z∗i |, we have that 〈y∗, F 〉 + λψ + h can be expressed as

in (6.4), and the sum rule for the convex subdifferential (see, e.g., [32]) together with
the sum rule for the Fréchet subdifferential (see (2.2)) yields

∂ (〈y∗, F 〉+ λψ + h) (x̄) = (1− λ)µ∂
(
〈µ−1z∗, F 〉+ h

)
(x̄) + (1− λ)(1− µ)∇h(x̄)

+ λ∂ (ψ + h) (x̄)

= (1− λ)µ∂̂
(
〈µ−1z∗, F 〉+ h

)
(x̄) + (1− λ)(1− µ)∇h(x̄)

+ λ∂̂ (ψ + h) (x̄)

= ∂̂ (〈(1− λ)z∗, F 〉) (x̄) + λ∂̂ψ(x̄) +∇h(x̄)

= D̂F (x̄)(y∗) + λ∂̂ψ(x̄) +∇h(x̄).

Thus, replacing it in (6.12) we conclude that there exists (y∗, λ) ∈ C such that
the following equations hold:

(6.13) 0 = 〈y∗, F (x̄)〉 and 0n ∈ D̂F (x̄)(y∗) + λ∂̂ψ(x̄).

It is easy to see that the last result is also valid when y∗ = 0m, since D̂F (x̄)(0m) = 0n
(see (6.3)). Therefore, on the one hand if λ = 0, (6.13) implies that (6.10) holds
defining u∗ = y∗. On the other hand if λ > 0, we can divide (6.13) by λ, and conclude
(6.11) by defining u∗ = λ−1y∗.

7. Problems with DC/supremum objective function. In this section we
deal with the following optimization problem:

min f(x)

s.t. x ∈ K,(7.1)

where
f := g − h, g = sup

t∈T1

gt, and h = sup
t∈T2

ht,

T1 and T2 being two index sets and K ⊂ Rn. In the following, we simply denote by
T gε (x) := (T1)gε and Thε (x) := (T1)hε . Let us consider a point x̄ ∈ K, and assume that
the following assumptions hold for the problem (7.1) at x̄.
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Assumption 7.1 (at x̄).
• All the functions gt, t ∈ T1, ht, t ∈ T2 are finite-valued convex functions

defined on Rn, and g and h are both finite everywhere.
• K is a closed convex set.
• For all ε ≥ 0 the indices sets T gε (x̄) and Thε (x̄) are compact.
• For all z ∈ Rn, the functions T1 3 t → gt(z) and T2 3 t → ht(z) are upper-

semicontinuous.

Theorem 7.2 (global solution). Let us assume that Assumption 7.1 holds x̄ ∈
Rn. Then, x̄ is a minimum of problem (7.1) if and only if for every ε ≥ 0,

(7.2)
⋃

(λ,η)∈Λε
h

∑
t∈T2

λt∂ηtht(x̄) ⊆
⋃[∑

t∈T1

λt∂ηtgt(x̄) + Nε2
K (x̄) :

(ε1, ε2) ∈ ∆ε
2

(λ, η) ∈ Λε1g

]
,

where

Λεg =

(λ, η) ∈ ∆(T1)× R(T1)
+ :

∑
t∈suppλ

λt (g(x̄)− gt(x̄) + ηt) ≤ ε

 and

Λεh =

(λ, η) ∈ ∆(T2)× R(T2)
+ :

∑
suppλ

λt (h(x̄)− ht(x̄) + ηt) ≤ ε

 .

Proof. It is obvious that problem (7.1) is equivalent to the optimization problem

min
x∈Rn

((g + δK)(x)− h(x)) .

Then, by definition of the subdifferential, and using Proposition 4.1, we have that x̄
is a minimum of problem (7.1) if and only if, for every ε ≥ 0,

∂εh(x̄) ⊆ ∂ε (g + δK) (x̄).

Now, according to the well-known formula for the ε-subdifferential of the sum of
convex functions (see, e.g., [38, Theorem 2.8.3]) we have that

∂ε (g + δK) (x̄) =
⋃

(ε1,ε2)∈∆ε
2

(∂ε1g(x̄) + Nε2
K (x̄)) .

Now, we apply Theorem 4.4 to the functions g and h to get the right- and left-hand
side of (7.2), respectively. This concludes the proof.

Now, we establish the local optimality conditions for problem (7.1), under the
following assumptions at x̄.

