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Abstract

Soil moisture (SM) and sea ice parameters are recognized as essential climate variables
(ECV). A comprehensive understanding of the temporal variability of the root-zone SM
(RZSM) is paramount in hydrological and agricultural applications, and droughts have
become more frequent in the wake of climate change. Arctic sea ice volume has decreased
significantly in recent decades, and this trend is particularly evident during the local
summer months. Parameters such as sea ice thickness (SIT) and concentration (SIC) are

crucial to continuously monitor the state of sea ice.

Since the launch of the Soil Moisture and Ocean Salinity (SMOS) mission in 2009,
globally available satellite-based SM products have been used to investigate SM dynamics,
based on the fact that useful information about subsurface SM can be extracted from their
time series. Time series analysis techniques can be used to estimate the RZSM based on
preceding information of satellite-based SM. Most notably in regions with extreme SM
conditions the response time between surface-sensitive and subsurface SM depends on
related processes occurring at different timescales, and it can be seasonally and spatially

variable.

The first part of the thesis focuses on the analysis of the relevant factors to estimate
the response time between satellite-based and in-situ SM at different depths using a Dy-
namic Time Warping (DTW) technique. DTW was applied to the high-resolution SMOS
L4 SM product developed by the Barcelona Expert Center (BEC), and was compared to
in-situ RZSM measurements of four representative stations in the REMEDHUS network
in Western Spain. The method was customized to control the rate of accumulation and
reduction of time lag during wetting and drying conditions and to consider the onset
dates of pronounced precipitation events to increase sensitivity to prominent features of
the input series. The temporal variability of climate factors in combination with crop
growing seasons were used to indicate prevailing SM-related processes. The spatial het-
erogeneity of land use was analyzed using high-resolution images of Normalized Difference
Vegetation Index (NDVI) from Sentinel-2 to provide information about the level of spa-
tial representativity of SMOS data to each in-situ station. The comparison of long-term
precipitation records and potential evapotranspiration (PET) allowed estimation of SM
seasons describing different SM conditions depending on climate and soil properties. An

exponential filter approach was used as an independent method to estimate subsurface



i

SM from the SMOS time series by finding the optimal characteristic time length for each
SM season after validation with the corresponding profile series. Hereby, a seasonally
representative time length was determined for each station and depth, and they resem-
bled the average response time for each SM season obtained using DTW. Future work
may comprise the application of the approach to different SM networks to understand the

seasonal, climate, and site-specific characteristic behaviour of time lag.

Processed-based models for sea ice parameter retrieval rely largely on empirically de-
termined small-scale sea ice properties that are assumed to be captured in space-based
observations, while direct analyses of sea ice are limited to a characteristic length scale
similar to the resolution of polar-orbiting satellites acquiring data in the microwave spec-
trum (~ 10-50km). Operational sea ice products often depend on manual categorization
by experienced analysts and reliable parameter estimation requires a model framework
to effectively extract the sea ice composition information contained in various satellite
observations.

The second part of the thesis focuses on data-driven methods for sea ice segmentation
and parameter retrieval. A Bayesian inference framework is employed and adopted to seg-
ment different sets of multi-source satellite data. A regression neural network approach
for estimating SIT based on brightness temperature data (T ) from the first results of the
Federated Satellite Systems CubeSat (FSSCat) mission, which introduced an innovative
concept for a federated satellite system developed at the UPC NanoSat Lab in Barcelona,

is investigated.

The Bayesian unsupervised learning algorithm is a probabilistic approach which allows
to investigate the ‘hidden link’ between multiple satellite data. The statistical properties
are accounted for by a Gaussian Mixture Model (GMM), and the spatial interactions are
reflected using Hidden Markov Random Fields (HMRF). The algorithm segments spatial
data into a number of classes, which are represented as a latent field in physical space and
as clusters in feature space, which can be used for subsequent analysis and classification. In
a first application, a two-step probabilistic approach based on Expectation-Maximization
and the Bayesian segmentation algorithm was used to segment Sentinel-1 SAR images
into a number of separable classes, which enables to discriminate surface water from
the remaining sea ice types. Information on surface roughness conditions is contained
in the distribution of radar backscattering images which can be - in principle - used to
detect melt ponds and to estimate high-resolution sea ice concentration (SIC). In a second
study, the algorithm was applied to multi-incidence angle Ty data at L-band (1.4 GHz)
from the SMOS L1C product to capture their differences in sea ice sensitivity to thin ice
up to ~0.5m. The resulting spatial patterns clearly discriminate well-determined areas
of open water, old sea ice and a transition zone, which is sensitive to thin sea ice SI'T and
SIC. Classes are temporally analyzed in terms of stability and separability to investigate

the geophysical meaning of the segmentation result. Preliminary validation comprised a
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comparison of the spatial patterns with existing maps of sea ice stages of development and
sea ice concentration. Model uncertainty is quantified using an entropy-based statistical
criterion. This enables to distinguish well-determined zones from ambiguous zones, where
additional information for validation and classification is needed, and from critical areas,
where the inference of SIT and SIC with L-band radiometry is particularly problematic.

Given the dynamic nature and complexity of sea ice, geostatistical analysis is re-
quired to integrate both the temporal and the spatial interactions into the model. The
Bayesian inference algorithm was extended to 3D to enable segmentation of sea ice in a
complete spatio-temporal context. In a third application, measurements of SMOS and
the Advanced Microwave Scanning Radiometer-2 (AMSR2) Tp data are used as input
features to examine the joint effect of CIMR-like observations at 1.4, 6.9, 10.6, 18.7,
and 36.5 GHz. The goal was to segment the Arctic region into a set of relevant classes
based on the synergy effects of the multiple observations. Comparison of the resulting
class patterns with images of common operational sea ice products SIT and SIC revealed
that class shapes are largely consistent with those of developmental stages and thickness
ranges. The information contained in the low-frequency channels allows the algorithm
to reveal ranges of thin sea ice, and thicker ice can be determined from the relationship
between the high-frequency channels and the changing surface conditions as the sea ice
ages and thickens during freeze-up. Evaluation of class formation over several years indi-
cated the temporal stability of obtained classes, recognizing annually recurring patterns
that can be considered consistent. Based on the statistical model parameters, clusters are
analyzed to understand the individual and combined sensitivity of input features to the
obtained classes and associated sea ice properties. Preliminary results have shown that
— subsequent to classification — class probabilities can also be related to the distribution
of SIT. The proposed approach is suitable for combining large data sets and provides
appropriate metrics for class analysis and interpretation, allowing informed decisions to
be made about integrating data from future missions into sea ice products.

Neural networks can be trained to find hidden links among large data sets and often
perform better on convoluted problems for which traditional approaches miss out im-
portant relationships between the observations. A predictive regression neural network
approach is investigated with the goal to infer SIT using Ty data from the Flexible Mi-
crowave Payload 2 (FMPL-2) of the FSSCat mission, and ancillary data (SIT, surface
temperature, and sea ice freeboard). Two models — covering thin ice up to 0.6 m and the
full-range of SIT — were separately trained on Arctic data in a two-month period from
mid-October to the beginning of December 2020, while using ground truth data derived
from the SMOS and Cryosat-2 missions. The thin ice and the full-range models resulted
in a mean absolute error of 6.5cm and 23 cm, respectively. Both models allowed to pro-
duce weekly composites of Arctic maps and monthly composites of Antarctic SIT based
on the Arctic full-range model.

This work presents the first results of the FSSCat mission over the polar regions.
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It reveals the benefits of neural networks for sea ice retrievals and demonstrates that
moderate-cost CubeSat missions can provide valuable data for applications in Earth ob-

servation.
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1 Introduction

No single sensor can provide comprehensive information on a geophysical parameter of
interest in a complex environment and it is necessary to exploit synergies from com-
plementary Earth Observation (EO) data. Accurate and efficient process-based models
are required to include the relevant processes and physical relationships. In complex
environments where observations are sparse or only available at different scales, these
models are very difficult to obtain and are therefore based on several assumptions. Soil
moisture (SM) — especially in the root zone — and sea ice are two examples of very com-
plex environments, where the adequate observations are not available for direct inference.
Data-driven approaches are increasingly being used to extract patterns from remote sens-
ing and geospatial data. The main challenge is to develop suitable algorithms capable
of analyzing measurements from multiple instruments in a common retrieval framework.
I dedicate my doctoral thesis to the retrieval of SM and sea ice-related variables on the
basis of advanced data-driven modelling techniques used for analysis and segmentation of
the geophysical quantities.

The work is divided into two main parts consisting of inference methods to estimate
subsurface SM and sea ice parameters. Part [[| focuses on time series analysis techniques
to relate surface-sensitive satellite-based SM time series to in-situ profile SM at different
depths. Part [[1 focuses on a Bayesian inference framework to exploit the joint effect of
multi-source satellite observation for the segmentation of sea ice into classes which can
be related to different sea ice properties, and a regression neural network approach for
the sea ice parameter retrieval based on data of the first results of the Federated Satellite
Systems CubeSat (FSSCat) mission.

1.1 Relevance of Soil Moisture and Sea Ice in the Earth

system

SM is recognized as an essential climate variable (ECV) by the Global Climate Observing
System (GCOS) |Bojinski et al., 2014], a body of the World Meteorological Organization
(WMO), which evaluates the maturity and provides guidance for the development of
the required observing system. SM plays an important role in agricultural applications

including drought monitoring and rainfall estimations and in weather forecasting and
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climate models across different spatial and temporal scales [Bojinski et al., 2014]. In
a porous medium it is defined as the water contained in the pore spaces between soil
grains, often expressed as volumetric water content (VWC) which is the ratio of water to
soil volume. Surface SM is the water content of the topsoil that includes approximately
the top 5cm of soil. Root-zone SM (RZSM) is the water available to the root zone of
cropping systems, assuming that most of the root biomass is in the top 50 cm to 100 cm
of soil |[Fan et al., 2016]. SM is highly variable in space and time, with characteristic
length scales ranging from a few centimeters to several kilometers, and characteristic time
scales ranging from minutes to years [Vereecken et al., 2014]|. The surface water balance
includes processes such as infiltration, runoff, evaporation, and transpiration, as well as
subsurface water movement, including recharge and runoff.

In regions where water can be seasonally scarce and therefore cannot be used for irriga-
tion, crop yield depends solely on the soil water content available to the plants. Drought
affection in agricultural fields manifests itself in adverse reactions of the plants, leading to
yield losses or even total crop failures. Meteorological conditions set the boundary con-
ditions at the atmosphere-soil interface for topsoil moisture [Basara and Crawford, 2002,
but rainfall often has no immediate impact on the underlying RZSM and the effectiveness
of drought monitoring for the agricultural sector is highly dependent on the availability
of SM measurements. Modern cropping systems are adapted to short dry spells to a
certain degree. However, low SM content can damage crops even in a relatively short
period of time. Plants are particularly vulnerable if they do not have sufficient access
to water during their main growth phase, which can lead to SM-stress and agricultural
losses. Knowing the dynamics of SM is critical to determine the growing season and for
optimal timing of irrigation effectively |[Jiménez-Martinez et al., 2009|. For this reason,
drought indices are based on both anomalies in atmospheric conditions and SM on time

scales of a few days or months.

Continuous monitoring of surface and RZSM is essential to predict water shortages
and droughts |Batool et al., 2019, Falkenmark, 2013|, and comprehensive knowledge on
SM content has substantial socio-economic relevance for food security. As climate vari-
ability increases with climate change, events such as heat waves and the absence of pre-
cipitation will become prolonged and more frequent [Kang et al., 2009|. Drought is an
insidious phenomenon that develops over several time scales with regional differences. A
global temperature increase of only a few tenths of a degree because the anthropogenic
greenhouse effect encompasses large local and seasonal anomalies. Due to the effects of
global warming and unsustainable land management, the frequency, intensity and dura-
tion of summer droughts will increase in the next decades, whereas countries are differ-
ently exposed to the consequences [Miyan, 2015, Poljansek et al., 2017|. Altering global
precipitation patterns due to climate change favor the drying of the soils and water short-
age. Higher temperatures are accompanied by more energy in the atmosphere, leading to

higher evaporation, which causes not the infiltration-friendly land rain, but heavy down-
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3 1.1. Relevance of Soil Moisture and Sea Ice in the Earth system

pours. Paradoxically, more heavy rain leads to more drought, because — similar as in
sealed surfaces — water runs off rapidly over streams and rivers with no impact on subsur-
face SM, resulting in negative water balance. There is little time left for the freshwater
droplets to percolate, which is required for long-term recharge of the soil, and ultimately
the groundwater. More frequent extreme events — such as the severe summer droughts
observed in Europe in 2003, 2012, and 2018, and on the West Coast of the United States
from 2012 to 2016 — can disrupt the balance of groundwater storage, which also affects
irrigated agriculture. Based on different climate emission scenarios, an increase in the
frequency of droughts is projected for the entire European continent — according to differ-
ent Representative Concentration Pathways (RCP) — described by the Intergovernmental
Panel on Climate Change (IPCC) |[Van Vuuren et al., 2011]. Figure illustrates the
change in the number of drought events per decade for the period 2041-2070 relative to

the period 1981-2010 in the moderate emission scenario (RCP 4.5) and the most severe

emission scenario (RCP 8.5) [Spinoni et al., 2018|. Droughts become more frequent in the

Mediterranean area and Western Europe towards the mid-21st-century due to reductions

in precipitation and increasing temperatures.
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Figure 1.1: Projected changes in drought frequency in number of events per decade by the mid-
21st-century (2041-2070) relative to 1971-2010 for the IPCC- medium emission
scenario (RCP4.5) (left) and the worst-case scenario (RCP8.5) (right) [Spinoni
| et al., 2018].

In addition to the relevance of SM monitoring over land, sea ice is an important indi-

cator of climate variability in polar environments. The state of sea ice is also recognized as

an ECV |Hollmann et al., 2013| and determines the exchange of heat, momentum, mois-

ture and gases between the atmosphere and the ocean. Sea ice has a significant impact
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on the Earth’s albedo, and therefore, changes in sea ice affect the global energy budget.
Global ocean dynamics are strongly influenced by the timing of freezing and melting as
well as the total amount of sea ice present in polar regions. The state of sea ice can be
monitored based on a set of indicating parameters, including sea ice concentration (SIC),
sea ice extent (SIE), sea ice thickness (SIT) and drift. SIC is defined as the ice-covered
fraction of an area. SIE refers to the total area covered by sea ice of an entire polar region
composed of the individual ice-covered areas — with a minimum SIC threshold of typically
15 % set due to technical modelling reasons.

Sea ice is subject to an annual cycle of freezing and melting and depends on the dis-
tribution of continents, and atmospheric and oceanic currents. Arctic and Antarctic sea
ice are composed differently in terms of age and the distribution of SIT and the regions
respond differently to climate change. Antarctic sea ice is largely seasonally stable — even
with a slight recent increase — showing regional warming between +1-1.5°C (global tem-
perature rise: +1.1°C) since the beginning of industrialisation. In contrast, the average
SIE of the Arctic has decreased significantly, especially since the turn of the millennium,
accompanied by a stronger regional warming of +2°C. Both Arctic and Antarctic sea ice
are subject to a strong seasonal cycle, with the Arctic reaching its minimum in September
and its maximum in March, and vice versa for the Antarctic. While the Southern Ocean
melts almost completely every year and freezes over again, the Arctic sea ice can last up
to 5 years — only 14 % (Antarctic) and 32 % (Arctic) of sea ice persisted in summer 2021
compared to winter of the same year.

The Arctic is one of the fastest changing environments due to climate change. Figure
[1.2]visualizes the minimum and maximum Arctic SIE since polar-wide satellite imagery be-
came available in 1979 (data available at the National Snow and Ice Data Center (NSIDC)
at https://nsidc.org/arcticseaicenews/sea-ice-tools. During the last 43 years of
recording, the downward linear trend of the annual minimum SIE is about 13 %, in com-
parison to an average decline of 3.5 %. Furthermore, the timing of the extrema in extent
shifts towards earlier dates for the Arctic sea ice minimum in September. The decline
is alarming as global warming in the Arctic could be further amplified by the ice-albedo
feedback resulting from the higher reflectivity of the ice compared to the ice-free ocean
— causing the sea ice to become thinner and younger. If this process continues until the
more resilient older ice is largely gone, the planet is going to seasonally loose the insu-
lating boundary that limits heat exchange between the ocean and the atmosphere — and
eventually, a cycle similar to that in the Antarctic might settle in.

Arctic sea ice is one of the stable 'cooling anchors’ of our climate and mid-latitude
weather system, and SIE in the Arctic can be linked to atmospheric circulation and the
periodicity of planetary waves, which leads to changes in duration of dry and wet con-
ditions [Mann et al., 2017]. The large decline of Arctic sea ice can drive a decrease in
precipitation in mid-latitude’s climate, such as in Europe, the southwest of the United

States, and Asia. This can have worrisome effects in the form of anomalously high tem-
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peratures that increase potential evapotranspiration (PET, which decreases SM, leading

to more long-lasting heat waves and droughts in the summer |Comiso, 2012} Tang et al.,
2014} /Cvijanovic et al., 2017, Spinoni et al., 2018||Zhang et al., 2020]. The monitoring and

retrieval of the sea ice parameters is crucial in order to get a continuous and comprehensive

picture of the variability of the fast-changing Arctic environment.
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Figure 1.2: Minimum and maximum Arctic sea ice extent from 1979-2021. (a) annual minimum

extent around mid-September; (b) annual maximum extent at the end of March

(data downloaded from the NSIDC at https://nsidc.org/arcticseaicenews/
sea-ice-tools)

1.2 Monitoring Surface and Root-Zone Soil Moisture

The unsaturated (or vadose) zone is the soil layer between the land surface and the
groundwater table, including the capillarity fringe. Its thickness varies from zero meters
in the lakes, to hundreds of meters in arid regions. The hydraulic conductivity, which
describes the water movement through the soil porous media, depends on soil properties
including porosity, permeability and saturation. Except for water uptake by roots, SM

tends to move mainly downward due to gravity. The rate of SM exchange can be defined
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by two separable fluxes corresponding to advection and diffusion terms |Ogden et al.,
2017|. The diffusive term describes the exchange of SM due to the shape of the soil water
capillarity profile and becomes important under long-lasting dry conditions, where hy-
draulic conductivity is low. In case a sharp wetting front enters the soil after heavy rains,
the diffusive term becomes negligible, and the advective SM exchange dominates during
water infiltration. Estimation of SM along the soil depth profile requires knowledge of
natural SM-related processes such as precipitation, evapotranspiration, infiltration and
surface runoff, soil layering and man-made processes, such as irrigation. For instance,
the distribution of SM and soil properties determines how much precipitation infiltrates
into the soil or results in runoff. These two related processes affect the near-surface soil
layer at relatively large spatial scale and at different timescales |[Skgien et al., 2003} Rosen-
baum et al., 2012|. Additionally, small-scale variations in topography and soil properties
(local heterogeneity) are important factors regarding the local distribution of SM, which
makes surface SM highly variable. Consequently, surface SM observations are mainly
characterized by short-term fluctuations, while RZSM is less dynamic, more affected by
long term atmospheric conditions and dominated by seasonal trends.

SM acquisition methods can be generally divided into invasive in-situ observations,
non-invasive geophysical measurements such as Ground Penetrating Radar (GPR) and
electromagnetic induction (EMI), and air- and spaceborne remote sensing techniques |Bell
et al., 2001,|Jol, 2008, Wang and Qu, 2009, SU et al., 2014]. In-situ observations enable
the continuous monitoring of SM from multi-depth measurements at point-scale and with
high temporal sampling.

Spaceborne remote sensing techniques for SM retrieval are relatively inexpensive and
provide high spatial coverage on a regular basis, which cannot be achieved using labor-
intensive geophysical measurements [Jackson, 2002|. The Soil Moisture and Ocean Salinity
(SMOS) mission, launched in 2009 by the European Space Agency (ESA), is the first
space mission specifically dedicated to estimate SM. It uses an L-band interferometric
radiometer to provide global SM, derived from brightness temperature (T ) observations,
with an equatorial revisit time of three days, and a spatial resolution of ~ 40 km [Kerr
et al., 2016]. The Soil Moisture Active Passive (SMAP) is the second spaceborne mission
devoted to monitor SM |Chan et al., 2016|. It was launched in 2015 by the National
Aeronautics and Space Administration (NASA) and carries on board an L-band real
aperture radiometer. It was also equipped with a radar, but it failed after three months
in orbit. SMAP and SMOS provide global SM at ~ 40 km spatial resolution every three
days.

Satellite microwave sensors are sensitive to SM content within a certain layer and over
a particular area. The depth range of this layer within the soil profile is defined by the
penetration depth and the extension of the area is determined by the sensor footprint
size. Thus, the validation of satellite measurements requires several assumptions. Firstly,

frequencies at L-band (1-2 GHz) are sensitive to SM at approximately the top 5 cm of
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the soil [Escorihuela et al., 2010]. However, the penetration depth does not only depend
on the frequency of the electromagnetic signal, decreasing as frequency increases, but also
on the attenuation of the signal due to changes in the soil temperature and the SM. It is
larger in dry than in wet soils [Owe and Van de Griend, 1998|. Secondly, satellite-based
SM is usually compared against in-situ observations acquired by sensors installed at 5 cm
depth, using collocated and concurrent data.

Both SMOS and SMAP SM respond more quickly to wetting up and dry down events
— similar to the precipitation pattern — revealing a response time between satellite and
in-situ measurements at the top 5 cm [Rondinelli et al., 2015|Shellito et al., 2016, Pablos
et al., 2017, Colliander et al., 2020]. In addition, satellite SM measurements are assumed
to have low intra-pixel variability. To address the problem of data comparison at different
spatial scales, several strategies for upscaling in-situ SM have been employed [De Lannoy
et al., 2007a),Crow et al., 2012,|Wang et al., 2015]. Another assumption in validating SM
with in-situ observations is that point measurements are considered representative of a
surrounding homogeneous area observed by the satellite.

Continuously changing atmospheric conditions and corresponding processes are sup-
posed to be reflected in the time series of satellite observations. Nowadays, satellite SM
retrievals are widely used to monitor surface SM [Ochsner et al., 2013,[Petropoulos et al.,
2015,[Mohanty et al., 2017], but observations within a preceding time span contain use-
ful information about the temporal SM variability of the underlaying soil profile to infer
RZSM. Satellite imagery in combination with more accurate point-scale observations con-
tain information about the spatio-temporal variability of SM at the surface and along the
depth profile. Surface-sensitive observations can be used to retrieve RZSM using process-
based or data-driven approaches. Common SM acquisition methods and relevant missions
to estimate surface SM, and approaches to retrieve subsurface SM from surface-sensitive
observations are described in Chapter [2]

The exponential filter is a simple time series analysis (TSA) method that has been
successfully applied to remotely sensed surface SM time series to retrieve subsurface
SM, without requiring knowledge of local soil properties and complete drainage informa-
tion [Wagner et al., 1999|. This method estimates the SM in the subsurface by optimizing
a characteristic time length, which is considered as a surrogate parameter and includes
all relevant processes and soil properties that affect SM variability at different tempo-
ral scales. RZSM was estimated from different active and passive satellite SM retrievals
(including European Remote Sensing — satellite scatterometer, Advanced Scatterometer
(ASCAT), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-
E), and SMOS, and estimated RZSM time series were evaluated at several in-situ SM net-
works over Europe [Wagner et al., 1999||Ceballos et al., 2005|Albergel et al., 2008, Brocca
et al., 2011, Ford et al., 2014, Gonzalez-Zamora et al., 2016]. Hereby, the characteristic
time length was optimized to be constant over the course of a year, and over several years

for specific location and depth level. However, the response time in which subsurface
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SM is affected by atmospheric forcing varies, being shorter around precipitation events
and longer during dry events [Wu et al., 2002|. Consequently, the characteristic time
length cannot be assumed as constant, but seasonally variable. This variability could
be particularly notable if the water balance becomes perturbed in case of high rate of
water introduction or removal due to pronounced precipitation (or irrigation), or strong

evaporation and transpiration.

There are different approaches to quantify the time lag between non-linearly re-
lated time series, which can be divided into representation methods and similarity meth-
ods [Wang et al., 2013|. In the first case, shorter sub-sequences can be approximated from
longer time series, with the aim to identify representative patterns, which relate the funda-
mental features of different observations [Liu, 2003, Grinsted et al., 2004]. Wavelet trans-
forms can be analyzed to decompose time series into similarly shaped sub-sequences. As an
example in hydrology, singular value decomposition (SVD) was applied to identify com-
plex spatial response modes of temporal sequences, and phase information of the cross-
wavelet was evaluated to study the response of groundwater levels to precipitation |Qi
et al., 2018|. Their time series were related to extract anomalies and extreme events, like
heavy rainfall, and local time lags were effectively approximated. In contrast, similarity
methods aim for sequence alignment based on a distance measure, which describe the
point-to-point alignment between two time series rather than relating single pronounced
events or representative sequences. Dynamic Time Warping (DTW) is a method capable
of evaluating the similarity between two time series. It analyses local variations, distor-
tions and shifts between the time series and quantifies the time lag by finding the optimal
match between them. DTW and derived versions provide the most effective similarity
measure to align time series data in a wide variety of applications [Rakthanmanon et al.,
2012, Wang et al., 2013|. Time lag may provide information on the mutual dependencies
or causal relationships between the time series. Originally, DTW was applied in speech
recognition to identify a particular word within a longer, more distorted signal |[Berndt
and Clifford, 1994, Sakoe and Chiba, 1978]. In the remote sensing community, DTW was
mostly used for land cover classification purposes |[Maus et al., 2016,[Belgiu and Csillik,
2018, Csillik et al., 2019|. In addition, it has been used to analyze the similarity of different
satellite SM estimations to in-situ near-surface SM observations [Lee et al., 2019]. TSA
methods to relate surface and subsurface SM time series are presented in Chapter [3|

In Chapter [4] the relationship between satellite-based and subsurface SM is investi-
gated based on TSA using DTW. The DTW technique is applied to the SMOS L4 SM
data product at 1 km resolution provided by the Barcelona Expert Center (BEC) |Portal
et al., 2018] and in-situ SM measured at several depths over the SM sensor network 'red
de medicion de la humedad del suelo’ (REMEDHUS) in Western Spain [Sanchez et al.,
2012]. Satellite time series were compared to SM observations at 5, 25 and 50 cm depth at
four representative in-situ stations to estimate the time lag between surface and RZSM,

respectively. Since the temporal resolution of SMOS is limited by its revisit time, time
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9 1.3. Monitoring Sea Ice Thickness and Concentration

series were averaged to obtain regular sampling. They were normalized to account for
differences in dynamic ranges between area-averaged satellite and point-scale in-situ ob-
servations. The time series are linked based on the most prominent common features to
quantify the evolution of the time lag. The typical response time was determined ac-
cording to the previously estimated SM seasons for all stations and depth. Similarly, the
exponential filter is applied to the same time series, and optimized to determine a rep-
resentative characteristic time length according to each SM season, to verify the findings

with an independent method.

1.3 Monitoring Sea Ice Thickness and Concentration

Polar spaceborne microwave radiometry observations have been available since 1979, start-
ing with the launch of the Scanning Multichannel Microwave Radiometer (SMMR) and
follow-on missions carrying sensors such as the Special Sensor Microwave Imager /Sounder
(SSMIS), and the Advanced Microwave Scanning Radiometer-2 (AMSR2). Tp observa-
tions in the microwave spectrum is sensitive to sea ice properties and can be used to
retrieve SIC and SIT. The emissivity in the microwave spectrum depends on the dielec-
tric properties of sea ice which is a function of its physical composition including salinity,
density, surface temperature, and surface roughness. The collected signal is emitted from a
radiating layer which depends on the penetration depth at sensor frequency. A snow layer
on top of sea ice influences the radiation properties of sea ice and the energy received by
the sensor. The contribution of snow to the emitted signal is lower in the lower microwave
spectrum and the separability of surface properties, such as open water and sea ice in-
cluding SIT, is — in theory — feasible. Low-frequency microwave radiometry observations
at L-band (1.4 GHz) are sensitive to thin sea ice up to ~ 0.6 m depth [Steffen, 1992, Naoki
et al., 2008]. Among the most important missions for sea ice monitoring, the SMOS mis-
sion [Font et al., 2009, Kerr et al., 2010| provides multi-incidence angle full-polarization
T maps at L-band. Various products have been developed based on SMOS data retriev-
ing thin SIT at Arctic scale [Huntemann et al., 2014,[Tian-Kunze et al., 2014, Kaleschke
et al., 2016, Ricker et al., 2017,|Gupta et al., 2019]. SIT above 1 m has been successfully
derived based on sea ice freeboard (Fb) estimates from satellite altimeters |Laxon et al.,
2013, Guerreiro et al., 2017]. Sensors operating at higher microwave frequencies have
smaller penetration depth into sea ice and enable discrimination of sea ice and water at
the surface, which allows the monitoring of SIC and SIE. Algorithms are based on the
contrast of Tz using observations at frequencies ~ 19 GHz and ~ 37 GHz |Parkinson et al.,
1999} Comiso and Nishio, 2008, Lavergne et al., 2019|. This methods allowed to generate
satellite-based maps of SIC with polar coverage on an operational basis. The new Coper-
nicus Imaging Microwave Radiometer (CIMR) mission, expected to be launched in 2028,
is intended to provide Ty at L-band (similar to SMOS and SMAP) and higher microwave

frequencies (similar to AMSR2 channels) with at least daily revisit and increased spatial
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resolution in the polar regions [Kilic et al., 2018, Donlon et al., 2019].

Applications in the Arctic environment, like navigation through sea ice, require data
at high resolution and ideally at real time. The large amount of ice cover detail found in
Synthetic Aperture Radar (SAR) imagery holds enormous potential for high-resolution sea
ice modelling, and ice classification and charting in several national ice services are based
on SAR images |Zakhvatkina et al., 2019]. One of the major tasks using SAR imagery
is to accurately determine the boundaries between sea ice and water and to discriminate
different ice types. Reliable classification of ice types and water requires the expertise
of sea ice analysts, while models still lack sufficient generality and robustness to realize
their full potential for automatic assimilation. The intensity of radar reflections on the
ice surface is given by the backscatter coefficient which shows high angular variability —
especially over the open ocean.

Today, nanosatellite technology has matured to the point that it can be used for sci-
entific missions and the number of instruments deployed in space has steadily increased
over the past decade [Kulu, 2020, |Camps, 2019|. CubeSats are miniature satellites that are
composed of small unit cubes (U) of 10x10x10 cm?® with a maximum weight of 1.33 kg.
Their payloads have an advantage over those carried by traditional missions (i.e. large
passive optical and microwave payloads) due to their smaller dimensions in terms of size,
mass, power consumption and downlink capability. Markedly reduced expenses in devel-
opment, construction and satellite launch make them more accessible to universities and
research institutes, and their use is increasing to broaden the scope of Earth observation.
Commercial companies, like ‘Planet’ and ‘Spire’, operate constellations of hundreds of
3-U CubeSats (~30x10x10cm?), carrying optical imagers or Global Navigation Satel-
lite System (GNSS)-Radio Occultation payloads |Kramer, 2014, SpaceNews, 2020]. The
FSSCat mission, launched on 3 September 2020, is formed by two federated CubeSats
with one of them (3Cat-5/A) carrying the Flexible Microwave Payload-2 (FMPL-2) on
board, combining a Reflected GNSS (GNSS-R) reflectometer and the first radiometer op-
erating at L-band ever deployed on a CubeSat [Munoz-Martin et al., 2020]. It is designed
to provide maps of SIE and SIT over both poles on a five-day basis and soil moisture
over land at low-moderate resolution, and it is the first CubeSat mission contributing
to the Copernicus system (Land and Marine Environment Monitoring Services). Both
FMPL-2 instruments have been successfully validated in orbit and the first set of nominal
acquisitions are available from 1-13 October 2020 [Munoz-Martin et al., 2021aj.

Inversion methods for estimating geophysical parameters such as SIT can be divided
into statistics-based and process-based modelling. The choice of a suitable technique de-
pends directly on the modelling applications and the available data. Process-based tech-
niques are based on thermodynamic or radiative transfer models (RTM), with the goal
of reproducing sea ice growth processes. They require detailed knowledge of the sea ice
composition, including stratification and potential snow load. Sea ice is undergoing con-

tinuous transformation showing regional and seasonal variability. Algorithms to infer sea

May 29, 2022



11 1.3. Monitoring Sea Ice Thickness and Concentration

ice parameters rely on strong model assumptions and empirically determined sea ice prop-
erties of different ice types. Information about the sea ice heterogeneity is not available
and accurate models need collocated and concurrent observations from multiple sources
to prevent ambiguous inversion. The main uncertainties in sea ice products originate
from long revisit times and coarse spatial resolution of satellites. Models can be oversim-
plified, and model uncertainty is difficult to estimate. Knowledge on the distribution of
sea ice is limited due to sparsely available in-situ and airborne data for validation. SIT
retrieval algorithms perform well during Arctic freeze-up |Kaleschke et al., 2016|, while
the high heterogeneity of sea ice during summer melt and the limited spatial resolution
of satellite observations make SIT estimation highly ambiguous. Therefore, current SI'T
products show sufficient accuracy during the Arctic freeze-up period from mid-October
to mid-March, but they do not perform well during the Arctic melting season. The rel-
evant physical properties of sea ice, current passive and active missions, and inference
techniques for satellite-based retrieval of sea ice parameters, particularly for SIT and SIC,
are described in Chapter [5l Irrespective of the modelling technique, sufficient details on
the modeled metrics are required to understand the hidden link between input data sets
and sea ice parameters. Ideally, the model parameters provide information to evaluate
the joint effect of a combination of data sets that allows the study of both spatial het-
erogeneity and temporal variability of sea ice. This knowledge is important for informed
feature selection and refinement decisions to be made to achieve sensitivity enhancement
to sea ice properties. Of particular importance to ensuring continuous monitoring of sea
ice parameters in polar regions is the identification of data gaps and limitations for an
assessment of existing satellite missions and products. The method is a tool for under-
standing the utility of data from new sensors and future missions and their suitability for

integration into new products.

Data-driven approaches — being the complementary to process-based modelling — have
provided promising results by harnessing the sensitivity ranges of multi-source satellite
data for sea ice parameters by extracting the information contained in the various obser-
vations. However, these approaches often comprise a purely statistical analysis of images
where information is retrieved from a temporal pixel-based consideration only. Without
considering the semantic meaning of the data sets during the analysis, the data collected
by multiple sensors with different resolutions cannot be merged easily and converted into
information for physical interpretation. As a result, automated models are not general
enough to obtain consistent solutions with sufficient stability. Thus, given the dynamic
nature and complexity of sea ice, geostatistical analysis is required to integrate both the
temporal and the spatial interactions into the model.

In Chapter [6] a Bayesian unsupervised learning approach, developed at the Computa-
tional Geoscience and Reservoir Engineering at RWTH Aachen University [Wang et al.,
2017), is investigated to segment Arctic sea ice into a number of separable classes based

on the synergy of multi-source satellite data. The aim is to yield a framework to reveal
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spatial pattern from differences and similarities in the sensitivity between sea ice prop-
erties and Tpg observations from different sensors operating at different frequencies and
incidence angles. The statistical relationships between the observations are accounted for
by a Gaussian Mixture Model (GMM), and spatial interactions of images are reflected
using Hidden Markov Random Fields (HMRF). Spatial information is provided in terms
of a latent field in physical space and statistical information is indicated in the means
and covariances of the obtained classes in feature space. Aim is to reduce information
of multiple satellite images to a relevant number of spatial classes, which are related dif-
ferently to sea ice parameters, while keeping the probabilistic distribution for subsequent
cluster analysis and uncertainty quantification. The automated data-driven segmentation
approach opens up a new scope to improve current retrieval algorithms based on the

combined information contained in a multitude of observations.

The Bayesian segmentation is applied to three different data sets: SAR imagery for
high-resolution discrimination of water and sea ice, multiple-incidence angle Tz data from
SMOS to exploit angular differences in sensitivity to thin sea ice, and multi-frequency
observations from SMOS and AMSR2 after extending the algorithm to three dimensions

to obtain consistent class patterns that can be compared to ice maps and SIT products.

In a first application the segmentation of sea ice-covered areas based on high-resolution
images of multi-angular SAR backscattering coefficient. Low-resolution microwave ra-
diometry data have limited penetration depth and are unable to resolve surface char-
acteristics of sea ice in sufficient detail. As a consequence, current retrieval algorithms
often underestimate the SIC of areas that are completely covered by sea ice. Important
information on the surface roughness conditions are contained in the distribution of radar
backscattering signals which are useful to discriminate surface water such as melt ponds
from different sea ice types. Surface roughness for closed water and sea ice is significantly
smaller as compared to the mainly wind-forced open ocean, which enables to classify
surface types based on its intrinsic surface conditions. Sentinel-1A/B SAR images are
available on a daily basis at medium resolution (~40m). The goal is to segment SAR
images into a number of separable classes using the Bayesian segmentation algorithm.
The approach considers the angular variations and the spatial correlations of the SAR
images. Surface water fraction is estimated based on annual images at a selected area
in the Northern Barents Sea from September 1, 2019 to August 31, 2020. A second
application involves the segmentation of Arctic sea ice from SMOS data, assuming that
independent information on sea ice properties, particularly thin SIT, are captured in the
multi-incidence angle T g observations. In order to increase the sensitivity to the compo-
sition of sea ice by reducing the effect of physical surface temperature, the polarization
ratio (PR) between horizontally and vertically polarized values is selected for segmenta-
tion. The combination of PR at different incidence angles may give better insights into the
distribution of thin sea ice along the freeze-up period. Model uncertainty can be quanti-

fied using information entropy from the class probabilities to distinguish well-determined
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from uncertain regions in the resulting spatial patterns. The optimal number of separable
classes can be determined when compared to thin SIT of existing products during sea ice

formation.

