45 research outputs found

    Competent Program Evolution, Doctoral Dissertation, December 2006

    Get PDF
    Heuristic optimization methods are adaptive when they sample problem solutions based on knowledge of the search space gathered from past sampling. Recently, competent evolutionary optimization methods have been developed that adapt via probabilistic modeling of the search space. However, their effectiveness requires the existence of a compact problem decomposition in terms of prespecified solution parameters. How can we use these techniques to effectively and reliably solve program learning problems, given that program spaces will rarely have compact decompositions? One method is to manually build a problem-specific representation that is more tractable than the general space. But can this process be automated? My thesis is that the properties of programs and program spaces can be leveraged as inductive bias to reduce the burden of manual representation-building, leading to competent program evolution. The central contributions of this dissertation are a synthesis of the requirements for competent program evolution, and the design of a procedure, meta-optimizing semantic evolutionary search (MOSES), that meets these requirements. In support of my thesis, experimental results are provided to analyze and verify the effectiveness of MOSES, demonstrating scalability and real-world applicability

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Empirical Analysis of Schemata in Genetic Programming

    No full text
    Schemata and buiding blocks have been used in Genetic Programming (GP) in several contexts including subroutines, theoretical analysis and for empirical analysis. Of these three the least explored is empirical analysis. This thesis presents a powerful GP empirical analysis technique for analysis of all schemata of a given form occurring in any program of a given population at scales not previously possible for the kinds of global analysis performed. There are many competing GP forms of schema and, rather than choosing one for analysis, the thesis defines the match-tree meta-form of schema as a general language expressing forms of schema for use by the analysis system. This language can express most forms of schema previously used in tree-based GP. The new method can perform wide-ranging analyses on the prohibitively large set of all schemata in the programs by introducing the concepts of maximal schema, maximal program subset, representative set of schemata, and representative program subset. These structures are used to optimize the analysis, shrinking its complexity to a manageable size without sacrificing the result. Characterization experiments analyze GP populations of up to 501 60- node programs, using 11 forms of schema including rooted-hyperschemata and non-rooted fragments. The new method has close to quadratic complexity on population size, and quartic complexity on program size. Efficacy experiments present example analyses using the new method. The experiments offer interesting insights into the dynamics of GP runs including fine-grained analysis of convergence and the visualization of schemata during a GP evolution. Future work will apply the many possible extensions of this new method to understanding how GP operates, including studies of convergence, building blocks and schema fitness. This method provides a much finer-resolution microscope into the inner workings of GP and will be used to provide accessable visualizations of the evolutionary process

    Field Guide to Genetic Programming

    Get PDF

    An Approach to Pattern Recognition by Evolutionary Computation

    Get PDF
    Evolutionary Computation has been inspired by the natural phenomena of evolution. It provides a quite general heuristic, exploiting few basic concepts: reproduction of individuals, variation phenomena that affect the likelihood of survival of individuals, inheritance of parents features by offspring. EC has been widely used in the last years to effectively solve hard, non linear and very complex problems. Among the others, EC–based algorithms have also been used to tackle classification problems. Classification is a process according to which an object is attributed to one of a finite set of classes or, in other words, it is recognized as belonging to a set of equal or similar entities, identified by a label. Most likely, the main aspect of classification concerns the generation of prototypes to be used to recognize unknown patterns. The role of prototypes is that of representing patterns belonging to the different classes defined within a given problem. For most of the problems of practical interest, the generation of such prototypes is a very hard problem, since a prototype must be able to represent patterns belonging to the same class, which may be significantly dissimilar each other. They must also be able to discriminate patterns belonging to classes different from the one that they represent. Moreover, a prototype should contain the minimum amount of information required to satisfy the requirements just mentioned. The research presented in this thesis, has led to the definition of an EC–based framework to be used for prototype generation. The defined framework does not provide for the use of any particular kind of prototypes. In fact, it can generate any kind of prototype once an encoding scheme for the used prototypes has been defined. The generality of the framework can be exploited to develop many applications. The framework has been employed to implement two specific applications for prototype generation. The developed applications have been tested on several data sets and the results compared with those obtained by other approaches previously presented in the literature

