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ABSTRACT 

 

The detection of cough events in audio recordings requires the analysis of a significant amount 

of data as cough is typically monitored continuously over several hours to capture naturally 

occurring cough events.  The recorded data is mostly composed of undesired sound events such 

as silence, background noise, and speech. To reduce computational costs and to address the 

ethical concerns raised from the collection of audio data in public environments, the data 

requires pre-processing prior to any further analysis. 

Current cough detection algorithms typically use pre-processing methods to remove undesired 

audio segments from the collected data but do not preserve the privacy of individuals being 

recorded while monitoring respiratory events. This study reveals the need for an automatic pre-

processing method that removes sensitive data from the recording prior to any further analysis 

to ensure privacy preservation of individuals. 

Specific characteristics of cough sounds can be used to discard sensitive data from audio 

recordings at a pre-processing stage, improving privacy preservation, and decreasing ethical 

concerns when dealing with cough monitoring through audio analysis. 

We propose a pre-processing algorithm that increases privacy preservation and significantly 

decreases the amount of data to be analysed, by separating cough segments from other non-

cough segments, including speech, in audio recordings. Our method verifies the presence of 

signal energy in both lower and higher frequency regions and discards segments whose energy 

concentrates only on one of them. The method is iteratively applied on the same data to increase 

the percentage of data reduction and privacy preservation. 



We evaluated the performance of our algorithm using several hours of audio recordings with 

manually pre-annotated cough and speech events. Our results showed that 5 iterations of the 

proposed method can discard up to 88.94% of the speech content present in the recordings, 

allowing for a strong privacy preservation while considerably reducing the amount of data to 

be further analysed by 91.79%. 

The data reduction and privacy preservation achievements of the proposed pre-processing 

algorithm offers the possibility to use larger datasets captured in public environments and 

would beneficiate all cough detection algorithms by preserving the privacy of subjects and by-

stander conversations recorded during cough monitoring. 
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Chapter 1 

INTRODUCTION 

 

1.1 OVERVIEW AND MOTIVATION 

Cough is a common symptom observed in many diseases for which patients seek medical 

attention [1, 2]. According to Schappert [3], the most frequently mentioned symptoms during 

medical visits are related to the respiratory system, and cough is the most frequently mentioned 

reason having to do with illness or injury. Indeed, Cough is a symptom of over a hundred 

diseases [4, 5]  including chronic bronchitis, acute tracheitis, pneumonia, lung abscess, 

tuberculosis, lung cancer, and pulmonary oedema [2, 6], and there are more than 50 medical 

complications associated with coughing [7].  

The assessment of cough has greatly contributed in the field of cough pharmacology [8]. The 

most widely used approaches to assessing cough include methods for measuring cough-specific 

quality of life, subjective severity, cough frequency, intensity, and sensitivity of the 

underlying cough reflex [9-13]. However, subjective reporting of cough frequency and 

intensity is not reliable [14-17], and the measurement of the frequency at which cough events 

are occurring is often preferred to track respiratory ailments [4, 8, 10, 18-23]. Cough frequency 

is increasingly recognized as a measurable parameter of respiratory disease [24], and automatic 

cough detectors must be compared to the gold standard: manual counting of cough sounds by 

an expert [18, 25-27]. 

Over the last three decades, many automatic cough detection algorithms were developed 

because the manual analysis of cough sounds by a listener is time consuming and impractical 

in ambulatory conditions [8, 25, 28, 29].  

https://www.sciencedirect.com/topics/medicine-and-dentistry/cough-reflex
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Most of the current cough detection algorithms use audio analysis to monitor cough frequency; 

however, other techniques have been tested and compared, such as electrocardiography, 

electromyography, nasal thermocouple sensors, chest belts, airflow signals, and accelerometry 

[18, 23, 30-36]. 

When dealing with cough monitoring through audio analysis, it is important to understand what 

a cough is and what differentiates it from other sounds. A cough is composed of three distinct 

phases which allow in defending the lower airways: an inspiratory phase followed by a forced 

expiratory effort initially against a closed glottis (compressive phase), followed by active 

glottal opening and rapid expiratory flow [8, 37-40].  

   

 

 

 

 

 

 

It is the expulsive phase that creates the sound of a cough (Figure 2). The sound is also 

composed of three phases: an explosive phase, an intermediate phase and a voiced phase [8, 

18, 41]. The cough sound originates in a sudden air expulsion from the airways and is so 

characteristic that it is easily identified from other sounds by the human ear [4]. However, it 

Figure 1: From McCool [37], Schematic diagram depicting changes in flow and subglottic 

pressure during the inspiratory, compressive, and expiratory phases of cough. 
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becomes harder for a machine to identify cough sounds from similar sounds such as speech, 

laughing, sneezing, throat clearing and other ambient sounds [42]. 

Other airway defensive reflexes, such as the expiration reflex, can be mistaken for coughs but 

have different properties. The expiration reflex will prevent aspiration of material into the lungs 

while cough will clear the airways from debris. Fontana [8] explains that the inspiratory phase 

of the cough is what differentiates a cough from an expiration reflex. 

 

 

 

 

 

 

 

 

Cough monitoring methods can be divided into three main categories: Automatic cough 

detection and segmentation, automatic classification of coughs that are already detected, and 

diagnosis of an illness based on the cough sound and type [43]. 

 

Figure 2: From Hall et al. [18], The component phases of the cough sound: opening of the 

vocal cords (first phase), air flow through the open larynx (second phase), and re-apposition 

of the cords (third, voiced phase—not always present). 
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The typical workflow for cough detection algorithms is composed of the following three steps 

[43, 44]:  

▪ Sound event detection, a pre-processing stage to remove silence within the signal. 

▪ Feature extraction, the most useful features are used as inputs for a model classifier. 

▪ Classification, sound events are classified into cough and non-cough events by a trained 

classifier  

The pre-processing stage of cough detection algorithms is typically used to reduce the amount 

of data to further be analysed. More rarely, pre-processing has been used in attempts to discard 

sensitive data from audio recordings [45-48]. 

1.2 THESIS STATEMENT  

Current cough detection algorithms do not preserve the privacy of individuals being recorded 

while monitoring respiratory events. There is a need for an automatic pre-processing method 

that removes sensitive data from the recording prior to any further analysis to ensure privacy 

preservation of individuals. This motivation introduces our thesis statement: 

Specific characteristics of cough sounds can be used to discard sensitive data from audio 

recordings at a pre-processing stage, improving privacy preservation, and decreasing 

ethical concerns when dealing with cough monitoring through audio analysis. 

1.3 AIMS AND OBJECTIVES OF THE PRESENT WORK 

The area of cough detection through audio analysis could beneficiate from improvements 

related to privacy preservation, the identification of new cough event features, and the 

limitation in the algorithms’ performance evaluation. 
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1.3.1 PRIVACY PRESERVATION 

Ethical concerns raised from the collection of audio data in public environments need to be 

addressed by researchers in their study. From the research conducted, only a few researchers 

mentioned methods used to preserve privacy. These methods typically involve the removal of 

undesired audio segments from the collected data. The data is modified using subsampling, on-

event recording, or alteration of audio; however, there is typically a loss of audio quality or 

number of cough events in the remaining data. A pre-processing algorithm that can remove 

undesired audio events, including speech, would beneficiate all cough detection algorithms by 

preserving the privacy of subjects and by-stander conversations recorded during cough 

monitoring. 

1.3.2 IDENTIFICATION OF NEW COUGH EVENT FEATURES 

From the research conducted, it appears that researchers have a tendency to use the “state-of-

the-art” feature extraction method at the time of their research. It started with methods like 

time-domain analysis and methods similar to the ones used for speech recognition. More 

recently, the progress made with Neural Networks made it a commonly used method for cough 

feature extraction.  

These methods have proven to be effective, however the number of false positive and false 

negative reported in studies shows that there is room for improvement and features that 

represent cough events more accurately need to be found.  

Researchers have been studying the combination of different features to create more accurate 

cough models. However, further research is required to find the ideal set of features with aim 

to find the state-of-the-art method for cough monitoring through audio analysis. 
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1.3.3 LARGE DATASET FOR A CONSTANT EVALUATION ACROSS ALL COUGH DETECTION 

ALGORITHM. 

Our study shows that the datasets used for the evaluation of existing algorithms differ from one 

study to another. The quality, size, and type of data composing the datasets have a significant 

impact on the evaluation of the algorithm. This diversity in the evaluation of existing algorithm 

does not allow for the identification of the state-of-the-art cough detection algorithm. 

Therefore, a new evaluation method with constant data and metrics is needed. We believe a 

large dataset for couch detection algorithm evaluation purpose should be created and shared 

publicly with the scientific community. This dataset should represent all recording conditions 

and should be composed of audio segments recorded with a high diversity in the type of 

microphones, study subjects, type of coughs events, type of non-cough events, quality, and 

background noises.  

Furthermore, the evaluation of cough detection algorithms needs to be done using universal 

metrics and evaluation criteria. The state-of-the-art algorithm for cough detection can then be 

identified from a fair evaluation of all algorithms based on results obtained using a unique 

dataset and constant evaluation criteria. 