To include the fact that observations over sea ice can be essentially linked in both space
and time through the non-negligible drift of the ice pack, the implementation of purely
spatial correlations between pixels of 2D images can be complemented by considering the
temporal and spatio-temporal interactions between volume pixels in 3D space. The two-
dimensional Bayesian algorithm to segment spatial data is extended to a third dimension
to segment Arctic sea ice in a complete spatio-temporal context. In a third application,
channels of SMOS and AMSR2 Tpg data are used as input features to examine the joint
effect of set of passive microwave observations at 1.4, 6.9, 10.6, 18.7, and 36.5 GHz —
equivalent to those of the planned CIMR mission. Aim is to segment the Arctic region
into a set of relevant classes based on the synergy effects of the multiple observations
and to verify the developing class patterns for the common operational sea ice products
SIT and SIC. Then, the segmented classes can be analyzed in terms of their statistical
distribution (means and covariances) and spatio-temporal patterns (class probability) to
assess their temporal stability, robustness, and spatial representativity, and to verify the

solution’s general sufficiency for automated application.

Machine learning can often perform better on complex problems where traditional
approaches miss out hidden links between the model parameters among large amounts
of data. Algorithms have been successfully applied to segment sea ice based on the dis-
tribution of surface signatures of satellite observations to recognize patterns of sea ice
properties among different scales [Lee et al., 2016, Shen et al., 2017]. Data-driven neural
networks (NN) approaches were developed decades ago and can adapt to new ice condi-
tions, changing sea ice types and intermittent periods of freeze up and melting. Before
Arctic-wide L-band observations from SMOS were available, NNs were used to infer SIT
based on SIC maps from satellite radiometry observations at higher bands, and ancillary
geophysical parameters, including surface air temperature and ice drift velocity |Belchan-
sky et al., 2008|. The time series of SIC maps were analyzed on the basis of NNs to forecast
SIC by assessing the time-varying characteristics of previous observations |Lin and Yang,
2012,|Chi and Kim, 2017|. Snow depth is an important factor with regard to the infer-
ence of SIT from both microwave radiometry and Fb observations, and its estimation is
particularly complicated due to the complexity of the radiation properties of the snow
layer. Therefore, regression NN approaches have been developed to invert snow depth
using data from multi-frequency satellite microwave radiometer measurements, including
the Special Sensor Microwave/Imager (SSM/I), SMMR, AMSR2, and SMOS [Tedesco
et al., 2004, Maak et al., 2013,|Liu et al., 2019 Braakmann-Folgmann and Donlon, 2019|.
NNs are efficient and often easy to implement. As an advantage they are capable of
recognizing the principal forcing mechanisms contained in the non-linear relationships be-

tween geophysical parameters and they provide similar or better results when compared
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to those of conventional models. Chapter [7| focuses on a predictive regression NN frame-
work approach to infer SIT based on the first FMPL-2 Tpg acquisitions provided by the
FSSCat mission. Two separated models were trained on Arctic data to estimate thin ice
up to a thickness of 0.6 m and full-range thickness. The models were applied to retrieve
Arctic and Antarctic maps of SIT and disseminated products are publicly available under
https://catalogue.nextgeoss.eu/. In addition to the SIT products, maps of the SIC
and SIE over both poles, and global SM over land were also created on the basis of a NN
approach using data from both sensors on the FSSCat FMPL-2 payload — the GNSS-R

instrument and the Tz L-band radiometer.

1.4 Objectives

This dissertation focuses on the development and application of advanced data-driven
modelling techniques for determining SM at the root zone and sea ice parameters — thick-
ness and concentration — using data from various space-based observations. In current
retrieval methods, there is a need to extract the information of the ever-increasing amount
of satellite data in sophisticated ways to resolve ambiguities and overcome ill-posed prob-
lems. The overall goal is to obtain robust solutions with sufficient generality to elaborate
evaluation metrics and analysis approaches that allow the joint effect of combining dif-
ferent satellite observations to be exploited. Accounting for spatial correlations and the
representativity of observations in the context of geostatistical modelling are among the
key challenges of this work. Emphasis is placed on the adaptability of the methods to
provide model parameters that reveal information about the physical properties and pre-
vailing processes in the environment under study.

The first objective was to establish a method which allows the characterization of the
response time between satellite-based SM data and multi-depth in-situ SM measurements
based on the common features contained in their time series — a topic of great relevance
for the improvement of the RZSM estimation. The response time between the subsurface
SM and satellite observations represents the time span that includes the relevant preced-
ing atmospheric forcing at the surface and initial SM conditions. An appropriate method
requires flexibility to account for a time lag, which may be warped in time due to the
temporally variable coupling of surface and profile SM, caused by alternating strong wet-
ting fronts and gradual drying of the subsurface. The DTW technique applied in speech
recognition allows local mapping between time series data and is a suitable method to
characterize the similarity between two time series on a local level. The goal was to im-
plement the method on a new basis so that it is adaptive to the particular time series to
obtain a physically meaningful evolving warping path and resulting time lag from which
to identify the relevant processes related to the SM dynamics in the subsurface. Pat-
terns of depth-specific alternation in temporal delay and alignment between subsurface

SM with respect to surface-sensitive observation are assumed to be represented in the
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warping path.

The objective was to apply the DTW to analyze the relationship between point-scale
multi-depth and areal satellite observations, and to customize the method and constrain
the warping path accordingly, that SM-related processes such as infiltration and drying, as
well as water uptake by roots during the growing season are well-reflected in the evolution
of the time lag. This thesis examines how land use heterogeneity affects the representa-
tivity of in-situ stations with respect to SM variability to be captured in satellite data and
how temporal variability of SM is related to climate factors precipitation and PET. Par-
ticularly in semiarid regions, cropping periods, precipitation and temperature are clearly
seasonal, and are assumed to be reflected in the response time. Greater consideration
was given to the fact that the model is based on input data — such as Sentinel-2 channels
and meteorological observations — that are available over most areas and with suitable
temporal resolution, so that the methodology can be easily applied to other studies. It
was expected that common TSA methods such as the exponential filter result in more
accurate estimation of profile SM when retrieval periods were divided into SM seasons —
rather than assuming a constant relationship between surface and subsurface SM.

The second major goal of the thesis is on the investigation of a Bayesian Unsupervised
learning approach to segment multi-dimensional satellite data over sea ice for sea ice
parameter retrieval. Due to the dynamics of sea ice and its complex multi-scale structure
that includes different ice types with distributed SIT below satellite resolution, sea ice
models must be flexible enough to account for both the statistical characteristics and the
spatial correlations of the observations. The segmentation algorithm, which was originally
developed for segmenting only spatial data sets, was extended to three dimensions in the
scope of this work to allow for significant temporal and spatio-temporal correlations.
Semi-automatic classification of SIC and developmental stages is currently still based on
the experience of ice analysts. The objective was to use the probabilistic approach to
quantify model uncertainty based on class probabilities and to evaluate the spatial and
statistical model parameters to relate the segmented classes to the underlying ice physical
properties. The method presented allows combined sensitivities of a selected set of satellite
observations to the seasonally predominant composition of sea ice to be examined and the
additional value of including data, e.g., from new satellite missions, to be determined.

The Bayesian segmentation algorithm was applied to different sets of satellite obser-
vations. A two-step approach to spatially segment Sentinel-1 SAR data was used with
the aim to retrieve high-resolution SIC, while overcoming common underestimation of
SIC in current retrieval methods, which are based on low-resolution T g observations. In
a second application, multi-incidence Tp data from SMOS was spatially segmented dur-
ing freeze-up to investigate classes based on their different sensitivity to thin ice due to
variations in optical path lengths through the ice. In a third application, aim was to
segment multi-frequency Tpg data in a complete spatio-temporal context based on SMOS

and AMSR2 data to obtain classes with multi-year consistency which can be seasonally
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related to ranges of SIT and SIC. A major advantage of the approach is that it is not
limited to single sensor data, but serves as a tool for combining multi-sensor data auto-
matically that can be used to analyze their joint sensitivity to sea ice based on evaluation
metrics derived from model parameters.

In addition, the potential of using data from the successfully launched low-cost FSSCat
mission to determine SIT and SIC — a topic of great importance for continuous monitor-
ing of sea ice — was investigated. The objective was to evaluate whether low-resolution
CubeSat data could be used as an alternative to the data from large satellite missions
to provide SIT products of similar quality to operational products. A regression NN ap-
proach was selected to be able to incorporate the Ty data from the FMPL-2 payload in
combination with a set of suitable auxiliary observations to train two separate models,
aiming to provide thin SIT based on the direct sensitivity of the L-band Tz data to thin
ice, and to estimate full-range SIT by complementing freeboard data from the CryoSat2
mission to the model. Because SIT products are currently limited to the Arctic, both
models were trained with Arctic data and were initially used to predict Arctic SIT, but

were also applied to Antarctic data to conditionally estimate Antarctic SIT.
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2 Remote Sensing of Soil Moisture

This chapter focuses on common SM acquisition methods which can be divided into small-
scale on-site measurements and spaceborne observations to provide SM on global scale,
and retrieval techniques to infer SM in the subsurface from available surface-sensitive
observations. Direct in-situ measurements and non-invasive geophysical methods which
allow estimation of local SM are presented in Section 2.1} The multiple satellite sensors
and respective retrieval algorithms to generate satellite-based SM products are described
in Section [2.2] Space-based observations are sensitive to the water contained in the
uppermost soil layer, and the products are validated against in-situ SM observations at
~ b cm depths — which are pooled in international sensor networks. For characterization
of SM in the underlying subsurface, the current process-based and data-driven techniques

to estimate RZSM based on the surface-sensitive satellite products and auxiliary data are

given in Section [2.3]

2.1 Soil Moisture Acquisition Methods

Current methods to estimate the SM content include in-situ measurements such as gravi-
metric analysis [Reynolds, 1970] and time domain reflectometry (TDR) |Evett, 2003,
Walker et al., 2004, and non-invasive geophysical methods such as ground penetrating
radar (GPR) |[Lunt et al., 2005|, electromagnetic induction (EMI) |Callegary et al., 2007],
and electrical resistivity tomography (ERT) [Samouélian et al., 2005]. These methods
differ in terms of their feasibility and representativity in capturing SM dynamics at dif-
ferent temporal scales and their variability at different spatial scales — also with respect
to RZSM along the depth profile. In-situ measurements provide SM at the local scale,
geophysical observations at the field scale, while regional and global coverage can only be

achieved through space-based observations.

Local In-Situ Methods

Gravimetric methods are the most direct techniques to determine the SM content by
decomposing a soil sample into water and dry material quantitatively. Hereby, the soil

bulk is continuously oven-dried and weighed, and the loss of weight of the remaining
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constituents is indicative of the SM content. Gravimetric methods are invasive and tedious
to perform under laboratory conditions.

TDR is a transient method which involves injecting a fast pulse into the soil. It mea-
sures the velocity through the porous medium, which depends on the apparent dielectric
constant, largely determined by the water content. The graphical evaluation of the re-
flected waveform allows to relate the velocity pattern to the SM content, with a shorter
pulse travel time through the porous medium indicating a wetter soil. It is less invasive
and representative to the SM content of a small volume of a few centimeters with limited
spatial coverage. Periodic and automatic acquisition of subsurface SM can be obtained
by distributing multiple buriable-type TDR sensors along the soil profile.

The integrated in-situ sensors, based on techniques such as the gravimetric method and
electromagnetic methods, are subjected to a rigorous quality control process to achieve a
common and high standard for data dissemination. They have been a indispensable source
of information used for validation and calibration of land surface models and satellite-
based SM retrievals [Dorigo et al., 2021].

GPR is a subsurface imaging technique to estimate the local spatial variability of SM
content with a resolution of meters |[Huisman et al., 2002,|Huisman et al., 2003|. An
antenna emits electromagnetic waves at frequencies in the MHz range and the received
energy of the transmitted groundwaves through the subsoil depends on the contrast in
the dielectric properties in the subsoil. The electromagnetic wave velocity can be related
to the vertical SM distribution because most changes in the effective dielectric constant
in soils are caused by changes in the water content in the unsaturated vadose zone.

EMI systems consist of a pair of coils, where the first coil generates a primary mag-
netic field that induces an electric current in conductive subsurface layers, which in turn
generate a secondary magnetic field that is measured by the second coil [McNeill, 1980].
The combined information of the coil transmitter and receiver reflect the distribution
of apparent electrical conductivity which has been used to estimate SM [Sherlock and
McDonnell, 2003, Callegary et al., 2007).

ERT relates resistivity measurements to SM content and is used to estimate the dis-
tribution of subsurface SM, in particular in the RZSM dynamics [Samouélian et al.,
2005,|Garré et al., 2011]. The resistivity distribution of the sounded soil volume pseudo
sections is inverted by injecting electric currents into the soil and measuring the resulting
potential differences along a transect with electrodes.

Non-invasive geophysical methods work best under homogeneous conditions and with
high contrasts in the soil horizons. They become inaccurate for fine-grained, clay-rich
soils as the signals have a low signal-to-noise ratio. The temporal variability of the SM
profile can be determined using sounding data collected at different times. They are of
limited use to monitor the spatial variability and dynamics of the SM beyond local scale
and field scale.

The International Soil Moisture Network (ISMN) is an open access database containing
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global in-situ SM networks that guarantees a standard of data sets for validation and

calibration of air- and spaceborne remote sensing |[Dorigo et al., 2011, Dorigo et al., 2013|.

Remote Sensing Observations

Both in-situ automated techniques for point measurements and geophysical methods re-
quire continuous and labour-intensive maintenance and are therefore not suitable for SM
monitoring at regional and global scales. Large spatial coverage and regular temporal
sampling for the operational provision of SM can only be achieved through spaceborne
measurements. Several sensors operating in different electromagnetic spectra suitable for
satellite-based detection were investigated for their application for retrieving SM. Initially,
observations of short-wave radiation and thermal inertia monitoring were tested under-
standing that a soil with a high moisture content appears optically darker and cooler
than a dry soil. Since satellites measure radiation at the top of the atmosphere, interac-
tions along the transfer through the gas- and aerosol-filled tropospheric and stratospheric
column become relevant. These measurements turned out to be unsuitable for all-sky
retrieval due atmospheric effects, potential cloud coverage, and vegetation cover opac-
ity |[Kerr, 2007]. Thermal infrared images were considered, but they do not reflect the SM
contained in the topsoil, as they are most sensitive to the skin layer of the surface, which is
strongly coupled to the atmosphere. Hereby, short-term fluctuations predominate and an
accurate retrieval would require knowledge on the atmospheric forcing, such as the effects
of wind speed on evaporation. An ideal system set up for operational capability hence
needs to be ready to use regardless of the local time, under most weather conditions, with
high vegetation transparency, and sensors require a shallow penetration depth so that

measurements are representative of topsoil moisture.

Observations in the microwave spectrum can be directly related to SM, as they are sen-
sitive to the dielectric properties and the respective hydraulic conductivity, which in turn
varies with volumetric SM content. Active and passive microwave systems were evaluated
by simulating the SM sensitivity of radiometers, radars such as SAR and scatterometers
regarding potential satellite-based global systems |Pellarin et al., 2003]. In particular,
observations are independent of daylight, and in the lower microwave spectrum they are
largely unaffected by the atmosphere, and with less impact of vegetation cover |Srivastava
et al., 2014]. Besides the frequency range constraint, several technical challenges had to
be overcome with regard to the implementation of satellite systems to achieve sufficient
revisit time, and spatial resolution to adequately capture the hydrological dynamics of
surface SM. These systems need to be designed in a way that SM retrieval products can
reach the maturity to capture spatio-temporal dynamics of SM to enable the development

of new drought monitoring and agricultural products and applications.
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2.2 Satellite-Based Surface Soil Moisture

There are several ongoing spaceborne missions suitable for SM retrieval using radiometry
sensors at microwave frequency including SMOS and SMAP (L-band at ~ 1.4 GHz) |Kerr
et al., 2001} Entekhabi et al., 2010a], and AMSR2 (frequencies ranging between 6.9 GHz
to 89 GHz) [Owe et al., 2008|. The Advanced Scatterometer ASCAT instrument (C-band
at 5.255 GHz) was originally designed to monitor wind speed and direction but has also
been used to retrieve SM [Wagner et al., 2013|. These active and passive observations
are used to provide SM products with a spatial resolution of several tens of kilometers
at global coverage |[Rodriguez-Fernandez et al., 2019]. For observations in the higher
microwave spectrum, such as for AMSR2, both the influence of the atmospheric effect
and the vegetation cover increase. The two Copernicus Sentinel-1 satellites (C-band at
5.405 GHz) achieve higher spatial resolution to retrieve SM down to 5m, using SAR with
a revisit time of six days. Besides being sensitive to surface SM, their back-scattered
signal depends on multiple parameters such as the dielectric constant of the soil, surface
roughness, and the composition of the vegetation canopy and biomass, and it is often
strongly attenuated due to surface and volume scattering [Paloscia et al., 2013]. Therefore,
the accurate determination of SM from SAR backscatter remains an open task fraught
with ambiguity. To address this ill-posed problem, either prior knowledge of soil and
vegetation parameters or multiple-configuration SAR observations, i.e., multi-temporal,
multiple incidence angles, multiple polarizations, are required.

Change detection-based methods are based on the assumption that temporal changes
in surface roughness, canopy structure, and vegetation biomass occur on a larger temporal
scale than changes in SM |Rignot and Van Zyl, 1993|. Alpha approximation is a change
detection method commonly used to estimate SM from time series SAR data over agricul-
tural fields [Balenzano et al., 2010|. Given time series of SAR measurements are collected
over bare soil, assuming that the surface roughness of consecutive observations does not
change and volume scattering does not dominate, changes in multi-temporal backscatter
are largely a result of changes in SM. Vegetation and surface roughness can be effectively
decoupled from SM effects by considering the ratio of consecutive radar backscatter mea-
surements which can be approximated as the squared ratio of correspondingly defined
alpha coefficients. These coefficients are a function of the dielectric constant, incidence
angle, and polarization, and the original alpha approach requires an initial estimate of
the upper and lower bound soil moisture values to constrain the estimated range. The
method was extended by considering dynamic, spatially explicit boundaries obtained from
the SAR data themselves, or by using multiple rather than single polarizations (HH or
VV) and higher incidence angles [He et al., 2017, Palmisano et al., 2020].

In addition to satellite-based direct methods, ERA-Interim/Land generated by the
European Centre for Medium-Range Weather Forecasts (ECMWF) — among other land

surface parameters — provides SM through reanalysis of observations and land surface
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model simulations |[Balsamo et al., 2015].

ESA’s SMOS mission was launched in November 2009 and it is the first spaceborne
mission specifically designed to provide global maps of SM and sea surface salinity [Font
et al., 2009, Kerr et al., 2010]. SMOS is equipped with the Microwave Imaging Radiometer
with Aperture Synthesis (MIRAS), an interferometric radiometer that acquires multi-
angular full polarization brightness temperatures in ascending and descending orbits with
equator crossings at 06:00 and 18:00 local times [Corbella et al., 2005|. It has a nominal
accuracy of 0.04m®m~3 and a spatial resolution of ~40km, and a 2-3 days revisit time
at the Equator |[Kerr et al., 2010].

The SMOS L2 retrieval algorithm was developed to create global surface SM maps
[Kerr et al., 2012]. It is based on an iterative approach that minimizes a cost function
by finding an optimum set of SM, and vegetation characteristics using multiple incidence
angles Tp. Hereby, the extraction of SM from Tpg consists of the following steps: The
observations are normalized to emissivity using a RTM to account for effective surface
temperature and the effects of soil surface roughness. A tau-omega model is used to
correct for the attenuation of soil emission due to the vegetation layer. The emissivity
measurement is related to the soil dielectric properties [Kerr et al., 2012]. In a final step,
the corresponding properties are related to SM.

The sensitivity of L-band Tpg observations to land surface SM is particularly strong
with a total dynamic range of about 100 K [Shi et al., 2006, Wigneron et al., 2017]. This
is the case for the aforementioned SMOS L2 product, where the effects of surface temper-
ature, vegetation and surface roughness are accounted for [Kerr et al., 2012|. Information
about heterogeneity below the 40-km-resolution of L-band radiometers need to be ex-
tracted from parameters obtained from additional maps or forecasts. An observed pixel
may contain a variety of surface types including water bodies, different land uses such
as forests and cropping systems, transition areas with snow cover, urban areas, and to-
pography, and additional information about them determines the meaningfulness of the
retrieval. The retrieval is applied only to the percentage of the pixel consisting of the
surface area where surface SM can be determined. For the remaining percentage, a pre-
defined fixed specific reference value — determined by a set of auxiliary parameters — is
assigned regarding the surface type.

Radio Frequency Interference (RFT) is a known issue causing performance degradation
of SM retrievals and eventually the total loss of the data. It is mainly affecting regions
in Europe, Asia and the Middle East [Daganzo-Eusebio et al., 2013|. The effect of RFI
on SMOS Tps leads to or loss of information or underestimation of SM due to unwanted
energy. Active RFI emissions are usually stronger than the natural radiation emitted
by the Earth, and interference originates from adjacent bands or from man-made illegal
emissions in the protected 1400-1427 MHz passive band. They must be detected and
flagged in the Tz observations to avoid erroneous retrievals [Oliva et al., 2016).

Satellite-based observations at L-band are sensitive up to the top ~5cm. Therefore,
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RZSM cannot be inferred directly from remotely sensed data. Direct observation would
potentially require lower frequent observations — such as P-band (250-500 MHz) [Ye et al.,
2020] or much lower frequencies — to increase the penetration depth or, ideally, even pene-
trate the entire vadose zone to the water table. However, these measurements are not yet
technically feasible for satellites today, because the already large footprint (~40km for
L-band) would be even larger at lower frequencies, up to hundreds of kilometers. There-
fore, SM beyond the penetration depth of regular surface-sensitive SM observations can
only be inferred using an indirect approach. In the next section, methods that relate SM
retrievals to subsurface SM based on process- and data-driven modelling and assimilation

techniques are described.

2.3 Root-Zone Soil Moisture Estimation

Accurate inference of subsurface SM along the soil profile from surface-sensitive obser-
vations is challenging because observations are widely non-linearly related. The time
scale of processes relevant to variations in surface SM is generally shorter and respon-
sive to changing atmospheric conditions, whereas factors that determine the state of the
SM in the underlying subsoil are arranged on longer time scales [Vereecken et al., 2014].
Regarding observations, satellite data are available regularly at relatively high temporal
resolution in the order of days or weeks, and profile SM is usually acquired on sub-daily
basis. Although active and passive systems in the microwave spectrum are sensitive to
near-surface because of their shallow penetration depth, and the capability to resolve the
spatial variability of SM through remote sensing measurements is limited, observations
provide the spatial coverage needed for exhaustive inversion approaches.

The goal of SM inference methods is to understand the relationship between surface
SM measurements and in-situ SM along the depth profile in order to find a realization
of the subsurface SM through inversion which is in agreement with the observed data. If
methods are too simplistic, they do not add value or miss out fundamental characteristics
of the underlying problem, whereas too complex models can have limited applicability,
because they require conceptual understanding and information on the hydraulic proper-
ties. Basically, a distinction can be made between data-driven and process-based methods,
each exhibiting its own advantages and drawbacks in terms of the required information
of the described system (input data and model parameters), computational efficiency,
geophysical realism (plausible and realistic picture, i.e. heterogeneity captured), and gen-
eralizability of the solution (robustness and temporal stability).

The physical properties and processes responsible for the changes in SM state can
be described by directly accounting for the partial flow and transport differential equa-
tions using process-based methods. In dynamic system theory, state-space models fully
describe the evolution of a dynamic system in terms of the smallest set of internal in-

dependent variables, called state variables, and its response to certain inputs as a set of
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first-order ordinary differential equations. For a given state-space model, the number of
state variables is equal to the order of the differential equations describing the system
and the number of initial conditions required to fully solve the model, while the set of
state variables is not unique and can be defined in terms of directly measurable or indi-
rectly determinable physical variables. Hereby, soil water balance models can be applied
to simulate profile SM by computing the spatial and temporal mass and energy fluxes,
where simple hydrological models based on the soil water balance equation can be used
to capture the subsurface SM dynamics [Manfreda et al., 2014,|Baldwin et al., 2019].

However, the ‘true’ states, such as of the SM, cannot be observed directly because
variables evolve over time and measurements contain noise and can be highly ambigu-
ous. Thus, the goal of a state space model is to retrieve information about the states
by continuously updating the model which enables to exploit newly available information
from recent observations. Aim is to integrate time series of measured surface data into
hydrological models to obtain more accurate estimates of SM content through data as-
similation techniques. A widely used approach is the Bayes’ theorem-based Kalman filter,
which has been adopted for state variable estimation by implementing a feedback loop
that assimilates a representative set of observations in real time [Welch et al., 1995|. Both
observations and model background state contain unknown errors which makes estima-
tion a statistical problem, and state variables of the system are described by probability
density functions rather than single values. Versions of the original method — such as the
extended Kalman filter and the ensemble Kalman filter — have been adapted to estimate
SM, the latter being widely used due to its ability to handle nonlinear systems and its
computational efficiency |Huang et al., 2008|. In addition, numerical weather prediction
includes information on the land surface from satellite measurements to integrate SM into
the operational forecast system [Drusch et al., 2009].

Land data assimilation methods have been applied to improve process-based model
estimates |Sabater et al., 2007,|Al-Yaari et al., 2014]. An integrated hydrological model
is used for rigorous simulation of surface and subsurface flows by including the relevant
vegetation-soil interactions |[Kuffour et al., 2020|. Retrievals based on these conceptual
models are especially beneficial in regions where observations are sparsely available and
SM changes are determined by boundary conditions in addition to the physical laws. They
provide the most sophisticated techniques to produce realistic models and obtain the basic
framework for predictions. The feasibility of these methods can be limited by the fact that
many input parameters are needed to adequately model the soil-physical properties, which
are often unavailable or of poor quality, and missing information is filled with empirical
assumptions. Also, inversions may be computationally time-consuming and large-scale
solutions of physical models require the use of supercomputers.

The goal of data-driven methods for profile SM estimation is to evaluate observations
in terms of their variability to recognize patterns in the data sets. These methods can be

separated into statistical modelling and time series analysis (T'SA) methods. Statistical

May 29, 2022



Chapter 2. Remote Sensing of Soil Moisture 26

models are fully data-driven, and they can be used to find the relationship based on regres-
sion models. Machine learning techniques such as Deep Learning algorithms and Random
Forest approaches can be used to estimate RZSM, while accounting for non-linearity in
the statistical distribution of a set of input features |[Kornelsen and Coulibaly, 2014} Car-
ranza et al., 2021]. These techniques have the common advantage that assumptions on
the model parameters are not necessary. Although geophysical reasoning is limited, ma-
chine learning techniques can be useful for pattern recognition, and often achieve results
of similar quality as those provided by e.g. data assimilation techniques. Nonetheless,
these methods assume that the relevant subsurface processes are represented in the input
features, and the retrieval accuracy is often poor for extremely wet and dry conditions —
also due to limited learning capability in case of these rare events.

TSA methods are used to determine the functional relationship between surface and

subsurface SM observations. Cumulative Distribution Function (CDF) matching follows
a simple and efficient stochastic technique to extract the systematic differences between
different measurement techniques such as point-scale in-situ and areal satellite SM obser-
vations for subsequent retrieval. The original methodology has been extended to account
for representativity errors between them [Reichle and Koster, 2004,|Gao et al., 2013} Gao
et al., 2019, Zhuang et al., 2020].
The current profile SM content can be inferred by exponentially filtering previous surface
SM observations based on a optimal time length, which is characteristic for each location,
depth and soil properties [Wagner et al., 1999||Albergel et al., 2008|. The exponential
filter technique is often referred to as an independent method to compare results obtained
using statistical and physics-based approaches. In comparison to process-based models,
analytical models rely only on a few assumptions, require a small number of input features
and are computationally efficient. However, the coupling between surface and subsurface
SM may vary by climate, and methods that are robust for a particular region may not
lead to general solutions to be applicable to other regions. Since these approaches rely
exclusively on the relative behaviour of time series, the performance often depends on the
temporal sampling and the data length. The influence of soil properties and meteorolog-
ical conditions can cause SM time series obtained from surface-sensitive remote sensing
techniques and subsurface in-situ observations to be related in a highly non-linear way.

DTW is a dynamic programming technique capable of dealing with temporal distor-
tions with the aim to find the optimal match between time series. It can be used to
provide a time lag evolution as a continuous dissimilarity measure comprising the main
temporal variability features of surface and subsurface SM time series. In Chapter [3], the
exponential filter and DTW technique are introduced. In Chapter [4] the DTW technique
is applied to observation the SMOS L4 product — developed at BEC |Portal et al., 2018|
— with in-situ measurements at top- and subsoil-representative depth levels at stations
that are located in the Soil Moisture Measurements Station Network of the University of

Salamanca (REMEDHUS) in a semi-arid region in Western Spain.
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3 Time Series Analysis of Satellite-

based and Subsurface Soil Moisture

In this chapter, two TSA techniques are presented to relate satellite-based SM to RZSM
time series. The exponential filter is a simple and commonly used method to estimate
RZSM from previous surface-sensitive SM observations according to a constant charac-
teristic time length, and it is explained in Section [3.I The SM content is sensitive to
external forcing such as climate conditions, land use and soil properties, which cause
subsurface SM to be seasonally variable. The DTW technique (Section enables to
quantify a variable time lag between non-linearly related and distorted time series, and
has more flexibility than the exponential filter which is based on a constant time length.
Its fundamentals are explained in Section [3.2.1] The principle of the method is explained
and the technique is verified in Appendix [A] based on a synthetic example using DTW
to estimate the time lag between two random variables. Customization of the method
including warping path step-size condition, maximum allowed time lag, and the deter-
mination of the onset dates of pronounced precipitation events are presented in Section
3.2.21

3.1 Exponential Filter

A soil profile can be divided into a surface layer and an underlying sub-layer. The surface
layer is considered the soil horizon where observations are sensitive to SM content ©g.
The sublayer lies beyond the penetration depth of the satellite sensors and contains the
subsurface SM ©,. Both layers are connected by a vertical water flow that is proportional

to the SM differences, expressed by

4o (t)

o 1 (Os(t) — ©a(t)), (3.1)

where L is the depth of the subsurface layer, and C' is the hydraulic pseudo-diffusivity

constant that controls the flow between the soil layers. The differential equation can be

27



Chapter 3. Time Series Analysis of Satellite-based and Subsurface Soil Moisture 28

solved for ©, by integrating the preceding SM values over time at the surface as follows

1 rt t—7
Oy(t) = T/ Os(T) exp (— T )dT. (3.2)

—0o0

where T'= L/C denotes the characteristic time length representing the time scale of SM
variability which describes the degree of smoothing applied to the observed SM at the
surface. This time length is considered as a surrogate parameter that includes all relevant
hydrological processes and soil properties at different time scales that affect SM dynamics

at various depths.

Remote sensing observations have a discrete revisit time and the continuous formula-
tion for ©y can be described by the soil water index (SWI)

ty, — t
>t ms(t;) exp (— T )

Zi exXp | — T

a SM trend indicator — dimensionless and normalized between 0 and 1 — resulting from a

SWI(t,) =

series of previous surface-sensitive satellite measurements ms(¢;) at the times t; contribut-
ing to the current SWI at the time ¢,,. For facilitating the computation of the exponential

filter, the SWI can be represented in a recursive formula as
SWI(t,) = SWI(t,—1) + K(t,) (ms(t,) — SWI(t,—1)), (3.4)
where K (t,) is the gain to update the current SWI, given by

K(t,) = Kltn) . (3.5)

At
K(t,—1)+exp <?)

To obtain the actual subsurface SM, the SWI needs to be re-scaled according to the soil-

physical and hydrological properties that determine the SM dynamic range. SM content
can be expressed in terms of plant available water (PAW) [Wagner et al., 1999|, which can
be determined based on the estimated SWI and empirical observations of soil properties
field capacity (FC), wilting point (WP), and total water capacity (TWC) as follows

(3.6)

FC+ TWC
PAW =SWI [ —— - WP | .

Performance metrics and indicators to quantify the applicability of the approach are

essential. The goal is to optimize T' to obtain the most accurate estimates of SWI for
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a given location and depth, after its validation with representative in-situ observations.
Different validation metrics, such as the coefficient of determination (R?), the Root-Mean
Squared Error (RMSE), Nash Suthcliffe model efficiency coefficient (NSE), and unbiased
Root-Mean Squared Error (ubRMSE), which are defined as

2

> (@ —7) (y — 9)

R2 — ’ (3.7)
VSN @ -7 SNy - g
> (xy)?
RMSE = |/ =~ (3.8)
NSE = 1 — %:_y))z and (3.9)
ubRMSE = v/RMSE? — bias’ = /RMSE? - (7 — )2, (3.10)

have been used to determine the optimal parameter T' [Albergel et al., 2008,/ Gonzalez-
Zamora et al., 2016,(Tobin et al., 2017]. RZSM was estimated from different active and
passive satellite SM time series including the European Remote Sensing scatterometer,
ASCAT, AMSR-E and SMOS, and the obtained SWI was evaluated at several in-situ
SM networks over Europe |[Wagner et al., 1999,|Ceballos et al., 2005, Albergel et al.,
2008 Brocca et al., 2011,Ford et al., 2014, Gonzalez-Zamora et al., 2016|. Hereby, the char-
acteristic time length was optimized as being constant over the course of a year or even

some years for specific location and depth level.

Scale differences between surface and subsurface observations can strongly depend
on the measurement techniques, and the representativity of, for example, point-scale in-
situ and areal satellite observations. If in-situ observations have been acquired over a
sufficiently long period of time to cover the entire dynamic range of SM at a given depth,
the SWI can be re-scaled according to the range of in-situ observations [©ops min, Oobsmaz]
by

(SWI — SW1L,in) (SWae — SWin)

CH)obs,mazz: - @obs,min

SWI( [@obs]) =

Oobs,min.- (3.11)

This can lead to more accurate estimates compared to the approach based on PAW in
case knowledge of soil physical properties is limited.

In the exponential filter approach, the diffusivity C' is considered constant, and thus
the hydraulic conductivity is also assumed to be constant. In reality, hydraulic conduc-
tivity is highly variable, spanning several orders of magnitude for different soil types with
differences under saturated SM conditions. This variability could be particularly notable if
the water balance becomes perturbed in case of high rate of water introduction or removal
due to pronounced precipitation and irrigation, or strong evaporation and transpiration.

The response time in which subsurface SM is affected by atmospheric forcing varies, be-
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ing shorter around precipitation events and longer during dry events [Wu et al., 2002].
Consequently, the characteristic time length may exhibit strong seasonal variations, and
considering this parameter as a constant may considerably limit the estimation accuracy
of the derived SM.

3.2 Dynamic Time Warping

DTW is used to study dissimilarities between time series by determining the optimal
match between two observations |[Miller, 2007]. It is a dynamic programming technique
which breaks down a complex problem into easier solvable sub-problems [Berndt and Clif-
ford, 1994]. Hereby, the initial problem is optimized in a way that the solution of the
corresponding sub-problem produces the identical result with a considerable reduction
of computational effort. This is particularly beneficial when data sets become large or
highly dimensional. The DTW algorithm is based on a local distance measure, which con-
tains the distortions and shifts between the analyzed time series. Its main objective is to
find the optimal warping path by minimizing a local distance measure between the series
within a particular observation period. Two general cases can be pursued — (1) finding
a repetitive sub-sequence within a longer sequence and (2) aiming for the optimal global
match of two time series within an entire period of observation. Regarding the first case, it
was applied in speech recognition and to improve the assessment of electrocardiograms to
recognize essential heartbeat patterns within a longer sequence of waveforms |Ainsworth,
1988, Berndt and Clifford, 1994, Laguna et al., 1994, |Zifan et al., 2006]. The algorithm
has the advantage to account for the relative warping speed between the time series by
considering their local changes. The temporal evolution obtained by DTW can be ana-
lyzed to retrieve information about mutual dependencies or causal relationships between
the time series. In reality, these time series can represent regularly sampled, continuous
geophysical or meteorological parameters which are considered to have a variable time lag

over an observed period.

3.2.1 General Concept

The DTW algorithm evaluates two input time series which consist of a sequence X of

length M and a second sequence ) of length N with not necessarily the same length as
X:

X :=x; with ie{l,..,m,..M}; YV:=y; with je{l,.,n ., N} (3.12)

The absolute values of two regularly sampled sequences are pairwise compared on the
basis of a local distance measure. A criterion to select an adequate distance measure

is the dimensionality of the time series [Houle et al., 2010]. Since only two series are
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compared, Euclidean distance is used as a local distance measure. The more time series
are considered, the less is the total distances between them. This effect is less distinctive
considering other measures such as Manhattan distances |Hinneburg et al., 2000]. The
aim of the technique is to find the warping path, which represents the maximum alignment
between the two time series. The optimal warping path between two series corresponds
to the minimum global cost over the entire period. The global cost gc is defined as the
sum of local costs of the L pairwise elements d; = d(y,,, ¥s,) in a local cost matrix along

a warping path p:
L
96(X,Y) = di. (3.13)
=1

Accordingly, gc indicates the global dissimilarity between time series, that is, the
higher the value, the more distinctive the features of the input time series. Its absolute
value depends on both the total length and the sampling (temporal resolution) of the time
series. Therefore, it is difficult to generally ascribe a physical meaning to this absolute
quantity. The warping path can be defined by a set of (X,Y)-tuples that correspond
to the L pairwise elements z; € X and y; € Y along its trajectory. It represents the

relationship between samples of time series X with samples of time series ):
p=Ap1,-pi,-prts o= (pi,p;) €[1: M] x[1: N] with le[l:L]. (3.14)
The warping path is implemented by satisfying the following criteria:
(i) boundary condition: p; = (1,1); pr = (M, N)
(ii) monotonicity condition: m; < myiq < ... <mg;n <ngp < ... <ng
(iii) step-size condition (simple version): p;o1 —p; € (1,0),(1,1),(0,1) V 1€ [l,L—1].

The boundary condition defines the initial and final states of the warping path. As in-
dicated in |(i)[ the time series are forced to be aligned at the beginning and the end of the
observed period. The monotonicity condition ensures causality and particularly refines
the path to exclusively advance forward in time. The continuity condition requires the
path to go through every sampled point in time. Hereby, a step-size condition is intro-
duced and chosen in a way that both monotonicity is guaranteed and no samples are
skipped (continuous path). In a simple version, two consecutive samples either maintain
the present time lag (1,1) or change in relative delay or alignment (1,0), (0,1). The optimal

warping path is successively obtained by following three steps:

(i) Computation of the local distance matrix Dg

(ii) Building the accumulated cost matrix Cy.y,

May 29, 2022



Chapter 3. Time Series Analysis of Satellite-based and Subsurface Soil Moisture 32

(iii) Retrieval of the optimal warping path p°*

First, Dg is computed from the pairwise local distances d at every point in time:
Dg:=d;ij=|lzi—y,ll; i€[l:M],je[l:N]. (3.15)

Determination of the optimal warping path by comparison of the global cost of all
possible paths is computationally expensive (complexity O(N - M), that is, exponentially
increasing cost for an increasing length of time series). Since the optimal warping path is
obtained based on a single constant distance matrix Dg and satisfies the criteria
(time series evolve positively monotonous), a successive calculation of the warping path
also yields the optimal solution. An accumulated cost matrix Cl.,, is computed from
Dpg by summing up the partial costs given by the corresponding distances of each path
section. Cyep, can be obtained using a simple step-size condition (criterion with the

elements computed as follows:

>t A, ), 0 € [1: M]; j=1
Caem = Cijj = 1 d(@i,y), 5 €1 NJ; i=1 (3.16)

di,j + min{ciq,j, Ci—1,j—1, Ci,jfl}; i, > 1.

The left and bottom boundaries in (., are set to infinity, and the first element is
initialized with the corresponding value of the bottom-left element of Dgr. The matrix
Claem 18 then successively calculated from (1,1) to (M,N). An intermediate value at element
(m,n) is obtained by summing up the distance in element (m,n) of Dg and the minimum
accumulated cost of the corresponding element according to the step-size condition. Once
Claem 18 obtained, the optimal warping path is retrieved by backtracking the entries along
the ’'valley’ of the minimum accumulated cost from (M,N) to (1,1). The sum of the
distances of all warping path tuples (X,Y’) in Dg yields the minimum global cost.

Relative changes of global cost between time series at different locations or at different
times can be used to describe temporal and spatial variability of the observed parameters.
However, being a global quantity over an entire period, it can miss out local information
which is needed to understand the behaviour of the warping path and investigate the
underlying processes. Therefore, this study is focused on the extraction of a meaningful
warping path evolution rather than optimizing the global cost. Geophysical parameters
can be retrieved using measurement techniques with differences in data quality as well as
temporal and spatial resolution. DTW allows to compare time series of either the same or
different parameters which can be extracted at different locations. In case the same geo-
physical parameter is observed and compared at different locations, temporal variations
of the warping path may contain spatial variability of the governing processes. Addition-
ally, local warping behaviour between series measured at the same location may reflect

their temporal variability. The local information at a particular sample is given by the
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relative time lag between time series at a specific time. In Appendix[A] the unconstrained
DTW technique is applied in an example to relate two Gaussian distributions. Aim of this
work is to investigate the time lag evolution between SMOS and in-situ SM observations.
Since the observed parameters have a geophysical meaning, both the evolution and range
of the time lag are naturally constrained by their underlying properties and mechanisms.
Importance of the resulting time lag in terms of the reflection of prominent features of the
input time series and computational efficiency can be improved through customization of
the DTW technique (Section [3.2.2).

3.2.2 Customization

In this section, possible customization to the DTW technique are explained. They com-
prise a maximum allowed time lag, the adjustment of the step-size condition and the
computation of the dates of onset of pronounced precipitation events [Herbert et al.,
2020]. Results of the intermediate steps after application of customized DTW to SMOS
and in-situ SM are presented in Section [4.3.1]

Maximum allowed time lag

The standard implementation of DT'W requires the computation of the entire C,.,,, (Equa-
tion (3.16)). With basic knowledge about the temporal relation of geophysical observa-
tions, the range of the warping path can be roughly estimated beforehand. A Sakoe-Chiba
band is a global constraint that adjusts a time interval in C,.,, in which the warping path
can freely evolve [Sakoe and Chiba, 1978|. It has been widely used in DTW to define the
range of maximum allowed time lag (Figure [3.1p) [Miiller, 2007]. After applying a Sakoe-
Chiba band, all off-diagonal elements of C,,, outside a certain interval around the main
diagonal are set to infinity. The evolution of the warping path is limited to a reasonable

predefined time lag interval as follows:

{pi = (pi,pj) € [i—lead : i+delay] x [j—lead : j+delayl|i,j > lead i, j+delay < M, N},

(3.17)
where lead and delay represent the maximum allowed lead and delay of series ) with
respect to series X, respectively. Short-term fluctuations in SM observations typically are
responses to certain events (e.g., precipitation). In cases where temporal sampling is in-
sufficient, SM fluctuations originating from different events may be incorrectly attributed
to the same event. Also, without the Sakoe-Chiba constraint, the warping path can skip
important temporal features and, as a consequence, unnaturally long delays are accumu-
lated. SMOS SM is more sensitive to meteorologic conditions. In contrast, in-situ SM
observations appeared to be more damped depending on the soil properties [Wagner et al.,
2007] and long-term climate factors. Furthermore, recharge of subsurface SM content via

infiltration is a gravitationally driven process. Therefore, the in-situ SM is expected to
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lag behind the SMOS observations and no lead is expected.

max. (m,n) path
delay .(m'1'"?7f unconstraint
e e o \

(m-1,n-1)
max. ([ ] L] [ ]
m-1,n-2)
- lead : path
([ ] [ ] [ ] constraint
(m-1,n-3)

(a) (b) (c)

Figure 3.1: Dynamic Time Warping (DTW) customization scheme: (a) Sakoe-Chiba band
for maximum allowed time lag; (b) adapted step-size condition: piy1 — p; €
{(1,0),(1,1),(1,2),(1,3)}; (c) warping path evolution with applied constraints.

Adjustment of step-size condition

Uncustomized DTW allows the warping path to freely evolve under satisfaction of criteria
. The step-size condition controls the slope of the warping path and defines the
sensitivity level to relative changes between observations. It is important to note that the
simple version of criterion corresponds to an uncontrolled slope, which permits the
assignment of an infinite number of samples of series ) to one sample of X', and vice versa.
An instantaneous accumulation of high time lag between two consecutive samples is un-
physical. Conversely, when the slope is controlled, the number of assigned samples per
sample is limited and the warping path is forced to advance in time within a maximum
defined rate.

The slope control also serves as a low-pass filter to account for highly variable or noisy
observations which would lead to overaccumulation of time lag. Additionally, the tem-
poral sampling of the input series affects the time lag evolution for a particular step-size
condition. As an example, in case of an uncontrolled slope and fine-sampled series are
compared, small fluctuations between the series may already cause unreasonably high
variations in time lag. For this reason, it is necessary to control the slope to find a trade-
off between the temporal sampling limit, the noise level, and the expertise on the temporal
scale of the processes to be resolved.

The 2-3 days revisit time of SMOS defines the sampling limit for application. While the
topsoil moisture time series are characterized by a rapid increase during recharge after
precipitation and a somewhat exponential decrease during a dry period |Albergel et al.,
2008|, subsurface SM is mainly governed by intrinsic SM properties and the exposure to
continuous atmospheric forcing. Therefore, only pronounced precipitation events lead to
notable short-term increase in SM at deeper levels, whereas weaker events cause gradual

increase over the long term [Martinez-Fernandez et al., 2015|. The positive and negative
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slope of the step-size condition can be customized differently. Figure |3.1p illustrates the
step-size condition between two warping path tuples p;.1—p; € {(1,0),(1,1),(1,2),(1,3)}.

The corresponding elements of the C,.,, are given by

Cmfl,n
Cm—1.n—

Cmn = d(m,n) +min{ TN . (3.18)
Cm—1,n—2 + Cm,n—1

Cm—1,n—3 + Cm,n—2 + Cmmn—1

In the step-size condition in Equation the relative rate of reduction and accumu-
lation of time lag between the input series are of 3 and 2 samples per sample, respectively.
As an example, step-size interval can be determined by considering the rate of reduction
of time lag in case a pronounced precipitation event leads to fast SM increase and the

rate of accumulation of time lag during SM decrease with the absence of precipitation.

Determination of onsets of pronounced precipitation events

Surface processes often affect subsurface SM over long periods of time. However, pro-
nounced precipitation events can lead to a rapid increase in both SMOS SM and in-situ
SM down to a certain depth. In this case SM time series are sensitive to the same event.
Regarding DTW, the warping path is assumed to be aligned at these particular dates of
high precipitation. Subsequently, it further evolves depending on the prominent features
as before. A function was developed based on the cumulative sum of precipitation to
automatically detect the dates of onset of the £ most pronounced precipitation events
within a given period of time. To obtain the dates, the precipitation is first discretized
with a predefined bin rate with respect to the temporal sampling of the time series. Bin
edges are determined by considering an equal amount of precipitation within each bin
(fixed bin density) and a variable bin width. Hereby, a small and a wide bin width corre-
spond to a period with a high and a low precipitation rate, respectively. The change from
low to high precipitation is indicated by a sharp increase in convexity of the cumulative
sum of precipitation. The higher the change in curvature, the more pronounced is a pre-
cipitation event. The date of onset of a pronounced event is given at the bin edge, where
the differences in adjacent bin widths show a local maximum. Subsequently, the local

maxima are sorted to obtain the onsets of the k most pronounced events.

3.2.3 Discussion

The DTW technique requires customization to obtain a robust and meaningful warping
path that contains the most important features represented in the response time between
the surface and profile SM observations. In the next chapter, DTW is used to relate time
series of the SMOS L4 SM product to multi-depth REMEDHUS in-situ observations. Fig-
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ure [3.2] shows a preliminary results of customized DTW, which illustrates the time lag in
terms of the individually mapped samples between SMOS surface and in-situ observations
at different depth — similar to Figure[A.Td in Appendix [A] It is observed that the common

features in the input series are well captured by the warping path.

1.0 :
—— SMOS ascending

————— in situ Sem

soil moisture

moisture

— 0.4

= —— SMOS ascending
----- in situ 50cm
Fel Mar Apr May Jun Jul Aug Sep Oct Nov De

(b) w7

Figure 3.2: Sample-wise allocation — represented by thin red lines — between surface and in-situ
SM time series at station E10 in 2017, obtained using customized DTW. Allocation
between samples of SMOS surface and in-situ SM trend series at (a) topsoil 5cm
depth with a maximum allowed time lag of 30 days with a step-size € [—o0, 3|,
and (b) root-zone 50 cm depth with a maximum allowed time lag of 50 days and
a step-size € |-00,2|, and forced alignment at the dates of onset of the heaviest

precipitation events.

However, the factors affecting SM are required to be analyzed and the time series
need to be prepared for the DTW technique to perform properly. Processing steps prior
to DTW, consisting of normalization and smoothing, ensure a consistent dynamic range
and is used to remove irrelevant short-term fluctuations. This leads to a more robust and
reliable warping path that highlights the common features of the related time series. Tak-
ing into account the heterogeneity of land cover is important to understand the similarity
of SM observations and to determine the representativity between the point in-situ and
areal SMOS observations. Relevant climate factors, including precipitation and PET, are
sources and sinks of SM, and their typical seasonal patterns for the study region may have

implications for the temporal variability of the time series.
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4 Estimation of Response Time be-

tween SMOS and In-Situ Soil Mois-
ture at Different Depths

This chapter focuses on the analysis of the spatio-temporal factors to relate satellite-
based surface-sensitive and in-situ SM measurements at different depths |Herbert et al.,
2020]. Among the several in-situ SM networks available worldwide and included in the
ISMN [Dorigo et al., 2011], the (REMEDHUS) network of the University of Salamanca
in Western Spain provides SM observations at multiple depths with excellent temporal
resolution [Martinez-Fernandez and Ceballos, 2003, Pablos et al., 2016]. This network has
been widely used for calibration and validation of both passive and active remote sensing
SM data [Pablos et al., 2018, Brocca et al., 2011, Sanchez et al., 2012,|Colliander et al.,
2017, Portal et al., 2020]. It is located in a semiarid region which consists of cultivated fields
and the interaction between SM and vegetation is non-negligible regarding the influence
of crops during their growing season [Masialeti et al., 2010}/Atchley and Maxwell, 2011].
Therefore, spatial heterogeneity of land use was analyzed to provide information about the
level of representativity of SMOS observations to each in-situ station. Land use impact
was investigated by means of the Normalized Difference Vegetation Index (NDVI) using
composite time series data from the Moderate Resolution Imaging Spectroradiometer
(MODIS), and high-resolution images from Sentinel-2 L1C [Sinergise, 2020|. To support
the interpretation of the time lag evolution, SM seasons were estimated from precipitation
and evapotranspiration recordings to categorize sub-periods in which similar SM-related
processes occur. The evolution of the quantified response time was analyzed considering
the results of the spatio-temporal analysis of the study area to recognize seasonal and

spatial patterns, and to give insight into the variability of the characteristic time length.

The high-resolution SMOS L4 SM product is described in Section[4.1.1 The REMED-
HUS SM network including multi-depth observations under consideration of the predomi-
nant climate factors is described in Section [1.1.2] Results of the estimation of SM seasons
as part of the analysis of temporal variability of climate factors and the evaluation of
the spatial heterogeneity of land use are given in Section 4.2l The intermediate steps
of the DTW technique and its customization are demonstrated in Section for the
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particular case of comparing SMOS with in-situ SM at station E10 in 2017. Customized
DTW was applied to the time series of all stations and depths, and the evaluation of
time lag evolution is presented in Section [£.3.2] In Section [{.4] the exponential filter
is applied to the time series to determine a seasonally representative characteristic time
length by averaging values obtained for the sub-periods belonging to the same SM season.
The potential of the DTW technique regarding the interpretation of SM processes and
the inference of subsurface are discussed in Chapter

4.1 Time Series Data sets

4.1.1 SMOS Soil Moisture

For the last 10 years, several SM products with enhanced spatial resolution have been
developed [Pablos et al., 2019]. In this study, high-resolution 1 km SMOS L4 SM time
series provided by the BEC have been used [Portal et al., 2018|. They are obtained
by a linear downscaling algorithm — similar to Reference |Piles et al., 2014| — merging
data from microwave, visible, and near-infrared sensors with different spatial resolutions,
and modeled data. The relationship between SMOS L3 SM product and auxiliary data
is derived from the so-called universal triangle method in the vegetation-land-surface
temperature space, using an adaptive moving window to ensure homogeneous climate
conditions. The auxiliary data comprise SMOS L1C Ty, NDVI from MODIS, and land
surface temperature provided by ECMWF. Previous research revealed a slight difference
between SMOS Tz measured at ascending and descending orbits over the same homoge-
neous scene |[Martin-Neira et al., 2016|, resulting in non-negligible differences in SMOS
SM retrievals. Therefore, both orbits are only compatible for specific applications. In the

following, high-resolution SM maps of only the ascending orbits were used.

4.1.2 REMEDHUS Soil Moisture Network and Climate Data

The REMEDHUS network is located in the Duero basin comprising a relatively flat area
of 35 km x 35 km between 41.1-41.5°N and 5.1-5.7°W (Figure with small slopes and
an altitude ranging between 700-900 m above sea level. Land use has remained broadly
stable along the last decade, and it consists predominantly of rainfed cereals (80%) (winter
wheat and barley), forest pasture (12%), irrigated crops (5%) and vineyards (3%), with
occasional legumes and sugar beet. The growing season of winter wheat is usually be-
tween October and July, but it can vary by several weeks depending on the meteorological
conditions. The main soil texture is sandy loam and sandy clay loam, with the topsoil
becoming sandier at the shallow foothills to the east of the network. REMEDHUS con-
sists of four automatically recording meteorological stations and about 20 SM monitoring

stations among which more than 10 stations record multi-depth SM. It has already been
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used for validation of SM content and variability of previous SM products from SMOS and
SMAP mission [Sanchez et al., 2012}Gonzéalez-Zamora et al., 2015,/Colliander et al., 2017].
The stations are equipped with HydraProbe® (Stevens Water Monitoring Systems Inc.,
Oregon, USA) and EnviroSMART® (Sentek Pty. Ltd., Stepney, Australia) sensors. The

frequency sensors measure the soil impedance automatically by taking into account the

energy storage and energy loss in the soil, and provide SM content on an hourly basis at
5 cm, and 25, 50 and 100 cm, with a nominal accuracy of 0.01 m®* m=3. The REMEDHUS
network is part of the ISMN and comprises a homogeneous area and provides favourable
conditions in terms of topography and climate conditions for validating large-scale satellite

imagery with the in-situ measurements.
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Figure 4.1: (a) Location of the REMEDHUS network; (b) snapshot of the high-resolution SM
and Ocean Salinity (SMOS) L4 SM over the area. The SM stations E10, J12, L3
and M5, which are used in this study, are marked in red. Black crosses indicate the

4 meteorological stations.

The region is characterized by a semiarid continental climate with an average annual
temperature of ~12 °C. The annual precipitation has been 385+ 100 mm in the last 10
years and it is homogeneous among the network. However, intensity and timing of me-
teorologic conditions vary over the course of the year. Climate factors in combination
with present growing and dormant periods can be used to define SM seasons, which are
accompanied by similar patterns of SM recharge and consumption processes. In this work,
SM seasons were estimated based on the relationship between PET — the net SM demand
if water was potentially available—and precipitation. Results of the comparison of PET

and precipitation are given in Section [£.2.1 Hereby, PET was computed on the basis

of the Penman-Monteith equation [Allen et al., 1998|, and was used as a reference to

directly estimate the actual crop evapotranspiration. It was obtained using solar irradi-
ance, relative humidity, mean temperature, and wind speed. The average of PET over all
four meteorological stations was computed. This approach has been shown to accurately
estimate evapotranspiration for cropped surfaces in various climates and has been used

as the standard method by the Food and Agriculture Organization of the United Nations
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(FAO) |Allen et al., 1998|.

4.1.3 Comparison of SMOS and In-Situ SM

Among the different REMEDHUS stations, four stations were selected regarding land
use, soil texture and the availability of multi-depth SM measurements (marked in the
red boxes in Figure . 2017 was an anormal year, showing the lowest annual values
ever recorded since the REMEDHUS network was installed in 2006 regarding both pre-
cipitation (250 mm) and SM average (0.10m?®m™3). In contrast, 2016 and 2018 received
considerably more precipitation (129 % and 136 %) as compared to the average recorded
annual mean, respectively. Therefore, the period from 2016 to 2018 is representative
enough to reflect the climate variability of REMEDHUS.

Satellite observations at L-band are known to be sensitive to the SM profile within the
first 5cm profile. In croplands, vegetation root zone is estimated to be within the first
50 cm depth, where most of the root biomass is present |[Pietola and Alakukku, 2005, Fan
et al., 2016|. For these reasons, in-situ SM measurements at 5, 25 and 50 cm were selected
to encompass both topsoil and RZSM. Land use, soil type and depth-specific SM-related
properties of stations E10, J12, L3 and M5 are shown in Table[d.1] These properties include
FC and WP of the soil bulk at the corresponding depths. FC defines the amount of
SM which eventually gets retained subsequent to infiltration, after water has completely
drained away (after 2-3 days), and WP estimates the minimum SM content a plant is
capable to utilize against the soil matric potential, i.e. the force by which the water is
retained in the soil [Or et al., 2005|. These parameters were obtained from the sand-
silt-clay composition of the soil and vary with soil texture. In case these parameters are
vertically heterogeneous, they may indicate differences in SM dynamic range as well as
different rates of recharge and dry out. Additional information on the predominant soil
type of the uppermost soil horizon at the four study sites were obtained from the Agrarian
Technological Institute of Castilla y Leon (ITACyL) |ita, 2020].

Since the low spatial variations between SMOS L2 pixels over REMEDHUS found in a
previous study were in agreement with in-situ site-specific characteristics [Sanchez et al.,
2012], the SMOS L4 pixels at 1 km also correspond. However, how accurate SMOS L4
SM represents a single station over the course of a year is not clear. A non-negligible
part of SM consumption is due to root-water uptake which is a particularly important
process during the growth of vegetation. Similar to timing and quantifying the amount
of precipitation in SM recharge, root-water uptake depends on the land use, which in
turn depends on water availability and stage of plant development. Stations M5 and J12
comprise rainfed winter cereals, which is the principal land use of REMEDHUS. Since
stations E10 and L3 are located in vineyards, the corresponding SMOS pixels are likely
representing a mixed land use. Thus, it is important to know the typical field scale
of land use (heterogeneous length scale) at the REMEDHUS network, especially at the
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Table 4.1: Land use (2016-2018), soil type and depth-specific SM-related properties including
soil texture, WP and FC of stations E10, L3, J12 and M5.

Station Land Use / Depth | Sand Silt Clay WP FC
Soil Type [cm] %] %] (%] [m*m™?] [m®*m3

Vineyard / 5 75.11 16.35 8.54 0.028 0.088

E10 Gleyic and 25 73.74 15.71 10.55 0.047 0.108

albic luvisol 50 66.79 4.96 28.25 0.099 0.193

Vineyard / 5 82.25 6.44 11.31 0.040 0.125

L3 Cambic arenosol and 25 82.45 6.27 11.28 0 .056 0.146

calcaric cambisol 50 80.20 11.90 7.90 0.043 0.130

Fallow (2016), winter 5 60.94 16.85 22.21 0.096 0.236

J12 cereals (2017/2018) / 25 59.10 16.76 24.14 0.113 0.228

Gleyic luvisol 50 59.99 14.97 25.04 0.168 0.265

Winter cereals / bt 81.64 831 10.05 0.057 0.100

M5 Calcaric and 25 81.41 7.87 10.72 0.042 0.125

eutric cambisol 50 84.75  5.37  9.88 0.043 0.071

surrounding area of the SM stations. This includes knowledge to which level SM at 1 km
resolution can represent point-scale observations and, whether crop-related processes are

supposed to be captured in their time series.

In this study, the NDVI was used to quantify the variability of land cover in the
REMEDHUS network. Temporal variability of land use was studied using 16-day time
series composite from MODIS within the three-year study period. High-resolution (10 m)
NDVI maps are computed using near-infrared and red bands of Sentinel-2 L1C satellite
images with a maximum cloud coverage of 30 % |[Sinergise, 2020]. The following steps
were carried out, and the results are presented in Section [4.2.2] The temporal variability
of land use was studied using the Terra MODIS NDVT from 2016 to 2018, particularly the
16-day composite at 1-km resolution (MOD13A2 product of collection 6), derived from
atmospherically-corrected reflectances at red (band 1: 620-670 nm) and near-infrared
(band 2: 841-876 nm). The spatial variability of land use within the corresponding
SMOS L4 pixel was investigated using Sentinel-2 NDVI images at 10 m at a representative
date within the growing season of winter wheat (21 February 2017), when differences in
land use were particularly pronounced. The NDVI was computed from Sentinel-2 L1C
reflectances at 10 m in red (band 4: 665 nm) and near-infrared (band 8: 842 nm) with a
maximum cloud coverage of 30 %. The mean and variation of NDVI were studied around
the stations to understand the level of representativity of SMOS L4 at 1 km to each of

the four in-situ stations.

High-resolution SM from SMOS is compared to in-situ observations at different depths
from 2016 to 2018. A three-days average was applied to all SM time series to obtain
regular sampling from irregularly sampled SMOS observations. Subsequently, a low-pass
filter (Gaussian smoothing o = 22) was applied to all series to smooth out high magnitude

peaks of short-term SM fluctuations and to obtain the comparable trend series. To account
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for different dynamic ranges of the observations, input time series were calculated by

applying min-max normalization to the trend series.

4.2 Analysis of Soil-Moisture Related Factors

The results of the temporal variability of climate factors in terms of SM seasons are
presented in Section [4.2.1] The estimated levels of spatial representativity of each station
from the analysis of spatial heterogeneity of land cover due to the presence of crop growing

seasons are given in Section [4.2.2]

4.2.1 Temporal Variability of Climate Factors

Figure shows the monthly accumulated precipitation recordings and PET estimation,
averaged over eight years (2011-2018). The three distinct SM seasons (recharge, uti-
lization, deficit) are defined by comparing monthly averages of PET and precipitation.
The recharge season starts as soon as monthly accumulated precipitation exceeds PET
around November, and it coincides with the approximate crop sowing date. While evapo-
ration decreases during the winter months, SM begins to recharge and be used in part by
early plant development and the transpiration that accompanies it. The utilization period
starts once monthly accumulated PET exceeds precipitation around mid-February. Wa-
ter availability from precipitation cannot compensate for the losses due to increasing
evapotranspiration, and vegetation mainly utilizes stored subsurface water. Due to de-
creasing precipitation and continued water consumption during the growing season, soil
starts to dry out. The limit between utilization and deficit is defined to be around mid-
June when RZSM gets intensively taken up by plants, with interannual variation. Crops
are harvested shortly after, when water becomes scarcer. Summer months are very dry
and the associated subsurface SM deficit is not suitable for crop cultivation on a purely

rainfed basis. Information about the main features of the SM seasons are summarized in
Table 1.2
Table 4.2: Estimated SM seasons from 8-year averaged monthly accumulated precipitation and

PET, and the typical growing season within REMEDHUS, including the prevailing
processes of SM change.

SM Season Recharge Utilization Deficit
Period November— Mid-February— Mid-June—
Mid-February mid-June October
Criterion Precipitation > PET; Precipitation < PET; Precipitation << PET;
initial plant growth main growing season crops are harvested
Prevailing Precipitation Strong root-water uptake Evaporation at
Processes and evapotranspiration maximum
SM SM storage SM decreases Continuous drying; SM
Condition increases due to consumption at minimum in the end
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Figure 4.2: Monthly accumulated precipitation and estimated PET over REMEDHUS averaged
from 2011-2018. A comparison of the amount of water which is added to the soil
in terms of precipitation and released to the atmosphere via evapotranspiration

defines SM seasons, including periods of recharge, utilization and deficit.

4.2.2 Spatial Heterogeneity of Land Coverage

Figurel4.3|shows the MODIS NDVT time series at 1 km resolution for all stations from 2016
to 2018. Albeit land use differs among the locations of the stations, all NDVI time series
generally indicate the phenological characteristics and timing of a winter cereal growing
season [Masialeti et al., 2010]. After the sowing date around October and subsequent ger-
mination, a small green-up peak at the turn of the year represents plant emergence and
growth. After a short crop dormancy due to the low winter temperatures, indicated by
a local NDVI minimum, rapid plant growth is reinitiated until peak greenness is reached
around April. The harvest date is around June/July depending on meteorological condi-
tions and crop maturity. Although total water consumption is high due to the relatively
long growing season, summers in the REMEDHUS region are very dry to cultivate sum-
mer crops. Due to the high irradiance and temperature, an estimated 350 mm of the
approximately 500 mm of integrated PET over the entire growing season will occur dur-
ing the main growing season from May to July (see Figure . In this main growing
period the water consumption by root-water uptake is the highest. Winter cereals reach a
considerable rooting depth in the initial phase and a possible final rooting depth of more
than one meter. Thus, the accessibility of deeper soil layers guarantees yield stability
even in regions with low rainfall (annual precipitation lower than 600 mm) |Guddat et al.,
2015|. To better understand the spatial variability within the SMOS L4 pixel, Sentinel-2
NDVT images at 10 m are shown in Figure[d.4h—d for the four in-situ stations, respectively.

The selected images with full coverage correspond to a representative date within
the crop growing period (21 February 2017), when vegetation of the agricultural fields is
already sufficiently developed to distinguish a variety of land covers. The typical field scale
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Figure 4.3: 16-day MODIS NDVT time series at 1 km from 2016-2018 encompassing the stations
E10, L3, J12 and M5.
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Figure 4.4: Sentinel-2 NDVI image at 10 m including mean and StDev within the correspond-
ing SMOS L4 pixel encompassing station E10 (a), L3 (b), J12 (c¢) and M5 (d),
for a representative date (21 February2017).

of cultivation in the REMEDHUS network is significantly smaller than 1 km. Figures[4.5h—
d show the NDVI mean and StDev of Sentinel-2 NDVI as a function of the square area

around the corresponding station. It is worth noting, that in all cases, NDVTI in a square
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area of 1km x 1lkm (delta of 500m) resembles the mixed land use over the entire
REMEDHUS network, which was observed to be of 0.32 £+ 0.18 at that particular date.
The typical NDVI values for vineyard and rainfed cereals were determined to be around

0.15 and 0.45, respectively.
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Figure 4.5: Sentinel-2 NDVI mean and stDev as a function of the parameter delta around the
stations E10 (a), L3 (b), J12 (c) and M5 (d) for a representative date (21 February
2017). The extent of the square area is determined by delta being half the side
length from the station location along latitude and longitude directions. The black
dashed line corresponds to delta = 25m (50 m resolution).

Station E10 is located in a vineyard area next to a field with cereal crops. Accordingly,
a fast increase of NDVI values for increasing delta and higher variability are given in the
close surrounding of E10. Station L3 is more centrally located in vineyard, and resembles
its typical NDVI of 0.15 up to about 100 m resolution. The increase of mean and variation
of NDVI beyond that scale indicates that different land uses are incorporated in the wider
surrounding. Station J12 shows an increase in both mean and variation of NDVT for larger
resolution, while including crop fields at different stages of development. Regarding both
mean and variation of NDVI, among all stations, M5 overall resembles the values at SMOS
resolution best and represents similar land use within the entire resolution ranging from a
scale of 10m to 10km. The high NDVI standard deviation (StDev) at station M5 at small
resolution is due to its location near the border of different land uses. Albeit knowledge
of soil texture, spatial variability and distribution of land cover are necessary, additional
information of climate factors and the presence of crops are crucial to further understand

the plant-moisture relationship, and to eventually point out regions with similar SM
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dynamics. All information about the level of spatial representation of land use of single
stations within the corresponding SMOS L4 pixel is summarized in Table [£.3]

Table 4.3: Results of the analysis of land use variability in the surrounding of the in-situ lo-
cations (delta = 25m) and at 1km resolution (delta = 500m), including an esti-
mated level of spatial representativity of SMOS and the corresponding in-situ sta-
tion. NDVI Images (mean values and StDev) are evaluated at a representative date

during a growing season (21 February 2017).

Station Local Land SMOS Land Spatial Representativity
Use / NDVI Use / NDVI Heterogeneity (SMOS to In-Situ)
Homogeneous up Given;
E10 Vineyard Mixed land use to 4+ 20 m, then but station
0.38+0.12* 0.344+0.15 heterogeneous bordering on cereals!
Homogeneous up
L3 Vineyard Mixed land use to £ 100 m, then Not given
0.17£0.04 0.28+£0.12 heterogeneous
Prop. increasing  Conditionally given;
J12 Rainfed cereals Rainfed cereals heterogeneity variability is
0.31£0.05 0.45+0.19 with resolution diverging
M5 Rainfed cereals Mixed land use = Heterogeneous Given

0.34+0.17* 0.26 £0.15

* values resemble the overall distribution at REMEDHUS of 0.32 + 0.18.

4.3 Application of DTW Technique

Intermediate steps of the application of the DTW technique, and its customization to
SMOS and in-situ time series are assessed and presented in Section [4.3.1] The resulting
evolution of time lag is presented and interpreted in section [4.3.2]

4.3.1 Intermediary Results of DTW and Customization

DTW was applied to SMOS and in-situ SM observations, and the single steps are explained
for station E10 in 2017. For this station, the SMOS and in-situ time series at different
depths, together with the final results for the entire study period, are shown in Figure[4.10
in Section [4.3.2] As an example, the intermediate steps of the application of DTW to
SMOS and in-situ 5 cm depth time series are illustrated in Figure [4.6] Included are the
computation of the local distance matrix Dg from the normalized trends, the accumulated
cost matrix (Cyen) with a particular step size € [—00,3|, and a maximum allowed time
lag of 10 samples (30 days). The time lag evolves along the optimal warping path for the
given customization, indicated by a red line.

Figure[4.7illustrates the customization of DTW for station E10 at 50 cm depth in 2017.

The particularly dry year with intermittent pronounced precipitation events in summer
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Figure 4.6: Illustration of the intermediate steps of the DTW, applied to SMOS and in-situ
5 cm time series at station E10 in 2017: (a) Computation of Dg from the normalized
trends; (b) Cyenm with step size € [—00,3]; (¢) Optimal warping path (red line) with

a maximum allowed time lag of 30 days.

clearly led to short-term recharge at 50 cm depth. Figure [£.7h shows the corresponding
normalized trends in combination with the three-days accumulated precipitation. SMOS
SM increases at almost all precipitation events, while in-situ SM is only sensitive to the
most pronounced events, such as to those in the beginning of the July, September and
November, when the soil was initially dry. SMOS SM decreases several days after the

absence of precipitation, whereas in-situ SM is only characterized by gradual drying.

Figure [4.7p shows the time lag evolution, corresponding to a maximum allowed time
lag of 60days under customization of the negative slope and fixed maximum positive
slope of two samples per sample. Irrespective of the customization of the negative slope,
the time lag runs into the maximum allowed value between May and mid-July. Thus,
the time lag does not reflect the observed alignment of the input series at the onsets of
the most pronounced precipitation events in the beginning of May and July, when both
trend series resemble clearly. For a finite negative slope of -2 or -3, the time lag gets
further trapped at high accumulated values until mid-October. The customization with
an infinite negative slope performs best, but is not sensitive enough to lead to a prompt

reduction of time lag, if necessary.

To enhance the sensitivity to common features of the input series, the alignment of
time series are forced at the onset dates of the most pronounced precipitation events.

Both SMOS and in-situ SM show significant increase after the occurrence of pronounced
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Figure 4.7: Results of customization of DTW applied to SMOS and in-situ SM at 50 cm depth
at station E10 and in 2017 as an example: (a) normalized trends of SMOS and
in-situ time series; (b) time lag for different negative slopes — maximum positive
slope of two samples per sample; (c) time lag for different positive slopes — maxi-
mum negative slope fixed is —oco and forced alignment at the dates of onset of the

four most pronounced precipitation events in 2017 (26 January, 2 May, 22 June
and 29 October).

precipitation during summer, precipitation events which initiate SM recharge after the
mostly dry summer, and heavy precipitation during the wetter winter. The number
of pronounced events was selected according to the precipitation pattern, and the most
prominent features of SMOS and in-situ SM along the study period (2016 to 2018). The se-
lection of the nine most pronounced events was sufficient to capture the dates of the most
prominent features, without overcontrolling the evolution of time lag. The corresponding

dates of onset are illustrated

DTW was subsequently applied to the resulting sub-periods in 2017, which are limited
by the four onset dates. The corresponding time lags of the sub-periods were eventually
merged. Figure [£.7c shows the time lag evolution after forced alignment, including dif-
ferent customization of the positive slope and infinite negative slope. The dates when
alignment is forced are marked by red crosses. It can be seen that the main features of
the input series are reflected in the evolution of time lag. Features which are only visible
in SMOS SM (e.g., SM increase after a rain event in mid-October) correctly lead to fur-
ther accumulation of time lag. Therefore, the automatized implementation to force the
alignment increases the sensitivity of DTW; the customization with an infinite negative

and finite positive slope showed the overall best performance for all depths.
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Figure 4.8: Three-days accumulated precipitation (blue line), and normalized cumulative sum
of precipitation (brown line). Binning with fixed bin density is applied to the
cumulative sum of the precipitation. The bin edges (dashed black lines), where
the contrast between periods of sparse and strong precipitation is the highest, are
defined as dates of onset of the nine most pronounced precipitation events (red lines)
from 2016 to 2018 (1 April 2016, 10 October 2016, 26 January 2017, 2 May 2017,
22 June 2017, 29 October 2017, 29 February 2018, 18 May 2018 and 27 October

2018).

4.3.2 Final Results of the Evolution of Time Lag

In this section, the results of time lag evolution between SMOS and in-situ SM time series
at the depths of 5, 25 and 50 cm of the representative stations M5, E10 and J12 from 2016—
2018 are presented. In all cases the time lag is determined from customized DTW using a
step size € [—00,2| and forced alignment of the time series at the onsets of the nine most
pronounced precipitation events within the study period. Customization of a maximum
allowed time lag was not applied. The results for each station are given in Figures[4.9H4.11]
The time lag evolution of the corresponding time series are displayed below. The onset
dates at which time lag gets reseted to zero are depicted by red lines in the distribution of
precipitation along the study period (Figure , previous section) and by red crosses at
the resulting time lags (Figures[4.9p, [4.10b and [£.11p). The results were assessed in terms
of SM time series, the previously defined SM seasons (Table in Section , and the
level of spatial representativity of the SMOS observations (Table in Section .

The best results have been obtained for stations M5 and E10, where land use between

SMOS and in-situ station is well-represented. For these particular stations, the following
general observations can be made regarding the amount and timing of accumulation of
the time lag.

A similar evolution of the time lag is given in 2016 and 2018, resembling the typ-
ical observed precipitation pattern among REMEDHUS. The time lag is characterized
by seasonal variations, which can be attributed to the summarized SM seasons and the
presence of growing seasons. Deeper observations generally show longer time lag. This

phenomenon becomes more pronounced at stations M5 and E10 during the deficit season,
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Figure 4.9: (a) SMOS and in-situ SM time series at station M5 at 5, 25 and 50 cm depth from
2016 to 2018; (b) Evolution of time lag between SMOS and the respective depths.
Dates when alignment was forced are indicated by red crosses.
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Figure 4.10: (a) SMOS and in-situ SM time series at station E10 at 5, 25 and 50 cm depth
from 2016 to 2018; (b) Evolution of time lag between SMOS and the respective
depths. Dates when alignment was forced are indicated by red crosses.
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Figure 4.11: (a) SMOS and in-situ SM time series at station J12 at 5, 25 and 50 cm depth
from 2016 to 2018; (b) Evolution of time lag between SMOS and the respective
depths. Dates when alignment was forced are indicated by red crosses.

when the time lag for 50 cm SM reaches values up to 60 days. In this season, the exchange
of SM with the atmosphere occurs mainly through evaporation at the uppermost layer,
resulting in a reduced drying rate at 50 cm. Less accumulation of time lag is observed
during recharge and utilization in comparison to deficit season. One of the most pro-
nounced precipitation events occurs in the beginning of each recharge season, that is, 10
October 2016, 29 October 2017 and 27 October 2018 (see Figure, when dry conditions
are followed by abundant rains. This leads to an increase in subsurface SM, and to more
frequent alignment of the time series within the recharge season. Thus, almost no time
lag is observed in the period from October to January, and both subsurface and SMOS
SM follow the same pattern. A small time lag implies that SM changes mainly depend
on shortly preceding atmospheric conditions, which is in agreement with the fact that in
this case the increase of SM in the recharge process cannot be referred to a low initial SM

content in the beginning of the recharge season.

After sufficient recharge occurred at all depths, continuous precipitation and moder-
ate consumption are barely changing the SM content. As a consequence, RZSM becomes
widely insensitive to changes at the surface, which results in less accumulation time lag.
With increasing water consumption and evapotranspiration during utilization, SM grad-
ually starts to dry. This dry out gets interrupted by intermittent precipitation, which
results again in low accumulation of time lag. In the beginning of the deficit season, SM

decreases substantially due to both absence of precipitation and strong root-water uptake.
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After crops are harvested, less-intense, but continuous SM decrease is recorded close to
the WP, where water becomes unavailable for roots. From now on, evapotranspiration
becomes too high for effective infiltration and less frequent rain events marginally influ-
ence SM. These circumstances lead to high accumulation of time lag up to the length of
the entire deficit season, especially for deeper observations, and the actual SM content is
more influenced by initial SM conditions.

The year 2017 was an anormal one regarding both timing and amount of precipita-
tion with overall dry conditions (annual rainfall only half the usual average), which had
consequences for the time lag evolution. Firstly, due to the absence of precipitation, high
accumulation of time lag could be already observed in March. Furthermore, the two oc-
casional strong rainfall events in the deficit season led to SM recharge and hence time lag
was reduced.

Regarding soil texture, clay-rich soils with high FC are characterized by less pro-
nounced SM changes in comparison to sandy soils. This can be seen at station J12
consisting of clay-rich soils, where SM recharge at 50 cm only occurs at the very end
of the recharge season. It is important to note that the presence of crops can influence
the time lag significantly. This can be especially seen at station J12 towards the end of
the main growing season. In the absence of precipitation around July 2016 and 2018,
strong root-water uptake leads to a fast decrease of RZSM at 25 and 50 cm depth, which
is unusual for clay-rich soils. SM at 5 cm is less utilized and remains more sensitive to
atmospheric forcing. This has a reverse effect on the time lag showing the highest accu-
mulation for 5 cm SM along the depth profile. Station L3 was categorized as the least
representative among the four stations. Due to limited validity, results of this station
are presented, but the time lag evolution is not further analyzed in detail. The time lag
within the estimated SM seasons are summarized in Table 4.4 for each station and depth.
Mean and maximum values in each period are averaged over the representative years 2016
and 2018.

4.4 Seasonal Time Length Estimates Based on Expo-

nential Filter

The variation in the average estimated time lag among SM seasons in Table indicates
a substantially larger response time for the deficit season. This demonstrates that the
relationship between satellite-based SM and profile SM in the observed semi-arid region
is seasonally dependent. The time length 7" used to for the retrieval of subsurface SM by
means of an exponential filter is widely considered as characteristic for each station and
depth. Instead of considering T" as a constant, it can be further optimised in regard to the

SM seasons, which can be estimated in terms of monthly accumulated precipitation and

PET (see Figure [4.2)). The exponential filter (Section is applied to the corresponding
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Table 4.4: Results for mean and maximum time lag obtained within the estimated SM seasons
recharge, utilization and deficit, respectively, averaged over 2016 and 2018.

Station Depth Time Lag [d]
[cm] Recharge Utilization Deficit
Mean Maximum Mean Maximum Mean Maximum
5 5 12 4 16 6 16
E10 25 6 18 3 13 7 22
50 3 7 4 19 38 69
5 7 24 7 22 11 34
L3 25 4 19 5 18 8 25
50 1 4 3 13 23 45
5 3 13 6 22 26 51
J12 25 8 19 4 15 7 21
50 1 4 8 24 13 21
5 6 22 6 27 13 27
M5 25 8 24 9 25 23 43
50 7 19 11 30 38 72

SMOS L4 SM series covering stations E10, L3, J12 and M5. Similar to previous studies
of [Wagner et al., 1999} Albergel et al., 2008,Gonzalez-Zamora et al., 2016| the profile SWI
series are first of all optimized considering a constant characteristic time length from 2016
to 2018. In a second step, the exponential filter is optimized seasonally within sub-periods
along the three years and representative SM-season-specific characteristic time lengths
are determined for each station and depth. The two approaches, i.e. optimizing the time
length as constant or seasonally varying, are compared in terms of their differences in

accuracy in retrieving SWI.

Constant Time Length

The exponential filter is applied to the representative SMOS time series with a constant
characteristic time length varying between 0-100 days with a step size AT = 1day. Since
the soil-physical properties to describe the SM sensitivity range along the soil profile are
often unknown; and the resulting SWI series are re-scaled according to long-term dynamic
ranges of the targeting in-situ SM series at the corresponding station and depth. If long-
term in-situ observations are available without registering a considerable trend, this leads
to a more realistic estimate of the variability of the SM content then re-scaling SWI to
obtain PAW from information on WP and FC. These properties are often determined
only once, and they can vary horizontally. Subsequent to normalization, the validation
metrics (Equations|3.7H3.10) coefficient of determination (R?), NSE, RMSE and ubRMSE
are determined between the re-scaled SWI and the corresponding in-situ SM series at 5,
25 and 50 cm depth.

The computed validation metrics as a function of characteristic time length for the SWI
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compared to in-situ observations at 25 for all stations are presented in Figure [4.12 The
optimal 7" extracted according to the best values for each validation metric are summarized
for each station and depth in Table [4.5] Maximum NSE and minimum RMSE correspond
to the same T, while different values are obtained for optimum R? and ubRMSE. The
maxima of the R? and NSE metrics corresponding to the optimal T show better contrast
then the other metrics. It is important to note that the absolute values of the individual
metrics differ regarding its applied normalisation. For example, both the RMSE and the
bias are determined from the absolute differences in volumetric water content between
the two SM series, and therefore the deviations are larger as their dynamic ranges become
more unequal. R? and NSE are normalised to the average of the respective time series

and therefore react most sensitively to their relative fluctuations.
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Figure 4.12: Validation metrics (a) R%, (b) NSE, (c) RMSE, and (d) ubRMSE, computed
between the SWI retrievals after applying an exponential filter to SMOS time
series with a constant characteristic time length T varying between 0-100 days
and the corresponding in-situ observations at 25 cm for the stations E10, L3, J12,

and M5 in the period from 2016-2018.

Figures [f.13p and [£.14h show the SMOS time series and corresponding SWI after
applying the exponential filter with 7" = 7days and T" = 24 days after validation based
on NSE and R? with the in-situ series at station L3 at 25cm and station E10 at 50 cm,
respectively. Figures [£.14b and [£.13p illustrate the PAW which is equal to the re-scaled
SWI according to the in-situ dynamic range, respectively. The red dashed lines indicate
the WP (lower bound), and the average between FC and TWC (upper bound) as a
natural thresholds for the SM content. Regarding the determined SM range based on
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Table 4.5: Optimal constant characteristic time length 1" corresponding to the optimal values
of the validation metrics R2, NSE, RMSE, and ubRMSE for the stations E10, L3,
J12, and M5 at 5, 25, and 50 cm in the period from 2016 to 2018.

Station Depth | T R?2 T NSE | T RMSE | T' ubRMSE

[cm] | [d] [d] [d] [m’m~7] | [d] [m’m~]
5 |19 0642]20 0605 |20 0045 |22  0.045
E10 25 | 7 0719 7 0716 | 7 0036 | 7 0036

50 24 0504 | 14 -0.722 | 14 0.064 25 0.035
5 20 0461 9 -026 | 9 0.049 22 0.033
L3 25 10 0558 | 7 0245 | 7 0.029 10 0.023
50 26 0.535 | 12 0.018 | 12 0.017 6 0.012
5 11 0.748 | 10 0.395 | 10 0.057 11 0.037
J12 25 25 0.753 | 18 0.57 | 18 0.058 23 0.047
20 86 0.636 | 69 0.523 | 69 0.07 81 0.064
) 6 0765 6 0522 | 6 0.036 6 0.025
M5 25 10 0683 9 0487 | 9 0.018 10 0.014
50 31 0404 | 19 -0.236 | 19 0.022 33 0.016

soil-physical properties, the variability of in-situ observations at 25 cm at L3 (Figure m
is in agreement, whereas in-situ observations at 50 cm at E10 (Figure show a large
offset with respect to the defined boundaries. In the latter case, the SWI re-scaled based
on soil-physical properties would not reflect the variability of the corresponding in-situ

range, and the retrievals of subsurface SM would become inaccurate.

Season-Specific Time Length

So far, the exponential filter was applied to SMOS time series by means of a constant char-
acteristic time length to find the global optimum value based on various validation metrics
to yield the most accurate SWI estimate which overall matches the in-situ observations
best. Seasonal variation of the response time between SMOS and in-situ observations
— particularly high for the deficit period — suggesting that the time length can be also
considered characteristic with regard to SM seasons. SWI retrievals based on the time
length considered as constant along the entire period are compared to those determined by
finding the optimal characteristic value individually for the respective sub-periods, which
are separated by the onset of the subsequent SM season (i.e. mid-Feb/mid-Jun/Nov). In
the first case, validation metrics are computed once again by comparing the time series
segments of in-situ observations and SWI retrievals within each sub-period (as subsets
of the three-year SWI obtained for a constant 7). In the latter case, subsequent to the
aforementioned application of the exponential filter to the SMOS time series (7" between
0-100days, AT = 1 day), the optimal 7" is determined for the best most accurate SWI
retrieval for the specific sub-period. Representative SM-season-specific time length is

obtained by averaging the results of the sub-periods which correspond to the same SM
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Figure 4.13: Comparison between the retrieved SWI for T' = 7 days, obtained by maximizing
NSE, and the corresponding in-situ observation at station L3 at 25 cm. (a) SMOS,
in-situ, and retrieved SWI series; (b) in-situ series and SWI retrievals, re-scaled
according to the dynamic range of in-situ observations. In-situ observations are
largely within the range spanned by the red dashed lines, which correspond to the
lower and upper natural bounds of subsurface SM according to the WP and the

average between the FC and the TWC, respectively.

SeasoIl.

The results of the T obtained for each SM season and the differences in AR? between
the two approaches, i.e. T optimized for each sub-period individually and T optimized
once along the entire three-year period, are presented in Table[1.6] Similar to the findings
in Table[4.4] the obtained values for T" are widely situated between the mean and maximum
estimates of the response time in the years 2016 and 2018. In addition, the representative
time lengths of the deficit season are mostly longer than the optimal values for the recharge
and utilization seasons. The retrieval accuracy improves overall with SM-season specific
optimization of T, showing increasing R? between 0.05 up to almost 0.3 in the special
case of station E10 at 50 cm for the utilization period. Hereby, the SM season-specific
optimal T of 5 days is much lower than the one using a constant T' (24 days; see T' for R?
at station E10 at 50 cm in Table , which is biased, and broadly representative of the

deficit season.

May 29, 2022



57 4.5. Discussion

040
0.35
030
025
= 020
0.15
0.10
0.05

0.00

0.400
0.375
0.350

=

% 0.325

=

& 0.300
0.275

0.250

0.225

Jul Jan Jul Jan Jul
(b) 2017 2018

Figure 4.14: Comparison between the retrieved SWI for T' = 24 days, obtained by maximizing
R?2, and the corresponding in-situ observation at station E10 at 50 cm. (a) SMOS,
in-situ, and retrieved SWI series; (b) in-situ series and SWI retrievals, re-scaled
according to the dynamic range of in-situ observations. In-situ observations are
outside the range spanned by the red dashed lines, which correspond to the lower
and upper natural bounds of subsurface SM according to the WP and the average
between the FC and the TWC, respectively. This justifies the re-scaling of SWI

with respect to the dynamic range of available long-term in-situ observations.

4.5 Discussion

SM maps with regional and global coverage can only be achieved by using satellite-based
sensors, which are commonly operated at the lower microwave spectrum (IL-band). These
sensors are directly sensitive to topsoil moisture, and subsurface SM — in particular at
the root zone — can only be indirectly inferred. Among the aforementioned methods for
obtaining subsurface SM based on process- or data-driven approaches, TSA techniques are
useful for investigating how the areal satellite surface-sensitive are linked to in-situ profile
observations at different depths. SM observations of the downscaled SMOS L4 product
were related to in-situ time series from a suitable set of stations at the REMEDHUS
network on the basis of a DTW method. DTW is a similarity method that takes into
account spatial variability of non-linear, temporally distorted time series with the aim
of quantifying the typical response time that reflects their transient SM dynamics. The

approach was customized to obtain the time lag between their trend series — which is
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Table 4.6: Representative SM-season-specific time length T for differences in R? for SWI re-
trievals obtained through sub-period optimization of T" and optimization with con-
stant T along the entire period from 2016 to 2018 regarding the stations E10, L3,

J12, and M5 at 5, 25, and 50 cm.

Station Depth | Recharge  Utilization Deficit

[ecm] |T[d] AR? |T[d] AR? | T [d] AR?

5 8 0.142 7 0.109 | 21  0.013

E10 25 6 0.132 5 0.037 | 21  0.135
50 5 0.213 5 0.293 | 36  0.029

5 9 0.151 | 10 0.168 | 17 0.02

L3 25 12 0.19 8 0.073 | 14  0.025
50 16 0.15 7 0.168 | 26  0.078

5 8 0236 | 10 0.137| 39 0.156

J12 25 11 0.317 9 0.145 | 33  0.182
50 34 0012 14 0277 24  0.046

5 7 0.081 6 0.079 | 17  0.047

M5 25 24 0.162 9 0.067 | 17  0.144
50 36 0117 | 31 0.024 | 30 0.275

assumed to be a dynamic quantity rather than a constant — describing the relationship of
their common prominent features.

The focus was on assessing whether repetitive patterns of alignment and accumula-
tion of time lag can be attributed to SM-related processes on the basis of additional
information about climatic factors, soil properties and heterogeneity of land use among
the stations of the studied SM network. Differences in the evolution of time lag could
be referred to specific SM seasons recharge, utilization, and deficit, and variations due to
the level of spatial representativity of land use between SMOS and in-situ observations.
The results suggest that causality information about processes can be reflected in the time
lag. In previous studies, the response time of subsurface SM observations to satellite time
series were assumed to increase along the depth profile |Ceballos et al., 2005, Albergel
et al., 2008, [Brocca et al., 2011}|Gonzalez-Zamora et al., 2016|. However, during the main
growing season of cereals, root-water uptake led to an inversion of the typical response
time, showing longer time lag for shallow depths. Further investigation is required to
quantify the observed phenomena. The semiarid REMEDHUS region investigated con-
sists mainly of a seasonal continental climate with cultivated winter cereals. The scope of
this work was not to quantify causality of targeted variables. To do so, the evolution of
the time lag has to be evaluated regarding different climates, topographic characteristics
and land covers to understand how dependencies and certain processes are eventually
reflected in its local behaviour.

SM dynamics depend on atmospheric conditions, local soil properties, and the initial
SM state. The availability of precipitation data is crucial to estimate both amount and
timing of SM infiltration and to distinguish between rain events of different intensities.

In case subsurface SM reaches values close to saturation or dry-end of the soil, the contri-
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bution of atmospheric conditions is limited and the time lag becomes less representative.
During the deficit season for example, the SM release towards the atmosphere through
evaporation is particularly high. Consequently, SM in the topsoil increases in response
to moderate-intense rainfall events, but water is not infiltrated into deeper layers and
hence, SM dynamics at 50 cm are not captured in the satellite observations. After in-
tensive recharge, water can be retained in the soil for weeks, and subsurface SM values
reach their maximum close to saturation. Thus, even in cases of ongoing rains, no signif-
icant changes of subsurface SM are expected, and the time lag becomes insensitive to the
recorded SM changes at the surface. The matching process between the time series was
improved by separating the study period into sub-sequences by determining the dates of
pronounced precipitation events, to which both time series are sensitive to. Conversely,
wavelet transforms of the time series can be analyzed to relate the prominent features of
the observations and to approximate representative sub-sequences. This approach could
be used as an alternative to customization prior to DTW to improve the matching process

by considering the local structural information of the observations.

The time lag evolution can be used to assess whether remotely-sensed SM is in agree-
ment with the corresponding ground-truth acquisitions. Studies have shown that satellite
SM showed a clear bias in both mean value and amplitude of fluctuations in compar-
ison to ground-truth SM [Dorigo et al., 2015 |Gonzalez-Zamora et al., 2015||Colliander
et al., 2017|. In-situ observations generally show a smaller dynamic range than satellite
observations, due to limitation of intrinsic SM-related soil properties [Entin et al., 2000].
The more a pixel is spatially extended, the more constrained is the dynamic range of
the area-averaged satellite observation. Biased values can have non-negligible seasonal
variation [De Lannoy et al., 2007b|. Furthermore, penetration depth of satellite measure-
ments is not constant, but depends on the attenuation of the signal due to changes in the
SM content in the uppermost soil layers, and hence affects its validation [Monerris et al.,
2006). As a result, the choice of an appropriate metric should be based on the nature of the
retrieved variables (dynamic range and fluctuations) including advantages and drawbacks
for a particular application |[Entekhabi et al., 2010b|. The time lag evolution provided
in this work relies on the relative behaviour of the input series rather than on absolute
values only and has the advantage of accounting for temporal shifts and non-stationary
biases between time series.

In previous studies, estimates of the RZSM by applying an exponential filter to the re-
mote sensing observations while optimising a depth-specific characteristic time length over
a period of time showed good results [Wagner et al., 1999, Ceballos et al., 2005} Albergel
et al., 2008, Brocca et al., 2011||[Ford et al., 2014, Gonzalez-Zamora et al., 2016|. However,
in critical periods of sudden SM changes, the assumption of a constant time length may
lead to oversmoothing of the estimated values depending on the weighting criteria of pre-
ceding SMOS measurements. The exponential filter was applied to the SMOS 14 time

series — initially with a constant characteristic time length — and the inferred SWI was
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validated against the multi-depth measurements. The results of the constant filter ap-
proach were compared with the cases where the characteristic time length was optimised
according to the previously determined SM seasons. Similar to the estimated average
seasonal lag between SM time series based on the DTW method, the optimal character-
istic time length for the deficit season exhibited much higher values in comparison to the
other seasons. The findings imply that knowledge of the climate factors, information on
the presence of growing seasons, and the accompanied root-water uptake and the level
of spatial representativity of the satellite observation to field scale are beneficial to infer
subsurface SM more accurately. An upfront determined time lag, which is tailored to
a corresponding target climate, can be utilized as a measure similar to the characteristic
time length to improve performance in the inference of RZSM from satellite observations.

The DTW technique is computationally efficient with a complexity of O(N - M) in
space and time. In this study, spatial complexity is not an issue since satellite data is com-
pared with point-scale in-situ observations. However, the technique becomes inefficient
for long time series. Performance can be increased if a multilevel approach (Fast DTW)
is considered, where a warping path is initially computed with a coarse approximation of
the time series and eventually obtained on the basis of a finer sampled time series after
refinement of the beforehand obtained result [Salvador and Chan, 2007]. This could be of
special advantage for investigating time series with higher temporal resolution. Hereby,
the time lag of finer sampled time series could help to interpret hydrogeophysical processes
which take place in small temporal scale such as evapotranspiration and infiltration. An
application of DTW to high-resolution time series can include short-term fluctuations like

sub-daily meteorological events.
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5 Remote Sensing of Sea Ice

This chapter is an introduction to remote sensing of sea ice. Sea ice is a complex en-
vironment which is subject to an annual cycle of melting and refreezing, leading to the
formation of different types of sea ice distributed and observable at different spatial and
temporal scales. The thermodynamic and dynamic processes of sea ice development and
the relevant ice physical and radiometric properties that allow the characterization of sea
ice from remote sensing observations are discussed in Section [5.I] The various remote
sensing techniques for continuous monitoring of polar regions from space, including active
and passive methods, are presented in Common retrieval methods for estimating rel-
evant sea ice parameters SIC and SIE, SIT, and for detecting melt ponds in summer are
described in section Also explained is the nomenclature standard for sea ice charts
published by WMO, based on many years of effort by national services to summarize sea

ice parameters into different stages of sea ice development.

5.1 Sea Ice Physics

5.1.1 Formation and Development of Sea ice

The freezing and melting cycle of sea ice can be divided into a series of stages, starting
with the initial formation of the ice, consolidation, vertical and lateral growth, drift and
deformation, and, finally, melting and desintegration. The freezing process is initiated at
higher latitudes in the Arctic around mid-September. Then, the upper layer of relatively
warm seawater is cooled down to below the freezing point of saline water, and fresh ice
is formed by the continuous release of heat into the colder atmosphere. The way sea ice
forms and thickens depends on the prevailing atmospheric and ocean conditions. The rate
of thermodynamic growth of sea ice depends mainly on the air temperature, ice thickness,
snow cover on the ice surface, and the amount of solar irradiation. Under calm ocean
conditions new sea ice forms homogeneously into nilas, and subsequently grows into thin
layer of young ice. Under turbulent conditions, more irregular pancake ice forms until it
consolidates into a fully-covered area of sea ice, leading to larger variety of thin sea ice
in the early development of sea ice. Images of the types of sea ice at different stages of

development are given in Figure [5.1]
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Figure 5.1: Sea ice types at different stages of development: (a) overlapping nilas; (b) Antarc-
tic pancake ice; (c) opened lead between ice floes; (d) melt ponds on Arctic sea ice
during summer (images downloaded from the NSIDC and AWI photo galleries un-
der https://nsidc.org/cryosphere/photo-gallery| and https://www.awi.de/|
| en/focus/sea-ice/sea-ice-photo-galleries!

First-year ice (FYI) is then formed by vertical ice growth as water continues to freeze
at the bottom of the ice layer. Around June, the melting period in the Arctic begins
when the amount of absorbed solar radiation and air temperatures increase so that the
ice surface begins to decay. On snow-covered surfaces, melt ponds start to form, and they
subsequently expand in width and depth due to their relatively low albedo in comparison
to the surrounding, still intact ice. Whereas most of the FYI is seasonal and vanishes
in summer, the residual FYI that survives at least one summer melt period is referred
to as old ice. According to the WMO sea ice nomenclature, old ice is also defined as
second-year ice or multi-year ice (MYT) if it has survived exactly one summer or more
than two summers, respectively. In the Arctic Ocean, the rate of expansion of sea ice and
its ultimate extent largely depends on the distribution of the surrounding land masses,
the weather system and ocean currents. Sea ice can be confined in the Arctic Ocean for
up to 5 years, where it ages until it is eventually transported to lower latitudes by currents
such as the transpolar drift stream (TDS). In contrast, in the Antarctic Ocean almost all
sea ice drifts annually to lower latitudes and melts during the austral summer, so most of

the sea ice present is FYI.
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5.1.2 Physical and Radiometric Properties

An understanding of the physical and dielectric properties of sea ice is critical for radiation
modelling and interpretation of remote sensing observations. Ice temperature influences
all variables such as salinity, density, and the evolution of brine inclusions in the ice.
Saline water gets initially entrapped as inclusions in the ice bulk during formation and
successively desalinates as it ages, containing both more abundant and also substantially
larger air bubbles. Density, brine volume fraction and salinity are lower for old ice. Sea ice
properties also vary along the vertical profile and as sea ice thickens and ages, its physical
and complex dielectric properties change. The older the ice becomes, the more its char-
acteristics depend on weathering through aging and less on the historical heterogeneous
processes of its original formation. Thus, with the exception of the uppermost layer and
in the presence of snow, the physical properties are less affected by actual atmospheric
conditions and can be better regarded as a function of the aging process. Years of inten-
sive work have identified a set of typical values of key variables that serve as references

for sea ice modelling.

Saline sea ice is a non-ideal dielectric, with non-zero conductivity due to its brine
inclusions, which contain a small amount of free charges. Therefore, sea ice is an absorb-
ing medium that looses energy through interaction with electromagnetic radiation and
it is characterized by the dielectric constant ¢ = ¢ — i€”. It can be represented as a
complex number containing the permittivity ¢’ as the real part, and the loss factor €’ as
the imaginary part. The permittivity describes the part of the energy that propagates
through the medium (reflection and transmission at interfaces). The loss factor is a func-
tion of the electrical conductivity and describes the energy attenuation due to dissipation
of heat or scattering (absorption inside the material). Thus, dielectric properties (per-
mittivity and loss) — together with surface roughness, ice thickness, and the temperature
profile — determine the radiometric properties of the ice including microwave emission and
scattering.

The dielectric properties of two media 1 and 2 can be described by their refraction
indexes n 2. If radiation coming from medium 1 propagates towards medium 2, and the
interface between them is perfectly flat, then the relationship between incidence angle O,
and transmission angle ©, is given by the ratio of the refractive indexes of the two media

(Snell’s law) as

sin (@1) N9

Sn(0y) with nip = /e12 = /€, (5.1)

ny

The Sun’s short wave radiation gets partly absorbed by the Earth’s surface and re-
emitted in form of long wave radiation. This natural thermal radiation impinging on
a surface can either be absorbed, transmitted or reflected. Emissivity e is the ability

of a material to emit energy as thermal radiation. If a material is in thermodynamic
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equilibrium, it emits and absorbs the same amount of radiation, while the energy exchange
due to transient processes is negligible. Thus, its absorptivity is equal to its emissivity,
and emissivity and reflectivity R are related as e = 1 — R. The reflectivites for radiation
at the boundary of a flat surface between medium 1 and 2 depend on the incidence angle

©; and polarization (vertical V' or horizontal H), through the Fresnel Equations:

ny sin (©;
ny cos (©;) — n2\ 1— (¥>

U
Ry = - , and
ny sin (©;)
ny cos (6;) + nQ\ 1— —
2
. ) (5.2)
ny sin (©;)
nia|l—| —— — ngy cos (0;)
U]
Ry = -
ny sin (0;)
nig(l = ———— + ngy cos (©;)
N2

A blackbody perfectly absorbs and emits all incident energy with zero reflection. The
total radiation P emitted by a blackbody at temperature T is given by the Stefan-
Boltzmann law P = o AT*, where 0 =5.670374 Wm 2K~* is the Stefan-Boltzmann
constant and A the area. The Planck’s equation describes the radiation flux density

distribution at frequency f and physical temperature T as

P(f) 2nf% 1
R(f): 1(4): oh f/ks T—1’ (53)

c2

with the speed of light ¢ =2.997925 - 108 m /s, Planck’s constant h = 6.626070 - 10734 Js,
and the Boltzmann’s constant kg = 1.380649 - 10723 J /K. The wavelength where the maxi-
mum amount of radiation is emitted by the Earth’s surface with ~ 300 K average physical

temperature is about 9.66 um (~ 30 THz).

The parameters of interest — such as those representing the underlying physical com-
position of sea ice — cannot be measured directly with remote sensing instruments. Thus,
indirect inferences are made by measuring other variables and knowing how they relate
to the target parameters through sensitivity analysis, imposing requirements on both the
dynamic range of the measured variable and its sensitivity to the target parameter for
unambiguous determination. Passive microwave radiometry collects electromagnetic radi-
ation in the microwave spectrum with frequencies between 1-300 GHz, for which Planck’s

equation can be approximated by the Rayleigh-Jean’s equation
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2hkT f2
R(f)~ —%— (5.4)
showing linear relationship between the radiation and the physical temperature. In
addition, physical objects are imperfect blackbodies, and the emissivity is the ratio be-
tween the actually emitted radiation R,, and the ideal blackbody radiation R, given

by

R, Ts
- 2=

where Tz denotes the brightness temperature which is the key quantity measured by

e (5.5)

passive microwave radiometers. The emissivity contains the actual information about
the physical composition of sea ice, whereas the physical temperature largely depends
on external factors such as atmospheric forcing. In the microwave spectrum, Tp is as
function of the emissivity and the physical temperature T, integrated over the radiating
layers of the medium. At higher frequencies, small changes of T have much a larger effect
on Tz than changes in sea ice composition and any inference about ice-physical properties
based on radiometric properties are no longer possible.

Satellite observations measure T at the top of the atmosphere as the net emitted
radiation traveling upward through the atmosphere. Apart from the surface emission
€T, the observed radiation also comprises the reflected space radiation T, the upwelling
radiation 7,,,, and the surface-reflected downwelling radiation 7. 45, from the atmosphere.

The radiative transfer equation is given by

Tg=€eTe ™ + T+ Tragown (1 —€) e ™+ (1 —e)Type ™, (5.6)

with 7 being the total atmospheric opacity which attenuates the radiation. Sea ice
properties are observed at microwave frequencies (<30 GHz) where the atmosphere is
fairly transparent (7 — 0) and continuous monitoring is possible independent of daylight.
To reduce the influence of atmospheric composition, corrections are implemented in the
RTM from profile information on temperature, water vapor and cloud liquid water to
estimate the effective bottom-of-the-atmosphere radiation.

Since ice crystals radiate more energy than water molecules, the emissivity of sea ice
is higher than that of water, which easily allows to distinguish open water (OW) from sea
ice. The dynamic range of the Tz observations allows us to further discriminate different
types of sea ice, and infer continuous sea ice parameters such as snow and SIT in a type-
specific manner. Extinction of the radiation in a medium is caused by absorption and
scattering. The penetration depth is defined as the representative depth where radiation
is attenuated by the factor of 1/e, referring to the range within which observed radio-
metric properties actually contain information about the physical composition. It varies

with microwave frequency, salinity and surface wetness — showing differences for water,
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among ice types and snow-covered sea ice. In the lower microwave spectrum (< 20 GHz),
scattering processes are less relevant for the energy loss, and the penetration depth is

given by

Ve

dp = ——_
P o frer

(5.7)

which is inversely proportional to frequency and the loss factor €”’. The permittivity
¢’ is largely frequency independent, while €’ depends on both temperature and frequency,
and model simulation show substantial differences in the estimation of €’. The penetra-
tion depth into FYT is limited by number of brine inclusions. In comparison, less salty
MYT has larger penetration depth than FYI. However, especially at large microwave fre-
quencies scattering phenomena and surface roughness cannot be neglected. Because of
high conductivity and associated large loss factor, the penetration depth into saline and
freshwater is in the order of mm. Thus, although sea ice is easy to discriminate from OW,
it is difficult to distinguish from ice with a wet surface or with a small layer of water on
top. As a consequence, microwave penetration into sea ice from radiometry measurements
enables the derivation of some sea ice properties that allow to discriminate different sea

ice types, and to estimate the thickness of thin sea ice.

5.1.3 Sea Ice Across Spatial and Temporal Scales

Sea ice contains a multi-scale structure and can be parametrized at different spatial and
temporal scales. The importance of providing appropriate sea ice parameters at specific
scales based on sea ice properties is suggested by their applicability and the structure of
interest being studied, and whether these parameters are used operationally or scientif-
ically. For instance, navigation through the ice requires near-real time information on
local sea ice conditions (SIC and SIT) at a small scale (~100m). Melt ponds can be
parametrized by geometry, depth and size, and additionally by its number and distribu-
tion. However, knowledge on the sea ice conditions at small scale cannot be provided due
to the relatively large footprint from satellites. Satellite observations — based on passive
microwave radiometry or SAR — are usually indirectly related to the sea ice parameters.
In case parameters cannot be determined due to the limited spatial resolution, they need
to be estimated from previous observations or auxiliary data using prediction models. In
contrast to the study of small-scale features such as sea ice deformation, the precise timing
of measurements is less important for large-scale features of sea ice, and the application
purpose of studying regional weather phenomena or global climate monitoring requires
SIT estimates from daily imagery at a larger scale of ~10km. Hereby, different sea ice
types are mixed and the discrimination of areas with uniform ice conditions becomes
ambiguous. Structures of ice floes and leads appear to be homogeneous due to the big

difference in scales and the features are no longer recognizable. Shape and distribution of
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melt ponds are no longer discernible, but can be expressed by the fraction of melt ponds
to the total area of an observed cell (MPF). At 10-km scale, SIC is a continuous variable
between 0 and 1, and apart from areas at the ice margin, distributions tend to peak near
the bounds. At smaller scales, SIC is expected to only have discrete values of 0 and 100 %,

which makes a representation of sea ice conditions by SIC at high resolution problematic.

5.1.4 Changes in Sea Ice Thickness Distribution

Sea ice is continuously changing due to both thermodynamic and dynamic processes. A
key objective in sea ice modelling is the prediction of the evolution of SIT distribution in
space and time |Thorndike et al., 1975]. The distribution can be defined and analyzed at
a characteristic length scale similar to the resolution of polar-orbiting satellites acquiring
data in the microwave spectrum (~10-50 km). The large-scale consequences of the small-
scale processes need to be understood to relate satellite observations to sea ice properties.
Most of the physical properties of the sea ice bulk depend upon SIT and its changes.
Sea ice undergoes an annual thermodynamic cycle of melting and re-freezing depending
on the shortwave radiation from the sun which is a function of time and latitude, the
thermal conditions of the ocean and the atmosphere, and the presence of already existing
sea ice. An important characteristic of sea ice is that its rates of growth and melt, and
lateral transport depend on the actual ice thickness. Thinner ice both grows and melts
faster because heat exchange is more feasible due to a higher vertical temperature gradient
within the ice column, and thinner ice floes are also more prone to break under stress. This
is why accurate SIT prediction models, relying on knowledge about changes in SIT require
the consideration of the distribution of SIT rather than assuming a uniform distribution.

Changes in SIT can be described by the ice thickness distribution equation [Thorndike
et al., 1975 Toppaladoddi and Wettlaufer, 2015] ?|

Op=-V-(pv)+ ¥ —04(g9p), (5.8)
consisting of the three main components:
(i) Advection into and out of an observed area through horizontal motion of sea ice,
(ii) Mechanical opening of leads and the formation of pressure ridges, and
(iii) Thermodynamic growth and melt at the upper and lower sea ice boundaries.

The distribution of thickness h is described by the probability density function p =
p(h,x,t), which changes with space x and time ¢. It depends on the ocean and atmosphere-
driven velocity v of the ice pack, a so called redistribution function ¥ which summa-
rizes the deformation processes, and a growth rate function ¢, describing the balance
through thermodynamic growth and melt on the bottom and the top of sea ice caused by

atmosphere-ocean heat flux and shortwave radiation. Therefore, g varies strongly with
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thickness and season. The cumulative probability function is obtained by integration of
p over all thickness intervals smaller than h, and can be approximated by it cumulative

sum as . N
/D p(h,x,t)dh ~ Zp(hl,x, t) Ah; =~ 1, (5.9)

=1
where the sum of p over all thickness intervals is 1. N is the total number of thickness
intervals with irregular width Ah; = (h; — h;—1), hi—o = 0 refers to OW and hy = hpap to
a maximum observed thickness, which can vary depending on the considered length scale
and the sensor sensitivity. The term p Ah; is the fraction of an observed area covered by
thickness within the interval h; and h; + Ah;. Sea ice analysts assign the most plausible
SoD category to a region according to the predominant SIT range and the historical
evolution of the sea ice. Table shows higher-level SoD categories and associated SIT
ranges, which are determined based on the analyst’s capability of discriminating SoD
based on the satellite data. In total only a few thickness intervals are defined, and more
categories are assigned to thinner ice due to the higher level of discrimination based on

the spaceborne observations (e.g. Sentinel-1 SAR and AMSR2 Tg).

Table 5.1: SoD and associated SIT intervals (Ah) according to the WMO Sea Ice Nomenclature
[WMO, 2014].

SoD Nilas Young ice Thin FYI Medium FYI Thick FYI Old ice
Ah [em] | 0-10 10-30 30-70 70-120 > 120 > 120

The aforementioned theoretical considerations represented in the ice thickness distri-
bution equation including the components raise some key requirements for the
implementation of a consistent SIT prediction model. The sea ice pack can move at a
non-negligible rate of several kilometers per day, which is in the order of the resolution of
temporally-composed satellite data sets. Therefore, an exclusively spatial consideration
of present-time features — as done in common inference algorithms — does not capture the
essential history of sea ice dynamics. Information on the development of sea ice cannot
be retrieved purely statistically from the time series in a pixel-based consideration either.
Ice drift causes neighboring pixels of observations to be correlated in both space and time.
Especially at the boundaries where sharp contrasts between different ice types can occur,
SIT estimation may contain large errors. Thus, a spatio-temporal approach is necessary
to create a model which fully integrates the temporal evolution of satellite data embedded
in the geo-statistical context. Current operational sea ice charts are based on the manual
or semi-automatic determination of the fraction of sea ice with a specific SoD to a region.
These products rely on long-standing experience to obtain significant and temporally
stable classes, which include knowledge about growth and advection phenonmena, and
annual variability. Thus, a reliable automated segmentation of the polar region requires
physically meaningful classes with multiple-year consistency, similar to those assigned by

trained sea ice analysts as recurring SoD and associated SIT intervals.
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A probabilistic approach enables to include the distribution of SIT for each pixel
rather than assigning a single value by assuming mostly homogeneous conditions, which
is particularly important with regard to SIT-dependent sea ice growth. It should be
pointed out that information on the thickness at small-scale deformations is often not
sufficiently captured in the satellite data. Current approaches aim to understand changes
of the distribution of SIT through recognition and tracking of the major features like
pressure ridges and leads, and they still lack the accuracy and capability to generate an
automated workflow. Knowledge about the redistribution of sea ice for a particular SoD
can be retrieved from in-situ or airborne observations, which are capable of revealing the
small-scale distribution of SIT. This may help to parametrize the deformation behavior to
accounts for missing information beyond the observable range of satellite measurements

and to apply necessary corrections to current sea ice models.

5.2 Satellite Observations over Polar Areas

Spaceborne remote sensing is the only technique to continuously observe the polar re-
gions in order to allow operational sea ice monitoring. Satellite observations of the polar
regions at the operational level have been available since the late 1970s. Data in the elec-
tromagnetic spectrum are collected at different frequencies within the three major ranges —
microwave (~ 1-300 GHz), infrared (~ 300 GHz to ~ 400 THz), and visible optical (~ 400
700 THz) — by recording the reflected, scattered, and emitted radiation. Different types
of platforms and instruments — either passive or active — are providing complementary
information about sea ice at different temporal and spatial scales with resolutions from
tens of meters to tens of kilometers. Most products for sea ice applications are based on
data from a few selected satellite missions — mainly passive and active sensors operating
in the microwave spectrum, because they are insensitive to clouds and illumination con-
ditions. Passive microwave radiometry acquire the emitted radiation, while active sensors
measure the backscattered signal. Sea ice parameters can be determined using data from
a single or from multiple sensors, such as SIC and SIE from coarser passive observations,

or ice drift from fine SAR imagery.

5.2.1 Passive Remote Sensing

Passive remote sensing instruments operating in the visible optical and near-infrared range
collect the solar radiation reflected of the Earth’s surface, whereas thermal infrared and

microwave radiometers measure the naturally emitted electromagnetic radiation.

Visible and Near-Infrared Radiometry

Optical sensors mostly cover the visible range (~400-700 THz), and are sensitive to the

Earth’s surface albedo. Due to their contrast in color, they can distinguish between OW,
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melt ponds, and sea ice. However, because they record sunlight reflected from the surface,
images can be obtained during the day, and they can only be used when the sky is clear.
Thus, optical imagery is not appropriate for operational sea ice products, but commonly
serve as auxiliary information and in data validation when available. Sensors in the
thermal infrared range (~ 20-400 THz) acquire thermal emission and are used to sense the
physical temperature and can allow the discrimination of different surfaces of sea ice, and
the surrounding warmer ocean with temperatures slightly above the freezing point. Both
the optical and infrared bands are affected by the presence of clouds, which prevent the
satellites from detecting the radiation emitted by the surface of the Earth. Besides that,
observations in the thermal infrared have limited capability to unambiguously discriminate
between water and sea ice, because both thin sea ice during formation and melting ice

show temperatures close to the freezing point of saline water.

Microwave Radiometry

Microwave radiometry is more suitable for continuous monitoring, since it is independent
of daylight and at the lower microwave frequencies it is largely unaffected by atmospheric
conditions — except for specific bands, where the transmittivity of radiation through the
atmosphere is limited due to absorption or scattering by certain gases, aerosols, or hy-
drometeors. It determines the emitted amount of radiation sensitive to the physical
composition of crystalline sea ice structure and water molecules, allowing to effectively
discriminate radiometrically warmer sea ice from the radiometrically colder ocean. How-
ever, the energy level of radiation in the microwave spectrum is rather low, requiring the
integration of measurements over a large area. The size of the antenna footprint defines
the spatial resolution and it depends on the wavelength of the instrument. For frequen-
cies in the upper microwave spectrum, the footprint is smaller whereas the signal is more
affected by the water vapour contained in the atmosphere. This lowers the overall resolu-
tion of images and limits the discrimination of small-scale objects. Therefore, a trade-off
has to be found to appropriately resolve small signatures, while maintaining sufficient
sensitivity range of the measurements to the actual sea ice properties.

Current passive microwave instruments acquire daily images of polar regions and the
data continuity of records over the last 40 years enable the monitoring of long-term trends
of sea ice parameters. There are only few satellite missions available that are suitable
for providing sufficient coverage to retrieve SIT at polar scale. Both NASA’s SMAP
and ESA’s SMOS missions are carrying a radiometer operating at L-band (1.4 GHz),
whereas the AMSR2 collects Tp at multiple microwave frequencies from 6.9-89 GHz.
The upcoming CIMR mission, which is expected to be launched in 2028 — observing
bands from 1.4-36.5 GHz — is intended to replace the SMOS and SMAP missions and
provide continuous data collection. One of the main objectives of the CIMR is to monitor
the polar regions with at least daily revisit |Kilic et al., 2018, Donlon et al., 2019]. The
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FSSCat mission carried the first L-band radiometer onboard a CubeSat for sea ice and SM
monitoring. In addition to these satellite missions, CubeSats can also make an important
contribution to the continuous monitoring of the polar regions, and data can be utilized
to fill capacity gaps. In the following, the technical details of the satellite missions that
serve as radiometric data basis for the determination of sea ice parameters, and which are

used in this work, are presented.

The AMSR2 onboard the Japan Aerospace Exploration Agency’s (JAXA) Global
Change Observation Mission 1st — Water 'SHIZUKU’ (GCOM-W1) spacecraft was launched
on May 18, 2012. The mission was designed for global, long-term observation of ECV
and geophysical parameters including sea surface temperature, wind speed, precipitation,
SIC, snow depth, soil moisture, vegetation water content, atmospheric water vapor and
cloud liquid. It is located in near-polar orbit, at an altitude of 700 km, and has twice a
day temporal coverage (ascending and descending phase) of more than 99 % of the Earth’s
surface every 2 days — allowing daily revisit of the polar regions above 70° latitude. Simi-
lar to its predecessor missions AMSR and AMSR-E, the follow-on instrument AMSR2 is a
dual-polarized, conical scanning, passive microwave radiometer with a sensor swath width
of 1450 km. AMSR2 measures microwave emissions from the Earth’s surface and the at-
mosphere at an incidence angle of 55°, and provides multi-frequency T g observations at

vertical and horizontal polarization.

The spatial resolution depends on the Instantaneous Field Of View (IFOV), which
is the angular cone of visibility determining the area of the Earth‘s surface (resolution
cell), visible from a particular sensor platform altitude at a particular moment. The
IFOVs of the different AMSR2 channels vary substantially in size — with smaller values
at higher frequencies. For more accurate geophysical parameter retrieval, the Tgs need
to be remapped to the footprint of a low-frequency channel. A unified target IFOV is
obtained by computing the weighted sum after the application of smoothing factors to
the different high-resolution footprints from the higher frequency channels [Maeda et al.,
2015]. The specification of the 12 channels in terms of frequency, ground resolution and
sensitivity to specific geophysical parameters are summarized in table[5.2] Because of the
small footprint of the 89 GHz channels, two scans (A and B) are combined to cover the
gaps in between them. JAXA provides a modified L1R product containing the resampled
Tps. Regarding polar regions, the NSIDC and the University of Bremen provide products
at several processing levels based on AMSR2 data such as SIC, sea ice motion, and snow

water equivalent.
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Table 5.2: AMSR2 channel specifications including frequency at vertical (V) and horizontal
(H) polarization, ground resolution corresponding to the -3 dB ellipse diameters of
the beam width (cross-track x along-track), and geophysical parameters based on

the relative sensitivity of T g observations.

Frequency [GHz| Resolution [km]| Geophysical parameters
6.925 V.H 35 x 62 Soil moisture, sea surface temperature
10.65 V,H 24 x 42 soil moisture
18.7 V.H 14 x 22 SIC, snow depth, precipitation
23.8 V,H 15 x 26 Water vapor
36.5 V.;H 7x 12 SIC, snow depth, wind speed, cloud liquid vapor
89.0 A/B V.H 3x5 SIC, precipitation

The CIMR mission (Sentinel 11) is one of the three future polar EU High Priority
Copernicus Missions from ESA with a passive microwave sensor payload. It is conceived to
collect Tz at the microwave frequencies 1.41, 6.9, 10.65, 18.7, and 36.5 GHz at an incidence
angle of 55° with full coverage of the polar regions, i.e. no polar observation hole, and sub-
daily revisit. It was designed as a follow-on mission of SMOS, SMAP, and AMSR2, with
improved capability to retrieve sea ice parameters including SIC, thin SIT, snow depth, sea
ice drift velocity, ice types, and surface temperature over the polar ice-covered oceans with
increased accuracy and spatial resolution [Kilic et al., 2018|. Due to atmospheric effects,
high-resolution AMSR2 observations at 89 GHz are the main error source in current in SIC
retrieval methods. CIMR’s larger antenna reflector (diameter > 7m) will provide a higher
spatial resolution for all low-frequency channels. These channels have the advantage of
being capable of replacing high-frequency observations, and provide high-resolution sea
ice parameters (in particular SIC) with high accuracy at all weathers [Scarlat et al.,
2020]. Operational sea ice products suffer from accuracy losses due to sea ice drift and
changing weather phenomena, and synergy of multi-source observations is challenging

because instrument footprints show temporal and spatial mismatches.

5.2.2 Active Remote Sensing

Active instruments emit radiation to gain information about the physical properties by
evaluating the energy of the signal reflected back to the sensor (backscattering) after
interaction with the Earth’s surface. Active sensors can be separated into microwave-
based radars (radio detection and ranging), and optical laser-based lidars (light detection
and ranging).

Scatterometers receive the back-scattered energy of the Earth’s surface with a similar
resolution to that of passive radiometry (10-km scale). They typically operate in the
lower microwave spectrum at C- or Ku-band (4-8 GHz and 12-18 GHz, respectively),
where they are sensitive to surface roughness, and provide insight into the composition

of sea ice and snow through volume scattering. Instruments such as ASCAT are mainly
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utilized to measure the wind-induced roughness in ocean waves to retrieve wind speed

and direction.

Imaging radars such as SAR provide detailed high-resolution images by using the rela-
tive motion of the antenna over an observed region. The movement of the antenna creates
an aperture equivalent to a large physical antenna that cannot be deployed in space due
to its size. Images are created by illuminating a target area with successively transmitted
pulses, receiving their reflection, and recording the duration of the echo window — related
to the swath width. The position of the antenna on-board the moving satellite changes
relatively to the observed area over time. SAR can be used in different scanning modes,
with different transmitter and receiver polarizations, resolutions and swath widths. ESA’s
Sentinel-1 mission, launched in April 2014, is composed of two polar-orbiting satellites,
Sentinel-1A and Sentinel-1B. They operate at C-band (5.405 GHz), and data are collected
in ascending and descending orbit direction independent of daylight under all weather con-
ditions. SAR systems are considered the most important data source for monitoring and
mapping sea ice and in terms of the analysis of small-scale features such as ridges and

leads.

In radar altimetry, pulses are sent to the surface and the distance between the satellite
and the object can be determined from the two-way travel time. Then, the elevation of
an object is determined with respect to a known reference, such as sea ice freeboard (Fb),
which is the height of sea ice above the reference sea level. Spaceborne radar altimeters
such as ESA’s CryoSat-2 (CS2) mission, launched in 2010, are specialized to monitor the
thickness of land and see ice through estimating the elevation of ice sheets and Fb, which
in turn is used to infer SIT [Wingham et al., 2006]. Hereby, information about the ice
thickness d; is contained in the Fb measurements dg;, by following Archimedes’ principle
of buoyancy

SIT, = P de+Psds7 (5.10)
Pw — PI

where a snow column with thickness dg and density pg on top of sea ice with density p; are

partially immersed in water with density py,. This equation is valid for radar altimeters,
which operate in the microwave spectrum and can penetrate snow to some degree to
obtain the Fb. In contrast, laser-based lidars are only surface sensitive and measure the
total F'b of snow and ice. Therefore, they provide complementary measurements that are

used, for example, to estimate snow depth on ice.

Laser altimeters use laser pulses to measure the distance between the instrument and
the surface of the target. Due to the limited penetration depth of the optical signal into
the ice, data can be used to provide accurate maps of ice-surface topography. NASA’s Ice,
Cloud, and land Elevation Satellite (ICESAT) mission — operating from 2003 to 2009 —
acquired the first large-scale measurements of sea-ice Fb based on laser altimetry to infer
SIT of the Arctic. The follow-up ICESat-2 mission, launched in 2018, uses laser pulses

May 29, 2022



Chapter 5. Remote Sensing of Sea Ice 76

to detect single photons to produce detailed maps of the Earth’s surface and its changes,

such as those observed in the ice sheets of Antarctica and Greenland.

5.3 Sea Ice Parameter Retrieval

5.3.1 Sea Ice Concentration and Extent

Satellite-based maps of SIC have been generated since 1979 starting with the launch of
the SMMR and follow-on missions carrying sensors such as the SSM/I, the SSMIS, and
the AMSR2. Common algorithms rely on the differences between radiometry data at
different polarization and frequencies, while they aim to reduce effects due to the physical
temperature and atmospheric losses. The choice of the frequency to achieve a high sen-
sitivity range to distinguish different ice types and OW is then a compromise. For lower
frequencies (< 10 GHz), higher penetration depth may lead to incorrectly assigning thin
sea ice as low SIC. If the frequency is much higher (> 50 GHz), the penetration depth is
too shallow to distinguish between different ice types, and in addition, observations are
more affected by atmospheric composition. Comparing observations in the intermediate
frequency range allows us to distinguish between OW, FYI and MYT due to the different
microwave signatures — for example, volume scattering is stronger at higher frequencies.
Thus, most algorithms are based on the contrast between T observations at the frequen-
cies ~19GHz and ~ 37 GHz |Parkinson et al., 1999,|Comiso and Nishio, 2008, |Lavergne
et al., 2019).

Current methods used by the US NSIDC to provide SIC are obtained using passive
microwave observations based on the NASA Team-2 (NT2) algorithm or the Bootstrap
algorithm [Cavalieri et al., 1984,|Comiso, 1995|(Cavalieri et al., 1997, Markus and Cavalieri,
2000,/Comiso and Nishio, 2008, Markus and Cavalieri, 2009]. The NT2 algorithm takes
advantage of the fact that the Tpgs at horizontal (H) and vertical (V) polarization differ
significantly between the observations at 19 and 37 GHz with respect to different ice types.
It is based on the PR and gradient ratio (GR), which are computed from observations at
18V, 18H, and 36V and is defined as follows:

_ Tpasvy — T asn) T sevy) — T sv)

PR and GR =

B Tgasv) + Tsasm) Tpev) + Tsv) (5.11)

GR and PR span a feature space with data points clustering around surface types
related to OW, FYI, and MYI. The typical values for the three different types define tie-
points, which form a unique set for each hemisphere (N, S) and sensor used to retrieve SIC
in the final product. A weather filter is implemented based on GR observations between
18 and 22 GHz at vertical polarization, but tends to misclassify grid cells with SIC values
below 15 % as OW.

The Bootstrap algorithm analyzes the scatter plots of observed data points in the
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marginal Tpg feature spaces with regard to contrasts in a comparison in frequency mode
between 18V and 36V, and polarization mode between 36V and 36H, respectively. The
frequency mode is used to estimate SIC along the sea ice margin, because the contrast be-
tween OW and sea ice is more pronounced. The positions in feature space corresponding to
OW and sea ice with a concentration of 100 % are determined as tie points, respectively.
Hereby, observations of OW are largely distributed around a point, while observations
representing pixels that are completely covered with ice — but different ice types — are
arranged along a line. The SIC between 0 and 100 % is obtained by interpolation. Unlike
the N'T2 algorithm where the tie-points are fixed, in the Bootstrap algorithm, the calcu-
lated tie-points to distinguish between OW and sea ice and ultimately to estimate SIC,
are dynamic, i.e., they change daily, and are different for each hemisphere. The polariza-
tion mode is used to obtain more accurate estimates for higher SIC within the ice edge,
assuming that the air column is dryer above areas covered with sea ice, and measurements
are therefore influenced by the atmosphere, while observations at 37 GHz have higher spa-
tial resolution. Further methods exploit the contrasts of similar Tz observations as the
Bootstrap algorithm. The Bristol algorithm overcomes possible discontinuities between
low and high SIC by evaluating clusters of data points in the three-dimensional scatter
plot (between 18V, 36V, and 36H) and estimating SIC through performing a principal

component analysis.

Since the N'T2 algorithm uses the Ty observations, it is less affected by changes in
surface temperature than the bootstrap algorithm. However, the ratios PR and GR are
sensitive to the presence of snow and SIC of thin sea ice is underestimated due the low
salinity. The Bootstrap algorithm shows the opposite effect, it is less affected by the
presence of snow or thin ice but depends on the seasonal variation of surface temperature.
Both algorithms are cluster-based methods; uncertainties may be introduced near the
threshold between low-concentrated ice and OW and between different ice types. The SIC
is underestimated in areas where sea ice is younger and thinner. This is not only visible
at lower frequencies due to a higher penetration depths, but also at higher microwave
frequencies because younger and thinner ice also has overall smoother surface conditions
and higher salinity. During summer periods, algorithms are unable to separate melt ponds
and OW, because the emitted radiation dissipates already at the water surface, and sea
ice below melt ponds is invisible at microwave frequencies.

One ongoing challenge in common SIC algorithms is the erroneous assignment of wind-
roughened ocean as sea ice. Atmospheric contamination which often results in spurious
ice can be corrected using a weather filter or data from Numerical Weather Prediction,
but it often removes low-concentrated ice. This leads to high uncertainties of concen-
trations below 15%. In this range estimations are not reliable, and are usually removed
from operational products. Both the generally large footprint of satellite passive observa-
tions and the potential footprint mismatch effect by combining observations at different

frequencies makes accurate detection of the sea ice margin difficult. Particularly during
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freeze-up when snow on FYI can be present, the variability of the microwave signature
of snow dominates over that of the ice, which complicates accurate discrimination. Com-
bine microwave observations at different frequencies and polarizations to reduce the effect
of the physical temperature of the ice, increasing the sensitivity for reliable ice-water
discrimination.

The convention for determining the extent is that the total area is the sum of all
individual grid cells or pixels with a concentration greater than 15%. After applying
atmospheric correction, higher uncertainties in the resulting emissivities involve a risk of
confusing water- and ice-covered surfaces, and below this threshold, rough ocean is some-
times misclassified as false ice. Also, this assumption results in more accurate estimations
of sea ice extent in summer, when the surface of sea ice is partially covered by melt ponds.
Pixels that contain ponded ice are then correctly classified as sea ice, which prevents un-
derestimation of the extend by doing the integral sum of the individual concentration
of all pixels. Except for areas at the edge of the sea ice, SIC values over the ocean are
mostly close to 0, and over the sea ice around 100 %. This trend is even more pronounced
in high-resolution measurements, because the smaller an observed grid cell is, the fewer
pixels comprise the sea ice edge, and the definition of the SIC as a continuous variable
only applies to observations with sufficiently low resolution. Thus, models to retrieve
SIC or that are based on SIC, require consideration whether SIC should be treated as a

continuous or categorical parameter by taking into account the spatial resolution.

5.3.2 Melt Ponds

The penetration depth of microwave radiometers into ice at frequencies above 5 GHz is
on the order of a few mm to tens of cm considering sea ice under wet conditions to dry
non-saline MY, respectively. Water on top of the ice cannot be distinguished from sea
water based on the radiometric properties. Thus, current SIC estimates exclusively reflect
the two-dimensional surface, and leave out necessary information about sea ice conditions,
which are in turn directly related to the surface. Especially in Arctic summer, sea ice is
considered a heterogeneous medium consisting of various surface structures such as melt
ponds and slushes, composed of wet snow and sea ice. Melt ponds need to be monitored
because they influence the albedo and therefore have consequences on the overall melting
process in summer. An example of ponded ice is given in Figure [5.Id. Melt ponds occur
at multiple scales and are difficult to detect from low-resolution images. A melt pond
cycle from its origin to re-freeze up can be divided into discrete stages [Eicken et al.,
2002]. They start to form on top of the snow and sea ice covering up to half of the sea
ice area in the end of summer, leading to substantial underestimation of SIC products
derived from microwave radiometry.

A more specified distinction between fractions of intact sea ice, melt ponds, and closed

sea water is required to eliminate ambiguities in models and retrieval algorithms which are
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build on these estimates. High-resolution SAR images can be used to distinguish between
different types of sea ice — including MPF under certain conditions |Li et al., 2017| — by
evaluating backscatter signatures that respond to differences in surface roughness. The
intensity of the back-scattered signal is variable which allows to detect different surface
types such as deformations, leads, and melt ponds, if sufficient contrast between sea ice
and surface water is given. It also depends on the incidence angle which makes robust
and automatic discrimination particularly challenging, but is beneficial when combining

with auxiliary data in the visible spectrum (such as Sentinel-2) in a manual classification.

5.3.3 Sea Ice Thickness

Sea ice thickness at polar scale can be derived from satellite observations using direct
and indirect methods, which have different sensitivities to the target parameter. First,
SIT can be directly computed from Fb measurements using radar altimetry. Several
approaches have been implemented to provide maps of Arctic SIT from CS2 altimetry
data |Ricker et al., 2014} Kurtz and Harbeck, 2017, Tilling et al., 2018|. Second, thin SIT
can be indirectly retrieved from passive observations at the low-microwave spectrum on
the basis of RTM. The penetration depth of Ty observations highly depends on the sea
ice properties such as salinity, density and the physical temperature. Temperature and
salinity differ among sea ice types, and vary both seasonally, and along the depth profile.
Thus, L-band radiometry based SIT retrievals are in principle only reliable up to about
0.6 m depth.

Several methods have been developed to estimate the distribution of thin SIT at
Arctic scale while using SMOS Tp data at multiple incidence angles and polarizations
|Kaleschke et al., 2012, Gupta et al., 2019]. An approach based on the combination
of a thermodynamic model, and a RTM was used to infer SIT from variations in the
physical properties of ice, including temperature and salinity, and to further extend the
maximum sensitivity range of retrievals [Tian-Kunze et al., 2014,|Kaleschke et al., 2016|.
Tp polarisation differences were combined in growth models, together with empirical
assumptions about sea ice properties |[Huntemann et al., 2014]. A thin SIT product was
developed based on data from the SMOS and SMAP missions |Patilea et al., 2019]. In
addition, SMOS and CS2 observations were merged according to their sensitivity ranges
and uncertainties in a combined method to generate weekly Arctic SIT [Kaleschke et al.,
2015} Ricker et al., 2017].

The above methods are only applicable under certain conditions. The limited foot-
print of radar altimeters requires several weeks to cover the entire pole, which in turn
implies that SIT maps are often highly interpolated due to the coarse temporal and spa-
tial resolution of the observations. Because of the limited penetration depth, passive
microwave radiometry at L-band can only be used in regions completely covered with ice

and under predominantly cold conditions. Beyond this range, the observations are not
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sensitive enough to allow direct inference. Process-based retrieval algorithms to infer SIT
rely on strong model assumptions and empirically determined sea ice properties. These
simplifications are required due to limited knowledge of the distribution of sea ice, ex-
hibiting large spatio-temporal variability. Passive microwave sensors often do not capture
all of the necessary information about SIT, but they also require ancillary data. The
main uncertainties originate from long revisit times and large spatial resolution of satel-
lites. Current SIT products show sufficient accuracy during the Arctic freeze-up period
from mid-October to mid-March, but they do not perform well during the Arctic melting
season.

Ancillary data such as atmospheric conditions and the relationship between sea ice
properties and additional monitored sea ice variables such as ice type or age can be used
as proxy information to indicate SIT. Although there is no direct physical link, previously
empirically determined relationships between the variables can be used. The development
of specific ice types with changing surface conditions may contains sea ice with a typical
average thickness range. Ice age derived from ice drift maps based on backscatter data
from SAR or scatterometers allows to determine specific tie points which allows to relate
the surface information to SIT. During the summer months, the various types of ice of
different ages show different resilience to external influences, especially with regard to the
development of wet surface conditions, which in turn can be used to infer SIT. As sea ice
formation recurs annually, these known relationships between the growth rate of specific
ice types along the freeze-up period or the summer melting properties can be used in
combination with atmospheric conditions to relate to SIT.

Validation of the SIT retrieval models is particularly challenging, because in-situ obser-
vations in polar areas are irregular and sparsely available. The collected sensitivity range
of measurements — covering the seasonal and type-specific variations in the development
of sea ice — is often not sufficient to determine uncertainties and biases from statistical
analyses. The relatively large satellite footprints are troublesome because sea ice can be
locally homogeneous and the averaged values differ from the actual distributions, which
may contain deformations and can change within short distances away from locations of
the in-situ observations. Satellite observations smooth out the true local SI'T distribution,
and reduce the dynamic range of retrievals. Satellite and in-situ observations are often not
collocated in space and time — additional mismatches in scales, differences in recording
time, and shifts due to sea ice drift — can lead to potential biases in inversion methods.
Thus, direct comparison between in-situ and satellite observations is problematic, and it

can lead to significant representativity errors in the final gridded product.

5.3.4 Ice Charts

The need to ensure safety of navigation and establish reliable shipping routes encouraged

interaction between sea ice information systems of different countries which were initially
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generated independently by nations for specific areas of interest. Methods commonly used
in ice analysis were used to integrate information from various sources of observations into
ice charts. Ice charts are determined manually by trained ice analysts from operational
ice services of different states adjacent to the Arctic including Canada, USA, Russia,
Norway, and Denmark. With the progress in development and processing techniques,
the countries involved had discussions about an international sea-ice symbology and dis-
semination method. The ‘egg’ code to describe the state of sea ice concerning SIC and
thickness-related SoD had been initially suggested by the Canadian ice forecasting agency
and endorsed later by the WMO. Sea ice was divided into one of six main categories: nilas
and new ice, grey ice, grey-white ice, F'YI, second-year ice, and MYL.

Beginning with the first edition of Sea-Ice Information Services in the World published
by WMO in 1981, satellite imagery and the availability of decent computer power revolu-
tionized sea-ice products in terms of increasing complexity. Since then, national services
such as the U.S. National Ice Center (NIC), the Danish Meteorological Institute (DMI),
the Canadian Ice Service (CIS), the Finnish Meteorological Institute (FMI), and the Rus-
sian Arctic and Antarctic Research Institute (AARI) provide consistent ice charts follow-
ing widely a standard provided by the WMO, and have developed in a collaborative effort
a process for joint dissemination for operational ice monitoring and climate-related pur-
poses. All ice services consist of an integrated observational system, which includes the ob-
servation network of in-situ and satellite data, a communication system where information
about sea ice is collected and distributed, and a system for data integration, analysis and
production. Currently, the Global Digital Sea Ice Database stores historical and updated
information electronically at two archival centers, the AARI (http://wdc.aari.ru/)) and
the NSIDC (http://nsidc.org/noaa/gdsidb), and has mapped 7- or 10-day ice data for
the Arctic from the 1950s and for the Antarctic from the 1970s to the present. Examples
of a regional chart between Greenland and Barents Seas — used during the Multidisci-
plinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition on 10
June 2020 — is given in Figure b.2h, and polar-wide charts showing the SoD in for the

Arctic and Antarctic is illustrated in Figure [5.3]

Although the majority of data integrated into the observing system are obtained with
space-based instruments such as visible and infrared imagers, passive microwave radiome-
ters, scatterometers, laser and radar altimeters, and SAR, observations from land stations,
ships, and aircraft remain an important source of data for producing ‘ground truth’ infor-
mation. Satellite sensors based on low-resolution (6-70 km) passive microwave radiometry
and scatterometry such as AMSR2 and ASCAT, and high-resolution (10-100m) active
microwave SAR observations such as RADARSAT-2, Sentinel-1, and TerraSAR-X, are
the main sources of information, providing full daily or even sub-daily coverage of the
polar regions. In addition, visible and infrared sensors are being used, and radar altime-
ters have also begun to be included. SAR images are the main source of information to

provide partial SIC and types (e.g. ratio between FYI and MYT) at high-resolution, and
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to detect deformations and the presence of leads and — to some degree — also melting
ponds. Manual analysis and interpretation of visible and SAR images requires a certain
level of expertise about both the existence of ambiguities and how to eliminate them by
evaluating auxiliary data set from ship reports and growth history. In recent years, auto-
mated or interactive processing techniques based on image recognition and classification
have been developed to support the interpretation of satellite data from single or multiple
sources to the implementation of prediction systems.

The ‘egg-code’ depicts information of the total SIC of an observed cell, and the partial
SIC of a variety of ice types with its respective predominant floe size and thickness range
and its common nomenclature is given in Figure [WMO, 2014]. The discrimination
of sea ice into patterns of types with uniform ice conditions requires expert knowledge on
sea ice physics and atmospheric and oceanographic forcing and entails a certain degree
of subjectivity. Ice charts are commonly used for evaluation of new model approaches
and satellited-based retrieval algorithms. However, constrained actuality and spatial con-
tinuity of satellite imagery in combination with sea ice drift and fast evolving sea ice
conditions limit the applicability of any ice chart product. SIT is described using data
from multiple satellites and — as mentioned in the previous section — sea ice conditions in
the form of ice type and age as surrogate parameters to indirect specification. In addition,
atmospheric conditions such as freezing degree days can also be useful in specific regions.
Unlike in common SIT products where a single value per grid cell is specified, SIT in
ice charts is treated as a categorical variable. This approach is more realistic since an
observed cell contains a distribution of SIT with strong variations in sub-grid scale. The
categories established can therefore be understood as a compromise between the informa-
tion required for the user’s purpose (e.g., navigation, oil and gas exploration), the ability
to unambiguously distinguish sea ice based on the resolution and sensitivity characteris-
tics of the satellite observation techniques used, and the nature of sea ice regarding the

occurrence of the most common types.

5.4 Discussion

Algorithms for Sea ice parameter retrieval have been successfully developed to produce
maps of SIC, SIE, SIT, drift and surface temperature, which are needed for climate-related
studies as well as for operational activities such as shipping that rely on the knowledge of
sea ice variability. Process-based algorithms depend on empirical type-specific assump-
tions about sea ice properties and auxiliary data. Especially for high-resolution appli-
cations, operational retrieval still hinges on the expertise of sea ice analysts, who must
consider historical sea ice trends and atmospheric indicators. The uncertainty of satellite-
based sea ice products is dominated by model uncertainty, while the satellite observations
themselves are quite accurate. For these reasons, it has been difficult to develop reliable

algorithms under all possible ice conditions.
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Figure 5.2: (a) Regional sea ice chart from the Greenland and Barents Seas in the surrounding
of the Polarstern (marked with red dot) during the Multidisciplinary drifting Ob-
servatory for the Study of Arctic Climate (MOSAIC) expedition on June 10, 2020;

(a) Common ’egg-code’ nomenclature used for ice chart categorization.
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Figure 5.3: Ice charts showing the stages of development on February 3, 2022, for (a) Antarctic
and (b) Arctic, provided by the NIC available under https://usicecenter.gov/|
| Products.
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Data-driven modelling techniques to combine satellite imagery derived from various
sensors with multiple configurations is critical for including information on the different
conditions, which is essential to resolve ambiguities to overcome ongoing challenges such
as the underestimation of SIC for thin ice, and errors due to the presence of melt ponds
and snow cover. Microwave radiometry provides to most suitable observations which
are all-sky, largely unaffected vegetation, and independent of daylight. Common models
usually try to correct for unwanted sensitivity effects in the data instead of providing
performance metrics to evaluate them in more detail. The scientific community needs
robust tools to exploit the joint effect of multi-source data more in depth by harnessing
their different sensitivity ranges to sea ice properties, developing algorithms capable of
analyzing measurements from multiple instrument in a common retrieval framework.

In addition to that, automatic and robust retrieval methods require the flexibility to
fully describe the complexity and dynamics of sea ice. During the formation and melting,
sea ice undergoes certain SoD that are associated with changes in the physical properties
through thickening and aging. Nearby locations in sea ice are exposed to similar atmo-
spheric conditions and neighboring pixels of satellite observations are therefore spatially
correlated. Gradual thermodynamic growth under calm conditions makes consecutive ob-
servations to be also temporally correlated, whereas strong sea ice drift velocities lead to
both correlation in space and time. Thus, data-driven modelling requires evaluating sea
ice in its full spatio-temporal context, rather than a mere statistical data analysis.

The next chapter focuses on sea ice segmentation based on an unsupervised learn-
ing algorithm that exploits the synergistic effects of satellite observations from multiple
sources. A Bayesian inference framework is aimed at investigating the link between a set

of observations and the ability to relate the resulting class patterns to sea ice parameters
SIT and SIC.
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6 Segmentation of Sea Ice

Clustering methods aim for dividing a given input data set of features into a number of
clusters that can be assigned a particular label or class membership. Data points that
have similar physical properties are assigned to the same class, while dissimilar data points
result in a different class. Unsupervised learning algorithms and the associated process of
data clustering are used in various geoscientific disciplines like earthquake studies or land
use determination. They have been developed for more than 30 years [Dubes and Jain,
1988, Kohler et al., 2010,/Gongalves et al., 2017]. Unlike supervised clustering, in unsuper-
vised clustering the number of clusters used to classify the data or the actual properties
of the classes is initially unknown. Clustering methods can be further divided into hard
and soft clustering [Omran et al., 2007]. In hard clustering, each data point is exclu-
sively assigned to a specific cluster, resulting in sharp boundaries between the clusters.
Soft clustering is a probabilistic approach where data points have a cluster membership
probability. The observations have a probability to belong to each cluster, which allows
determining the model uncertainty of the clustering results. Satellite observations are
spatial images that are combined to extract spatial patterns, hence clustering is referred

to as segmentation.

This chapter focuses on a segmentation approach to investigate the synergy of com-
bining multiple satellite observations. In Section [6.1], a Bayesian unsupervised machine
learning algorithm, originally developed at the Computational Geoscience and Reservoir
Engineering at RWTH Aachen University [Wang et al., 2017|, is used for soft clustering
of a high-dimensional data set based on a Bayesian inference framework. In a Gibbs sam-
pling process |[Geman and Geman, 1984, the spatial and statistical model parameters are
considered using Hidden Markov Random Fields (HMRF) and finite multivariate Gaus-
sian Mixture Models (GMM). The method allows the combination of high-dimensional
set of observations and was developed for segmentation of data in one- and two phys-
ical dimensions in the field of geological modelling and geophysics. The segmentation
algorithm has already been applied to 1D data geophysical well logging to automatically
obtain stratigraphic units from a variety of borehole observations [Giesgen, 2018|, and to
2D data sets, for example for pattern recognition between satellite and geophysical mea-
surements to study plant-soil interaction [Wang et al., 2019]. The implemented 2D version

of the algorithm is publicly available on the GitHub repository, and can be downloaded
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from https://github.com/cgre-aachen/bayseg.
The objective of this work encompasses the application of the Bayesian segmentation
algorithm to the field of sea ice modelling, and on extending the 2D approach by a third

physical dimension to account for the complexity and dynamics of the sea ice environment

(see Sections [5.1.3land [5.1.4)). Sea ice consists of a multi-scale structure with distributed

ice types with thickness ranges — varying at scales below the resolution of satellite imagery.
The novelty is on providing an automated data-driven approach that can adequately
characterize sea ice by meeting the following requirements: The segmentation needs to be
robust, with resulting classes that can be consistently related to sea ice parameters SI'T and
SIC; and which is of probabilistic nature to account for mixed sea ice conditions to reveal
model uncertainties. It is aimed to consider interaction between the physical dimensions
of the multiple observations to account for the dynamics and thermodynamics of sea
ice in a complete spatio-temporal context. The goal is to obtain a model that combines
different data sets to reduce ambiguities in the retrievals and to provide evaluation metrics
derived from the model parameters to assess the respective sensitivity and complementary
information of each input feature to the respective sea ice properties.

In a first application of the method, it is investigated how to estimate high-resolution
SIC by spatially segmenting SAR images to better discriminate between surface water
including melt ponds and sea ice types (Section . The goal is to obtain stable classes
which describe surface water in a two-step procedure, and by finding a new way of properly
addressing the known challenge of the angular variation of the backscatter coefficient for
different ice types and the ocean. The method aims to first determine statistically whether
an image contains a significant amount of surface water to be formed as a separate class,
and to subsequently estimate SIC by means of the 2D Bayesian segmentation, which has
the advantage of considering the spatial correlations between the image pixels. In addition,
Appendix [C] describes a preliminary study in which SIT data derived from 1D airborne
EMI data are segmented together with SAR images to investigate the link between SAR
backscatter signatures and SIT.

In Section[6.3] the 2D Bayesian segmentation algorithm is applied to spatially segment
Arctic sea ice by combining multi-incidence angle SMOS Tpg data. In common SIT re-
trieval algorithms, where Tz observations at low incidence angles are averaged to reduced
the uncertainty, observations of high incidence angle are usually discarded. However,
observations at high incidence angles are assumed to show differences in sensitivity to
thin sea ice, which is mostly present in the Arctic during the period of early freeze-up.
The segmentation is carried out for spatial images each time step individually to assess
whether the obtained statistical model parameters of the segmented classes are tempo-
rally stable along the freeze-up period. The aim was to evaluate how the resulting spatial
patterns can be linked to the corresponding values of the common SIT products, and
whether classes are sufficiently separable to be consistently classified with SIT ranges for

the individual time steps.
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Considering an entire annual cycle in the Arctic consisting of sea ice formation, devel-
opment, and melting, both the number of significant classes and their representation of
sea ice parameters changes in the segmentation of Ty data. The dynamic and thermody-
namic nature of sea ice limits the classification of the spatial patterns obtained for each
individual time step — as considered in the second application. To address this limitation,
the Bayesian approach, which originally only supported segmentation of observations up
to two physical dimensions, was extended to three dimensions to also include the temporal
component of satellite observations and allow direct segmentation of 3D data sets. This
enables the algorithm to account for spatial and temporal correlations and classes are rep-
resented as spatio-temporally connected patterns. Unlike in purely spatial segmentation,
where the number of classes is determined separately for each time step, classes can form
freely throughout the three physical dimensions and the number of classes needs to be
set only once for the entire time period. The implementation was verified based on a 3D
synthetic data set (Section [6.1.3)).

