1,702 research outputs found

    Microwave emissions from snow

    Get PDF
    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow propertie

    Fundamental issues in antenna design for microwave medical imaging applications

    Get PDF
    This paper surveys the development of microwave medical imaging and the fundamental challenges associated with microwave antennas design for medical imaging applications. Different microwave antennas used in medical imaging applications such as monopoles, bow-tie, vivaldi and pyramidal horn antennas are discussed. The challenges faced when the latter used in medical imaging environment are detailed. The paper provides the possible solutions for the challenges at hand and also provides insight into the modelling work which will help the microwave engineering community to understand the behaviour of the microwave antennas in coupling media

    Atmospheric remote sensing and radiopropagation: from numerical modeling to spaceborne and terrestrial applications

    Get PDF
    The remote sensing of electromagnetic wave properties is probably the most viable and fascinating way to observe and study physical media, comprising our planet and its atmosphere, at the same time ensuring a proper continuity in the observations. Applications are manifold and the scientific community has been importantly studying and investing on new technologies, which would let us widen our knowledge of what surrounds us. This thesis aims at showing some novel techniques and corresponding applications in the field of the atmospheric remote sensing and radio-propagation, at both microwave and optical wavelengths. The novel Sun-tracking microwave radiometry technique is shown. The antenna noise temperature of a ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and off-the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature of the Sun disk emission at K and Ka frequency bands and in the under-explored millimeter-wave V and W bands can be estimated by adopting different techniques. Parametric prediction models for retrieving all-weather atmospheric extinction from ground-based microwave radiometers are tested and their accuracy evaluated. Moreover, a characterization of suspended clouds in terms of atmospheric path attenuation is presented, by exploiting a stochastic approach used to model the time evolution of the cloud contribution. A model chain for the prediction of the tropospheric channel for the downlink of interplanetary missions operating above Ku band is proposed. On top of a detailed description of the approach, the chapter presents the validation results and examples of the model-chain online operation. Online operation has already been tested within a feasibility study applied to the BepiColombo mission to Mercury operated by the European Space Agency (ESA) and by exploiting the Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA), thanks to the ESA cross-support service. A preliminary (and successful) validation of the model-chain has been carried out by comparing the simulated signal-to-noise ratio with the one received from Hayabusa-2. At the next ITU World Radiocommunication Conference 2019, Agenda Item 1.13 will address the identification and the possible additional allocation of radio-frequency spectrum to serve the future development of systems supporting the fifth generation of cellular mobile communications (5G). The potential impact of International Mobile Telecommunications (IMT) deployments is shown in terms of received radio frequency interference by ESA’s telecommunication links. Received interference can derive from several radio-propagation mechanisms, which strongly depend on atmospheric conditions, radio frequency, link availability, distance and path topography; at any time a single mechanism, or more than one may be present. Results are shown in terms of required separation distances, i.e. the minimum distance between the earth station and the IMT station ensuring that the protection criteria for the earth station are met

    Advanced methods for earth observation data synergy for geophysical parameter retrieval