1.4 OBJECTIVES OF PRESENT WORK 

From the identified possible improvements in the field of cough detection through audio 

analysis, we focused on the development of a pre-processing technique that can considerably 

reduce the amount of data to analyse, while preserving the privacy of the persons being 

recorded. We think that contributing to the scientific community with a privacy preservation 

algorithm would benefit all existing and future cough detection algorithms as it could be used 

at a preprocessing stage, not requiring any alteration of existing algorithms.  
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1.5 RESEARCH CONTRIBUTIONS 

The main contributions of this thesis are:  

- Privacy preservation pre-processing algorithm for cough detection: This thesis 

contains a pre-processing algorithm that detect and preserves cough events while removing 

enough speech to make the resulting audio file unintelligible. This new pre-processing method 

contributes to the field of cough detection through audio analysis where the collection of audio 

data in public environments raises ethical concerns. 

- Data reduction pre-processing algorithm for cough detection: By removing 

sensitive data from the audio recordings in addition to other non-cough sound events, the 

proposed algorithm achieves high performance at reducing the amount of data to be analysed 

in the next stages of the cough detection algorithm. All cough detection algorithms can benefit 

from this new algorithm, decreasing their required computational cost. 

This thesis will provide, in chapter 2, an overview of existing cough detection algorithms from 

the recording of audio data and its implications to the classification of sound events into cough 

and non-cough events. In chapter 3, we will discuss the state-of-the-art of existing cough 

detection algorithms by comparing their published results and we will cover the limitation of 

existing algorithm. This will lead to a detailed explanation of the proposed new privacy 

preserving pre-processing algorithm in chapter 4. We will conclude with potential future work 

in the area of cough monitoring with audio analysis in chapter 5. 
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Chapter 2 

LITERATURE REVIEW 

Over the last decades, a small portion of pulmonary research has been focused on the systematic 

detection of cough sounds and considerable progress has been made in the development of 

cough assessment tools [45]. This chapter gives an overview of related work and background 

information, covering the typical cough monitoring steps when dealing with cough monitoring 

through audio analysis, from cough recordings to cough sounds classification. 

2.1 COUGH RECORDINGS AND ETHICAL IMPLICATIONS 

The collection of audio data raises audio privacy concerns since private conversations can be 

recorded alongside sounds of interest. Many papers cover the topic of preserving privacy 

during audio data collection in a way that speech is altered or eliminated from the original 

recording before analysis [46-48]. However, the captured data needs to be stored prior to using 

these techniques and sensitive data can be extracted by the researcher. Ethical principles must 

be respected to ensure the privacy preservation of research subjects. 

2.1.1 ETHICAL CONSIDERATIONS 

Smith [49] details principles for research ethics which relate to audio data collection. She 

explains that during the consent process, the subject must be informed with clarity on the 

purpose of the research, the rights to withdraw from the research, the limits of confidentiality, 

and relevant risks and benefits. Subjects must be given information about how the data 

collected will be used and shared with the community. 

Ethics principles can easily be applied when collecting audio data in a controlled environment 

since only research subjects are being recorded. Consent forms can be signed by each subject 

and the data collected can be used and shared without causing any harm. One negative 
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consequence of performing audio data collection in a controlled environment is the lack of 

ambient background noise. Ideally, audio data would be collected in public spaces where the 

recording of coughs of numerous different subjects would allow for better cough models and 

increase the performance of the algorithm. However, it becomes impossible to obtain the 

consent of each person being recorded during the data collection. 

To overcome this issue, real-time pre-processing could remove sensitive data from a recording 

as it is being recorded. Audio would then be altered before being available for any further 

analysis, respecting privacy and limiting the need for consent. However, pre-processing the 

data brings another issue as cough events can be deleted alongside the undesired sensitive data. 

2.1.2 PRIVACY PRESERVATION 

Larson et al. [47] attempt to meet all the requirements for objective cough monitoring as 

outlined by the medical community. These goals include accuracy, low false positives, 

mobility, compactness, privacy preservation, unobtrusiveness. Their system uses Principal 

Component Analysis (PCA) of audio spectrogram for prevention of speech reconstruction. By 

reducing dimensions of the data with PCA, sound becomes unintelligible and only sound events 

classified as cough are reconstructed for analysis by a medical professional. The fidelity of 

reconstruction is highly dependent of the number of components used in the PCA and they 

found that 25 components produce a good fidelity cough sound while simultaneously 

disguising most of the spoken words. However, the fidelity of cough sound reconstruction is 

limited in [47] when a higher privacy preservation is desired, inducing a forced choice between 

cough quality and privacy. 

Sub-sampling offers an automatic privacy protection and subjects being recorded do not need 

to worry about identification or sensitive speech being compromised. Sound sub-sampling was 

used by Kumar et al. [48] to make it difficult to retrieve speech information. Their technique 
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consists in recording for a short period of time (1 second) every few seconds allowing for short 

sounds to be extracted. Cough sounds, having an average duration of 500 ms, can still be 

recorded while only part of the speech will be recorded making it difficult to be reconstructed. 

However, the process of sub-sampling original recordings used in [48] may also remove 

potential cough events from the recordings and therefore corrupt the data when the purpose is 

to accurately monitor cough event occurrences for one particular patient. 

 Nguyen and Luo [50] introduce a non-intrusive cough detection technique using a smartwatch. 

They assume that when someone coughs, there is a prior reflex of moving rapidly the hand 

towards the mouth. They detect similar movements using the smartwatch's accelerometer 

allowing the sound recorder to only be activated at this specific moment and for a few seconds. 

This technique used by Nguyen and Luo increases privacy preservation while considerably 

reducing the non-relevant data collected. Their technique is promising however there is 

significant reliance on the fact that the subject's mouth will always be covered while coughing 

and always using the same hand. Many cough events can still be missed and undesired sound 

events will potentially be recorded for any quick movement of the hand when wearing the 

smartwatch. The technique proposed in [50] is furthermore flawed with the recent COVID-19 

pandemic and the instruction of the WHO to avoid covering the mouth with the hand while 

coughing. 

2.2 PRE-PROCESSING OF AUDIO SIGNAL 

Pre-processing techniques are usually used to reduce the amount of data in a recording prior to 

conducting any analysis.   

 In previous literature, most of the data removed is of low intensity, such as silence, or of very 

high frequency, such as background noise. Ideally, most of the speech present in a recording 

should be removed at the pre-processing stage for privacy preservation while all cough events 
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should be left intact. However, speech is often considered as a sound event similar to the cough 

sound; therefore, most pre-processing techniques do not remove the speech content in the 

recordings prior to analysis to ensure that cough events do not get deleted alongside.  

 Removing silent segments from the audio recording by using manual editing, as in [51-52], 

ensures the preservation of cough events; however, manual editing is laborious and the task is 

typically automated. 

 Shi et al. [44] discuss simple threshold methods that use time-domain features to remove 

silence from the data, such as the energy entropy method used in [28,44,53-57] consists of 

framing the signal, calculating each frame energy and keeping only frames whose energy is 

above a defined threshold. Matos et al. [58] apply a dynamic energy threshold to the signal 

before their HMM classification, the threshold is set at 5 dB above the local neighborhood 

signal level and allow to eliminate silent segments of the recording. To reduce the chances of 

inadvertently discarding cough events from the recordings, they keep a 10-second segment of 

data for each sound event detected. 

 Energy threshold techniques are the most commonly used but a multitude of other methods 

have been tested in previous literature. [15,43,59] use the standard deviation of the signal to 

highlight the components of the data that contain the most variance, such that only these 

components are used for further analysis. Larson et al. [55] developed an event detection logic 

that only triggers when there is a rapid increase in acoustic energy relative to the noise floor. 

Ye et al. [60] employ probabilistic latent component analysis (PLCA) to perform time-varying 

noise separation focusing on some frequency bands, enhancing reliability of audio spectra. 

These methods have proven to be effective in the removal of silent segments while keeping 

most of the coughs present in the data. However, other sounds are also kept after the pre-
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processing stage, raising audio privacy concerns, and limiting the effectiveness of the data 

reduction process. 

 The importance of privacy preservation is being acknowledged more frequently, making it 

essential to use the pre-processing stage of the algorithm not only for data reduction but also 

to remove speech from the audio recordings. 

2.3 FEATURE EXTRACTION 

The identification of unique cough features is typically key to automatic cough detection and, 

over the last decade, numerous approaches have been adopted. Drugman et al. [61] explain that 

most of the features used for cough detection fall under three categories: features describing 

the spectral content, measure of noise, and prosody-related features. 

This section will cover the most widely used feature extraction techniques for each category 

and some of the less common techniques. Their performance will be compared in chapter 3. 

2.3.1 FREQUENCY BASED FEATURES 

The frequency-domain has been widely exploited for cough detection. Previous studies have 

shown that while the cough sound can vary significantly from one subject to another, it shares 

similar features in the frequency-domain. 