In Section the 3D approach is applied to segment Arctic sea ice in space and time
by combining multi-frequency Tp data from SMOS and AMSR2. They vary in sensitivity
to sea ice due to different penetration depth and response to scattering phenomena. The
goal was to analyze the classes for stability over time in terms of their temporal onset and
multi-year recurrence. The corresponding sea ice conditions are related to the individual
developmental stages of sea ice charts, and the consistency of the patterns is evaluated

using common products of SIC and SIT.

6.1 Bayesian Unsupervised Learning Approach

6.1.1 Bayesian Inference Framework

Bayesian inference is a probabilistic method based on Bayes’ theorem that essentially up-
dates a prior distribution as more knowledge about probability functions becomes avail-
able. [Gamerman and Lopes, 2006]. With sufficient background knowledge about the
physical composition and arrangement of the underlying structures, more targeted and
faster predictions can be made. The Bayesian inference framework uses Gaussian distri-
butions as prior information to minimize the influence of existing outliers. It is important
to choose the background knowledge to avoid bias in the obtained model parameters. The
fundamental approach in Bayesian inference to interpret the available observed data is

given by Bayes’ theorem:
Py|0) P(9)

P(y)

where y denotes the field observations, and 6 the model parameters, which are derived in

Plly) = (6.1)

an updating process. The formula can be unraveled into its respective probability com-

ponents. P(#) is the marginal probability distribution that contains the prior knowledge
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gained to describe the model using expertise knowledge. P(y|#) is the likelihood function
that the measurement y occurred under the condition that a particular model (latent field
with labels) is already given. P(6]y) is called the conditional a posteriori distribution
and the outcome one is mostly interested in. The marginal distribution P(y) denotes
the partition function which is a constant to normalize the integration of the a posterior:

distribution.

Gaussian Mixture Models

A GMM addresses multidimensional data sets in feature space in a purely statistical
manner. It is one of the mathematically and computationally simplest models to segment
variables using unsupervised learning. As a starting point, N data points (measurements)
in an M-dimensional space (M number of features) are given as input data. The aim is
to fit the data for a total number L of multivariate Gaussian distributions, and to find
the most appropriate set that represents the given observations best. The total number
of distributions (or labels) L is predefined for the segmentation and can be estimated
based on different statistical criteria (e.g. Bayesian or Akaike Information Criterion (BIC
or AIC)). The Gaussian distributions are parameterized by its mean vector p and the
covariance matrix 3. Initially, it is not obvious to which of the Gaussian distributions
each of the data points belongs. The exercise of the method is to assign all data points
to the distributions in an unsupervised manner. Unlike in hard conditioning algorithms
such as K-means |Jain, 2010|, in GMMs there is no sharp boundary between clusters, and
the model outputs a probability estimate P(l|j) that indicates the membership prob-
ability of each data point 5 to belong to the clusters [ € L. For an input matrix of
size N x M, the estimated parameters are the L mean vectors p; of length M, the L co-
variance matrices 3 of size M x M and the probability estimate P(|j) of the size N x L.

The likelihood £ represents the posterior probability to obtain the observations for the
given model parameters. The essence of the inference algorithm is to maximize the like-
lihood and to converge towards the highest probability by finding the most appropriate

model parameters in accordance with the observations. The likelihood is given by

L=1]Ply), with Ply;) = f(yslem, =) P(), (6.2)

neN leL

where P(l) is the probability for a randomly chosen data point x; being member of cluster
[, P(y;) is the likelihood of finding a data point at observation y;, and f is a component

density function in form of a multivariate Gaussian distribution

1 1 _
flyilm, %) = W exp | — 5(?! — ) Sy — ). (6.3)
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The probability estimate can then be component-wise separated into

f (ysleu, 3) P(I)

Plyy) (64)

P(lly;) =

First, the means and covariances of the multivariate Gaussian distributions and P(l) need
to be estimated and subsequently updated to obtain the maximum likelihood. This is com-
monly done using methods including Expectation-Maximization (EM) or Markov Chain
Monte Carlo (MCMC). In standard GMMs, data points are assumed to be conditionally
independent. Since in this case they originate from georeferenced satellite measurements
and describe a 2D or 3D physical space, the observed data points are not easily sepa-
rable and interactions between adjacent observations are expected. Therefore, a HMRF
approach is used together with the GMM to also account for spatial interactions of im-
ages. [Wang et al., 2017).

Hidden Markov Random Fields

HMRFs are used to account for the spatial interactions in the physical space in addition
to the statistical characteristics in feature space considered in the GMM. The aim is to
indicate a latent field in physical space according to the surface signatures observed from
different sensors or different configurations in terms of frequency, incidence angle and
polarization. The field is based on a hidden variable, which can not be clearly assigned to
a strictly physical quantity, but enables categorization of heterogeneous measurements on
the basis of statistically an spatially correlated patterns. The goal is to find appropriate
classes that segment the data into patterns in order to reveal useful information how the
multiple observations are linked.

All data points in feature space are provided with their respective spatial coordinates
in physical space. The 2D field x is composed of i pixels corresponding to the resolution
of the measurements with a total number of pixels N. Using similar notation as in the
categorization of data points to a specific clusters in the GMM, each pixel is further
classified by a label [ with a total number of labels L. 0; denotes that a pair of the central
pixel with one of its eight nearest neighbours forms a clique in a grid with 8 connections
(see figure . Spatial correlation essentially means that neighbouring pixels are likely to
belong to the same cluster with label [. The probability of interaction between neighboring
pixels is described by the local conditional probability P(z;|xg,). It is the probability of

a central pixel ¢ to have label [ after evaluating the surrounding pixels 9; and is given by

_ P(xj,a:aj) B exp[—U(xj,waj)]
Ples|@o) = = pr 20} = S cnpl U, wo, )] (6:5)
;€L LAS”

where U(x;, zg,) is the local energy of the central pixel ¢ with respect to the neigh-

boring pixels. The local energy is obtained from potential functions V; ;(x;, x;) in a Potts
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model |[Koller and Friedman, 2009|) and is calculated as

. 0, if T, = Ty
Ui(xj,@a;) = Y Vij(wixy), with Vij(wi, z;) = ‘
1€0; /Bda if Z; # ‘CE_]

(6.6)

The local energy is parameterized by the directional heterogeneity coefficients §; €
{Bo=0,6=5,Bo=7%, 0= %T”}, which introduce directional smoothing to the latent
field to account for possible anisotropy (see Figure [6.1).

A positive heterogeneity coefficient indicates largely homogeneous conditions, which
means that neighbouring pixels along that particular direction ‘attract’ each other. A
negative coefficient, on the other hand, indicates heterogeneous conditions, such as dis-
continuities at the sea ice edge, and neighboring pixels are ‘repelled’ in that particular

direction.

B 4B

B,

Figure 6.1: Set of cliques comprising the central pixel with one of its neighboring pixels in an
8-connected grid. The directional heterogeneity coefficients Byp—(53 determine the
local conditional probability of the latent field at the corresponding pixel position.

6.1.2 Segmentation Algorithm

The Bayesian segmentation algorithm [Wang et al., 2017| can be divided into three main
parts: initializing the input parameters (consisting of the processed field measurements
and the previous model estimates), updating the labels and the underlying latent field,
and updating the statistical parameters of the GMM.

Initialization of Input Features and Model Parameters

The input data is given by the processed features provided with its physical coordinates.
The features have to be scaled beforehand to make them comparable in the subsequent
unsupervised algorithm. Hereby, the whole data set is standardized using the Z-score
X —
ey (6.7)

g
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assuming the distributions to be of Gaussian origin, without considering significant skew-
ness or kurtosis. In this process, the mean values of all input characteristics are shifted
to zero and the variances are normalized to one to account for different scaling. The BIC
score can be used to select the appropriate number of labels |Claeskens et al., 2008]|. It is
based on a purely statistical evaluation to find a trade-off between the GMM parameters

and the number of clusters, and is given by
BIC = L In(N) — 21n (L(y|0)), (6.8)

where N is the total number of data points, y the observations, L is the number of
estimated labels and @ is the set of all parameters (u, ). L(y|@) is the maximum
value of the likelihood function £(y|@) (similar to Equation [6.2)), which corresponds to
the optimal clustering result fitting the data best under the assumption of L labels.
This approach follows Occam’s razor to find the simplest scientific model to describe the
data. Thus, more labels in the model lead to a higher penalization term (L In (N)) and
to a higher BIC score. The most adequate model is given for the lowest score, and the
corresponding number of labels enters the segmentation. Since no prior knowledge is given
for the segmentation, the model parameters are initially chosen to be non-informative,
i.e. arbitrary for B and p with large 3. The model parameters are determined in an
iterative process and the segmentation leads to the final model parameters 8 = (u, o, 3)
and the latent field x of the last iteration. The segmentation steps — including estimation

and updating of the model parameters — are described below.

Segmentation of the Latent Field and Parameter Estimation

The aim of Bayesian segmentation is to obtain the latent field x in physical space in
which for each pixel i the most probable label [ € L, i.e. the one with the highest label
probability, is assigned. As aforementioned, the spatial correlations are considered using
HMRF with the heterogeneity coefficient 3 as a model parameter, and the statistical
characteristics of the random variables are included in a GMM with the corresponding
model parameters g and 3. The marginal distribution of the entire field can be expressed
using a mean field-like approximation @, of @, [Celeux et al., 2003| as the sum of the

local marginal distributions as

P(ys; 1,2, 8) ~ [ [ D £(js . o) P o, B). (6.9)

JEN IEL

Hereby, f(y;; p, 2i) is the component density function of the GMM, described in Equa-
tion . The conditional probability P(l|Zs;;3) to obtain the specific label I locally
according to labeling of the neighboring pixels and the directional heterogeneity coeffi-
cient of the HMRF is given by Equation [6.5] The conditional a posteriori distribution

P(x |y, 0) to obtain the latent field for given observations and model parameters can be
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computed with a Gibbs sampler [Geman and Geman, 1984]. To update the model pa-
rameters, the conditional a posteriori distribution P(6@ |y, x) for given observations and
latent field can be obtained by conditional MCMC sampling [Wang et al., 2017|. Both
the model parameters and the latent field are iteratively sampled by the two conditional

a posteriori distributions using a MCMC method.

In a first step, the a posteriori P(x |y, @) (also called Gibbs distribution) is sampled
parallel by a chromatic sampler [Wang et al., 2017|. Hereby, the local energy of the pixels

can be computed by
P(zj|yj, To;, 0z;) x exp| —[U(zj, xo;) +Ul(y; | 25, 0z;)]|, (6.10)

where the first component is the local energy (Gibbs energy) of the random field (Equation
and the latter part is given by the likelihood energy

1 _ 1

Secondly, the model parameters 8 = (u, 3, 3) are iteratively updated with the condi-

tional MCMC sampling process with the corresponding a posterior: distributions:

P(uly,x 5.8) « P(u) Ly |x,p %, ), (6.12)
PX|y,x,pu,3) x P(X) L(y|x,p, X, 3), and (6.13)
PBly,x,pn,X) o< P(B) L(y|x, p. %, 8), (6.14)

with the likelihood function given by L(y |, u, 2, 8) = HJEN P(y; | xo;; b, 3, B) (similar
to Equation for the statistical model). The implemented steps of the Gibbs sampler
and the parameter estimation are illustrated in the Figures and in Appendix
[Wang et al., 2017].

6.1.3 Extension of the Approach into Three Dimensions

In spatial Markov model-based image segmentation, interactions between pixels in the
latent field are included in a 2D lattice. The local interactions of a central pixel i, and
its eight neighboring pixels 0; are evaluated by calculating the local energy in terms of
its directional heterogeneity coefficients Sy—F5 in four independent directions (see Figure
. A small value of 8 indicates a noisy realization of the latent field with weakly
constrained pixel interaction in that particular direction. Large values of [ refer to a
latent field with smooth conditions where constraints between pixels are strong. For
positive values, neighboring pixels tend to be attracted and are encouraged to form the

same class, whereas negative values cause repulsion and prevent clustering along a certain
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direction. Anisotropic conditions result in high directional variation of (.

To include the fact that observations over sea ice can be essentially linked in both space
and time through the non-negligible drift velocity of the ice pack, the 2D neighboring sys-
tem needs to be extended by a third dimension. The implementation of purely spatial
correlations between pixels of 2D images can be complemented by also including temporal
and spatio-temporal interactions between volume pixels (voxels) in the 3D space. In anal-
ogy to the 8-connected spatial grid of pixels, a 3D realization accounts for the interactions
between the central voxel ¢ with its 26 neighboring voxels. Considering the fully spatio-
temporal context, a total of 13 independent coefficients Gy—12 are determined to allow
the parameterization of heterogeneity independently in all directions. The direction d of
the set of values ; can be defined in terms of an azimuthal angle ® € [0, 27| and polar
angle © € [0, 7] in a spherical coordinate system in 3D space (see Figure [6.2h). Figure
[6.3] illustrates the coefficients in form of cliques between the 27 voxels in an 26-connected
grid in a 3D neighboring system. Hereby, Sy—(3 and (3, account for purely spatial and
temporal interactions between voxels, and [5—315 represent correlations of voxels in both
space and time, respectively. The directions d of all ; in spherical coordinates (P, O)
and the corresponding type of constraint are summarized in Table [6.1] Assuming that
satellite data sets form a stack of consecutively collected observations of the same surface
area of the Earth, the 3D space is spanned by two spatial (z,y) and a temporal coordinate
z (see Figure [6.2p). Similar to the 2D case, the MRF energy of all neighboring voxels is
calculated accordingly and considered in the iterative sampling process in the Bayesian

inference framework.

4+ z (temporal)

y;(spatial) -

i x = cos(®D) sin(B)
/! y = sin(®) sin(B)
z z = cos(0)

(b) X

(a) x(spatial)

Figure 6.2: Coordinate system for spatio-temporal analysis of satellite images. (a) The spatial
coordinates (x,y) and the temporal coordinate z span the 3D space, where any
direction to a point at the unit sphere can be represented in spherical coordinates
(®,0). (b) Stack of satellite data represented as regularly sampled time series of

consecutive spatial observations of the same area.

For the most general case of anisotropic sea ice conditions, §4 are computed indepen-
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B; 4B B, Bs B, Bi11

i e B5 =HE— o Bm

Ba,/f

Pe
r

(a) (b) (c)

B1

Figure 6.3: Set of cliques of a central voxel (with the red dot in the centre) paired with one
of its neighboring voxels in a 27-connected grid. The correlation between voxels
is parametrized in terms of 13 directional coefficients By—B12. Without loss of
generality in case the third dimension is considered as a temporal coordinate. (a)
Bo—B3 account for purely spatial and (54 for purely temporal; (b) S5—F12 for the

spatio-temporal connections between voxels.

Table 6.1: Independent directions d of the heterogeneity coefficient By in terms of azimuthal
angle ® € [0,27] and polar angle © € [0, 7] and the corresponding spatial and/or
temporal constraints.

d| ¢ ) Constraint d ) S} Constraint

0 0 /2 spatial 7| w2 7 spatio-temporal
1| n/2 7/2 spatial 8 | m/2 0  spatio-temporal
2| w/4  w/2 spatial 9 | 3n/4 7Tm/4 spatio-temporal
3|3n/4 w/2 spatial 10 | 3n/4 7/4 spatio-temporal
4| N/D 0 temporal 11| n/4 7/4 spatio-temporal
5 0 3m/4 spatio-temporal || 12 | 7/4 7r/4 spatio-temporal
6 0 7/4  spatio-temporal

dently for each direction d. However, structures can be oriented along specific directions
at which neighboring voxels are attracted in the segmentation and are more likely to be-
long to the same class. At smaller scale for example, deformations can be governed by
patterns of wind speed and temperature fields and the segmentation of the satellite obser-
vations may be preferred in the direction of linear structures such as leads and pressure
ridges. When considering polar scale, observations usually cover sea ice at several SoD
— with each sub-region consisting of a different level of anisotropy and heterogeneity. In
case of the Arctic, the distribution of sea ice is complicated as it strongly depends on the
distribution of land masses, ocean currents, atmospheric circulation, and the remaining
sea ice of the previous season. Nevertheless, in the Antarctic sea, sea ice growth and melt
are influenced to a larger degree by the seasonality of solar radiation, resulting in mostly
a meridional expansion and reduction of sea ice from Antarctica towards lower latitudes.
Thus, the boundaries between different SoD may be a function of latitude and season, and

B values can be radially symmetric instead of directionally independent. This radial sym-
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metry could be captured in the algorithm by transforming Cartesian coordinates (z,y)
to Polar coordinates (r, ¢) while facilitating the segmentation by reducing the number of
implemented directions.

It is important to highlight that in case spatio-temporal data sets are analyzed, the
interpretability of the values of 8y can strongly differ in terms of the corresponding direc-
tion d. The physical meaning of the intensities depends both on whether a constraint is
purely spatial, temporal, or spatio-temporal, and on the spatial and temporal sampling
of the segmented data set. The resolution capability of the input features needs to be
put in context with the characteristic length scale of changes induced by dynamic and
thermodynamic processes. Only a finite number of samples are available in finite time
intervals, and the time scale of sea ice changes to occur needs to be set in causal relation
with the revisit time of satellite data collection. The temporal sampling — ranging from
sub-daily to monthly intervals — determines the pivotal processes which are the major
reason for reported changes of sea ice properties at an observed area. Calm conditions
generally favour thermodynamically-driven sea ice changes, leading to a continuous and
long-term transformation of sea ice. Also, in case sea ice is observed at sparse time inter-
vals, changes in properties due to continuous development of sea ice over longer periods
can outweigh the changes originating from dynamic processes. In contrast, high variation
between two consecutive measurements at daily revisit can be mainly associated with dy-
namic processes such as sea ice drift or the deformation of sea ice under rough conditions.
Therefore, the data set needs to be critically examined in terms of spatial and temporal
sampling, i.e. the choice of temporal composites as a stacks of spatial maps, in order to

understand the physical meaning of 3 values as directional smoothing constraints.

Verification of the 3D Approach Based on a Synthetic Example

The 3D segmentation approach is verified on the basis of a synthetic example. A 3D lattice
with 60x60x60 samples along the coordinates (z,y, z) is used to generate a synthetic
latent field. For each voxel in the 3D space, the function f(z,y,z) = sin(z-y-z) is
implemented for a definition range between 0 and 3 along each axis. The value range
of f € [—1,1] is separated into three discrete sub-ranges, where each voxel is labeled as
follows: I =0 for —0.7< f <0.7;l =1 for f < —0.7; 1 =2 for f >0.7. A total of four 3D
features are simulated as randomly sampled observations — which can be similar to those
assumed to be measured by a satellite — by applying multivariate Gaussian emission
functions (with different mean vectors and covariances) to the labeled 3D image. The
latent field and the corresponding simulated features are shown in figure [6.4h—d as slices
in the zy-plane for z =10, 20, 40, and 60, respectively. The generated latent field of
resulting patterns of labeled voxels is anisotropic, and the directionality of the boundaries
between classes varies strongly throughout the 3D image. Widely homogeneous regions

are located at smaller values of (z,y,z) and high spatial variability is given at larger
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values.
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Figure 6.4: Synthetic data set to verify the 3D segmentation approach. The latent field com-
prises three classes from which a total of four features are generated by applying
Gaussian emission functions to the labeled data. (a)—(d) Slices of the latent field
and the features are visualized in the zy-plane for z =10, 20, 40, and 60, respec-
tively.

The four simulated feature fields are segmented into 3 classes by carrying out a total
number of 200 iterations. The evolution of the spatial model parameters 5y—312 and the
class-specific Pearson correlation coefficients at each iteration step are shown in Figure
[6.5 Figure [6.6] illustrates the initial field and the corresponding estimated latent field
together with its uncertainty in terms of entropy in the zy-plane for z =10, 20, 40 and
60, respectively.

The approach yields satisfying estimates for both the model parameters and the seg-
mented latent field. The algorithm enables to account for the noise level contained in
the features by introducing the 3D smoothness constraints ;. The main structure of the

underlying hidden pattern of homogeneous sub-regions could be extracted based on the
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Figure 6.5: Segmentation diagnostics of the spatial and statistical model parameters for a total
of 200 iterations. (a) Evolution of the directional heterogeneity coefficient [Go—
P12 with an initial value of 1 (slight attraction) and the average jump length per
iteration of 0.02; (b) Class-specific Pearson correlation coefficient computed from
the covariance matrices after initial uniform distribution.

relationship between the input features. Since the pattern in the synthetic example does
not represent a structured medium, the changing anisotropy throughout the 3D space
is reflected by the high variation of values of §. Even though no clear structure in one
particular direction can be observed in the generated synthetic pattern, the algorithm
still manages to almost completely retrieve the original latent field, except for the finest

structures pattern (see Figure at the top-right corner).

6.2 Discrimination between Sea Ice and Closed Water
using Sentinel-1 SAR data

Several methods have been developed to detect melt ponds based on air- and spaceborne
observations among different scales using microwave radiometry, radar and optical data
|Zege et al., 2015| Tanaka et al., 2016,|Li et al., 2017|. This study presents a probabilistic
approach to discriminate sea ice from surface water using Sentinel-1 A /B SAR images,
which are available on a daily basis at medium resolution (~ 40 m) covering the entire polar
area. The intensity of radar backscattering is sensitive to the surface roughness. Surface
roughness for closed water and sea ice is significantly smaller as compared to the mainly
wind-forced open ocean, which enables to classify surface types based on its intrinsic
surface conditions. The goal is to segment SAR images into a number of separable classes
using a two-step method, combining an EM step with Bayesian inference modelling. The
approach considers the angular variations and the spatial correlations of the SAR images.
This work focuses on the methodology and presents preliminary estimates of surface water
fraction based on annual images at a selected area in the Northern Barents Sea from 1
September 2019 to 31 August 2020.
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Figure 6.6: Comparison of the initial latent field and the estimated field including uncertainty
in terms of entropy after 3D segmentation. (a)—(d) Slices of the latent field, seg-
mented field, and entropy are visualized in the zy-plane for z =10, 20, 40, and 60,
respectively. The segmentation approach is capable of retrieving the initial pattern
of labels, except for the fine structure at the top-right corner at the slice z = 60.

The Sentinel-1 mission — developed by ESA — was launched on April 2014, and it

is composed of two polar-orbiting satellites, Sentinel-1A and Sentinel-1B, providing dual

polarisation capability, very short revisit times and rapid product delivery |[Nagler et al.,
2015]. The SAR operates at C-band (5.405 GHz), and data are collected in ascending

and descending orbits independently of daylight, under all weather conditions, with an
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incidence angle ranging from 18.3° to 46.8 °. Data over sea and polar areas are acquired in
a 12 or 6 day repeat cycle using one or both satellites, respectively, with a total coverage
frequency of less than 1 day in the Arctic. This work is based on L1 Ground Range De-
tected HH-polarized observations in Extra Wide swath mode consisting of a 400 km swath
at 20x40m spatial resolution. It uses images of both the orthorectified backscattering

coefficient 7o and the corresponding incidence angles. Data can be downloaded from any

Copernicus service, e.g. at Sentinel Hub, https://www.sentinel-hub.com/, Sinergise
Ltd.
The study area is given in Figure and it encompasses a small area (10x20km?)

located in the Northern Barents Sea, which is considered a warming hotspots in the Arctic

[Lind et al., 2018|. The region passes an entire annual cycle of freeze up, melting, and

ice-free ocean and consists exclusively of FYT during the Arctic winter months. Figure[6.§]
shows an example of 7y image in decibels (left) including its distribution and cumulative
sum (right), acquired on 20 June 2020 at an incidence angle of 37.4°. The image indicates

small low-valued patches which can be attributed to melt ponds.

60°W
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30°W [~3 g1°N
g0o°N
G0y 79°N

3 60°E  20°F 25°E 30°E 35°E 40°E

Figure 6.7: Study area consisting of ~ 10 x 20 km? located in the northern Barents Sea between
Svalbard and Franz Josef Land.
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Figure 6.8: Sentinel-1 backscatter coefficient vy acquired on 20 June 2020, at an incidence angle
of 37.4°. (a) distribution and cumulative sum of ~p; (b) spatial distribution of 7.

The methodology consists of three main steps, a preceding angular normalization of
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the SAR images, an estimation of the number of significant classes from information
criteria obtained through EM, and the segmentation of the SAR images to extract the

surface water fraction.

6.2.1 Angular Variation of SAR backscattering coefficient

SAR surface signatures of Arctic sea ice depend on the incidence angle [Mahmud et al.,
2018, Lohse et al., 2020]. The intensity of v, is smaller for observations at higher angles,
and for smooth surfaces such as calm waters. The angular normalization of medium
resolution SAR images has been considered in different approaches to detect sea ice types
[Mékynen and Karvonen, 2017, Komarov and Buehner, 2019, Cristea et al., 2020|, but it
remains challenging because of high sea ice drift velocities reaching up to several kilometers
per day. The angular dependence of the backscattering coefficient is different for open
water (OW) and sea ice, and it differs among several sea ice types such as FYI or MYL
In this work, a single slope correction is determined from observations along the period
when sea ice was present. A first examination showed that the angular dependence among
the entire range of incidence angles of the Sentinel-1 images (18-47 °) is non-linear. Figure
[6.9]shows the angular dependence of v, for two consecutive observations at 43.1° and 31.3°
on 5 July 2020. The highest deviations are given for observations at low incidence angles.
Images at incidence angles < 30 ° were discarded beforehand to be able to linearly correct
for the angular dependence of the backscattering coefficient. Sentinel-1 provides images at
at least daily coverage, but in many days it observes even multiple images per day (here
at around 50 times per year). The angular difference in the backscattering coefficient
was determined for each of the given multiple observations per day and a typical slope

correction (A7%y/AB) was obtained as follows

N
Ayy 1 F0(O2) — Fo(©
Yo _ _E :’70( 2) — o( 1)' (6.15)
ABG N O, — 6,
This has the advantage that the surface structure of the sea ice has changed only
marginally during two consecutive observations, and the main differences in the backscat-

tering coefficient are caused by its angular dependence. All images were corrected accord-

ing to its difference to the mean angle (~ 33°) within the observed period.

6.2.2 Estimation of the Number of Significant Classes

EM is an unsupervised clustering method initially proposed by [Dempster et al., 1977|
and is based on an iterative process which alternates between an expectation (E) step,
and a maximization (M) step. It has been already applied to segment sea ice into areas
of different sea ice types using multi-angular Sentinel-1 SAR images |[Hansch et al., 2020].

The likelihood of a GMM under variation of the number of classes and their expected
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Figure 6.9: Angular dependence of the backscattering coefficient ~y of two consecutive obser-
vations on 5 July 2020. (a) at 43.1° and (b) at an incidence angle of 31.3°.

weights is maximized for the respective distributions of 79. The best GMM with the opti-
mal number of classes and their corresponding weights resulting in the largest likelihood
is determined using AIC and BIC [Akaike, 1974, Schwarz et al., 197§].

6.2.3 Bayesian Segmentation of SAR Images

The weight and the mean value of the class belonging to the sub-distribution of the
GMM with the lowest intensities of 7y are extracted and compared to an approximated
intensity threshold. The threshold is used to assess whether the corresponding class
contains a sufficient amount of low-intense values which can be attributed to surface
water, and it is significantly large to form a separate class in the segmentation step. The
Bayesian unsupervised learning algorithm was used to segment the SAR images, which
are expected to contain significant amount of surface water, according to the predefined
number of classes. The accuracy can be determined from the misclassification rate of the
final segmentation step.

Figure demonstrates the EM step applied to the angular-normalized SAR image
acquired on 15 May 2020. BIC and AIC scores are determined after 100 iterations while
fitting the GMM to the data using 1 to 5 classes, respectively. 3 classes result in the
best fit with a minimum score for both criteria. The class-specific distributions of 7, are
separable, and the weight corresponding to the lowest average value can be considered
significant to be discriminable in the segmentation. Figure [6.11] shows the latent field
result after segmentation with 3 classes, where every pixel indicates the class with the
highest class membership probability. Patches of dark blue color belong to closed water
and the remaining area is the concentration of intact sea ice.

In Figure [6.12] the segmentation results are compared to Sentinel-2 images in the
visible spectrum. The class referred to ‘closed water’ can be associated with leads between
and melt ponds on top of ice floes. The estimated SIC is compared to a reference SIC
product OSI-SAF OSI-401-b in Figure [6.13] in the period from 1 September 2019 to 31
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Figure 6.10: EM result after 100 iterations on 15 May 2020. (a) Distribution of vy including
the weights of the best fit; (b) AIC and BIC scores with its minimum value
obtained for an optimal number of 3 classes; (c) class-specific probabilities as a

function of ~y.
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Figure 6.11: Segmentation result using 3 classes to discriminate surface water fraction from
sea ice types based on a SAR image acquired on 20 June 2020.

August 31 2020. The reference product is known to underestimate SIC for thin ice and

due the presence of melt-pond water [Lavergne et al., 2019]. This is in agreement with

the estimated SIC showing higher values in the beginning of the freeze-up period, and

during melting.
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Figure 6.12: Comparison between the class results and Sentinel-2 images on two cloud-free
days. The segmented class ‘closed water’ in (a) and (c) resembles the leads (dark
black areas) and melt ponds (bright blue spots on the ice floes) which are visible

in the optical images (b) and (d).
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Figure 6.13: Estimated concentration of intact sea ice in comparison to OSI-SAF SIC from
September 1, 2019 to August 31, 2020.
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6.3 Spatial Segmentation of Arctic Sea Ice Using SMOS
Data

The proposed unsupervised machine learning approach based on a Bayesian inference
framework is applied to multi-incidence angle Tg data provided by the SMOS mission
|[Herbert et al., 2021a]. Hereby, maps of polarization ratio at multi-incidence angles are
obtained from Tp observations and OSI-401-b SIC maps, and are used to segment the
Arctic ocean into sub-regions based on different sea ice properties. The temporal evolution
of these patterns can be analyzed in terms of cluster separability and correlation of the

input features to investigate the corresponding sea ice signatures.

6.3.1 Input Feature Selection

The SMOS mission was originally designed to provide global and frequent maps of soil
moisture and ocean salinity, but measurements also showed sensitivity to different sea ice
properties (thin SIT and SIC). The satellite acquires multi-incidence angle (0-60°) full
polarimetric Ty in ascending (6 a.m. local time) and descending (6 p.m. local time) sun-
synchronous orbit |[Corbella et al., 2005]. The retrograde polar orbit (98.42° inclination
and 758 km altitude) limits the observations to a maximum latitude of ~ 84 °, resulting
in missing values around the poles (‘polar hole’). The input data set for this study is
given by the SMOS Level 1B data product consisting of the Fourier components of Tpg
in the antenna polarisation reference frame. The strong discontinuities in Tg between
land and sea observations lead to oscillations after image reconstruction at coastal areas
(Gibbs phenomenon). These contaminated zones, as well as continental land mass, were
removed in the data product. Ascending and descending SMOS observations show only
small differences in Tg. Therefore, T of both orbits are averaged. A daily multi-angular
data set with 2° sampling is created similar to |Gabarro et al., 2016] with Tp provided
in horizontal and vertical polarizations.

The study period includes the late summer melt, and the first half of the freeze up
period from 1 September to 31 December 2016. A 5-day composite of Ty is considered
to guarantee full coverage of the Arctic ocean. Pixels of Ty images either consist of sea
ice with (0 < SIC < 1), or purely consist of OW (SIT = 0). At frequencies < 117 GHz,
Planck’s equation can be simplified using the Rayleigh-Jeans approximation, and T} is
the product of the ice emissivity (€) and the physical temperature (T pp,s) with an error
<1% |Ulaby et al., 1986|. Tppys varies depending on the atmospheric conditions among
the Arctic, and it is non-negligible in the lower microwave spectrum. Therefore, input
data for segmentation are selected with the objective to correct for SIC, and to reduce
the effect of spatial and temporal variability of T p,s on Tg. In addition, direct inference
of specific sea ice properties, particularly at the ocean-ice-boundary, is ambiguous by the
fact that Ty can be sensitive to both SIC and thin SIT, and different ice types can be
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mixed in low-resolution SMOS images.

In a first step, T Bspy Was determined from the observed Ty, SIC, and the freezing point

of seawater (Tp,,,,) (Equation 6.16).
T = aTyy, + (1 — ) Tpyy, with a€[0,1] (6.16)

Hereby, OSI-401-b SIC maps are provided in a polar stereographic projection grid at
10-km resolution and are regridded and upscaled to SMOS resolution using k-d-tree re-
sampling — a fast nearest-neighbour interpolation method |Bentley, 1975|. Images are
resampled by recursively splitting the grid into subsets to evaluate the nearest neighbors
within a defined radius of influence according to the resolution of the measurements.
TBow, are determined at different incidence angles and polarizations by evaluating the
coldest values obtained for observations with low SIC located at latitudes above 75°N.
SIC is often underestimated with respect to SIT, resulting in an overestimation of Tp,
which particularly influences the segmentation of areas covered by thin ice along sea ice
edges. Therefore, a SIC threshold of @ = 0.5 was chosen to provide an OW mask, and to

exclude observations classified with low SIC, which limits the overestimation error.

In a second step, to account for variations in T pp,,, the PR is computed as the normalized
difference between vertically and horizontally polarized values (T Bisivy and Tpg, H)) as

follows

T =T € —€
4B B(sr1,m) _ (SI,V) (SI,H)7 with TB(SI) = esn) Tphys; (6.17)

PR =
TB(SI,V) + TB(S[,H) €(s1,v) T €(s1,1)

which leads to an expression of their emissivities that is independent of T py,s, having the
advantage of enhancing the sensitivity to the actual sea ice composition. Tpg, ., is higher
than Tp g, ., with larger differences for increasing incidence angles. Also, the emissivity
depends on the optical path length through sea ice, and PR increases for observations at

higher incidence angles.

Figure indicates the relation between PR and SIT obtained from vertically and
horizontally-polarized Ty, as a function of incidence angle and sea ice type, determined
using a RTM at 1.4 GHz. The model assumes a horizontally-layered column of sea ice
above water (without snow on top) using empirically determined values for Arctic sea ice
conditions [Menashi et al., 1993|. PR‘s obtained for high incidence angles show sufficient
sensitivity range over ice-covered area with values reaching from 0 (thick ice, saturation) to
~ 0.4 (thin ice) and its distribution depends on the observed period. Selecting PR values
for high angles increases the content of independent information on the sea ice, whereas
values at lower angles are more likely to contain redundant information, which may lead
to segmentation biases. The aim was to select an appropriate set of multi-incidence angle

observations as input features for segmentation. PR‘s obtained for high incidence angles
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show sufficient sensitivity range over ice-covered area with values reaching from 0 (thick
ice, saturation) to ~ 0.4 (thin ice, and its distribution depends on the observed period).
Below 30°, PR almost does not vary with SI'T, while there is a clear dependence between
SIT and PR for higher angles. Changing the sea ice type does not lead to significant
changes in PR. Selecting PR values for high angles increases the content of independent
information about sea ice, whereas values at lower angles are more likely to contain
redundant information, which may lead to segmentation biases. A total of three high
angles with sufficient distance (here 8 °) covers a large range of PR without much overlap
when considering a sensitivity up to ~0.5m of SMOS. The observations at 40°, 48° and

56 ° were selected as relevant input features for segmentation.
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Figure 6.14: Relationship between PR and SIT as a function of incidence angle and sea ice type
— FYT and MYI, using a RTM for emissions operating at L-band and empirically
determined sea ice properties.

Prior to segmentation, the number of classes was predefined regarding the distribution
of PR values. During late summer melt, only two significant classes are expected, com-
prising the remaining thick MYT and regions of thinner ice. With the start of the freeze-up
period after mid-September, newly-formed sea ice and hence high PR values become more
abundant to be captured in the segmentation. The choice of a new significant class is
further approved by an evaluation of cluster separability subsequent to segmentation.

The choice of the appropriate number of classes is justified from the distribution of
input features and the class separability. Figure [6.15] shows the marginal distribution of
the PR at an incidence angle of 56° at 4 particular dates including the end of summer
melt and the early freeze-up. PR distributions are shown for segmentation with 2 and
3 classes, respectively. During late summer melt until sea ice minimum (September 10,
2016), the choice of two classes was expected from the shape of the PR distribution. With
the beginning of the freeze-up period, higher PR values become more frequent, and an
additional class is expected. Class separability is indicated by the Geometric Separability
Index (GSI) [Thornton, 1998|, and was obtained subsequent to segmentation. As of the
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segmentation step of 16 September 2016, the segmentation with a selection of 3 classes

leads to a higher separability.
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Figure 6.15:

Distribution of PR values at 56° incidence angle for late summer melt and early
freeze up from 1 September to 31 December 2016, regarding 5-day intervals ((a)-
(d)) and segmentation with 2 classes (left-hand side) and 3 classes (right-hand
side), respectively. Class mean values (red vertical lines) and global separability
(GSI) validate the choice of the adequate number of separable classes.

6.3.2 Segmentation Results

Results of the Bayesian segmentation can be presented regarding the obtained patterns

in physical space, and the location and orientation of clusters in feature space.

The

information-theoretic measure of entropy H is used to provide model uncertainty. It was

initially defined by [Shannon, 1948| in the context of communication and since then has
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been adapted to geosciences [Goodchild et al., 1994, Wellmann and Regenauer-Lieb, 2012].

It is used to distinguish well-classified from uncertain regions and is defined by

L

H(z;) = — ZP(l’i)l log (p(xi)1), (6.18)

=1

where p(z;); denotes the probability in the physical space of pixel i to belong to class . H
can reach values close to zero (pixel clearly assigned to one class) and H,,q, = L[1—log (L)]

(uniform distribution for L classes).

Latent Field in Physical Space

Figure [6.16) shows and example of one of the PR input features at an incidence angle of
56 °, the resulting latent field and the model uncertainty quantified by information entropy,
respectively. The latent field indicates spatial patterns, which are acquired from the final
iteration of the segmentation by assigning the class with highest probability to every pixel.
Pixels with the probability to belong to two or more clusters have larger entropy and reflect
therefore uncertain pixels. These pixels comprise regions at the boundary between classes
and pixels, which are generally difficult to assign to any cluster. In the latter case, these
pixels may point out sub-regions with different sea ice properties (anomalies), which are

characterized with high model uncertainty.
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Figure 6.16: Segmentation result between 24-28 October 2016. (a) PR for an incidence angle
of 56 °; (b) Latent field result for three classes; (c) Model uncertainty represented
by information entropy based on label probabilities.