Assumption 7.3 (at x̄).
• The functions gt, t ∈ T1, and ht, t ∈ T2, belong to Γ0(Rn), and g and h are

both finite and continuous at x̄.
• For some ε0 ≥ 0 the sets T gε0(x̄) and Thε0(x̄) are compact.
• For all y ∈ dom g and all y ∈ domh the functions t → gt(y) and t → ht(z)

are upper-semicontinuous on T gε0(x̄) and Thε0(x̄), respectively.

The proof of the following result is based on similar arguments to those used in
the proof of Theorem 7.2, but appealing to Proposition 4.2 instead of Theorem 4.4.
Therefore, we shall omit the proof.
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Theorem 7.4 (local solution). Let us suppose that Assumption 7.3 holds at x̄.
Then, if x̄ is a local optimal solution of problem (7.1), then

co

 ⋃
t∈Th(x̄)

∂ht(x̄)

 ⊆ co

 ⋃
t∈T g(x̄)

∂gt(x̄)

+ NK(x).

Before presenting the following example let us establish the following formula
for the ε-subdifferential of the Asplund function. We recall that, given a closed set
C ⊂ Rn, the Asplund function associated with C is defined as

AC(x) = sup
c∈C

(
〈c, x〉 − 1

2
‖c‖2

)
.

It is well-known that AC is the conjugate of the function φC : Rn → R ∪ {+∞}
defined by

φC(y) :=
1

2
‖y‖2 + δC(y)

and that

(7.3) AC(x) =
1

2

(
‖x‖2 − d2

C(x)
)
,

where dC is the distance function to C.

Proposition 7.5. Let C ⊆ Rn be a closed set, x ∈ Rn, and ε ≥ 0. Then,

(7.4) ∂εAC(x) =

 ∑
c∈suppλ

λc · c :
(λc) ∈ ∆(C), and∑

c∈suppλ

λc
(
‖x− c‖2 − d2

C(x)
)
≤ 2ε

 .

Particularly, for ε = 0 the above formula reduces to

(7.5) ∂AC(x) = co (PC(x)) ,

where
PC(x) := {c ∈ C : ‖x− c‖ = dC(x)}.

Proof. Let us check that the assumptions of Corollary 4.6 hold. Indeed, for every
c ∈ C the function x 7→ 〈x, c〉− 1

2‖c‖
2 is affine. Moreover, by applying (7.3) we observe

that the set of ε-active indices at x is given by

Cε(x) =

{
c ∈ C :

1

2
‖c− x‖2 ≤ ε+

1

2
d2
C(x)

}
,

which is a compact set. Finally, the function c 7→ 〈z, c〉 − 1
2‖c‖

2 is continuous for all
z ∈ Rn.

Therefore, applying Corollary 4.6 we get that

∂εAC(x) =

 ∑
c∈suppλ

λcc :
(λc) ∈ ∆(C), and∑

c∈suppλ

λc
(
AC(x)−

(
〈x, c〉 − 1

2‖c‖
2
))
≤ ε

 .

Applying (7.3) again, we conclude the proof of (7.4). Finally, for ε = 0 the formula
(7.4) reduces to (7.5).
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Example 7.6. Given a closed convex set K and a closed set C , we consider the
optimization problem

(7.6)
min

1

2
d2
C(x),

s.t. x ∈ K.

Thanks to (7.3), the above minimization problem can be seen as a DC optimiza-
tion problem using the function g(x) = 1

2‖x‖
2 and the Asplund function h(x) =

AC(x).
On the one hand, by Theorem 7.2 we have that x̄ is a global solution of (7.6) if

and only if (7.2) holds. Furthermore, by Corollary 4.6 we have that condition (7.2)
of Theorem 7.2 can be written as for all ε ≥ 0

∂εAC(x̄) ⊆
⋃

(ε1,ε2)∈∆ε
2

{
B(x̄,

√
2ε1) + Nε2

K (x̄)
}
,

where in the right-hand side of the above inclusion we have used the well-known
formula for the ε-subdifferential of the sum of convex functions (see, e.g., [38, Theo-
rem 2.8.3]).

On the other hand, by Theorem 7.4 we get that if x̄ is a local solution of (7.6),
then

(7.7) PC(x̄) ⊆ x̄+ NK(x̄).

Let us emphasize that even the above condition is stronger that the classical Fermat
rule for critical points for nonconvex sets C. Here, we recall that the Fermat rule
for critical points (using the Mordukhovich, or the Clarke subdifferential ∂) should
be 0n ∈ ∂( 1

2d
2
C)(x̄) + NK(x̄), where x̄ − PC(x̄) ⊆ ∂( 1

2d
2
C)(x̄). Indeed, let us consider

C = C1 ∪ C2, where

C1 :=
{

(x, y) ∈ [−1/2, 1/2]× R : y =
√

1− x2
}

and

C2 :=
{

(x, y) ∈ R2 : |x| > 1/2 and y =
√

3/2
}
.

Moreover, consider K = {(x, y) : y = 0}. Then, with these sets the optimization
problem (7.6) has a critical point at (x, y) = (0, 0). Indeed, (0, 1) ∈ PC(0, 0) and
NK(0, 0) = {(0, y) : y ∈ R}. Nevertheless, the inclusion (7.7) is not satisfied at (0, 0),
but the Fermat rule holds.

8. A penality approach to abstract programming problems. In this sec-
tion we study a particular class of optimization problems with a DC objective func-
tion, whose importance justifies the convenience of writing the associated optimality
conditions separately. More precisely, we consider

min g(x)− h(x)

s.t. x ∈ C,

where g, h : Rn → R are convex functions and C is closed set in Rn.
In order to solve this problem, at least approximately, we consider a constant

µ > 0 and we provide sufficient optimality conditions for the following penalized
problem:

(8.1) min
x∈Rn

(
g(x)− h(x) +

1

2µ
d2
C(x)

)
,

where d2
C(x) is the square of the distance function to C.
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Theorem 8.1. The point x̄µ is a minimum of (8.1) if and only if

⋃
(ε1,ε2)∈∆ε

2

(
∂ε1h(x̄µ) +

1

µ
C(µε2)

)
⊆

⋃
(ε1,ε2)∈∆ε

2

(
∂ε1g(x̄µ) +

1

µ
B(x̄µ,

√
2µε2)

)
,

where

C(ε) =

 ∑
c∈suppλ

λc · c :
(λc) ∈ ∆(C), and∑

c∈suppλ

λc
(
‖x− c‖2 − d2

C(x)
)
≤ 2ε

 .

In particular, if x̄µ is a minimum of (8.1), then

∂h(x̄µ) +
1

µ
co (PC(x̄λ)) ⊆ ∂g(x̄µ) +

1

µ
x̄µ.

Proof. Since

1

2µ
d2
C(x) =

1

µ
J(x)− 1

µ
AC(x),

where J and AC are the duality map and the Asplund function, respectively, we can
write problem (8.1) as

min
x∈Rn

(
ĝ(x)− ĥ(x)

)
,

where

ĝ(x) = g(x) +
1

µ
J(x) and ĥ(x) = h(x) +

1

µ
AC(x).

Thus, by Proposition 4.1 we have that x̄µ is a minimum of (8.1) if and only if

(8.2) ∂εĥ(x̄) ⊆ ∂εĝ(x̄) ∀ε ≥ 0.

Now, by the sum rule for the ε-subdifferential (see, e.g., [38, Theorem 2.8.3]), we can
compute the left- and the right-hand side of (8.2); it yields

∂εĥ(x̄µ) =
⋃

(ε1,ε2)∈∆ε
2

(
∂ε1h(x̄µ) +

1

µ
∂ε2/µAC(x̄µ)

)
,(8.3)

∂εĝ(x̄µ) =
⋃

(ε1,ε2)∈∆ε
2

(
∂ε1g(x̄µ) +

1

µ
∂ε2/µJ(x̄µ)

)
,(8.4)

where we have used that

∂ε2

(
1

µ
AC

)
(x̄µ) =

1

µ
∂ε2/µAC(x̄µ) and ∂ε2

(
1

µ
J

)
(x̄µ) =

1

µ
∂ε2/µJ(x̄µ).
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Now, we compute using (3.1) and (7.4) that

(8.5)
1

µ
∂ε2/µAC(x̄µ) =

1

µ
C(µε2), and

1

µ
∂ε2/µJ(x̄µ) = B(x̄,

√
2µε2).

Finally, mixing (8.3) and (8.5) we conclude the proof.