For example, it has been found that cough energy scatters through a wider frequency range 

than speech [62,63]. While speech energy concentrates on the low frequency region below 

2000 Hz, most of a cough energy lies within the mid-low frequency range (300 Hz to 8 kHz) 

[50,62-64]. In further research, Kosasih et al. [65] extract important cough features from 

frequencies up to 90 kHz. However, this requires capturing the data at a very high sampling 

rate, therefore, increasing greatly the computation cost. 
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A variety of methods based on frequency components analysis of the signal allow for the 

extraction of cough features. In early work, Barry et al. [15] use Linear Predictive Coding 

(LPC) to get their features from the signal spectral envelope. The features obtained from the 

Fourier transform illustration of the logarithmic magnitude spectrum of the LPC are cepstral 

coefficients and contain useful information to identify cough sounds [66]. Similarly, Mel 

Frequency Cepstral Coefficients (MFCCs) are commonly used features for representing 

spectral pattern in speech recognition and several attempts for cough detection using MFCCs 

have been made [29,42-44,46,50-52,54-57,59,62,67-74]. This approach mimics the human 

auditory system by using filters with frequency bands equally spaced on the Mel scale.  Matos 

et al. [42] created the Leicester Cough Monitor (LCM), a detection algorithm based on 

statistical models of the time-spectral characteristics of cough sounds. They use the MFCC 

parameterisation to describe the properties of each frame of their data in the cepstral domain 

keeping the 13 first coefficients and their first and second order derivatives to form the feature 

vector. To overcome the wide range of variances in the different order MFCCs, they apply 

cepstral liftering to detect quieter cough sounds. In a similar manner, Tracey et al. [54] use 

MFCCs as the primary features for acoustic analysis after detecting potential cough events 

from rapid increase in acoustic energy relative to the noise floor.  

Many other extraction methods originate in the adaptation of the MFCCs [60,63,71]. For 

example, Ye et al. [60] follow the Mel filter bank idea by designing a uniformly spaced triangle 

filter bank to describe sound events. Usually, the bandwidth of the filters in the Mel filter bank 

gradually increases, reducing the number of filters in the higher frequency region and 

emphasising the lower frequency region. Instead, the triangle filter bank of Ye et al. captures 

"richer temporal-spectral" features by keeping a constant bandwidth. In addition, they perform 

eigen-decomposition based on filtered audio spectrogram to further characterise significant 

patterns in sound events. 
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Liu et al. [75]  evaluate and compare Gammatone Cepstral Coefficients (GTCCs) with MFCCs. 

In this approach, an Equivalent Rectangular Bandwidth (ERB) scale is used instead of the 

MFCCs Mel scale, resulting in a smoother filter bank and a more accurate model of the human 

auditory system than with the triangle filters employed in MFCCs. However, You et al. [63] 

mention that, like noise, cough energy scatters across the entire spectral area while MFCCs and 

GTCCs emphasise the lower frequency region and may be unsuitable for cough detection. 

Similarly to [60], You et al. [63] propose a subband technique that emphasises the local 

frequency band from the full-band spectrum. The subbands are generated based on GTCCs 

with a smooth filter bank and features can be extracted from each subband signal by "any kind 

of common feature extraction method". 

Shin et al. [62] also found MFCCs unsuitable for cough detection and introduced Energy 

Cepstral Coefficients (ECC) with a filter bank based on ERB to obtain the spectral pattern of a 

sound signal. 

Miranda et al. [71] compare MFCCs with Short-time Fourier Transform (STFT, previously 

used in [56,76]) and Mel-scaled Filter Banks (MFB) by evaluating them with deep architecture 

networks. Their research shows that MFCCs first and second derivatives do not improve the 

performance and can be omitted, reducing the number of features. Furthermore, Miranda et al. 

[71] mention that "less engineered" features obtained from STFT and MFB provide better 

cough detection accuracies, showing that MFCCs may not be the ideal feature extraction 

method with deep architectures. Nevertheless, a feature extraction method can be combined 

with another to increase system performance. Nguyen and Luo [50] complement MFCCs 

features with Zero Crossing Rate (ZCR) and Chroma Feature Analysis. ZCR can be used as a 

measure of the rate of change in the frequency content and can be useful to either detect noise 

or cough as they are non-stationary sounds [43,46,50-52,56,73,77].  
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Cough is a non-stationary signal and varies significantly in the time-domain and frequency-

domain [65]. This characteristic can be used to discard non-cough sounds from a signal as 

previously done by Barry et al. [15] with their Hull Automatic Cough Counter (HACC). They 

calculate the standard deviation of the signal to identify potential cough events, reducing the 

amount of data to be analysed. Kosasih et al. [65] explain that, ideally, a method that captures 

the time and frequency changes simultaneously would be more suited for cough analysis and 

techniques such as STFT or wavelet could be used for this purpose. Their study argues that 

more detail can be extracted from wavelet representation of the signal compared to time-

domain or frequency-domain alone. 

The wavelet representation is used to extract cough features in several papers [65,78-80]. Dat 

et al. [79] apply wavelet to characterise non-stationary sound event spectrograms. They 

introduce the Spectrogram Image Wavelet Representation (SIWR) to extract useful 

information from the 2D time-frequency representation of the sound signal. This idea comes 

from the fact that humans can easily locate the characteristic elements in a spectrogram, and it 

is possible to visually see the sound event among background noise. Following the same 

approach of casting the cough detection task as a visual recognition task, Convolutional Neural 

Networks (CNN) have been used to identify cough features from two dimensional sprectro-

temporal images [44,53,68,81-83]. Amoh and Odame [53] mention that one issue with this 

technique is the need for pre-segmentation to obtain fixed size input images and post-

processing is also required to align the predictions with the audio signal. Their second approach 

uses Recurrent Neural Networks (RNN) with sequence-to-sequence labeling for capturing 

temporal and spectral dependencies between initial burst, middle phase, and final burst of a 

cough. Recent improvements of RNN make it more efficient for speech recognition and 

machine translation like tasks [53]. 
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2.3.2 OTHER FEATURES 

In some research, the frequency-domain is not explicitly used to extract cough features. Murata 

et al. [84] investigate the characteristics of cough sounds acoustically with time-domain 

analysis. Monge-Alvarez et al. [85] propose the use of local Hu moments as a robust feature 

set for automatic cough detection in smartphone-acquired audio signals. 

However, cough features are typically extracted from the frequency-domain and 

complemented with other relevant features to improve cough detection algorithms, such as the 

Harmonic to Noise Ratio (HNR) used to compare a signal to the level of background noise, the 

Cepstral Peak Prominence which is correlated with the amount of breath sound in the voice, or 

the Spectral Flatness which measure the noisiness of a spectrum [61].  

Nguyen and Luo [50] use Zero Crossing Rate (ZCR) to complement their set of MFCC 

features. The ZCR is used to detect higher frequency content in a signal such as noise, speech 

or cough events. They also use the Chroma Feature Analysis (CFA) to project the signal onto 

12 distinct pitch classes. 

Drugman et al. [61] mention in a study that HNR appears in the features that convey the greatest 

relative intrinsic information when compared with other features in a set of 105 features. 

Prosody-related features include the pitch, loudness, timber, and length of sounds in a signal. 

These features are usually used in the music field for tasks such as note recognition; However, 

they can be applied to cough detection algorithm to get a broader set of features and potentially 

increase the features combined relevance. 
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2.3.3 NUMBER OF FEATURES 

Researchers have been studying the combination of different features to create more accurate 

cough models. It is not uncommon that the latest algorithms use hundreds of features in their 

attempt for the creation of robust cough detection algorithms [52,56,57,61,67,73,74,86,87]. For 

example, Brown et al. [86]  extract a total of 733 features before using PCA to reduce the 

feature vector. 

Other researchers studied the usefulness of gathering such a large number of features. Ye et al. 

[88] adopt subspace analysis to describe acoustic signals as it has a lower feature dimension, 

making processing acoustic subspace more efficient compared to dealing with raw feature 

vectors. Miranda et al. [71] performed experiments to evaluate if MFCC derivatives provide 

improvements to the algorithm performance as commonly assumed. 

From [71], it appears that using first and second derivatives of MFCCs as features does not 

improve classification performance in most cases. Furthermore, in [61], Drugman et al. explain 

that each feature conveys information, but this information is only of interest if it is not already 

conveyed by another feature. This redundancy between features and their relative joint 

information is the key to the ideal number of features. An excessively large number of features 

can greatly affect the computation cost of the algorithm while performing as effectively as an 

algorithm using less features but with high relative joint information. Drugman et al. [61] 

calculated redundancy and relative joint information for 105 features in their cough detection 

algorithm. It appeared that only 20 features were enough to convey most of the information 

and that increasing the number of features was not worth the computation cost. 

It is however disputable that the 105 features selected had too much redundancy and that with 

a larger number of features, the minimum number of features useful in the conveying of 
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information would also increase. Further research is required to find the ideal set of features 

for the field of cough monitoring through audio analysis. 

2.4 SOUND EVENTS CLASSIFICATION 

The classification stage of cough detection algorithms is typically performed with the use of 

machine learning techniques. This section covers the most common machine learning methods 

implemented for cough monitoring and the results of those algorithms are compared in chapter 

3. 

2.4.1 COMMON CLASSIFICATION ALGORITHMS 

Hidden Markov Models are often used for cough detection as they can characterise the spectral 

properties of a time-varying pattern [42,44,58,62,69,70,72,89]. Matos et al. [42] propose an 

HMM recognition algorithm that follows a keyword-spotting approach. They created cough 

and filler models to train the HMM. The recognition process works by finding the sequence of 

models that fits an unknown input frame sequence with the highest probability.  

Dat et al. [79] model the sound spectrogram image in wavelet representations using 

Generalised Gaussian Distribution (GGD) modelling. For classification algorithm 

optimisation, they use a Generalized Gaussian Distribution Kullback-Leiber kernel Support 

Vector Machines (SVM) to embed the given probabilistic distance into a quadratic 

programming machine. SVM is another common approach for cough sound classification 

[44,50,54,63,75,79,86]. You et al. [63] use SVM as classifier in their ensemble approach. This 

ensemble method aims to combine the outputs from multiple classifiers for a better accuracy. 

However, they mention that HMM may be more effective with larger dataset allowing more 

complex models. 
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With the development of Neural Networks, Artificial/Probabilistic Neural Network 

[15,50,52,59,62,67,73,74,90], Convolutional Neural Network [71,83], and Deep Neural 

Network [53,57,69,71] became the most popular methods for cough events classification. 

The HACC developed by Barry et al. [15] uses Probabilistic Neural Network (PNN) after 

calculating characteristic spectral coefficients of sound events.  Their PNN uses a Bayesian 

classifier approach and is trained to recognise the feature vectors of cough and non-cough 

models with the aim to correctly classify future sound events. 

Shin et al. [62] use a two-stage classification algorithm. In the first step, they classify sound 

events into noise or cough/speech with an Artificial Neural Network (ANN). Then, in the 

second step, the output of the ANN is combined with a filtered envelope of the signal to form 

the input sequence for the HMM that deals with the temporal variation of the sound signal. 

 

 

 

 

 

 

 

 

 

Figure 3: Cough classification performance as a function of the filter bank dimension for (a) MFB 

features and (b) MFCC features. From Miranda et al. [71]. 
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Miranda et al. [71] make a comparison of three different type of neural network for cough 

detection: a convolutional neural network, a Deep Neural Network (DNN), and a long-short 

term model (LSTM) which is an artificial Recurrent Neural Network (RNN) architecture. 

Figure 3 shows the mean Area Under the ROC Curve (AUC) for each type of neural network, 

representing the dependence of performance on the number of filters used during feature 

extraction stage. The AUC provides an aggregate measure of performance and its score ranges 

from 0 to 1, where ‘0’ means that an algorithm’s predictions are 100% wrong and ‘1’ means 

that the predictions are 100% correct. Their research shows that the CNN, having the highest 

mean AUC, performs slightly better than the DNN and LSTM for cough detection. 

2.4.2 ALTERNATIVE CLASSIFICATION ALGORITHMS 

In some cases, other methods were selected by researchers after being compared with the more 

traditional techniques. Larson E. et al. [47] trained a random forest (RF) classifier for the 

classification of cough sound events. They chose a RF classifier as it is less sensitive to 

parameter variation than SVM and NN while reaching equivalent performances. Similarly, 

Larson S. et al. [55] selected a Sequential Minimal Optimisation (SMO) approach after 

comparing the results with NN and SVM approaches. This choice was made as the performance 

of the various methods was similar, while the SMO approach is easier to implement.   

Ye et al. [60] conduct multi-class sound classification through exploiting class conditional 

distributions based on extracted acoustic subspaces. They use Kernel Fisher Discriminant 

Analysis to map the data into kernel discriminant feature space for classification. 

Nguyen and Luo [50] propose a confidence level on prediction with a prediction set output 

instead of a simple prediction. Each sound event is compared to a bank of models and the 

prediction set is built as a function of the probability for a new sound event to belong to each 

model class. If the probability of one sound event belonging to one specific model is higher 
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than the defined threshold, the prediction is returned with a single label. Otherwise, a set of 

prediction is returned, requiring manual annotation of the sets or a second stage classification. 

This method reduces the number of false positive in the classification process; however, it 

requires a second stage classification to return only single label predictions. 

2.4.3 COUGH TYPE CLASSIFICATION 

This work focuses on the study of existing cough detection algorithms; however, it is important 

to note there are many machine learning algorithms that attempt to classify a detected cough 

event as a function of its type. The typical goal of these algorithms is to detect pulmonary 

diseases at an early stage. This requires cough events to be accurately detected and segmented 

prior to type classification analysis. The most common cough type classifications differentiate 

between wet and dry coughs [91-93], recognise spontaneous from voluntary coughs [94], or 

more recently detect COVID-19 characteristics [68]. 
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Chapter 3 

DISCUSSION OF CURRENT STATE-OF-THE-ART 

 

3.1 A PERFORMANCE COMPARISON 

In this chapter, we make an attempt to compare existing cough detection algorithms with the 

aim to determine the state-of-the-art. However, it is important to note that the comparison of 

different automatic cough detection methods is significantly limited as studies use different 

datasets with main differences in the following: recording conditions, type and position of 

microphones, study subjects and types of non-cough sounds included in the recording [18]. 

Furthermore, there is no universally defined unit of cough [95] and it is unclear if the expiration 

reflex (which sounds like a cough without the inspiration phase) should be counted as a cough 

sound in cough detection algorithms [96]. 

There are several metrics to quantify cough and algorithms performance [55]. Cough can be 

quantified in coughs/hour or in terms of cough episodes or epochs. The definition of a cough 

epoch can also differ from one study to another [95,97]. 

It is also argued that the detection of cough epochs is as clinically meaningful as the detection 

of single cough events [41,95,97]; the performance evaluation is however affected. Teyhouee 

et al. [89] shows in their results a difference of up to 5% and 10% in sensitivity and specificity 

respectively, when identifying single cough events versus cough epochs with their algorithm. 
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Researchers often evaluate their algorithms in terms of specificity, sensitivity, and accuracy 

[44]: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
      (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝐹𝑁+𝑇𝑃)
      (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
     (3) 

where: 

 

TP = True positive: Coughs correctly identified as coughs, 

FP = False positive: Non-coughs incorrectly identified as coughs, 

TN = True negative: Non-coughs correctly identified as non-coughs, 

FN = False negative: Coughs incorrectly identified as non-coughs, 

 

Once again, those evaluation criteria are calculated differently in the cough literature. For 

example, Matos et al. [42,58] use the "Birring specificity" metric to calculate their true negative 

number. They first detect sound events, then report a classification stage specificity by sorting 

their detected events into TP, FP, TN, and FN. It is argued that this method does not reflect the 

performance of the overall system [55] [6] . Vizel et al. [6] calculate the number of true 

negatives as a function of the number of 1-second intervals in which no cough is detected in 

both the automatic detection and manual cough annotation. 

The variance in the definition of evaluation terms and calculation significantly impact the 

consistency of performance results in cough studies.  

From the study undertaken, it is clear that universal metrics are needed to find the state-of-the-

art cough detection algorithm. In recent research, Bilen et al. [98] propose a robust evaluation 

technique of sound event detection by re-defining TPs and FPs through the combination of 
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several criteria. Their method can be adapted to varying needs, including cough detection, by 

adjustment of evaluation parameters. 

Table 1: Performance of existing cough detection algorithms in terms of sensitivity and specificity 

Author Date Feature Extraction Classification Sensitivity Specificity 

Barry et al. 2006 PCA NN 0.8 0.96 

Murata et al. 2006 Time-domain Anal. Discriminant Function 0.902 0.965 

Matos et al. 2006 MFCC HMM 0.82 NC 

Knocikova et al. 2008 Wavelet Discriminant Function 0.85-0.9 NC 

Shin et al. 2009 MFCC NN/HMM 0.913 0.953 

Vizel et al. 2010 Time-freq Domain Pattern Matching 0.96 0.94 

Larson E et al. 2011 PCA RF 0.92 0.995 

Tracey et al.  2011 MFCC SVM 0.81 NC 

Drugman et al. 2011 105 Handcrated Feat. SVM 0.819 0.996 

Larson S et al. 2012 MFCC SMO 0.755 0.996 

Drugman et al. 2012 222 Handcrated Feat. NN 0.947 0.95 

Martinek et al. 2013 MFCC NN 0.86 0.91 

Swankar et al. 2013 201 Handcrated Feat. NN 0.934 0.945 

Liu et al. 2014 MFCC DNN/HMM 0.901 0.866 

Sterling et al. 2014 MFCC HMM 0.782 NC 

Liu et al. 2015 MFCC HMM/GMM 0.836 0.909 

Ferdousi et al. 2015 MFCC/ZCR ... NN/SVM/Bayesian 0.875 0.909 

Amrulloh et al. 2015 MFCC/ZCR ... NN 0.93 0.98 

Kosasih et al. 2015 Wavelet Logistic Regression 0.94 0.88 

Amoh et al. 2016 CNN/RNN CNN/RNN 0.877 0.927 

Pramono et al. 2016 MFCC/ZCR Logistic Regression 0.923 0.9 

Liaqat et al. 2017 MFCC/ZCR RF 0.841 0.8 

Rocha et al. 2017 MFCC/STFT/ZCR ... Not Mentioned 0.934 0.834 

Di Perna et al. 2017 MFCC Binary Classifier 0.86 0.8 

You et al. 2017 acoustic subspace SVM 0.871 0.879 

Klco et al. 2017 Not Mentioned Octonionic NN 0.82 0.96 

Nguyen et al. 2018 MFCC/ZCR/CFA NN/SVM/RF 0.987 NC 

Windmond et al. 2018 MFCC/ZCR RF 0.819 NC 

Kadambi et al. 2018 168 Handcrated Feat. DNN 0.937 0.976 

Monge-Alvarez et 
al. 