    Get PDF
    The first part of the thesis focuses on the analysis of relevant factors to estimate the response time between satellite-based and in-situ soil moisture (SM) using a Dynamic Time Warping (DTW). DTW was applied to the SMOS L4 SM, and was compared to in-situ root-zone SM in the REMEDHUS network in Western Spain. The method was customized to control the evolution of time lag during wetting and drying conditions. Climate factors in combination with crop growing seasons were studied to reveal SM-related processes. The heterogeneity of land use was analyzed using high-resolution images of NDVI from Sentinel-2 to provide information about the level of spatial representativity of SMOS data to each in-situ station. The comparison of long-term precipitation records and potential evapotranspiration allowed estimation of SM seasons describing different SM conditions depending on climate and soil properties. The second part of the thesis focuses on data-driven methods for sea ice segmentation and parameter retrieval. A Bayesian framework is employed to segment sets of multi-source satellite data. The Bayesian unsupervised learning algorithm allows to investigate the ‘hidden link’ between multiple data. The statistical properties are accounted for by a Gaussian Mixture Model, and the spatial interactions are reflected using Hidden Markov Random Fields. The algorithm segments spatial data into a number of classes, which are represented as a latent field in physical space and as clusters in feature space. In a first application, a two-step probabilistic approach based on Expectation-Maximization and the Bayesian segmentation algorithm was used to segment SAR images to discriminate surface water from sea ice types. Information on surface roughness is contained in the radar backscattering images which can be - in principle - used to detect melt ponds and to estimate high-resolution sea ice concentration (SIC). In a second study, the algorithm was applied to multi-incidence angle TB data from the SMOS L1C product to harness the its sensitivity to thin ice. The spatial patterns clearly discriminate well-determined areas of open water, old sea ice and a transition zone, which is sensitive to thin sea ice thickness (SIT) and SIC. In a third application, SMOS and the AMSR2 data are used to examine the joint effect of CIMR-like observations. The information contained in the low-frequency channels allows to reveal ranges of thin sea ice, and thicker ice can be determined from the relationship between the high-frequency channels and changing conditions as the sea ice ages. The proposed approach is suitable for merging large data sets and provides metrics for class analysis, and to make informed choices about integrating data from future missions into sea ice products. A regression neural network approach was investigated with the goal to infer SIT using TB data from the Flexible Microwave Payload 2 (FMPL-2) of the FSSCat mission. Two models - covering thin ice up to 0.6m and the full-range of SIT - were trained on Arctic data using ground truth data derived from the SMOS and Cryosat-2. This work demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.La primera parte de la tesis se centra en el análisis de los factores relevantes para estimar el tiempo de respuesta entre la humedad del suelo (SM) basada en el satélite y la in-situ, utilizando una deformación temporal dinámica (DTW). El DTW se aplicó al SMOS L4 SM, y se comparó con la SM in-situ en la red REMEDHUS en el oeste de España. El método se adaptó para controlar la evolución del desfase temporal durante diferentes condiciones de humedad y secado. Se estudiaron los factores climáticos en combinación con los períodos de crecimiento de los cultivos para revelar los procesos relacionados con la SM. La heterogeneidad del uso del suelo se analizó utilizando imágenes de alta resolución de NDVI de Sentinel-2 para proporcionar información sobre el nivel de representatividad espacial de los datos de SMOS a cada estación in situ. La comparación de los patrones de precipitación a largo plazo y la evapotranspiración potencial permitió estimar las estaciones de SM que describen diferentes condiciones de SM en función del clima y las propiedades del suelo. La segunda parte de esta tesis se centra en métodos dirigidos por datos para la segmentación del hielo marino y la obtención de parámetros. Se emplea un método de inferencia bayesiano para segmentar conjuntos de datos satelitales de múltiples fuentes. El algoritmo de aprendizaje bayesiano no supervisado permite investigar el “vínculo oculto” entre múltiples datos. Las propiedades estadísticas se contabilizan mediante un modelo de mezcla gaussiana, y las interacciones espaciales se reflejan mediante campos aleatorios ocultos de Markov. El algoritmo segmenta los datos espaciales en una serie de clases, que se representan como un campo latente en el espacio físico y como clústeres en el espacio de las variables. En una primera aplicación, se utilizó un enfoque probabilístico de dos pasos basado en la maximización de expectativas y el algoritmo de segmentación bayesiano para segmentar imágenes SAR con el objetivo de discriminar el agua superficial de los tipos de hielo marino. La información sobre la rugosidad de la superficie está contenida en las imágenes de backscattering del radar, que puede utilizarse -en principio- para detectar estanques de deshielo y estimar la concentración de hielo marino (SIC) de alta resolución. En un segundo estudio, el algoritmo se aplicó a los datos TB de múltiples ángulos de incidencia del producto SMOS L1C para aprovechar su sensibilidad al hielo fino. Los patrones espaciales discriminan claramente áreas bien determinadas de aguas abiertas, hielo marino viejo y una zona de transición, que es sensible al espesor del hielo marino fino (SIT) y al SIC. En una tercera aplicación, se utilizan los datos de SMOS y de AMSR2 para examinar el efecto conjunto de las observaciones tipo CIMR. La información contenida en los canales de baja frecuencia permite revelar rangos de hielo marino delgado, y el hielo más grueso puede determinarse a partir de la relación entre los canales de alta frecuencia y las condiciones cambiantes a medida que el hielo marino envejece. El enfoque propuesto es adecuado para fusionar grandes conjuntos de datos y proporciona métricas para el análisis de clases, y para tomar decisiones informadas sobre la integración de datos de futuras misiones en los productos de hielo marino. Se investigó un enfoque de red neuronal de regresión con el objetivo de inferir el SIT utilizando datos de TB de la carga útil de microondas flexible 2 (FMPL-2) de la misión FSSCat. Se entrenaron dos modelos - que cubren el hielo fino hasta 0.6 m y el rango completo del SIT - con datos del Ártico utilizando datos de “ground truth” derivados del SMOS y del Cryosat-2. Este trabajo demuestra que las misiones CubeSat de coste moderado pueden proporcionar datos valiosos para aplicaciones de observación de la Tierra.Postprint (published version

    Millimeter and sub-millimeter wave radiometers for atmospheric remote sensing from CubeSat platforms

    Get PDF
    2018 Fall.Includes bibliographical references.To view the abstract, please see the full text of the document

    Microwave remote sensing from space

    Get PDF
    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms--soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries

    Microwave remote sensing from space for earth resource surveys

    Get PDF
    The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated

    Passive microwave radiometry in biomedical studies

    Get PDF
    Passive microwave radiometry (MWR) measures natural emissions in the range 1–10 GHz from proteins, cells, organs and the whole human body. The intensity of intrinsic emission is determined by biochemical and biophysical processes. The nature of this process is still not very well known. Infrared thermography (IRT) can detect emission several microns deep (skin temperature), whereas MWR allows detection of thermal abnormalities down to several centimeters (internal or deep temperature). MWR is noninvasive and inexpensive. It requires neither fluorescent nor radioactive labels, nor ionizing or other radiation. MWR can be used in early drug discovery as well as preclinical and clinical studies

    Applications notice

    Get PDF
    The discipline programs of the Space and Terrestrial (S&T) Applications Program are described and examples of research areas of current interest are given. Application of space techniques to improve conditions on earth are summarized. Discipline programs discussed include: resource observations; environmental observations; communications; materials processing in space; and applications systems/information systems. Format information on submission of unsolicited proposals for research related to the S&T Applications Program are given
    corecore