9. Concluding remarks. In this work, we provided necessary and sufficient
optimality conditions for nonconvex optimization problems, which can be formulated
as DC optimization problems involving suprema of convex functions. Our approach
exploits some structural properties of this type of DC model and uses calculus rules for
the ε-subdifferential of the supremum functional to provide the optimality conditions
for global and local minima.

In section 4, we derived formulas for the subdifferential and the ε-subdifferential
of the supremum function. Particularly, Theorem 4.4 is our working horse in the
second part of the paper. In addition, it has its own interest as it characterizes the
ε-subdifferential of the supremum functions, in contrast with Proposition 4.2, which
only computes the subdifferential. Corollaries 4.7 and 4.8 analyze important particular
cases, and they are applied later in the paper.

The main results in section 5 are Theorem 5.5 (global optimality) and Theo-
rem 5.13 (local optimality), which provide necessary and sufficient KKT optimality
conditions for semi-infinite optimization problems involving only functions in the fam-
ily Γh. There are in the literature a few works related to our results in section 5, but
the optimality conditions for the semi-infinite problems considered in those works are
derived under more restrictive assumptions, and none of the data functions is a supre-
mum of convex functions. For instance, in [11, Theorem 1] the objective function is
DC but the constraints are convex. Moreover, the constraint qualification used in
that paper is a kind of closedness condition leading to KKT-type optimality condi-
tions involving finitely many active constraints. Another paper for parametrized DC
problems under very similar assumptions as in [11] is [13].

In section 6, we applied our methodology to cone-constraint optimization prob-
lems with DC data function. Here, the main results are Theorems 6.3 and 6.5, again
for global and local optimality, respectively. As far as we know, the global optimality
conditions in Theorem 6.3 are new, and no similar result can be found in the litera-
ture. In contrast Theorem 6.5 can be compared with [27, Theorem 4.1]. Nevertheless,
the necessary optimality conditions are expressed in terms of the Mordukhovich sub-
differential and co-derivative, which is a larger object than the Fréchet subdifferential
and co-derivative used in our approach.

Here, it is worth mentioning that our approach allowed us to get not only neces-
sary conditions for optimality but also sufficient conditions under some qualification
conditions of strict positivity of the multiplier.

Finally, in section 7, we focus on abstract optimization problems with an ob-
jective function which is the difference of two supremum functions. In Theorem 7.2
we established necessary and sufficient conditions for global optimality without any
“extra” qualification condition like the ones used in sections 5 and 6. This framework
is remarkably relevant when the distance function, a key tool in optimization and
variational analysis, appears. Particularly, in section 8, we showed the importance of
the distance function in a penalty approach to optimization problems.

Acknowledgment. The authors are grateful to the anonymous referees for their
careful reading, comments, and suggestions, which have significantly improved the
quality of this article.
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[6] R. Correa, A. Hantoute, and M. A. López, Valadier-like formulas for the supremum func-
tion II: The compactly indexed case, J. Convex Anal., 26 (2019), pp. 299–324.
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[23] M. López and G. Still, Semi-infinite programming, European J. Oper. Res., 180 (2007),
pp. 491–518.

[24] J.-E. Mart́ınez-Legaz and A. Seeger, A formula on the approximate subdifferential of the
difference of convex functions, Bull. Aust. Math. Soc., 45 (1992), pp. 37–41.

[25] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic Theory,
Grundlehren Math. Wiss. 330, Springer, Berlin, 2006.

D
ow

nl
oa

de
d 

04
/2

5/
21

 to
 1

48
.3

.1
50

.1
88

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/0328045


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DC SEMI-INFINITE PROGRAMMING 865

[26] B. S. Mordukhovich and T. T. A. Nghia, Subdifferentials of nonconvex supremum functions
and their applications to semi-infinite and infinite programs with Lipschitzian data, SIAM
J. Optim., 23 (2013), pp. 406–431.

[27] B. S. Mordukhovich and T. T. A. Nghia, Nonsmooth cone-constrained optimization with
applications to semi-infinite programming, Math. Oper. Res., 39 (2014), pp. 301–324.
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[35] M. Valadier, Sous-différentiels d’une borne supérieure et d’une somme continue de fonctions
convexes, C. R. Acad. Sci. Paris Sér. A-B, 268 (1969), pp. A39–A42.

[36] W. van Ackooij and W. de Oliveira, Nonsmooth and nonconvex optimization via approxi-
mate difference-of-convex decompositions, J. Optim. Theory Appl., 182 (2019), pp. 49–80.
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