2018 Hu Moments K-Nearest Neighbour 0.885 0.998 

Barata et al. 2019 CNN Ensemble CNN 0.917 0.901 

Kvapilova et al. 2019 CNN CNN 0.90-0.995 0.75-0.999 

Teyhouee et al. 2019 Not Mentioned HMM 0.87 0.9 

Bales et al. 2020 CNN CNN 0.919 0.862 
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Table 1 shows a selection of existing algorithms, those that reported the sensitivity and 

specificity of their algorithm. On average, the sensitivity and specificity reported are 87.67% 

and 92.18% respectively. Surprisingly, there is no flagrant variance in the reported score of 

sensitivity and specificity for cough detection algorithms from 2006 to 2020. Algorithms from 

2006 report similar score than the more recent ones. This emphasises the need for a fair 

comparison of existing cough detection algorithms using constant metrics and a unique dataset. 

As can be seen from Table 1, MFCCs are the most frequently mentioned features in cough 

detection literature; however, it is argued that MFFCs are poor features for privacy preservation 

as they reveal not only speech, but also inflection, and prosody [47,99]. Researchers attempt to 

increase the performance of algorithms and solve privacy related issues by experimenting with 

handcrafted features to identify better feature combinations. 

In the classification stage of cough detection algorithms, NN, HMM, and SVM have proven to 

be effective but NN is used more frequently as shown in Table 1. 

It is important to note that the progress in technology has made the CNN technique more 

popular for feature extraction and classification in the most recent studies. However, the 

reported results do not show any improvement when compared with other methods. 

Amoh and Odame [53] compared two deep learning methods (CNN/RNN) with more 

conventional cough detection algorithms. They state that deeply learned features are more 

effective than hand-crated ones for cough detection.  

A considerable advantage of using a DNN approach is that it learns to extract features while 

training, therefore removing the need for a feature extraction step before the classification of 

cough events. However, audio recordings used in cough monitoring analysis typically contain 

only a few seconds of cough events for each hour of recording. Liu et al. argue that DNN-only 
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approaches would hardly capture features of cough if trained on the whole dataset, and they 

state that DNN is not suitable for the feature extraction step as it would occupy a lot of 

unnecessary computational resources. Instead, Liu et Al propose a two-step algorithm where 

features are extracted using a common MFCC approach to perform keyword detection. 

Followed by a second step where a combined DNN-HMM method is used for classification. 

Similarly, Kadambi et al. propose a cough detection algorithm with a deep neural network 

(DNN) trained using MFCCs and other features to discriminate cough sounds from background 

noise. A total of 168 features are used as inputs to the DNN. 

 

Table 2: Cough detection algorithms with best reported performance in terms of sensitivity 

and specificity 

Author Date Feature Extraction Classification Sensitivity Specificity 

Larson et al. 2011 PCA RF 0.92 0.995 

Kadambi et al. 2018 168 Handcrated Feat. DNN 0.937 0.976 

Amrulloh et al. 2015 MFCC/ZCR ... NN 0.93 0.98 

Vizel et al. 2010 Time-freq Domain Pattern Matching 0.96 0.94 

Drugman et al. 2012 222 Handcrated Feat. NN 0.947 0.95 

 

There is no particular pattern characterising the top 5 cough detection algorithms shown in 

Table 2 as different methods were used in each study. Furthermore, it is not guaranteed that the 

same algorithms would populate the top 5 using the same evaluation setup and comparison of 

existing algorithms. For example, Drugman et al. [67] is in the current top 5; however, they use 

contact microphones which facilitates the detection of cough events in noisy environment. 

Issues related to the use of different material, dataset, and metrics make it difficult to compare 

existing algorithms from reported results, but other issues affect the performance comparison. 

Some papers present results that appear to be erroneous. For example, Nguyen and Luo [50] 
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which use their algorithm to return a prediction set of labels for each sound event detected. 

They state in their performance analysis that for 95% confidence level with Conformal 

Prediction, the 1-NN-Euclidean algorithm returned almost every label in the prediction set for 

the new samples. This means that the number of FP is expected to be significantly high and 

therefore the accuracy of the algorithm should be low as per equation (3). If all labels are 

returned in the prediction set out of 50 labels, one label would be correctly identified (TP) and 

the 49 others would be FP, resulting in an algorithm accuracy of 2% (As no label is returned 

"negative", TN = FN = 0). However, they show an accuracy of 95.25% in their results, which 

would correspond to the sensitivity score of the algorithm as it does not include the number of 

false positive. It can be argued that Nguyen and Luo [50] use their own definition of TP, FP, 

TN, and FN leading to these unexpected results, such as not counting incorrectly returned labels 

in the prediction set as FPs. 

3.2 STATE-OF-THE-ART 

From the research conducted, it is clear that the state-of-the-art of cough detection algorithms 

cannot be identified from the reported results in each study. This is due to the difference in 

recording conditions, type of microphones, study subjects, and type of non-cough sound events 

included in the dataset, as well as the use of different cough counting metrics and definition for 

evaluation criteria. For a fair evaluation and comparison of the different proposed cough 

detection methods, a large public dataset, universal metrics, and evaluation criteria definitions 

are needed. 
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Chapter 4 

METHODOLOGY 

In previous literature, the pre-processing methods used in cough detection algorithms have 

proven to be effective in the removal of silent segments while keeping most of the coughs 

present in the data. However, other sounds are also kept after the pre-processing stage, raising 

audio privacy concerns, and limiting the effectiveness of the data reduction process. 

In this chapter, we propose a simple but effective pre-processing method that increases privacy 

preservation and considerably reduces the amount of data to be analysed while keeping 99.02% 

of the cough samples manually pre-annotated in the recordings. We use multiple-iteration pre-

processing to further increase privacy preservation and the data reduction percentage by 20%. 

The amount of speech in the signal after a 5-iteration pre-processing is reduced by 88.94%. 

The remaining speech content is unintelligible and composed of higher energy syllables. This 

study compares the results of our algorithm with the performance of a more conventional pre-

processing technique that also uses an energy threshold to discard non-relevant data. 

4.1 RESEARCH DESIGN 

Our method verifies the presence of signal energy in both lower and higher frequency regions 

and discards segments whose energy concentrates only on one of them. The method is 

iteratively applied on the same data to increase the percentage of data reduction and privacy 

preservation. 

The principle behind our approach comes from the fact that cough energy occupies the entire 

spectrum area while other sounds, such as speech, are typically only present in certain 

frequency regions [50,62,63]. Figure 4 shows that while most cough energy is below 5 kHz 

energy is still present in much higher frequency regions whereas speech energy mostly lies 
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below 2.5 kHz. Kosasih et al. [65] extracted important cough features from frequencies up to 

90 kHz. However, this requires capturing the data at a very high sampling rate, therefore, 

increasing greatly the computation cost. 

 

 

 

 

4.1.1 DATA REDUCTION SCORING SYSTEM 

One aim of the research is to remove the most possible undesired data while preserving all 

cough events present in the original audio recording. While designing our pre-processing 

method, we created a scoring system to identify the optimal settings of key parameters for the 

algorithm. The data reduction performance of our pre-processing method is evaluated as a 

function of two measurements:  

The percentage of data discarded. Calculated from the ratio of the duration of the 

remaining data over the total duration of the original audio file. 

The percentage of cough events preserved. Calculated from the percentage of samples 

annotated as cough events preserved after pre-processing.  

Figure 4:  Spectrogram (top) and time-domain (bottom) representation of an audio signal 

composed of speech and cough events. 
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However, the audio content to be analysed post pre-processing are the cough events. Therefore, 

cough preservation must be prioritised over data reduction when calculating the performance 

of the algorithm. We decided to create a scoring system combining both parameters into a score 

S which represents the sum of both weighted parameters. 

As cough preservation is of significantly higher importance than data reduction, the percentage 

of cough preservation is given a weight of 0.8 while the percentage of data removed is given a 

weight of 0.2. 

The score S is calculated with the formula: 

𝑆 = 0.8𝑃𝑐𝑜𝑢𝑔ℎ + 0.2𝑃𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛        (4) 

where Pcough represents the percentage of cough preserved in the signal and Preduction is the 

percentage of data discarded after pre-processing. 

This score is used in the calculation of key parameters for the thresholds of our algorithm.  

4.1.2 SIGNAL FILTERING 

In the first step of our pre-processing method, two signals are created by applying a high-pass 

10th order Butterworth filter with a cut-off frequency of 4 kHz and a low-pass 10th order 

Butterworth filter with a cut-off frequency of 400 Hz to an original audio signal. The cut-off 

frequencies were determined from experiments on cough events recorded at various sampling 

rate. We used cough events sampled at 44.1 kHz from the ESC dataset [100], cough events 

sampled at 16 kHz from the AMI corpus [101], and coughs events sampled at 44.1 kHz from 

a person medically diagnosed with chronic cough. Energy is clearly present in the region close 

to half the sampling frequency for a majority of cough events; however, a few cough events 

have a lower energy presence in the higher frequency region. The cut-off frequency of the high-

pass filter was gradually decreased to find its optimal value so that most of the speech is filtered 
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out while lower intensity coughs can still be detected. Best results are obtained with a cut-off 

frequency of 400 Hz for the low-pass filter and a lower cut-off frequency of 4 kHz for the high-

pass filter. 

The two signals created represent the high frequency content and low frequency content of the 

original signal. Figure 5 confirms the presence of cough signal energy in both high and low 

frequency regions while, clearly, most of the speech energy only appears in the lower region. 

 

 

 

 

 

 

 

 

 

4.1.3 LOW ENERGY SEGMENTS REMOVAL 

The second step consists in removing low energy segments from both filtered signals. We use 

a frame processing threshold technique to detect segments with significant energy in the higher 

and lower frequency regions. The signals are segmented into 50 ms non-overlapping frames 

and the energy of each frame is calculated and compared with a threshold value. 

Figure 5: High frequency content (centre) and low frequency content (bottom) of the original 

audio signal (top). 



37 

 

The energy of the ith audio frame, Ei, is calculated with the formula: 

𝐸𝑖 =
∑ 𝑥𝑖(𝑛)2𝑁−1

𝑛=0

𝑁
        (5) 

where xi(n) represents the nth sample of the ith frame x and N is the number of samples per 

frame. 

4.1.3.1 THRESHOLD DEFINITION 

The energy of each frame is compared with a threshold value to identify and discard low 

intensity frames. This value is unique for each signal and corresponds to a percentage of the 

mean energy of the entire raw signal. 

The energy threshold value, T, is defined by:   

𝑇 = 𝛼
∑ 𝐸𝑖

𝑀−1
𝑖=0

𝑀
         (6) 

where Ei represents the energy of the ith frame of the signal, α is the threshold percentage 

parameter and M is the total number of frames in the signal.  

The threshold percentage parameter α has a significant impact on the data reduction percentage 

and the preservation of the cough events present in the recordings. To determine the optimal 

value for α, we conducted a two-part experiment using 1.5 hour of the AMI meeting recordings 

containing speech, silence and 13 cough events of different intensity.  

For a fair evaluation, the audio recordings must contain a combination of silent segments and 

multiple sound events such as speech, cough sounds and background noise. The majority of 

the data previously used to evaluate our filter cut-off frequencies contain only cough events 

and silent segments. Therefore, to not bias the results, the recordings from the chronic cough 
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patient, and the ESC dataset are removed from the data set and only the recordings from the 

AMI corpus are used in the evaluation data. 

4.1.3.2 ALPHA PARAMETER  

In the first part of the experiment, we determine the optimal value of the α parameter for each 

signal by measuring the percentage of data reduction and the percentage of cough preservation 

after one iteration of the algorithm. The score  𝑆 for each value of α is calculated as per equation 

(4). 

 

 

 

 

 

The value of α with the highest normalised score S is selected as the initial α value in each 

signal. From Figure 6, the initial α is 45% for the high frequency signal and 30% for the low 

frequency signal. 

When iteratively applying the algorithm to the same signal, the mean energy of the signal is 

increasing with every iteration since low energy content is discarded. With a constant value for 

α, the threshold value is increasing with the mean energy of the signal.  

Figure 6: Evaluation of the threshold percentage parameter α for the high frequency signal 

(Top) and the low frequency signal (Bottom).  
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4.1.3.3 BETA PARAMETER 

In the second part of our experiment, we implement a parameter β which provides a progressive 

threshold compensating for the increase in the mean energy of the signal by decreasing the 

percentage parameter α after each iteration. 

The progressive energy threshold value, Tp, is defined by: 

𝑇𝑝 = (𝛼 − 𝛽(𝑟 − 1))
∑ 𝐸𝑖

𝑀−1
𝑖=0

𝑀
  , 𝑟 ≥ 1     (7) 

Where Ei represents the energy of the ith frame of the signal, α is the threshold percentage, β is 

the percentage decrease of α after each iteration, r is the pre-processing iteration number, and 

M is the total number of frames in the signal 

The optimal value of β is determined with an experiment. The overall percentage of data 

reduction and the percentage of cough events preserved after pre-processing is measured and 

the score S is calculated as per equation (4). 

Figure 7 shows how the overall normalised score S is changing when varying β in both the high 

frequency and the low frequency signals. The overall performance of the algorithm increases 

when setting β to 4% for the low frequency signal threshold while no improvement is observed 

when varying β for the high frequency signal threshold. 

 

 

 

Figure 7: Evaluation of β for the high frequency signal (Dotted line) and the low frequency 

signal (Dashed line). 
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Therefore, our algorithm threshold values are calculated as per equation (7) using the following 

parameters: 

- High frequency signal: α = 45%, β = 0%,  

- Low frequency signal: α = 30%, β = 4%. 

When comparing each frame energy to the threshold values, the frame is annotated as being a 

potential cough event if its energy is above the defined threshold, such as: 

𝑥𝑖 = {
 1,      𝑖𝑓 𝐸𝑖 ≥ 𝑇𝑝

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (8) 

where xi = 1 means all samples from the ith frame are assigned the value of 1 (potential cough) 

 

 

 

 

 

 

 

 

 

Figure 8: Thresholded high frequency content signal (top) and low frequency content signal 

(bottom). All cough events appear in both thresholded signals while only parts of speech are 

preserved in the high frequency content signal. 
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4.1.4 THRESHOLDED SIGNALS COMBINATION AND SMOOTHING 

The next stage in our pre-processing technique is to combine the thresholded outputs from both 

signals (Figure 8) using a logical AND conjunction.  

Figure 9 shows that the high and low frequency content in speech does not systematically occur 

simultaneously. The logical AND conjunction allows for cough detection while discarding all 

sounds with only low or high frequency content, increasing the data reduction percentage. 

The raw logical AND conjunction output needs to be smoothed to ensure the cough events are 

preserved integrally. Therefore, all samples around a positive output (30 ms before to 300 ms 

after) are also annotated as potential cough events. This 330 ms window is typically appropriate 

to catch the entirety of a cough event while limiting possible speech intelligibility issues in 

case of false positive. It can be clearly seen in Figure 9 that cough events are preserved entirely 

after smoothing while all speech is removed from the audio signal. 

 

 

 

 

 

 

 

 

Figure 9: Outputs after logical AND conjunction and smoothing 
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4.1.5 PRE-PROCESSED AUDIO SIGNAL 

In the final step of our pre-processing technique, we create a new audio signal composed of 

only the samples detected as a potential cough event in the smoothed output, keeping a time 

stamp track of each event in the original signal. For multi-iteration pre-processing, the 

algorithm follows the same steps using the new audio signal instead of the original signal at 

each iteration. 

The data is then ready for feature extraction and classification, limiting computation time and 

the amount of speech that can potentially be classified as a cough event by the classification 

algorithm. 

4.2 EVALUATION DATA 

To evaluate our algorithm, we use a subset of the Augmented Multi-party Interaction (AMI) 

corpus [101], an annotated multi-modal data set consisting of 100 hours of meeting recordings. 

The AMI corpus is publicly available under the Creative Commons Attribution 4.0 license 

agreement and has been annotated with the start and end times of cough events in the 

recordings; however, many of the annotated cough events were respiratory sounds such as 

throat clearing, moaning, sigh, and other similar sounds. 

For a reliable evaluation of our algorithm, the AMI meetings containing at least 10 cough 

annotations were selected for a second re-annotation. All non-cough respiratory sound 

annotations were discarded, and the AMI meetings were preserved if they contained at least 2 

coughing events after the re-annotation, leaving 16 meeting recordings in our evaluation data. 

Each AMI meeting is identifiable with a unique ID and is publicly available for download 

online. The meeting recordings were grouped by type of meeting and capture location to create 

five audio files of different length and containing cough events of different intensity. 
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Table 3: AMI meeting IDs which constitute the five audio files of our dataset. 

 

 

 

 

 

 

 

Table 4 shows each file duration and their new cough events distribution after re-annotation. 

Our subset contains 113 coughs in more than 12 hours of recordings. The word count reported 

in the AMI corpus annotations will be used to evaluate the privacy preservation performance 

of our algorithm. A total of 144 583 words are annotated in our data set. 

Table 4: Data set files description 

 

 

 

 

Wearable microphones are often used for cough monitoring; however, it can be intrusive to 

continuously carry a recording device. An ideal way of monitoring the occurrence of cough 

events is to capture environmental sounds. The AMI meetings recordings sampled at 16 kHz 

File 1 Natural meetings captured in Edinburgh 

EN2001a, EN2001e, EN2006a, EN2006b. 

File 2 Scenario meetings captured in Edinburgh 

ES2002a, ES2002b, ES2002d, ES2005b, ES2008b, ES2012b, ES2013c, ES2016b. 

File 3 Scenario meeting captured in Switzerland 

IB4004. 

File 4 Natural meetings captured in Switzerland 

IN1002, IN1012. 

File 5 Scenario meeting captured in the Netherlands 

TS3006c. 

File  
Number 

File Duration 
New 

 Cough Count 
Speech 

 Word Count 

1 4h24m57s 35 52,358 

2 4h55m31s 44 52,922 

3 0h39m53s 15 9,134 

4 1h33m01s 13 21,234 

5 0h43m04s 6 8,755 

Total 12h16m26s 113 144,583 
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were captured with multiple microphones including one headset and one lapel microphones 

per participant, and two omni-directional microphone arrays placed at the centre of the room.  