    Predicción de rendimiento y dificultad de problemas en programación genetica

    Get PDF
    La estimación de la dificultad de problemas es un tema abierto en Programación Genética (GP). El objetivo de este trabajo es generar modelosque puedan predecir el desempeño esperado de un clasificador basado en GP cuando este es aplicado a tareas de prueba. Los problemasde clasificación son descritos usando características de un dominio específico, algunas de las cuales son propuestas en nuestro trabajo y estascaracterísticas son dadas como entrada a los modelos predictivos. Nos referimos a estos modelos como predictores de desempeño esperado(PEPs, por sus siglas en inglés). Extendimos este enfoque usando un ensemble de predictores especializados (SPEPs, por sus siglas eninglés), dividiendo problemas de clasificación en grupos específicos y elegimos su correspondiente SPEP. Los predictores propuestos son entrenados usando problemas de clasificación sintéticos de 2D con conjunto de datos balanceados. Los modelos son entonces usados para predecir el desempeño de un clasificador de GP en problemas del mundo real antes no vistos los cuales son multidimensionales y desbalanceados. Ademas, este trabajo es el primero en proveer una predicción de rendimiento para un clasificador de GP sobre datos de prueba, mientras en trabajos previos se han enfocado en predecir el rendimiento para datos de entrenamiento. Por lo tanto, planteados como un problema de regresión simbólica son generados modelos predictivos exactos los cuales son resueltos con GP. Estos resultados son alcanzadosusando características altamente descriptivas e incluyendo un paso de reducción de dimensiones el cual simplifica el proceso de aprendizaje yprueba. El enfoque propuesto podría ser extendido a otros algoritmos de clasificación y usarlo como base de un sistema experto de selecciónde algoritmos.The estimation of problem difficulty is an open issue in Genetic Programming(GP). The goal of this work is to generate models that predictthe expected performance of a GP-based classifier when it is applied toan unseen task. Classification problems are described using domainspecificfeatures, some of which are proposed in this work, and thesefeatures are given as input to the predictive models. These models arereferred to as predictors of expected performance (PEPs). We extendthis approach by using an ensemble of specialized predictors (SPEP),dividing classification problems into groups and choosing the correspondingSPEP. The proposed predictors are trained using 2D syntheticclassification problems with balanced datasets. The models are thenused to predict the performance of the GP classifier on unseen realworlddatasets that are multidimensional and imbalanced. This workis the first to provide a performance prediction of a GP system on testdata, while previous works focused on predicting training performance.Accurate predictive models are generated by posing a symbolic regressiontask and solving it with GP. These results are achieved by usinghighly descriptive features and including a dimensionality reductionstage that simplifies the learning and testing process. The proposed approachcould be extended to other classification algorithms and usedas the basis of an expert system for algorithm selection

    A Study of the Impact of Interaction Mechanisms and Population Diversity in Evolutionary Multiagent Systems

    Full text link
    In the Evolutionary Computation (EC) research community, a major concern is maintaining optimal levels of population diversity. In the Multiagent Systems (MAS) research community, a major concern is implementing effective agent coordination through various interaction mechanisms. These two concerns coincide when one is faced with Evolutionary Multiagent Systems (EMAS). This thesis demonstrates a methodology to study the relationship between interaction mechanisms, population diversity, and performance of an evolving multiagent system in a dynamic, real-time, and asynchronous environment. An open sourced extensible experimentation platform is developed that allows plug-ins for evolutionary models, interaction mechanisms, and genotypical encoding schemes beyond the one used to run experiments. Moreover, the platform is designed to scale arbitrarily large number of parallel experiments in multi-core clustered environments. The main contribution of this thesis is better understanding of the role played by population diversity and interaction mechanisms in the evolution of multiagent systems. First, it is shown, through carefully planned experiments in three different evolutionary models, that both interaction mechanisms and population diversity have a statistically significant impact on performance in a system of evolutionary agents coordinating to achieve a shared goal of completing problems in sequential task domains. Second, it is experimentally verified that, in the sequential task domain, a larger heterogeneous population of limited-capability agents will evolve to perform better than a smaller homogeneous population of full-capability agents, and performance is influenced by the ways in which the agents interact. Finally, two novel trait-based population diversity levels are described and are shown to be effective in their applicability

    Towards identifying salient patterns in genetic programming individuals

    Get PDF
    This thesis addresses the problem of offline identification of salient patterns in genetic programming individuals. It discusses the main issues related to automatic pattern identification systems, namely that these (a) should help in understanding the final solutions of the evolutionary run, (b) should give insight into the course of evolution and (c) should be helpful in optimizing future runs. Moreover, it proposes an algorithm, Extended Pattern Growing Algorithm ([E]PGA) to extract, filter and sort the identified patterns so that these fulfill as many as possible of the following criteria: (a) they are representative for the evolutionary run and/or search space, (b) they are human-friendly and (c) their numbers are within reasonable limits. The results are demonstrated on six problems from different domains.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore