334 research outputs found

    Visually Indicated Sounds

    Get PDF
    Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, we propose the task of predicting what sound an object makes when struck as a way of studying physical interactions within a visual scene. We present an algorithm that synthesizes sound from silent videos of people hitting and scratching objects with a drumstick. This algorithm uses a recurrent neural network to predict sound features from videos and then produces a waveform from these features with an example-based synthesis procedure. We show that the sounds predicted by our model are realistic enough to fool participants in a "real or fake" psychophysical experiment, and that they convey significant information about material properties and physical interactions

    Audio Inpainting

    Get PDF
    (c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published version: IEEE Transactions on Audio, Speech and Language Processing 20(3): 922-932, Mar 2012. DOI: 10.1090/TASL.2011.2168211

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Cough Monitoring Through Audio Analysis

    Get PDF
    The detection of cough events in audio recordings requires the analysis of a significant amount of data as cough is typically monitored continuously over several hours to capture naturally occurring cough events. The recorded data is mostly composed of undesired sound events such as silence, background noise, and speech. To reduce computational costs and to address the ethical concerns raised from the collection of audio data in public environments, the data requires pre-processing prior to any further analysis. Current cough detection algorithms typically use pre-processing methods to remove undesired audio segments from the collected data but do not preserve the privacy of individuals being recorded while monitoring respiratory events. This study reveals the need for an automatic pre-processing method that removes sensitive data from the recording prior to any further analysis to ensure privacy preservation of individuals. Specific characteristics of cough sounds can be used to discard sensitive data from audio recordings at a pre-processing stage, improving privacy preservation, and decreasing ethical concerns when dealing with cough monitoring through audio analysis. We propose a pre-processing algorithm that increases privacy preservation and significantly decreases the amount of data to be analysed, by separating cough segments from other non-cough segments, including speech, in audio recordings. Our method verifies the presence of signal energy in both lower and higher frequency regions and discards segments whose energy concentrates only on one of them. The method is iteratively applied on the same data to increase the percentage of data reduction and privacy preservation. We evaluated the performance of our algorithm using several hours of audio recordings with manually pre-annotated cough and speech events. Our results showed that 5 iterations of the proposed method can discard up to 88.94% of the speech content present in the recordings, allowing for a strong privacy preservation while considerably reducing the amount of data to be further analysed by 91.79%. The data reduction and privacy preservation achievements of the proposed pre-processing algorithm offers the possibility to use larger datasets captured in public environments and would beneficiate all cough detection algorithms by preserving the privacy of subjects and by-stander conversations recorded during cough monitoring

    Minimum Processing Near-end Listening Enhancement

    Full text link
    The intelligibility and quality of speech from a mobile phone or public announcement system are often affected by background noise in the listening environment. By pre-processing the speech signal it is possible to improve the speech intelligibility and quality -- this is known as near-end listening enhancement (NLE). Although, existing NLE techniques are able to greatly increase intelligibility in harsh noise environments, in favorable noise conditions the intelligibility of speech reaches a ceiling where it cannot be further enhanced. Actually, the focus of existing methods solely on improving the intelligibility causes unnecessary processing of the speech signal and leads to speech distortions and quality degradations. In this paper, we provide a new rationale for NLE, where the target speech is minimally processed in terms of a processing penalty, provided that a certain performance constraint, e.g., intelligibility, is satisfied. We present a closed-form solution for the case where the performance criterion is an intelligibility estimator based on the approximated speech intelligibility index and the processing penalty is the mean-square error between the processed and the clean speech. This produces an NLE method that adapts to changing noise conditions via a simple gain rule by limiting the processing to the minimum necessary to achieve a desired intelligibility, while at the same time focusing on quality in favorable noise situations by minimizing the amount of speech distortions. Through simulation studies, we show the proposed method attains speech quality on par or better than existing methods in both objective measurements and subjective listening tests, whilst still sustaining objective speech intelligibility performance on par with existing methods

    Privacy-Sensitive Audio Features for Conversational Speech Processing

    Get PDF
    The work described in this thesis takes place in the context of capturing real-life audio for the analysis of spontaneous social interactions. Towards this goal, we wish to capture conversational and ambient sounds using portable audio recorders. Analysis of conversations can then proceed by modeling the speaker turns and durations produced by speaker diarization. However, a key factor against the ubiquitous capture of real-life audio is privacy. Particularly, recording and storing raw audio would breach the privacy of people whose consent has not been explicitly obtained. In this thesis, we study audio features instead – for recording and storage – that can respect privacy by minimizing the amount of linguistic information, while achieving state-of-the-art performance in conversational speech processing tasks. Indeed, the main contributions of this thesis are the achievement of state-of-the-art performances in speech/nonspeech detection and speaker diarization tasks using such features, which we refer to, as privacy-sensitive. Besides this, we provide a comprehensive analysis of these features for the two tasks in a variety of conditions, such as indoor (predominantly) and outdoor audio. To objectively evaluate the notion of privacy, we propose the use of human and automatic speech recognition tests, with higher accuracy in either being interpreted as yielding lower privacy. For the speech/nonspeech detection (SND) task, this thesis investigates three different approaches to privacy-sensitive features. These approaches are based on simple, instantaneous, feature extraction methods, excitation source information based methods, and feature obfuscation methods. These approaches are benchmarked against Perceptual Linear Prediction (PLP) features under many conditions on a large meeting dataset of nearly 450 hours. Additionally, automatic speech (phoneme) recognition studies on TIMIT showed that the proposed features yield low phoneme recognition accuracies, implying higher privacy. For the speaker diarization task, we interpret the extraction of privacy-sensitive features as an objective that maximizes the mutual information (MI) with speakers while minimizing the MI with phonemes. The source-filter model arises naturally out of this formulation. We then investigate two different approaches for extracting excitation source based features, namely Linear Prediction (LP) residual and deep neural networks. Diarization experiments on the single and multiple distant microphone scenarios from the NIST rich text evaluation datasets show that these features yield a performance close to the Mel Frequency Cepstral coefficients (MFCC) features. Furthermore, listening tests support the proposed approaches in terms of yielding low intelligibility in comparison with MFCC features. The last part of the thesis studies the application of our methods to SND and diarization in outdoor settings. While our diarization study was more preliminary in nature, our study on SND brings about the conclusion that privacy-sensitive features trained on outdoor audio yield performance comparable to that of PLP features trained on outdoor audio. Lastly, we explored the suitability of using SND models trained on indoor conditions for the outdoor audio. Such an acoustic mismatch caused a large drop in performance, which could not be compensated even by combining indoor models

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced
    corecore