In our study, we evaluate our algorithm using both the mix headset recordings, which combines 

all the individual headset files in each meeting, and the microphone (Array1-01) from the first 

omni-directional microphone array. 

These two sets of recordings will help measure the performance of the algorithm under two 

conditions: Cough monitoring with wearable technology and environmental sensing cough 

monitoring. 

4.3 RESULTS 

4.3.1 EVALUATION CRITERIA 

We evaluated our method based on three criteria:  

Data reduction - Percentage of data removed from the original audio signal. 

Cough preservation - Percentage of samples annotated as cough events preserved after pre-

processing.  

Privacy preservation - Percentage of samples annotated as speech discarded after pre-

processing. 

4.3.2 COMPARISON WITH A REGULAR METHOD 

Our algorithm was tested on each of the five files constituting our data set and the results were 

compared with a regular pre-processing method that also uses a simple energy threshold 

approach. The energy threshold of the regular method was set to 40% of the signal mean energy 

to match with the values used in our algorithm. 
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The results for data reduction and cough preservation presented in Table 5 are obtained with 

the mix headset capture version of the data set while Table 6 shows the results obtained with 

one microphone (Array1-01) of the omni-directional microphone array. Both tables report the 

percentage of data discarded from the original audio file and the percentage of cough 

preservation calculated by using the validated cough count from Table 4.  

The scaled averages in Table 5 and Table 6 represent the overall percentage of data removed 

from the original audio signal and is calculated by combining the data reduction percentage 

with the duration of each file in Table 4. The results for both audio file versions are combined 

in Table 7 to obtain the overall performance of the pre-processing method. Our algorithm 

reduces the data set duration from 12h16m26s to 3h29m43s, discarding 71.52% of the data. 

The regular pre-processing method reaches 37.26% data reduction, leaving the new signal with 

a duration of 7h42m03s. Both methods preserve over 99% of the annotated cough events. This 

shows that our algorithm is on average twice as effective as a regular pre-processing method 

at reducing the amount of data to be analysed.  

 

Table 5: Performance comparison (Mix headset) 

 Our Algorithm Regular Method 

File Number 
Data 

Reduction 
Cough 

Preservation 
Data 

Reduction 
Cough 

Preservation 

1 72.10% 100.00% 48.21% 100.00% 

2 80.43% 99.96% 53.19% 100.00% 

3 69.88% 100.00% 26.75% 100.00% 

4 71.74% 99.56% 27.90% 91.58% 

5 73.98% 100.00% 42.91% 100.00% 

Scaled Average 75.39% 99.93% 46.17% 99.03% 
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Table 6: Performance comparison (Mic. array) 

 Our Algorithm Regular Method 

File Number 
Data 

Reduction 
Cough 

Preservation 
Data 

Reduction 
Cough 

Preservation 

1 70.64% 100.00% 31.77% 100.00% 

2 68.10% 100.00% 26.49% 100.00% 

3 61.87% 100.00% 21.08% 100.00% 

4 62.09% 83.55% 28.23% 99.98% 

5 63.60% 100.00% 27.08% 100.00% 

Scaled Average 67.66% 98.11% 28.35% 99.99% 

 

Table 7: Combined performance comparison 

 

 

 

 

4.3.3 MULTIPLE ITERATION PRE-PROCESSING 

It is possible to increase the percentage of data removed from the original audio by performing 

the pre-processing stage on the same data multiple times successively. For each iteration, our 

algorithm follows the steps described in the methodology; however, to prevent the removal of 

lower intensity coughs from the recordings, a progressive energy threshold is calculated for the 

low frequency signal as described by equation (7). 

 We performed five iterations of our pre-processing on both file versions (mix headset and 

microphone array). The results in Table 8 and Table 9 show the detailed performance of our 

algorithm at each of the five iterations for both file versions. The results are combined in Table 

10 to obtain the overall performance of the algorithm over a five-iteration pre-processing. 

 Our Algorithm Regular Method 

File Number 
Data 

Reduction 
Cough 

Preservation 
Data 

Reduction 
Cough 

Preservation 

Mix headset 75.39% 99.93% 46.17% 99.03% 

Array-01 67.66% 98.11% 28.35% 99.99% 

Overall 71.52% 99.02% 37.26% 99.51% 
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The percentage of data removed from the original file and the percentage of cough preservation 

is reported for each file and for each iteration. From the overall results shown in Table 10 and 

using the score formula as per equation (4), we can identify that the algorithm reaches higher 

performance with 2 and 3 iterations. 

Table 8: Multiple pre-processing stage (Mix headset) 

 

Table 9: Multiple pre-processing stage (Mic. array) 

 

 

  Iteration 
  1 2 3 4 5 

File 1 
Data Reduction 70.64% 85.76% 90.49% 92.31% 93.22% 

Cough Preservation 100% 99.94% 99.09% 99.03% 99.03% 

File 2 
Data Reduction 68.10% 82.68% 87.44% 89.42% 90.46% 

Cough Preservation 100% 100% 99.99% 98.68% 98.60% 

File 3 
Data Reduction 61.87% 77.63% 81.96% 83.88% 84.85% 

Cough Preservation 100% 100% 99.91% 99.91% 99.91% 

File 4 
Data Reduction 62.09% 76.23% 80.27% 81.37% 81.60% 

Cough Preservation 83.55% 80.12% 75.07% 74.74% 74.09% 

File 5 
Data Reduction 63.60% 80.02% 85.76% 88.04% 89.12% 

Cough Preservation 100% 100% 99.55% 99.55% 99.55% 

Scaled Average 
Data Reduction 67.66% 82.54% 87.23% 89.06% 89.95% 

Cough Preservation 98.11% 97.69% 96.81% 96.24% 96.14% 

  
 Iteration 

  1 2 3 4 5 

File 1 
Data Reduction 72.10% 84.97% 88.84% 90.42% 91.34% 

Cough Preservation 100% 99.98% 99.42% 99.42% 99.19% 

File 2 
Data Reduction 80.43% 92.06% 95.31% 96.58% 97.09% 

Cough Preservation 99.96% 93.97% 89.34% 88.93% 87.71% 

File 3 
Data Reduction 69.88% 83.39% 86.91% 88.41% 89.12% 

Cough Preservation 100% 100% 100% 89.91% 89.91% 

File 4 
Data Reduction 71.74% 85.33% 89.59% 91.44% 92.37% 

Cough Preservation 99.56% 95.88% 95.22% 94.42% 94.09% 

File 5 
Data Reduction 73.98% 85.38% 88.60% 90.09% 90.80% 

Cough Preservation 100% 100% 100% 100% 100% 

Scaled Average 
Data Reduction 75.39% 87.80% 91.41% 92.89% 93.63% 

Cough Preservation 99.93% 97.17% 95.12% 93.53% 92.94% 
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Table 10: Overall performance with multi pre-processing stages 

 

Table 10 shows that the percentage of data reduction can be increased by around 20% with five 

iterations; however, the improvement in data reduction from one iteration to another decreases 

progressively. The overall data reduction percentage increases, on average, by 13.65% with the 

second iteration then by 4.15%, 1.65% and 0.81% with respectively the third, fourth and fifth 

iterations. The number of iterations has an impact on the number of cough events preserved in 

the recordings as, on average, the cough preservation percentage drops by 1% with every 

iteration. 

4.3.4 PRIVACY PRESERVATION EVALUATION 

To evaluate privacy preservation, we use the start and end times of each annotated word in the 

data. Table 11 and Table 12 show the percentage of speech samples discarded after each stage 

of a five-iteration pre-processing. The scaled average is calculated by combining the percentage 

of speech discarded with the number of words in each file in Table 4. 

Table 11: Speech removal percentage (Mix headset) 

 

 

 

  Iteration 
  1 2 3 4 5 

Mix headset 
Data Reduction 75.39% 87.80% 91.41% 92.89% 93.63% 

Cough Preservation 99.93% 97.17% 95.12% 93.53% 92.94% 

Mic. Array-01 
Data Reduction 67.66% 82.54% 87.23% 89.06% 89.95% 

Cough Preservation 98.11% 97.69% 96.81% 96.24% 96.14% 

Scaled Average 
Data Reduction 71.52% 85.17% 89.32% 90.98% 91.79% 

Cough Preservation 99.02% 97.43% 95.96% 94.89% 94.54% 

 Iteration 
 1 2 3 4 5 

File 1 61.85% 78.49% 83.61% 85.72% 86.97% 

File 2 75.02% 89.76% 93.97% 95.60% 96.28% 

File 3 59.19% 76.96% 81.62% 83.57% 84.44% 

File 4 65.15% 80.56% 85.71% 88.04% 89.26% 

File 5 66.07% 80.40% 84.40% 86.23% 87.09% 

Scaled Average 67.24% 82.94% 87.63% 89.56% 90.56% 
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Table 12: Speech removal percentage (Mic. array) 

 

 

 

 

Tables 11 and 12 show that while our algorithm is efficient in discarding speech from the audio 

file with one iteration, the percentage of speech removed after 5 iterations is significantly 

increased.  