The segmented spatial patterns are compared to those of the SMOS L3 SIT product,
provided by the Alfred Wegener Institute for Polar and Marine Research (AWT) for Polar
and Marine Research [Tian-Kunze et al., 2014]. Figure visualizes the latent field re-
sult in comparison to SIT-SMOS maps at the segmentation step intervals 19-23 October,

8-12 November, and 23-27 December 2016. SIT mean values were computed according

to the indicated spatial classes in each segmentation step, and averaged values are deter-
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Table 6.2: Summary of the temporal evolution of classes, evaluated within the freeze-up period
from 15 October to 31 December 2016. Comparison of PR cluster mean values and
StDev at 56° incidence angle, including GSI, with the SIT-SMOS product.

Class Label PR mean PR StDev GSI SIT-SMOS |m]
0 Thick ice 0.061+0.005 0.0144+0.004 0.95£0.02 1.2440.010
1 Transition zone | 0.1124+0.012 0.028+0.006 0.83 £0.04 0.54+£0.24
2 New thin ice 0.187£0.03 0.048+0.009 0.83£0.08 0.13£0.07

mined during freeze up from 15 October to 31 December 2016. The three classes can be
associated to different ice thickness (in meters) of 1.24 +0.10, 0.54 £ 0.24 and 0.13 £ 0.07,
respectively. The classes are labeled as (0 = thick ice up to sensor saturation), (1 =
transition zone with higher thickness variability, containing various ice types), and (2 =

newly-formed thin ice).

Table summarizes the obtained class mean values and standard deviations, av-
eraged over the freeze-up period from 15 October to 31 December 2016. At each seg-
mentation step interval, SIT mean values for each class are calculated according to the
spatial patterns of the latent field result. The obtained values at each segmentation step
are then averaged over the freeze-up. The classes 0 and 2 show less variation and form
stable clusters along the entire period, whereas class 1 contains higher variation. All three

classes show sufficient separability along the entire period.

Clusters in Features Space

Figure shows the distribution of the multi-incidence angle PR and the obtained
clusters in the feature space. In Figure [6.18h, the distribution of the input features are
presented for each incidence angle, showing an increasing dynamic range of PR for higher
incidence angle. The means of the obtained clusters (Figure ) are generally increasing
for higher incidence angles and show a different slope within the same class. The multivari-
ate Gaussian distributions in marginal features space between 48 ° and 56 ° are illustrated
in Figure [6.18c. The correlation between the input features is generally higher for thick
ice, resulting in a well-determined cluster with high intra-cluster cohesion. In contrast,
newly-formed thinner ice shows less correlation between input features. This enables dis-
crimination of classes with similar surface characteristics, to which multi-incidence angle
observations show a different signature. However, sea ice is a complex medium and sea ice
growth can occur under rougher or calmer ocean conditions, causing newly-formed ice to
be heterogeneous. These differences in the origin of sea ice formation might be captured
in the input features, indicated by a broader distribution in marginal features space. On

the contrary, the structures of multi-year thick ice appear more homogeneous.
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Figure 6.17: Comparison of the obtained latent field result with SIT maps of the products SIT-
SMOS and SIT-CS2SMOS, averaged over the corresponding segmentation period
(5-day interval). Class 0 predominately contains consolidated thick ice beyond
the sensitivity range of L-band >0.6m (sensor saturation), class 1 refers to a
transition zone of multiple thickness and types, and class 2 can be attributed to
newly-formed thin ice.

6.3.3 Cluster Analysis

Sea ice properties, to which SMOS multi-incidence Tp are sensitive to, are dissimilar

between classes and show similarities within the same class. Clusters in feature space can
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Figure 6.18: Distribution of PR and segmentation result in feature space for observations be-
tween 24-28 October 2016. (a) Incidence-angle specific distribution of PR. (b)
Variation of PR cluster means with incidence angle. (c) Distribution of PR in
marginal feature space between the incidence angles 48 and 56° and cluster-
specific correlation.

be investigated regarding their location and orientation by analyzing the model parameters

w1 and 3. The correlation coefficient p quantifies the intra-cluster cohesion and can be

used to distinguish between informative and redundant observations [Benesty et al., 2009).

It is derived for each cluster from X in 2D marginal space between features j and k

€ {40°,48°,56°}

¥ =

i Lk | _
Yki  Dkk .

2
o; 0; Okp;
;o IO (6.19)
Ok 05 Pkj Ok I
where o, correspond to the standard deviations with respect to feature j, k and p;r = px;
denote the correlation coefficients between two features, given by
Y, 3
pip = L = 2k —1<pp <1 (6.20)

, 1/2a1/2°
00
0k ij 2k

The Geometric Separability Index (GSI) [Thornton, 1998] is a distance-based measure

to analyze inter-cluster separability and is widely used for cluster interpretation |Greene,
2001, Mthembu and Marwala, 2008]. GSI compares all N data points with their nearest
neighbor regarding their class membership and is defined by

N .
(f(x;) + f(x}) + 1) mod 2 ) 1, ifz=u

GSI(f) = th ) = . (621

g ; N with () 0, if) # (020

where f is a binary target function, and «} is the nearest neighbor of z; in the feature

space of pixel i. GSI€[0.5,1] and for values reaching its lower or upper limit, clusters
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are completely entangled or ideally separable, respectively. In this study, both global and
cluster-specific separability are estimated. GSI is computed based on Euclidean distance
for all data points, and cluster-specific separability is obtained based on Mahalanobis
distances (w;—u) 37" (x;— )T, considering the data points and covariances of the specific
cluster [Mahalanobis, 1936]. GSI is investigated during the study period to evaluate the
dynamics of the underlying sea ice properties, and the stability of the segmentation.

Arctic sea ice is segmented independently using 5-day composites into classes during
the periods of late summer melt and early freeze up from 1 September to 31 December
2016. The latent field in physical space, and the corresponding multivariate Gaussian dis-
tributions of data points in feature space are presented as an example for the segmentation
step interval 24-28 October 2016 (sections [6.3.2] and [6.3.2]). The temporal evolution of
the clusters is evaluated in section [6.3.3] Class membership and separability are assessed
in section to indicate cluster stability and performance of the algorithm.

Temporal evolution of clusters

Figure [6.19 shows the temporal evolution of cluster mean values and standard deviations
(StDev) in marginal feature space for = 56 °, and the distribution of PR and the cor-
responding class membership at three particular dates. The late summer melt comprises
two significant classes until annual SIE reaches its minimum (September 6, 2016). The
evolution of clusters is compared to the mean Arctic temperature, computed from daily
2m temperature ERAD reanalysis data for latitudes above 75°N and downloaded from
ECMWF |C3S, 2017]. Once Arctic temperatures drop long enough below the freezing
point of saline sea water (~-1.8°C') to allow sufficient heat transfer towards the atmo-
sphere, new sea ice starts to form. Hence, a third class can be determined, which is
represented by a significant number of PR values above 0.15. The Thick ice class is
widely stable over the entire study period. Two phenomena can be observed regarding
new thin ice. Firstly, its mean value decreases and the class gradually closes up with that
of the transition zone. Secondly, an overlap between clusters can be observed in relation
to strong positive temperature anomalies in the Arctic. As sea ice gets thicker during
freeze up, the relative amount of newly-formed ice decreases in comparison to the total
SIE, and becomes less relevant in the segmentation.

Figure shows the evolution of the number of pixels per class membership for
filtered sea ice (SIC >0.5) in comparison to the total. SIE comprises sea ice cover for
SIC > 0.15 and daily data was downloaded from the data archive of the NSIDC |[NSIDC,
2020]. Deviations and offsets between SIE and the total pixel counts are due to missing
values within the ‘polar hole’ and contaminated zones at the sea-land boundary. The
increase of the total number of pixels is equivalent to a monthly growth rate in SIE of
about 2.5x10°%km?. The number of pixels consisting of newly-formed ice is broadly stable,

whereas the number pixels classified as transition zone are slightly increasing during freeze
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Figure 6.19: Temporal evolution of clusters. (a) Cluster mean values and StDevs at 56° and
mean Arctic temperature for latitudes > 75°N. [b] PR distribution with respect
to class membership at three particular dates (4-8 September, 24-28 October and

24-28 December 2016).

up. As sea ice grows, thick sea ice becomes more abundant, leading to a log-normal-
shaped PR distribution with increasing expected value (Figure [6.19b3). Although thin
ice becomes less representative in the data during freeze up, the algorithm is still capable

of separating three classes as long as sea ice formation continues.

Separability of clusters

Global and cluster-specific separability are shown in Figure [6.20p. The solid lines show
the GSI for a choice of two classes in late summer melt and three classes during freeze
up. High global separability is achieved during the entire study period with values around
0.9. The cluster-specific GSI indicates separable classes with mean values of 0.95, 0.83
and 0.83 for thick ice, transition zone and new sea ice, respectively. During the freeze
up, thin ice starts to overlap with the transition zone and a threshold of minimum GSI
needs to be defined to specify the appropriate number of classes for each segmentation
step. For comparison, GSI is shown for the end of the summer melt for a segmentation
with three classes (dashed lines). In this case, classes highly overlap and the choice of two

initial clusters from the beginning of the study period leads to higher separability.
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Figure 6.20: (a) Temporal evolution of class membership and SIE, with indicated sea ice mini-
mum and SIC. (b) Global and cluster-specific GSI during the observation period,
determined from nearest-neighbor evaluation using Euclidean and Mahanalobis

distances, respectively.

6.4 Spatio-temporal Segmentation of Sea Ice using SMOS
and AMSR2 Data

The Bayesian segmentation approach was extended to three dimensions in order to be
able to analyze the joint effect of data sets from multiple sources in a complete spatio-
temporal context (Section . Given the dynamic nature of sea ice, the algorithm is
able to take into account relevant temporal and spatial correlations between consecutive
observations, rather than segmenting spatial images of a temporal stack individually.

In this chapter, channels of SMOS and AMSR2 Tpg data are combined to investigate
the information contained in the multi-frequency observations of a CIMR-equivalent set of
input features. The aim is to divide the Arctic region into relevant classes and compare the
resulting spatio-temporal patterns for the common operational sea ice products SoD, SIT
and SIC. Clusters are analyzed regarding their Tp mean values and intra-class cohesion
in terms of correlation to understand the individual and combined sensitivity of input
features to sea ice properties and related processes. The formation of classes during the
freezing and melting period of sea ice is evaluated from the temporal evolution of class
membership of a representative year. Class stability over time is assessed using several

years of data to ensure that classes are significant in relation to their annual replicate
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period. Since the algorithm is probabilistic, the class probabilities may contain relevant
information for quantifying the SIT distribution for each voxel in space and time, which
is of great importance for a more accurate prediction of SIT changes.

This section is structured as follows: The selection of the multi-frequency SMOS
and AMSR2 Tp observations is explained in Section Section [6.4.2] contains the
segmentation results with the classes in feature space and the latent field patterns over
time in physical space as well as the comparison with sea ice products. The analysis of the

temporal evolution of classes and their physical interpretation in terms sea ice parameters
is presented in Section [6.4.3]

6.4.1 Input Feature Selection

The data set for segmentation comprises the multi-frequency observations from AMSR2
and SMOS. The AMSR2 data are selected from the product ‘AMSR-E/AMSR2 Unified
L3 Daily 25km Brightness Temperatures and Sea Ice Concentration’ provided by the
NSIDC [Markus et al., 2018|. Tz maps contain the full orbit averages at the six frequencies
6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz, projected on a 25-km polar Stereographic grid
north provided with a total temporal coverage from July 2012 to present. Regarding
SMOS low-frequency microwave observations at 1.4 GHz, measurements between 52.5—
57.5° are averaged to obtain Tp maps at an incidence angle of 55°, similar to CIMR
and AMSR2. As a remark, since SMAP operates at a fixed incidence angle of 40°, it
is not considered as relevant input feature. Figure shows the relation between Tp
at vertical and horizontal polarization, and incidence angle for all selected frequencies,
determined based on a RTM with an estimated SIT of 10 cm [Menashi et al., 1993|. Figure
6.21b indicates the relation between vertically polarized Tz and thin SIT up to 30 cm for
an incidence angle of 55°. During the process of input features selection, preliminary
segmentation revealed that PR values — even if the effects of the physical temperature
of the sea ice are reduced — show high variability at low-concentrated areas. Also, both
the observations at horizontal polarization and the first Stokes parameter do not provide
sufficient information to identify old ice as a separate class along the freeze-up and are
therefore not considered for segmentation. Observations at 23.8 GHz showed the highest
redundancy among the potential set of input features.

The input features for segmentation consist of weekly maps of vertically polarized Tz
observations at 1.4, 6.9, 10.7, 18.7, and 36.5 GHz, at an incidence angle of 55°, for a
total period between July 2012 to December 2019. Prior to segmentation, the SIC images
are applied to all Tz maps to mask out areas of purely OW. The number of classes for
segmentation was selected so that they could be associated with superordinate categories
of sea ice parameters that showed sufficient differences between classes and similarities
within classes when verified with SoD, SIT and SIC, while achieving a good degree of
temporal stability.
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Figure 6.21: Relationship between SIT and Tp observations at different incidence angle, po-
larizations and frequency based on a RTM. (a) Tp at vertical (dashed line) and
horizontal (solid line) polarization as a function of incidence angle and for mul-
tiple frequencies for SIT =10cm. (b) Tp as a function of thin SIT for multiple

frequencies for FYT (solid line) and MYT (dashed line) ice.

The Kernel Density Estimation (KDE) charts of the input feature distributions in
marginal features space are given in Figure — consisting of the feature-specific den-
sity functions in the diagonal, the scatter plots representing the distributed data space
between features in the upper right, and the qualitative density plots between features
in the lower left. The highest correlation is given between observations at 6 and 10 GHz.
These are considered the most redundant features. Observations at the lower microwave
spectrum < 15 GHz contain ambiguous information about sea ice, making it difficult to
distinguish low-concentrated areas from regions of thin sea ice. Also, most of the data
points are oriented along one linear-structured cluster with most of them located at the

high-frequency ends.

If at least one higher frequency channel is considered, the distribution in marginal
feature space opens up resembling a ‘boomerang’ shape, where a second cluster can be
clearly identified. This is due to the fact that at the higher microwave spectrum the ob-
served emissivitiy is influenced by surface scattering and volume scattering effects within
the sea ice column. In addition, the penetration depth is already significantly lower than

10 cm. Thus, values oriented at the more diagonal branch represent data points of pixels

May 29, 2022



119 6.4. Spatio-temporal Segmentation of Sea Ice using SMOS and AMSR2 Data

with partial SIC, and those at the steeper second cluster represent sea ice at 100 % SIC
encompassing different ice types. The orientation of the second branch is tilted towards
lower values, because at higher frequencies the emitted signal is more attenuated due to

scattering.
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Figure 6.22: Kernel density chart of the input features consisting of the vertically polarized Tpg
observations at 1.4, 6.9, 10.7, 18.7, 36.5 GHz after applying an OW mask. The
relationship between features is represented in terms of feature-specific density
functions (diagonal elements), simple scatter plots of data points (upper right
elements) and qualitative density plots (lower left elements). The distribution of
data points between 18.7 and 36.5 GHz (element highlighted in red) is commonly
used for evaluating SIC, where the red cross indicates the approximate position of
values of OW and values along the red line between the points A and B correspond

to SIC =100 % with different sea ice types.

Current methods to provide SIC are obtained using passive microwave observations
based on the NT2 algorithm or the Bootstrap algorithm [Cavalieri et al., 1984} Comiso,
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1995, Cavalieri et al., 1997 |Markus and Cavalieri, 2000,|/Comiso and Nishio, 2008, Markus
and Cavalieri, 2009]. The Bootstrap algorithm mostly evaluates Tz observations at 18 and
37 GHz (see highlighted distribution in Figure and determines which data points are
associated to OW (values already masked prior to selection), SIC of 100 % with different
ice types (red line), and the values in between corresponding to partial SIC. To obtain
SIC, the scatter plot is evaluated by interpolating the distributions between two tie points
(the center points of classes corresponding to OW and sea ice with SIC of 100 %), which
are continuously changing due the sensitivity of observations to physical temperature of

sea ice.

6.4.2 Segmentation Results

The Arctic region is segmented into 6 classes based on input features with a temporal
resolution of two weeks covering a full year from 1 September 2016 to 30 September 2017.
The segmented classes can be visualized in terms of the evolution of the latent field for
each temporal slice in physical space, and the location (mean values) and orientation
(covariances) of the clusters of data points in feature space. Temporal evolution of classes
can be analyzed by looking at their periods of occurrence, where class membership is
represented by the amount of voxels. Over the course of a year, classes grow or melt
horizontally as they take area from or loose area to OW, or they may change to another
class due to changes in thermal conditions. Two transition scenarios can be distinguished,
a new class can emerge or an existing class can increase in terms of its class membership.
The emergence of a new class is determined by a temporal onset, whereas two existing
classes can merge gradually into one another.

The spatial representation of classes is presented in Figure for 28-day intervals
along the entire segmentation period. The top three rows contain the images associated
with the freeze-up period between mid-September 2016 to mid-March 2017, and the bot-
tom two rows show those along the summer melt from May to September 2017. First,
the class labels are randomly assigned during segmentation and then classes are relabeled
according to its ascending mean values of the SMOS input feature, i.e. label 0 corresponds
to the class with the lowest and label 5 to the class with the highest T'g values obtained
at 1.4 GHz.

Figure shows the T'5 observations in the marginal feature space between 18.7 and
36.5 GHz, which is a relevant configuration for common SIC retrieval algorithms (high-
lighted in Figure . The obtained class means are indicated by red numbers and the
covariances by ellipses representing the corresponding 2D Gaussian distributions. Class 0
includes the data points near OW and represents areas of low SIC and predominantly thin
ice. Classes 3-5 are situated on the red line corresponding to a SIC ~ 100 % and represent
different types of sea ice. Hereby, Class 3 covers areas with predominately younger sea

ice, and Class 5 refers to older ice with more attenuated emissivity at higher microwave

May 29, 2022



121

6.4. Spatio-temporal Segmentation of Sea Ice

using SMOS and AMSR2 Data

2016-09-02
s @~ label 0 W label 3
\‘A\;_\ 4 ! label 1 W label 4
S5 Y mem label 2 m label 5
o, g‘ Qi ¥ S0y,
N R '
(} % A e
(¢ (Vé‘%_ /o \\ ﬂj,\; b
Bay i t
WA | ) 9 g
P 1) ‘\(\ 180
e . f
S T
AT Ul it G
b ai‘n\/;’égf /
S |
8 D\
\
|
P |
2016-11-25
X ¢ = label O W label 3

label 1 W label 4
label 2 M label 5
&

S0y

label O W label 3
! label 1 mmm label 4

2017-05-12

label 0 W label 3
! label 1 mmm label 4
label 2 mEE label 5

v \
\
R |
2017-08-04
b q ~ label 0 mmm label 3
Y., W label 1 WM label 4
"\*é&- label 2 WM label 5
S = "
’, TR S0¢)
ol N\ ™
\ N
% Vi3 A
¢ (’%‘ﬁ L LS ]
"éﬁ: . /f?‘ 180
SN B
’\‘::\(/\Q e \\\‘W\l
&g A ﬁ/f/ ,ﬂ}( R » N
Vay] /
Jj( \ R
lm\‘\g

v

2016-09-30
’i h label 0 W label 3
o label 1 W label 4

label O W label 3
label 1 mEE label 4

label O mmm label 3

| label 1 mmm label 4

BN label 2 HEE label 5
"

~ 2017-06-09
e, et
,.m% h

LR

S X

\

—— |
2017-09-01

YN (™ label 0 mmm fabel3

£ ! label 1 N label 4

oy,

K;\? < . label 2 WEE label 5
SN S
e

‘\}}&”\ -k?iw
LN AR

N e =
S,
N bR
» N\ N
\

2016-10-28
€ label 0 mmm label 3
L., label 1 W label 4
N

BN |abel 2 WM label 5
a

Soey

2017-01-20
X label 0 W abel 3
W label 1 mEE label 4

180°

2017-04-14
£ label O W label 3
label 1 mmm label 4
label 2 mEE label 5

Sooy

%
\

i

2017-07-07

(¢ =2

label O W label 3
label 1 mmm label 4

;\‘,\ S0y
o
N
W N A
S 180
[ . %
R Y
RSN A
TN
2 Lt
s N
\

label O mmm |abel 3
| label 1 mmE label 4

S0

Figure 6.23: Latent field result in terms of spatial patterns represented in a four-week interval
for a segmentation with 6 classes for the period from September 2016 to September

2017.

frequencies. Classes 1 and 2 represent observations over areas with partial SIC and pre-

sumably different SIT ranges. Class 1 contains observations encompassing a broad range

May 29, 2022



Chapter 6. Segmentation of Sea Ice 122

of ‘mixed states’ in terms of SIC, SIT and types — which can be typically associated with
wet conditions during summer melt — and Class 2 follows the natural freezing of sea ice

under dry and cold conditions.

label 0
label 1
label 2
label 3
label 4
label 5

260-

200-

180-

A
180 200 220 240 260
TB18 [K]

Figure 6.24: Clustering result in marginal feature space between T g observations at 18.7 and
36.5 GHz with indicated class means and covariances. Values of OW and sea ice
with SIC ~ 100 % tend to be located close to the red cross and along the red line,

respectively.

The temporal evolution of the number of data points belonging to each class is pre-
sented in Figure[6.25] Figure shows the total amount of voxels for each class, where
the sum over all classes represents the actual sea ice extent (remark: the amount of data
points belonging to the polar observation hole is not considered here). Figure il-
lustrates the relative amount of class membership to better illustrate the evolution of
classes. The emergence and transition of classes is compared with changes in average air
temperature at lower latitudes between 70-75°N and higher latitudes between 80-85°N
calculated from daily ERAS reanalysis temperature data at 2m [C3S, 2017].

During the segmentation period of one year, the classes can be related with the for-
mation and melting of sea ice. As aforementioned, Class 0 indicates the low-concentrated
areas and thin ice throughout the entire freeze-up. Class 5 represents the remaining old

ice of the previous summer period. From mid-September, new ice is formed in the centre
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Figure 6.25: Temporal evolution of classes for a one-year segmentation period from September
2016 to September 2017, representing (a) the total amount and (b) the relative
amount of voxels for each class membership. The red curve shows the average air
temperature at 2m in the latitude interval between 70 and 75°N (dashed line)

and 80 and 85°N (solid line).

of the Arctic and thickens rapidly into thin FYT (Class 2). The classes 3 and 4 occur
from October and November, when FYI continues to develop into medium and thicker
FYI, respectively. Class 1 is only represented along the sea ice margin of the Greenland
Sea during freeze-up. The physical characteristics of the classes during freeze-up remains
similar under cold conditions until sea ice reaches its maximum extent in early March
2017, which is marked by the intrusion of higher temperatures into the Arctic.

During summer melt, classes 1, 2 and 5 can be qualitatively associated with three
stages of wet surface conditions, in dependence of their prevailing temporal and latitudinal
extent. Class 5 can be largely associated with thawing snow and initial melt of sea ice
during the early summer (Stage 1). From mid-May to mid-June, air temperatures at lower
latitudes between 70 and 75°N start to exceed the freezing point of saline water (~ 271.3 K)
and Class 5 begins to expand (see Figure , 30 September 2016). From mid-June to
the end of July, when air temperatures are above freezing throughout the Arctic, Class 5

largely shifts to higher latitudes — referring to similar wet conditions as initially observed
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at lower latitudes. Around the same time, Class 2 begins to grow significantly in lower
latitudes until it covers almost the entire central Arctic by mid-July and can be associated
to sea ice under warmer conditions (Stage 2). In August, when temperatures again start
to drop in the central Arctic, Class 2 transitions back to Class 5 in the area of the previous
year’s old ice. Class 1 spreads at lower latitudes where temperatures still remain high
enough to cause further melting (Stage 3). Ultimately, from mid-September, Class 5
occupies the entire Arctic sea ice surface left after the summer melt, representing the
refrozen old ice of the impending freeze-up. As temperatures continue to drop, new sea

ice begins to form, creating new classes of thin sea ice with low concentrations.

6.4.3 Class Analysis and Interpretation

Classes can be analyzed to understand how the combination of a set of selected input
features leads to the formation of classes and how these classes can be related to the
underlying sea ice properties. For class interpretation the segmentation results have to be
robust, i.e. classes need to be temporally stable and spatially consistent in terms of their
physical characteristics. Thus, the segmented spatial patterns of classes are compared
with values of sea ice parameters — including images of SIT, SIC and SoD — of operational

products.

Cluster Analysis

Based on the similarities and differences of the observations and the radiometrical prop-
erties of sea ice, the algorithm segments the input features into a number of most signifi-
cant classes. Figure illustrates how these classes can be understood as multivariate
Gaussian distributions of data points in marginal feature space. How the observations
contribute to the formation of the classes can be inferred by the location and orientation of
the clusters in the feature space, represented by the statistical model parameters (means
and covariances). The cluster mean values can be analyzed in an absolute manner and
relatively between classes to reveal information regarding the different radiation proper-
ties of the observations and how classes can be referred to the underlying composition of
sea ice. The covariances quantify the relationship between observations and they indicate
the level of redundancy and the significance of the selected set of input features and the
resulting classes. The Pearson correlation coefficient obtained from the covariance matrix
shows the linear dependence between the observations. In the following, the class-specific
mean values and correlation are assessed for the corresponding set of input features and
classes.

The observed Tgs are affected by the emissivity of the radiating layer. The mean Tpg
values for each feature and individual class is shown in Figure [6.26] Class labels (0-5)
are determined in ascending order regarding the class mean values of the Ty observa-

tions at 1.4 GHz (TB1), indicating the highest dynamic range due to its sensitivity to
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both thin ice and SIC. All observations contribute to the formation of the Classes 0-2
with decreasing sensitivity ranges for higher frequencies and different dispersion of values.
The information contained in the high-frequency observations at 10.7, 18.7, and 36.9 GHz
enables the algorithm to distinguish between the Classes 3-5, where low-frequency ob-
servations at 1.4 and 6.9 GHz are saturated. At almost all frequencies, the highest Tp
values are given for observations associated to Class 3, which can be related to intact
FYI under cold conditions with a SIC ~ 100 %. For fully-concentrated sea ice, the higher
the frequency, the more attenuated the emitted signal due to scattering processes. For
instance, volume scattering from MYT observed at L-band is lower than for observations
at higher frequencies. This is because the wavelength of the former exceeds considerably
the typical air bubble size and emissions are less affected. In addition, the older the sea
ice, the more pronounced the attenuation (transitioning from Class 3 to 4 and finally
to 5), because more brine inclusions are gradually replaced by air bubbles, leading to a
higher number of scattering events. Accordingly, Classes 0-2 correspond to sea ice of
varying concentration or wet surface conditions, while Classes 3-5 represent completely
covered areas whose emissivity changes due to scattering phenomena. Most of the ice
parameters that affect the emissivity are explicitly dependent on the ice temperature —
which influences the dielectric constant of the material — resulting in increasing absolute

Tp values for higher temperatures.
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Figure 6.26: Features-specific T mean values and StDev for all classes, which are numbered
according to ascending values of the feature corresponding to SMOS observations
at 1.4 GHz. Classes 0-2 are formed based on the information contained in all input

features, while Classes 3—-5 can be separated mainly by the differences between
the 18.7 and 36.9 GHz observations.

Since classes are formed based on the relationship between Tpg values at different
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frequencies, two data points whose observations differ in absolute values can be assigned
to the same class, in case they are similarly sensitive to temperature changes. Information
about how Tpg observations are correlated allows conclusions to be drawn about which
features are pivotal for the separability of a class. The feature-specific correlations for
each class as a measure of intra-class cohesion are visualized in Figure For all
classes, observations at adjacent frequency bands are mostly strongly correlated with the
highest between those at 6.9 and 10.7 GHz (above 0.9), whereas the correlation between
the features decreases with increasing frequency difference. Classes 0, 2 and 3 have similar
correlations between the input features, and the algorithm is able to distinguish the two
based on the absolute Tpgs (see Figure . The absolute values of the input features for
Classes 3 and 4 are similar, but the intra-class cohesion differs substantially, showing lower
correlations between observations at 36.9 GHz and the other features for Class 4. Although
Classes 1 and 4 emerge during summer melt and freeze-up, respectively, input features
are similarly correlated. Except for Class 5, observations at 36.9 GHz are moderately or
low correlated with the remaining features. The reason why the correlation of Class 5 is
conceptually different may be because scattering phenomena in heterogeneous old ice vary
essentially in intensity and observations at different frequencies have a different footprint.
Therefore, observations cover a different variety of ice types the observed Tpg values of
each type and concentration are averaged and no clear relationship between the input

features can be seen.

It is important to note that during the melt season the contrast between classes which
rely on the observed emissivities is smaller than during freeze-up by the fact that sea ice
in winter grows from the bottom of the ice column under cold conditions but in summer
it melts largely from the top. The increase in both solar irradiation intensity and air
temperature have the effect that a thin layer of water forms on the surface of the ice. As
a consequence, surface-sensitive satellite observations during summer loose accuracy to
the composition of sea ice, causing major ambiguities in the estimation of the underlying
sea ice parameters. The penetration depth of microwave observations into the sea ice
is limited, and depending on whether conditions are wet or dry, the underlying water is
invisible, so that no direct inferences can be made about the thickness of the ice column.
However, as sea ice ages, its composition at the surface and in the ice mass changes, as do
the associated radiometric properties. Knowledge about sea ice age can serve as a proxy
of the state of sea ice and can indicate a variety of sea ice parameters including surface
roughness, melt pond fraction, and salinity. As sea ice also thickens with age, radiometric
properties may be indirectly related to SIT ranges under cold conditions during freeze-up,

although observations are only sensitive up to thin ice.
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Figure 6.27: Intra-class cohesion in terms of absolute values of Pearson correlation. Classes
0, 2 and 3, as well as Classes 1 and 4 show similar correlation between features.
With the exception of Class 5, the correlation between the features decreases with

increasing frequency difference.

Temporal Stability

The Arctic region was segmented into 6 classes within a period of 7.5 years from July 2012
to December 2019 using input features with a temporal resolution of five weeks. Figure
6.28| shows the evolution of class membership (similar to Figure , where Figure
gives the total amount and Figure [6.28b gives the relative amount of voxels per class
and time step. All classes occur in all years and overall match in terms of class size and
same time period. Thus, the segmentation and the resulting classes are considered as
temporally stable and significant in case at least one year of data is selected. The SIE
declines approximately at a rate of 13 % per decade, relative to the 1981 to 2010 average ||,
and a slight decreasing trend is also visible in the sum over all classes in the observed
7.5-year period. If individual classes could be linked to SIT, then changes in the relative
proportion of class membership could provide useful information about changes in SIT.
However, during the observed period, there is no clear trend indicating a change in class

membership in terms of loss from thicker to thinner sea ice.
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Figure 6.28: Temporal evolution of classes for a 7.5-year segmentation period from July 2012
to December 2019, representing (a) the total amount and (b) the relative amount
of voxels for each class membership. The six classes clearly recur annually and

can be considered significant regarding a one-year subperiod.

Spatial Consistency

The segmented patterns of the latent field result can be related to those of operational
products including images of sea ice parameters (SIT and SIC) and sea ice charts of
SoD and SIC obtained by sea ice analysts. The SIC maps were obtained from the same
product used to mask out OW areas prior to segmentation. The following products were
used to compare the classes with SIT, one for thin sea ice (SIT-SMOS) based on SMOS
T observations and one for the entire SIT range based on SMOS data and altimetry data
from CryoSat-2 (SIT-CS2SMOS) provided by the AWI. Both data sets are available during
the freeze-up from 15 October to 15 April, respectively, and can be downloaded from
https://smos-diss.eo.esa.int/socat/L3_SIT_Open, (accessed on 16 November 2021)
and https://smos-diss.eo.esa.int/socat/L4_SIT Open, (accessed on 16 November
2021). The State Scientific Center of the Russian Federation’s Arctic and Antarctic
Research Institute (AARI) provides weekly sea ice charts of SoD for the Arctic freeze-
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up period from October to May, and SIC for the remaining months. The distribution of
generalized categories covering the entire Arctic are determined from regional ice charts by
analyzing images of additional institutions such as the NIC and maps can be downloaded
from http://wdc.aari.ru/datasets/d0040/arctic/, (accessed on 16 November 2021).

The spatial classes are qualitatively compared to the shapes of SoD of sea ice charts,
which are analyzed beforehand to determine a number of higher-order categories SoD
during freeze-up, and the behaviour of sea ice during summer melt. The SoD and SIC ice
charts were assessed over multiple years to draw general conclusions about the formation
and development of sea ice. At the beginning of the Arctic freeze-up (mid-September),
there is mainly old and young ice. A small area consisting of thin FYI begins to grow from
mid-October until it becomes medium FYT from around mid-December. Grey ice and nilas
are present throughout the entire freezing period (mid-September to late March). After
that, no significant amount of new ice forms. Thick FYI is present from mid-January
onwards (in some exceptional cases, such as 2018, it is generally classified as FYT (yellow
label)). By the end of April, most of the sea ice extent consists of old ice and thick
FYI. From June onwards (after freezing), the ice formed by then is generally referred to
as MYT ice. At the beginning of June, the SIC of the ice-covered area is mostly above
0.9. The area with reduced SIC — due increasing melt pond fraction and wet surface
conditions — increases in early July. From mid-August, the proportion of areas with high
SIC decreases significantly. In early September, areas of low-concentrated sea ice are
formed in the Greenland Sea and the Chukchi/Beaufort Sea. The five most abundant
and superordinate SoD categories which are considered as significant during freeze-up
are (I) nilas, young, gray and grey-white ice (<10cm), (IT) thin FYT (~10-30 cm), (III)
medium FYT (~30-70cm), (IV) thick FYT (~70-120 cm), and (V) MYT (ice formed after

freeze-up) and old ice (remaining ice after summer melt).

Figures and show the segmented spatial patterns (a) compared to the sea ice
products including SoD (b), SIT-CS2SMOS (c) and SIC (d), for the early freeze-up on 11
November 2016 and the late freeze-up on 31 March 2017, respectively. The relationship
between the class distributions and the sea ice products shows that Class 0 represents
largely newly formed thin ice, comprising mainly areas of nilas and grey ice and most
of the low-concentrated ice. Class 1 largely comprises sea ice under wet conditions in
summer and is observed during freeze-up almost exclusively at the sea ice edge in the
Greenland Sea, where thicker sea ice drifts to lower latitudes and a mixture of ice types
is expected. At early freezing, Class 2 resembles thin FYT and grey-white ice, and at late
freezing it is more associated with medium FYI. Similar to Class 2, Class 3 also shows
a trend towards thicker ice during the freezing period, mainly representing areas of thin
FYT in November and thick FYI in March. Classes 4 and 5 in sum represent old ice and
Class 4 also partially thick ice, with both classes showing a SI'T above 1.5 m, respectively.
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Figure 6.29: Comparison between segmented spatial patterns with operational sea ice products
during early freeze up, comprising (a) latent field result, (b) SoD from AARI
(determined on 14-15 November 2016), (c¢) SIT-CS2SMOS from AWI, and (d)

SIC from NSIDC (estimated on 11 November 2016, respectively).

Class Interpretation

In order to evaluate the relationship between the resulting classes and SIT, the area
covered by the individual classes were compared with the corresponding values of the
two SIT products. Hereby, the values of the maps of both the thin and the merged SIT
product contained in each specific class are considered at each time step along the entire
freeze-up. This enables to assess the variability of SIT values covered by each class and
its temporal stability. Individual distributions can be described in terms of its centre,
spread and shape. Hereby, the centre of the distribution represented by the mean values
are analyzed to understand whether the relationship between each class and SIT remains

similar or may show a trend during freeze-up. The typical SIT range is identified from the

May 29, 2022



131 6.4. Spatio-temporal Segmentation of Sea Ice using SMOS and AMSR2 Data

B icefree [ grey-white

label O WM label
abel 0 abel 3 [ openice [ first-year

label 1 W label 4
I |abel 2 HEE label 5
/ N \Soey

[ ] newice [ thin first-year
[ nilas [] thin 1 stage
B oung [ thin2stage
grey

rrrrrrrr

ot [] ice shelf
M4 =1 bergy waters
\ \) x N [ nodata
(a) Latent field (31 March 2017) (b) Stages of Development (3-4 April 2017)

(c) o 0.5 1.0 15 f . 80
Sea Ice Thickness [m] Sea Ice Concentration [%]

Figure 6.30: Comparison between segmented spatial patterns with operational sea ice products
during late freeze up, comprising (a) latent field result, (b) SoD from AARI
(determined on 3-4 April 2017), (c) SIT-CS2SMOS from AWI, and (d) SIC from

NSIDC (estimated on 31 March 2017, respectively)

statistical dispersion of SIT values, and the shape of the distribution is analyzed to obtain
information on symmetry and modality. The histograms of the individual distributions
of the products SIT-SMOS and SIT-CS2SMOS at each time step are presented in Figures
D-Jand[D.2]in Appendix D] respectively. Figures[6.3Th and b show the temporal evolution
of medians and percentiles of SIT values of the products SIT-SMOS and SIT-CS2SMOS

with respect to the corresponding pixels of each class, respectively.