The overall percentage of speech discarded after pre-processing is calculated in Table 13. Our 

algorithm discards, on average, 63.57% of the speech content in the data with one iteration. 

When a five-iteration pre-processing is applied, 88.94% of the speech is discarded.  

Table 13: Overall speech removal percentage 

 

 

 

While some information, such as the sex of the speaker, can still be guessed from the remaining 

11.06% of speech in the audio, the content of the speech cannot be recovered, and the privacy 

of the speaker is considerably preserved with our algorithm. 

 Iteration 
 1 2 3 4 5 

File 1 61.80% 79.95% 85.91% 88.34% 89.59% 

File 2 62.13% 78.88% 84.53% 86.93% 88.18% 

File 3 48.90% 68.75% 74.31% 76.84% 78.23% 

File 4 56.21% 72.38% 79.59% 83.02% 84.61% 

File 5 55.60% 73.45% 80.49% 83.44% 84.88% 

Scaled Average 59.89% 77.33% 83.40% 86.00% 87.33% 

 Iteration 
 1 2 3 4 5 

Mix headset 67.24% 82.94% 87.63% 89.56% 90.56% 

Mic. Array 59.89% 77.33% 83.40% 86.00% 87.33% 

Scaled Average 63.57% 80.13% 85.52% 87.79% 88.94% 
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4.3.5 RATING OF INTELLIGIBILITY 

An objective rating of intelligibility can be made by speech transmission index. The speech 

transmission index is used to measure speech transmission quality and can be linked to 

subjective intelligibility tests such as the percentage of correctly identified words [102]. It is a 

0 to 1 index, where a value of 1 means the speech remains perfectly intelligible and the closer 

the value approaches 0, the more information is lost. The speech transmission index is used to 

rate speech intelligibility from bad to excellent on a five-point scale. 

Table 14: Intelligibility rating scale 

 

Our algorithm preserves 36.43% of the words present in the signal with one iteration and from 

11.06% to 19.87% with multiple iterations. From the relation between speech intelligibility and 

speech transmission index values [102], our algorithm achieves a speech transmission index 

ranging from 0.2 to 0.3, which is rated as "bad intelligibility" according to [103], the lowest 

level of intelligibility on the five-point scale. 

4.4 DISCUSSION 

When dealing with cough monitoring through audio analysis, the audio data is typically 

recorded with wearable or ambient microphones. Our data set is constituted of meeting 

recordings captured with headset microphones and two microphone arrays. We evaluate our 

algorithm on two versions of this data set: a mix headset version, which combines all headset 

recordings in one meeting, and one microphone from a microphone array. 

 The criteria of evaluation are the percentage of data reduction, the percentage of cough events 

preservation and the percentage of speech removed from the data after pre-processing. 

Index 0 - 0.3 0.3 - 0.45  0.45 - 0.6 0.6 - 0.75 0.75 - 1 

Rating Bad Poor Fair Good Excellent 
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 A higher data reduction percentage is reached with the mix headset version of our data set. 

The algorithm removes 75.39% of the data with the mix headset files and 67.66% with the 

microphone array files. When a five-iteration pre-processing is applied, a data reduction of 

93.63% and 89.95% is achieved. The difference in the data reduction percentage between the 

mix headset files and the microphone array files can be explained by the fact that the energy 

difference in sounds like background noise, speech, and other human sounds is greater in the 

mix headset files than in the microphone array files. With less variance in the signal energy 

level, the number of sound events below the threshold decreases and the data reduction 

percentage is impacted. The position of the capturing device can also impact the cough 

preservation percentage as a coughing subject might not be facing the microphone reducing the 

energy level of some coughing events.  

An increase in the risk of discarding lower intensity coughs is observed when performing 

multiple-iteration pre-processing. Our results showed that the percentage of cough events 

preserved with a five-iteration pre-processing drops by 1% with every iteration. 

The recording of audio data raises ethical issues in relation to privacy. Regular silence removal 

pre-processing techniques delete only silence and lower energy sound events from the data, 

often leaving speech intact and clearly intelligible. Our algorithm addresses this issue by 

discarding all speech segments that does not contain significant energy in both high and low 

frequency regions. Privacy preservation is increased by removing part of speech from the data, 

distorting the meaning of the speech segments left after pre-processing and limiting the 

possibility that speech maybe listened to by a reviewer. Furthermore, multiple-iteration pre-

processing can increase privacy by removing up to 88.94% of speech from the original 

recording at the cost of increasing the risk of discarding lower energy cough events. 

 



52 

 

Chapter 5 

FUTURE WORK AND CONCLUSION 

 

The aim of this study is to improve pre-processing techniques traditionally used in cough 

detection algorithms. We propose an effective pre-processing method that increases privacy 

preservation by removing parts of speech from the data in addition to silence and other low 

energy sound events. Our algorithm is tested on two audio data sets constituted of meetings 

captured by wearable microphones and an ambient microphone. A data reduction percentage 

of 71.52% is reached and 99.02% of the cough events were preserved after pre-processing. 

This performance makes our algorithm two times as effective as a regular simple energy 

threshold pre-processing method. Furthermore, by pre-processing the same data multiple times 

with our algorithm, the data reduction can be increased by 20%, bringing the data reduction 

percentage to 91.79%. Performing five iterations of our pre-processing method greatly 

increases privacy preservation by discarding 88.94% of the speech from the data; however, 

there is an added risk of inadvertently discarding lower energy cough events.  

We currently use an energy entropy technique to compare each frame energy to the mean 

energy of a signal. In future work, we will investigate the implementation of frequency-domain 

features instead of time-domain features in the second stage of our algorithm. Techniques such 

as spectral flux, which measure the variance of the power spectrum in a signal, could provide 

a better identification of cough events and discard more non-relevant data; therefore, it could 

potentially increase the overall performance of our pre-processing method. 
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Chapter 7 

LIST OF EMPLOYABILITY SKILLS AND DISCIPLINE SPECIFIC SKILLS 

TRAINING 

 

7.1 ACCUMULATED ECTS 

The following ECTS were obtained upon successful completion of the annual evaluation 2020, 

TU Dublin modules, and external modules.  

• 7.5 ECTS for research and professional development planning. 

• 30 ECTS for successful completion of employability and discipline specific training. 

The next sections provide details on the accumulated ECTS. 

 

7.2 EMPLOYABILITY SKILLS TRAINING 

• Research Integrity – 5 ECTS 

Module  RESM1953 CRN 32660 

Module 

provider 

Technological University 

Dublin 

Module 

Coordinator  

Prof. Mary McNamara 

 (TU Dublin) 

Module Description:       

This programme is designed to help graduate and early career researchers answer many questions 

that will arise as they consider how to plan, carry out and report their research with integrity, and 

to deal with the complex situations in which they may find themselves.  
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• D-REAL Setting Sail – 5ECTS 

Module  INTL1000 CRN 32547 

Module 

provider 
Trinity College Dublin 

Module 

Coordinator  
Prof. Carol O’Sullivan (TCD) 

Module Description:      

The purpose of Setting Sail was to introduce you to what it means to embark on a PhD, to raise 

awareness of aspects which are important for you to consider at this point, and to ensure that 

all students in your cohort have the same knowledge of digital platform research and 

fundamental digital media research. 
 

 

 

 

• D-REAL Smaointe Summer School – 5 ECTS 

Module  COMP47760 CRN 60519 

Module 

provider 
University College Dublin 

Module 

Coordinator  
Prof. Julie Berndsen (UCD) 

Module Description:       

Smaointe (“Reflections”) Summer Schools consist of two types of activities. Firstly, building on 

the Dagstuhl model, themed workshops on big-ideas and hot-topics in Digitally Enhanced Reality 

(e.g. Ethical dilemmas in Digitally-Enhanced Reality) with Smaointe topics designed in 

collaboration with industry partners. The summer schools will facilitate communication, 

interaction, knowledge and skills transfer across d-real. 

 

 

 

 

7.3 DISCIPLINE SPECIFIC SKILLS TRAINING 

• Advanced Topics in Computational Intelligence – 5 ECTS 

Module  COMP9000 CRN 30484 

Module 

provider 

Technological University 

Dublin 

Module 

Coordinator  
Dr. Robert Ross (TU Dublin) 

Module Description:      

Weekly seminar series with discussions on new topics in Computational Intelligence. Oral and 

written reviews on papers in AI/ Computational Intelligence. 
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• Machine Learning – 10 ECTS  

Module  INTL1002 CRN 32548 

Module 

provider 
Coursera  

Module 

Coordinator  
Andrew Ng 

Module Description:      

A broad introduction to machine learning, datamining, and statistical pattern recognition. 

Topics include:   

Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, 

neural networks).  

Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep 

learning).   

Best practices in machine learning (bias/variance theory; innovation process in machine 

learning and AI). 

 

 

 

7.4 ANNUAL EVALUATION 

• Annual Evaluation 2020 – 7.5 ECTS 

Module  PGRE9023 CRN 33822 

Module 

provider 

Technological University 

Dublin 

Module 

Coordinator  

Prof. Mary McNamara   

(TU Dublin) 

Module Description:      

Annual report including descriptions of:  

   - Research carried out in 2019/2020. 

   - The plan of the future research.  
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