Regarding SIT-SMOS, Class 0 refers to a sharp and temporally stable distribution
representing SIT < 10cm. Class 1 contains values of SIT <30cm at the beginning of
freeze-up and includes also higher values over time. Class 2 comprises SIT values < 70 cm

with the distribution being largely stable. It is important to note that SIT values as-
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sociated with the Classes 0-2 follow a one-sided positively-skewed distribution (Figures
[D.1h—c). In contrast, the distributions associated to Classes 3-5 (Figures [D.1d-f) contain
higher SIT values, which are already beyond the sensitivity range of Tg measurements
at L-band (~0.5m), where the inference algorithm relies on the thermodynamic model
(limited to 1.4m). The SIT values for Class 3 are distributed over the entire dynamic
range and follow a bimodal distribution. In conclusion, the SMOS-derived SIT maps can
be linked to the spatial patterns of the Classes 0-2, with most of the values contained

in the thin SIT range. No clear relationship is observed between Classes 3-5 and the

SIT-SMOS product.

Because the merged product SIT-CS2SMOS includes altimetry data, it has the ad-
vantage of more accurately estimating SIT for thicker ice. The SIT distributions corre-
sponding to Classes 0-2 shown in Figures [D.2h—c have a similar shapes to those of the
SMOS-derived product, except that they are spread toward higher values. This suggests
that regions with isolated thicker ice but similar surface conditions are grouped in the same
class because direct information about thicker ice is not included in the features selected
for segmentation. For Class 2, the distributions of the SIT-SMOS and the SIT-CS2SMOS
are most similar in shape and dispersion. The SIT values of the merged product associated
with Classes 3-5 are mostly symmetrically distributed (Figures [D.2d-f), in contrast to
the bounded, negatively skewed distribution of values corresponding to the SMOS-derived
product. Over time, a positive trend towards higher SIT values can be observed (Figures
ff). This is consistent with the aforementioned relationship between spatial patterns
and SoD, indicating that Classes 3 and 4 can be associated with increasing FYI along

freeze-up.

The overall mean, standard deviation and skewness are determined to indicate the typ-
ical SIT range. Trend information is provided by the deviation of the means values along
the freeze-up. The corresponding values for the products SIT-SMOS, SIT-CS2SMOS and
SIC — computed for each class — are given in Table In summary, Classes 0-2 can be
associated with thin ice compared to SMOS-derived SIT values, indicating largely stable
distributions with no upper limit along the freeze-up. Classes 3—5 are formed based on
differences in observed surface conditions and contain information on progressively thicker
sea ice during freeze-up, as they can be associated to largely symmetrically distributed

SIT values of the merged product.
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Figure 6.31: Class-specific evaluation of the spatial patterns with the median between the 25th
and 75th percentiles of the SIT values of the corresponding SIT products along
the freeze-up period from 15 October 2016 to 15 April 2017. Comparison with
(a) the thin SIT product SIT-SMOS and (a) the merged full-range product SIT-

CS2SMOS.
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are associated with thin SIT (SIT-SMOS) and Classes 3-5 are related to values
of the full-range product SIT-CS2SMOS.
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Figure 6.33: Comparison between the latent field and the SIT-CS2SMOS product with adapted

bounds. The spatial patterns of the resulting classes in (a) and (b) are related to

the corresponding SIT ranges in (c) and (d) at the beginning (11 November 2016)

and at the end of freeze-up (31 March 2017), respectively. As sea ice thickens, the

class-specifically associated ranges of SIT become extended and shifted towards
higher values.
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6.5. Discussion

Table 6.3: Statistics of SIT and SIC values corresponding to the segmented spatial patterns of
classes, evaluated at the beginning (11 November 2016) and the end of the freeze-up
(31 March 2017). The 25th percentile (Q;), Median (M), and 75th percentile (Qg) of
the SIT distribution are determined for each class, whereas Classes 0-2 are related

to the SIT-SMOS and Classes 3-5 are related to the SIT-CS2SMOS product.

Date 11 November 2016 31 March 2017
Class 0 1 2 3 4 5 0 1 2 3 4 5
!, 8 = Q; | 0.00 0.04 0.08 043 1.05 0.9 | 0.02 0.08 0.16 0.67 1.17 1.00
S=95 M |003 007 015 076 1.22 1.18 | 0.03 0.16 0.26 1.07 1.24 1.26
e Qs3]0.04 0.13 025 120 1.26 1.26 | 0.05 0.35 0.41 1.21 1.28 1.30
! = — Q;[0.06 011 0.12 050 0.96 1.42 | 0.06 0.19 0.21 0.81 1.71 2.28
= % E M [0.07 028 0.21 0.68 1.21 1.84] 0.08 0.42 0.35 1.21 2.02 2.78
O Qs ]0.12 0.78 0.33 0.88 1.38 256 | 0.48 0.92 0.52 1.64 231 3.32
o= Q| 14 75 93 99 98 96 15 85 97 99 99 99
= XM 40 88 98 99 99 99 39 97 99 99 99 99
Qs | 65 94 99 100 99 99 66 99 100 100 99 99

Table 6.4: Summary of the segmentation result and class interpretation indicating the class-
specific periods of occurrence, time of maximum extend (Max), assigned SoD, associ-
ated SIC and SIT range according to values of the products SIT-SMOS (Classes 0-2)
and SIT-CS2SMOS (Classes 3-5) as well as the identified drift of the corresponding
SIT Median (MED) values along the freeze up.

Class 0 1 2 3 4 5
Period of year- mid-Mar —  mid-Sep —  Oct — Nov — Aug —
occurrance round mid-Oct end Aug end Mar end Mar mid-Jul
Max end Jul end Aug mid-Jul  mid-Mar  mid-Mar Oct
SoD grey ice, FYI thin FYI  medium thick FYI, MYT
(freeze-up) nilas (Greenland) FYI MYI

SoD SIC (pon-  Wet cond.  Wet cond. - - Wet cond.
(melt) ded ice) (Stage 3) (Stage 2) (Stage 1)
SIC %] <70 > 50 70-95 95-100 ~ 100 ~ 100
SIT [em] <10 <20 10-40 40-90 90-140 > 140
(Nov/2016)

SIT [em] <10 <40 10-70 70-170 170-230 > 230
(Mar/2017)

MED Drift 0.04 1.06 1.47 9.33 13.92 16.52
in [em/mth|

6.5 Discussion

The implemented Bayesian segmentation algorithm serves as a probabilistic framework to

integrate the information contained in multi-source data sets. It is capable of recognizing

patterns by considering both the statistical characteristics and spatial interactions in an
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unsupervised manner, and classes are formed based on the similarities and differences
of the input features. Insights about spatial and temporal sea ice variability can be
obtained from the ‘hidden link’ between multiple complementary observations, which is
represented by a HMRF model, whereas the statistical characteristics are considered by
the mean values and covariances of the GMM. The optimal latent field of class patterns in
physical space and clusters in features space are obtained using an iterative process based
on MCMC. Unlike in other Machine Learning algorithms, the method has the advantage
to provide metrics including the statistical model parameters (means and covariances),
the spatial heterogeneity coefficient, and the class membership probabilities. They can be
evaluated for subsequent class analysis to compute performance metrics such as correlation
coefficient, distance- and density-based separability indices, as well as information entropy

for model uncertainty quantification.

Prior to segmentation, the algorithm requires the selection of an adequate number of
representative classes to which each data point is assigned iteratively and unsupervised.
They can be determined in a purely stochastic and automated way based on different
information criteria such as BIC and AIC. These criteria provide the optimal number
of classes based on the statistical nature of the data, but have the disadvantage of not
taking into account possible correlations between neighboring observations. Another way
to estimate the number of classes is the analysis of the global separability of the resulting
classes after an initial segmentation step. This method takes into account both the sta-
tistical characteristics and the spatial correlations of satellite images, and it can provide
more accurate estimations in case of, for instance, strong discontinuities in physical space.
Class selection can also be made subjectively based on prior knowledge of the sensitivity
range between the satellite data and specific parameters in the context of the observed
environment. The classes can be related to a set of expected discrete categories, such
as stages of development or specific ranges of SI'T and SIC. This method favors a more
straightforward classification of the resulting class patterns by evaluating the accuracy
and mismatch with a distribution target parameters. Whether the appropriate choice of
the number of classes is made in a purely statistical way based on information criteria, if
it requires additional information about the spatial distribution of the data points, or it is
made subjectively, depends both on prior knowledge about the dynamics and complexity

of the observed environment and on the application.

The application of the Bayesian segmentation algorithm to high-resolution SAR images
aimed to enhance the reliability of sea ice classification using a two-step approach with
previous incidence-angle normalization. It includes spatial correlations beyond purely sta-
tistical feature space representation — similar to the approach to automatically estimate
SIC based on K-means clustering and Markov Random Fields [Deng and Clausi, 2005].
An Expectation-Maximization step was used to assess whether the amount of water in an

observed water is significant to form a separable class. The subsequently applied Bayesian
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segmentation step is to find the class corresponding to the image fraction of surface water.
More accurate results are obtained for periods of high SIC, where current algorithms are
known to underestimate SIC. The ability to detect different types of ice is highly depen-
dent on the location and time of year, and is ambiguous due to the dependence of surface
signatures on wind speed and direction. Discriminating sea ice from surface water is more
accurate during freeze-up, but especially difficult in the advanced melt season when sea ice
properties change and melt ponds become more numerous [Casey et al., 2016]. Thus, the
development of an automated technique using SAR data-based surface signatures remains
challenging.

T values show larger differences among observations at increased incidence angles. In
addition, the emissivity depends on the optical path length through the ice, and observa-
tions at different incidence angles contain complementary information on the composition
of the ice — especially for thin ice. PR calculated from Tp at horizontal and vertical
polarization reduces the effects of the physical surface temperature and surface rough-
ness. In a second application, the algorithm was used to segment multi-incidence angle
PR maps from SMOS observations in the Arctic along the freeze-up period from Septem-
ber to December 2016. The estimation of a constant number of temporally stable and
separable classes revealed periods, when Tg observations can be similarly related to sea
ice properties. The resulting latent field indicates classes corresponding to newly formed
thin sea ice, a transition zone of intermediate thickness, and thick ice, where the SMOS
sensor is saturated. The spatial patterns can be used to extract the heterogeneity of the
underlying sea ice properties. Information entropy can be computed to point out both
uncertain zones between segmented classes and anomalies which can form sub-classes.
As an example, melt ponds on sea ice during summer show distinct surface characteris-
tics, which may result in a further discriminable class only during that particular period.
Since class mean values represent the most significant observations at every segmentation
step, their temporal evolution can be used to define dynamic tie points. These tie points
can be analyzed to investigate how sensitive input features respond to changes in sea ice
properties.

Some remarks can be made about the significance of the latent field results in terms
of reproducibility and the possibility of comparing and interpreting them with common
sea ice products. If the identified classes are robust and stable over time, they have a
physical meaning, and they can be reproduced in an automated manner using the same
set of satellite data. However, class formation depends largely on the spatial resolution,
the temporal sampling, the absolute data length, and on the processing level and inter-
polation scheme used to produce the input features for segmentation. Different products
rely on alternative methods for classifying sea ice and use different data sources and re-
trieval methods, which may be process-based or data-driven, and automated or manual.
In addition to the information contained in the considered data sets, the selection of

categories for sea ice developmental stages in common products such as those defined in
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sea ice charts have been also influenced based on the importance for specific applications
such as navigation, mineral exploration and climate modelling. Important processes and
features of sea ice occur on characteristic temporal and spatial scales that are often below
the resolution of satellite observations. Only partial information is available about sea ice
types and their underlying composition for efficiently validating the class results. In case
of sea ice, where in-situ data are not sufficiently available, the results of validating one
satellite product with a second product are therefore often a matter of interpretation, as

the observations included in both products may reflect different sea ice phenomena.

The sample-based MCMC method used to update the modelling parameters and a pos-
teriori distribution has the disadvantage of becoming computationally expensive due to
the linear algebra operations in a high-dimensional space. Unlike expectation maximiza-
tion (EM), which is faster to solve, but may be caught in the proximate local optimum,
MCMC is robust and more flexible to get rid of the local optimum and find the global
optimum. It requires several iterations and computation time to converge to the Gaus-
sian target distribution, and to eventually reach the stable mix chain. MCMC sampling
works well with moderately large 2D data sets, but the convergence can be very slow
for 3D segmentation. The computational cost scales linearly with the segmented period
and temporal sampling, and Markov fields may be intractable for data sets with high-
resolution and high temporal sampling. In future applications, larger data sets including
a higher number of input features, and more classes will be used to train the model. Also,
the jump length of the model parameter in the MCMC method is based purely heuristic,
and a more sophisticated choice can still improve the efficiency of the method. There-
fore, future research could examine the implementation of adaptive methods which find
the global minimum faster, especially in case of high-dimensional target functions. The
3D Markov chain model could be modified so that the temporal dimension is separated
from the spatial direction |Ulvmoen and Omre, 2010]. The temporal dimension could
be sampled by a direct solver, while the MCMC sampler iterates over the lateral 2D di-
mensions, resulting in faster convergence compared to full 3D MCMC sampling. Further
algorithms for more efficient parameter estimation may include Hamiltonian Monte Carlo
(HMC) or adaptive MCMC. The most general inversion methods are often computation-
ally intractable when applied to large data, and there is a need to better understand the
implications of simplification |Linde et al., 2015|.

The Bayesian framework has the advantage of being capable of combining different
data sources to provide complementary information. However, the input features may
also potentially contain redundant, erroneous, or unnecessary information about the sea
ice parameters to be estimated. These redundant observations carry the risk that the
segmented hidden field is potentially biased in the features entered. The included obser-
vations can be pre-assessed to pinpoint or to reduce its dimensionality, and to evaluate
the possibility that the latent field is biased towards a specific sub-set of input features.

In addition, gridded data is often used in applications because it facilitates the integration
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of data between sensors, which is also the case with the AMSR2 T g product, where multi-
frequency observations with different resolutions are projected onto a common grid, which
can lead to a reduction of the data integrity for the low resolution channels. In particular
when data from different sensors are combined, the use of the original swath data is more
accurate. However, downscaling algorithms and interpolation schemes are necessary to
obtain maps with full coverage and regular temporal sampling, but can introduce model
biases that can cause misclassification. Using products at lower processing levels or raw
radiances can reduce biases potentially introduced through too strong assumptions in the

observational operators like in emission models or RTMs.
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7 Sea Ice Thickness Retrieval

This chapter focuses on a predictive regression NN framework approach to infer SIT
based on the first FMPL-2 Tp acquisitions provided by the FSSCat mission |[Herbert
et al., 2021b]. To do so, two separate NNs were implemented to generate Arctic and
Antarctic SIT maps by combining FMPL-2 Ty data with ancillary maps of SIC from the
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT),
and skin temperature provided by the ECMWFEF. The first model is devoted to model thin
SIT up to 0.6 m while using the thin sea ice product SIT-SMOS as ground truth. The
second network is designed to model full-range SIT. Input data are further complemented
by CryoSat-2 (CS2) Fb estimates to extend the previous model, using a merged product
SIT-CS2SMOS as ground truth. The selection of input features, the implementation of
the two NNs, and the inference of SIT are described in Section [7.1]

Both of the SIT models are trained during the period from 15 October to 4 December
2020, and allowed to generate weekly composite maps of Arctic thin and full-range SIT.
The Arctic data set that was used to train the full-range model was compared to the
same set of observations collected over Antarctic sea ice in terms of its variable ranges
and densities. Because the Arctic training data encompasses most parts of the Antarctic
data set, the prediction of Antarctic sea ice based on the Arctic model was considered
to be reasonable in statistical terms. Both thin and the full-range models trained in the
Arctic were applied to Antarctic data to estimate maps of Antarctic SIT.

The SIT products is stored in Network Common Data Form (NetCDF) and publicly
available at https://catalogue.nextgeoss.eu/. In addition to the SIT products, based
on a NN approach using data from both sensors on the FSSCat FMPL-2 payload — the
GNSS-R instrument and the Tg L-band radiometer, maps of the SIC and SIE over both
poles, and global SM over land were also created (Section .

7.1 Inference of Sea Ice Thickness using FSSCat Data

The major part of sea ice in the Northern Ocean occurs at 65 °N northwards, whereas, in
the Southern Ocean, excluding the Antarctic continent, it roughly extends between 60 °S
and 70°S, with fluctuating sea ice margins. Because *Cat-5/A is a polar orbit satellite,

its passes become denser towards the poles and produce more frequent overlaps. Tz maps
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can be acquired with sufficient coverage (> 80 % after filtering usable tracks) in less than
five days and two complete consecutive maps can be obtained within three weeks. This
allows for the production of weekly Arctic and monthly Antarctic SIT composite maps of
the ice-covered areas, respectively. It is noteworthy that the revisit time could be further
decreased if the satellite was able to operate with a larger duty cycle, or in the case more
3Cat-5/A-like CubeSats were added to the existing constellation. After the commissioning
phase, data are available from 1 October to 4 December 2020. The observed period falls
into the beginning of the Arctic freeze up, after sea ice having reached its annual minimum
extent on 15 September 2020. Hereby, sea ice mainly consists of the remaining MYT with
an increasing amount of thin FYI. In contrast to the Arctic, the Southern Ocean melts
and re-freezes almost completely on a yearly basis and it consists mainly of first-year ice.
Sea ice around Antarctica had passed its maximum extent on September 2020, and it is

declining during the observation period |Comiso et al., 2020].

7.1.1 Ancillary Data

Ancillary data are included to enable the network to capture the information on the
sea ice conditions at higher resolution. This enables the model to better address local
SIT variability, which is supposed to be contained in the relationship between the input
features. The availability of maps with sufficient temporal resolution with polar coverage
and from both hemispheres was one requirement. Figure visualizes maps of Tp and

ancillary data as an example on 11 November 2020.

Sea Ice Concentration

FMPL-2 Tpg observations at the ocean-ice boundaries can be ambiguous, because their
values partially consist of OW and sea ice. This often leads to an underestimation of
thin ice, especially at low-concentrated areas around sea ice margins. The Ocean and Sea
Ice Satellite Application Facility (OSI-SAF) OSI-401-b product by EUMETSAT provides
SIC maps using a dynamic tie-point algorithm applied to Tz data from the Special Sensor
Microwave Imager/Sounder (SSMIS) at 19 GHz and 37 GHz vertical, and at 37 GHz hor-
izontal polarization |Comiso et al., 1997]. The SIC maps are available on a daily basis at
a 10 km Polar Stereographic grid projection true at 70 °N/S for both hemispheres, respec-
tively, and images can be downloaded from http://osisaf .met.no/p/ice/, (accessed on
07 February 2021). These maps were regridded to a 12.5km Equal-Area Scalable Earth
(EASE)-Grid 2 to build a sea ice coverage mask. Only input data with a SIC > 15 % were

considered for training the network.

Surface Temperature

At microwave frequencies below 117 GHz, Planck’s law of electromagnetic radiation can

be simplified using the Rayleigh—Jeans approximation, resulting in Tz being the product
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7.1. Inference of Sea Ice Thickness using FSSCat Data
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Figure 7.1: Maps of the input features for 11 November 2020, comprising (a) FMPL-2 T, (b)
OSI-SAF 0OSI-401-b SIC, (¢) ECMWF Skin temperature, and (d) CS2 sea ice Fb
(weekly composite).

of the physical temperature (Tpp) and the ice emissivity with an error of <1% [Ulaby
et al., 1986]. Hereby, the emissivity contains the actual information about the sea ice
composition, including SIT, of the radiating layer. Figure shows the relationship
between Ty and SIT as a function of Tp, and sea ice types that are based on a RTM
considering two nadir-pointing observations at frequencies corresponding to L-band and
P-band (500 MHz), respectively. The model assumes a horizontally-layered column of

sea ice above water (without snow on top) using empirically determined values for sea

ice properties, such as salinity and surface roughness [Menashi et al., 1993]. While the

L-band signal already saturates around 0.6 m, the model reveals that observations at
P-band contain information on SIT beyond 1.5m and, in principle, they can be used
to extend the sensitivity range of current retrieval algorithms. Tpj, can strongly vary
among the pole areas, and it has a gradient along the ice profile, which influences the
penetration depth of the emitted signal at L-band. Additional physical properties, such
as density and ice type, can further depend on the distribution of temperature, which
makes a direct correction of Tpj, based on Ty complicated. The skin temperature (Tg)

product provided by the ECMWF represents the temperature value of the uppermost

surface layer that satisfies the surface energy balance equation [Zeng and Beljaars, 2005].
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Daily T's maps were considered to be relevant input features for model training. They were
linearly interpolated to a 12.5 km EASE-Grid 2.0 for Northern and Southern hemispheres.

N
N
o

I | oy — i Al

w220 T e o
s g T 5200 T oo

& 200- - A i
— - ___ S T e -

9] Q15— Sl L e L.

5180' CE?P- -

160 frequency = 1.4 GHz 3 150 frequency = 500 MHz

" —— Tm=-25°C " —— Tm=-25°C

@ 140- — Tm=-15°C $ 125- T =-15°C

£ — Tm=-5°C £ — Tpm=-5°C

g’ First-year ice (solid line) 2 First-year ice (solid line)

@ 100 Multi-year ice (dashed line) m 5 Multi-year ice (dashed line)

025 0.50 075 1.00 1.25 150 1.75 2.00
Sea-lce Thickness [m]

o
o
o

0.2 0.4 0.6 0.8 1.0
Sea-Ice Thickness [m]

e
=}

o

2,
—

A
=

Figure 7.2: Relationship between Tp and SIT as a function of T py, of sea ice and sea ice types.
Estimations are obtained using a RTM based on empirically determined values
for salinity, density, and surface roughness. The curves represent circular-polarized
emissions obtained with a nadir-pointing antenna at two frequencies, (a) at L-band
(1.4 GHz, similar to T g observations of the FMPL-2 radiometer) and (b) at P-band

(500 MHz).

Sea Ice Freeboard

The CS2 mission, which was launched by ESA in 2010, carries the SAR Interferometric
Radar Altimeter (SIRAL) operating at Ku-band (~13.6 GHz) to detect and monitor topo-
graphical fluctuations and trends over land and sea ice |[Laxon et al., 2013,/ Wingham et al.,
2006). A combination of elevation data with ancillary data, including sea ice type and snow
depth and density, enables the estimation of sea ice Fb, i.e. the height of sea ice above sea
level [Warren et al., 1999]. CS2 altimetry data have shown to be sensitive to SIT above
1 m, with increasing uncertainty for thinner ice |[Laxon et al., 2013|. Because Fb data con-
tain information on the sea ice variability, predominantly thicker ice, it was considered
to be a relevant input parameter to complement the L-band observations. Time series of
the CS2 L2 SIRAL Geophysical Data Record-2 full-orbit segments were projected onto a
12.5 km EASE-Grid 2.0 to generate daily Fb maps. The data are available for both hemi-
spheres and they can be downloaded from https://science-pds.cryosat.esa.int/
(accessed on 07 February 2021) [No, 2009).

Sea Ice Thickness

Two separate SIT products are selected as ground truth data in the NN, covering the
respective ranges of thin sea ice up to 0.6m, and full-range SIT. Hereby, daily SMOS
L3 SIT maps (SIT-SMOS) are used for thin SIT retrieval |[Tian-Kunze et al., 2014], and
weekly composites of the merged SMOS and CS2 L4 SIT maps (SIT-CS2SMOS) were
used to yield full-range SIT |Ricker et al., 2017]. Both of the maps are obtained from

SMOS L-band T g measurements on the basis of a thermodynamic and a RTM considering
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the variations of ice-physical properties |Kaleschke et al., 2012|. In the latter product,
daily SMOS-derived SIT is combined in an optimal interpolation scheme with the weekly
CS2 SIT. The SIT-CS2SMOS product contains information on surface height and sea ice
Fb included in the different modes of the SIRAL L1b data. Both of the data sets are
available from 2010 onwards at Arctic scale from mid-October to mid-April on a 25km
EASE-Grid 2.0 and they are provided by the Alfred Wegener Institute (AWI) for Polar
and Marine Research. The data can be downloaded from https://smos-diss.eo.esa.
int/socat/L3_SIT_Open, (accessed on 07 February 2021) and https://smos-diss.eo.
esa.int/socat/L4_SIT_Open, (accessed on 07 February 2021).

7.1.2 Implementation of the Regression Neural Network

The goal of this study is to estimate Arctic and Antarctic SIT from the selected set of input
features. Targeting continuous values of SIT based on the relationship between the input
features represents a regression task. Linear regression models typically adjust a number
of model parameters to a set of training data in an iterative process by minimizing a cost
function, which eventually converges to an optimal fit. The gradient descent () method
is a common technique to find the optimum solution. It computes the local gradient with
respect to the model parameters and a cost function, following the direction of descending
gradient until reaching convergence [Chong and Zak, 2004|. In a first attempt, a simple
regression model without hidden layers was selected, but the model did neither converge
nor generalize well on the test set. This implied that the input features are not linearly

separable, but rather non-linearly related.

NNs can manage complex regression tasks and they are more adequate than traditional
approaches when dealing with non-linear relationships between the variables. In its basic
structure, a NN consists of an input layer, an output layer, and interposed hidden layers,
with each layer consisting of a number of neurons [LeCun et al., 2015|. The observations
for training are assigned to the input layer with the number of neurons being the number
of input features. The output layer of a regression task has a single neuron that represents
the retrieved continuous target parameter. At least one hidden layer between the input
and output layer makes the model different from a simple regression framework by enabling
the network to learn the relationships that are contained in the data set. In this work,
the networks were built as sequentially dense layers, i.e., each neuron of the previous
layer is fully connected to all neurons of the following layer. The specific model set-up
was adjusted during the training and Figure illustrates the final network architecture
for the thin and full-range model. Similar to the coefficients in a linear regression, each
connection (lines) between neurons represents the weight of the output of the neuron in the
previous layer. The output value Y of each neuron is determined by forward propagating

the weighted sum of the inputs coming from the neurons ¢ of the previous layer with the
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weights w and an additive bias b

Y = f(Z(wz x input;) + b) with  f(z) = maz(0, ). (7.1)

(2

The activation function f of each hidden layer introduces the non-linearity between
the input features and the target variable, without which the regression network would
be entirely linear. ReLU (ReLU), representing the activation function defined above, is a
commonly used function in regression tasks, and it has the advantage of being computa-
tionally efficient and it does not saturate for positive values [Géron, 2019|. The weights
and biases of the neurons are updated according to the final error of the cost function via
back-propagation. The number of hidden layers and neurons per layer can be increased

to capture more feature interactions, depending on the complexity of the problem.

Input layer Hidden layers

H1 H2 (H3)

W57 o N5/
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Output layer
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Figure 7.3: Principle architecture of the implemented NN consisting of a multiple-input nor-
malization layer adapted to the number of input features, i.e., Tp, SIC, Tg, and
Fb (in case of the full-range model), a number of non-linear hidden layers with a
number of neurons per layer, and a linear single-output layer yielding continuous
values of SIT. The final network architecture contains 2 or 3 hidden layers with 64
neurons per layer regarding the thin or full-range model, respectively.

The specific model set-up was adjusted during the training. Adaptive Moment (Adam)
estimation was selected as an optimizer [Kingma and Ba, 2014]|. Model parameters (w, b)
were randomly initialized and a small learning rate of 0.001 was chosen to obtain smooth
convergence. The entire feature set was split into a training set (80%) and a test set (20%).
The training set was further split into a reduced training set (80%) and validation set
(20%). The performance of the different models was quantified using the Mean Absolute
Error (MAE) as a cost function, being defined as the average sum of absolute differences
between ground truth and predicted SIT. The MAE value indicates the training and
validation loss at each epoch of the training. The best performing model with the lowest
MAE on the validation set was trained on the entire training set, and the resulting model
was evaluated with the remaining test set.

Although preliminary results of an unconstrained network revealed low MAE for the
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known training data, the validation and training loss were not converging in the same
way and the network resulted in different performances on training and validation set.
Therefore, several constraints on the model hyperparameters were introduced to prevent
the model from overfitting and overgeneralization. Regularization is used to prevent
the model from overfitting by constraining the model complexity by keeping many model
parameters close to zero (L2-regularization) or zero (L1-regularization) [Kuhn et al., 2013].
Hereby, the terms L1 and L2 refer to the norm, i.e., the Ll-norm being the sum of
the absolute values and the L2-norm being the square root of the squared distances.
Weak L1 and L2 regularization was applied to all of the hidden layers in the regression
network and the penalty terms were added to the cost function. Secondly, an Early
Stopping technique prevents the model from overfitting by interrupting the training at
the respective epoch, at which the validation loss reaches a minimum or stops to improve,
i.e., no progress is obtained within a predefined number of epochs (patience interval). To
train the model more efficiently, a relatively high number of neurons per layer (64) was
selected in combination with Early Stopping regularization [Jaderberg et al., 2017, Smith,
2018]. A sufficient amount of training data (~ 350,000 samples for thin ice and 60,000
samples for the full-range SIT) allowed to set the batch size up to 1024 to restrain the
amplitude of fluctuations of the validation loss and to reduce the total training time.

The two predictive NNs were first trained in the Arctic. Subsequently, the network
to estimate thin SIT was applied to the Arctic sea, and the network to estimate full-
range SIT was applied to both Arctic and Antarctic seas. Prior to the training, the input
features were processed to be treatable by the NN. Because the NN was trained using
GD method, it was required to scale and normalize the input features. This included
normalization after filtering outliers to keep the variables within the reasonable ranges of
values. Figures [7.4] and show the KDE charts of input features after defining their
ranges of values, which were eventually used to train the thin and full-range SIT model,
respectively.

An ocean-land mask was applied to all maps to exclude land areas. Additionally,
an ocean-ice mask was applied to preserve data points over areas with a SIC > 15%,
being the minimum value for which the OSI-401-b SIC product is defined. Tpg increases
monotonically as a function of SI'T and the interval of suitable values is defined between
100 K and 210K, which is in agreement with the expected dynamic range of Tp when
considering a SIT up to 0.6 m in Figure (also under cold conditions). Only a small
amount of larger values was filtered (< 0.1 % after applying the ocean-land and ocean-ice
masks), which could be attributed to areas of possible land-sea contamination. For thin
SIT prediction, a cutoff thickness (SIT),,q, = 0.6 m) was defined as the limit beyond which
the sensitivity of Ty to SIT is assumed to be negligible. Regarding sea ice Fb, a threshold
of 0.4m is used as the upper limit for training the full-range model. As aforementioned,
selective scaling and normalization of the input features were considered in the input layer
of the network, according to the individual distribution of the input features. Table
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Figure 7.4: KDE charts of the NN training sets used to train the thin sea ice model including
the marginal probability density functions of the filtered data sets. The thin model
is based on Tp, SIC, Tg and ground truth thin SIT derived from SMOS data (SIT-

SMOS).

provides the summary statistics representing the final distribution and dispersion of the
input features. After processing the data, a total of 348,009 and 63,330 instances were
suitable for training the thin and full-range SIT models, respectively. Ground truth SIT-
SMOS and SIT-CS2SMOS are only available from mid-October onwards and Fb data have
a delayed delivery time of about one month. Therefore, the thin SIT model was trained
with data from 15 October to 4 December, and the full-range SIT model was trained from
15 October to 21 November 2020, respectively. The thin and the full-range SIT models
were both trained based on Arctic T and ancillary data, and the model with the best

fit was stored.
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Figure 7.5: KDE charts of the NN training sets used to train the full-range model including
the marginal probability density functions of the filtered data sets. The full-range
SIT model is based on Tg, SIC, Tg, Fb, and ground truth SIT derived from CS2

and SMOS (SIT-CS2SMOS).

Table 7.1: Summary statistics of the NN training set used to predict thin ice (top) and full-
range thickness (bottom). The description includes the Mean, Standard Deviation
(StDev), Minimum, and Maximum values of the observations.

Model Input Feature Mean StDev Min Max
3 Ts K| 166.8 21.3 100.0 209.7
. SIC %] 80.4 20.1 18.8 100.0
= Ts K] 264.1 5.1 236.4 281.4
= SIT-SMOS [m] 0.239 0.165 0.020 0.600
o Ts [K] 173.8 24.7 100.4 207.8
4 SIC [%] 95.3 75 19.9 100.0
g Ts [K] 260.2 46 239.6 272.5
= Fb |m] 0.108 0.070 0.000 0.399
& SIT-CS2SMOS [m| 1.248 0.639 0.045 2.853

May 29, 2022



Chapter 7. Sea Ice Thickness Retrieval 150

Unlike in simple regression or process-based models, the results of a NN cannot be
extrapolated, since its input features are non-linearly related. NNs are based on the
underlying statistics of the observations and a trained model can only be applied to new
data in case the corresponding range of values is covered by that of the original training
set. Thus, a reliable model prediction requires the variable space of the available training
data to include the predicted data as an already learned subset. This can be assessed
by comparing the training and prediction data sets regarding its variable ranges and
the density of values. In case the values of the new data set are located within the
multi-dimensional convex hull of the original training data set, the model output can be
considered to be reliable. The convex hulls around the points clouds of all combinations
of input features are presented in a 2D sub-feature space in Figure[7.0], for the Arctic data
(blue markers and black solid line) and for the Antarctic data (orange markers and red
dashed line).

Both of the data sets are of the same quality and processed identically. The total
number of valid observations for Arctic ice is higher because both the Fb and the Tp
observations are less dense at higher latitudes, which reduces the amount of data for
Antarctic sea ice. Regarding the distributions of Tz, Fb and SIC, the ranges and densities
of the observations in the Antarctic, are entirely covered within the hull of observations
in the Arctic. Therefore, the full-range model, which was trained with Arctic data, is
considered to be reliable for an application to the Antarctic data. It is important to
mention that a small amount of Tg values in the Antarctic data set is close to the sea
ice melting point (>270K). This is because the Antarctic summer had already started
and the temperatures are high enough, so that sea ice located at lower latitudes begins to
melt. The corresponding subset is not located within the convex hull of Arctic training

data, which limits the reliability of the model predictions for these particular values.

7.1.3 Inference of Arctic and Antarctic Sea Ice Thickness

This section presents the results of the thin and full-range NN models. Section
describes the training procedure and indicates the model architectures of the best model
fits. In Section [7.1.3] the corresponding models are applied to predict maps of Arctic thin
SIT, and Arctic and Antarctic full-range SIT.

Training of the NN Models

During the training, various model architectures were adjusted and evaluated to minimize
the generalization error (MAE) in order to obtain the model that fits the training data
best. The hyperparameters were tuned to find a trade-off between training efficiency and
convergence of the validation and training losses. The objective was to maintain the re-
semblance between the learning curves throughout the training to prevent overfitting and

overgeneralization. Each model was trained with a maximum number of 1000 epochs,
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Figure 7.6: Convex hulls around the point clouds in 2D sub-feature space of Arctic data (black
solid line around blue markers), and Antarctic data (red dashed line around yellow
markers) (Feature pairs: (a) Tp-Tg, (b) Tp-SIC, (c) Tp-Fb, (d) Fb-SIC, (e)
Fb-Tg, and (f) SIC-Tg). The application of the full-range model to Antarctic
data is considered to be reliable, since most of its values are located within the
convex hull and at denser areas of Arctic training data.

and both the training and validation losses were evaluated after each epoch, with a con-
stant learning rate of 0.001. This rate turned out to be large enough to obtain a fast
improvement of the learning curve at the beginning of the training (short burn-in phase)
and small enough to lead to smooth convergence without bouncing around the optimum
towards the end. In both NN (thin SIT and full-range SIT), the batch size, the number
of hidden layers, and the patience interval of Early Stopping regularization were tuned,
where the number of neurons per layer was kept constant to 64. An increase of the batch
size up to a value of 1024 did not significantly influence the converging trend, but it con-
siderably decreased the amplitude of the fluctuations in the validation loss and speeded
up the training time. A higher number of hidden layers usually allows a network a fast
build-up of sufficient complexity. In this case, more hidden layers (>3) led to a notable
reduction of the training loss, whereas the validation loss was only slightly improving.
This implied that, although the obtained model complexity apparently represented the
reduced training set, it did not generalize well on the validation set. The validation loss
fluctuated, but it showed a decreasing trend until it stagnated, when the model started
to overfit the training data. Early Stopping with a patience interval eventually prevented
the model from this overfitting. The fit was stopped after the validation loss did not show
improvement anymore during the corresponding patience interval and the best fit was
called-back and saved.

Table provides a summary of the final architecture and the optimal training hy-
perparameters of the NNs and the SIT-range-specific MAE obtained from the prediction
for the thin and full-range SIT models. The learning curves for the thin and full-range
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model are presented in Figures and [7.9h, respectively. Regarding both of the mod-
els, training and validation loss converged well, and no overfitting of the training data
could be observed. Validation and training curves of the thin SIT model both match well
throughout the training, whereas a small mismatch remained between those of the full-
range SIT model towards the end of the training. The evaluation of the test set resulted
in a final MAE of 0.065m for the thin and 0.237m for the full-range model, respectively.

Table 7.2: Summary of training (top) and prediction (bottom) characteristics corresponding to
the thin and full-range SIT models. The training characteristics comprise the model
architecture and the adjusted hyperparameters for the optimal fit, including the total
trained instances, the number of hidden layers and neurons per layer, batch size,
patience interval for Early Stopping, and the number of trained epochs. Regarding

the predictions, the obtained MAE values are indicated for specific SI'T ranges.

Trained model Instances Layers Neurons Batch Size Patience Epochs

Thin ice 348,009 2 64 1024 30 epochs 198
Full-range 63,330 3 64 1024 40 epochs 353
Prediction Thin Ice Model Full-Range Model
SIT range [m] 0-0.6 0-0.5 0.5-1.5 1.5-2.5 0-2.5
MAE [m] 0.065 0.160 0.275 0.149 0.237

Prediction of Arctic and Antarctic SIT

The performance of the optimal fits was evaluated after applying the NN models to the
unknown Arctic test set. The prediction error, the distribution of the MAE with SIT, and
the relation between predicted and ground truth SIT are displayed in the Figure [7.7p—d
for thin SIT. This model performs well with the error being widely unbiased up to a SIT
of 0.4 m, but it underestimates the values for higher SIT. Predicted values deviate more
from ground truth values with increasing SIT, until reaching a maximum error of around
9.5cm at a SIT of approximately 30 cm. For predictions larger than 0.5m, the MAE
again shows lower values. This could be explained, because the model generally contains
a small bias towards higher values and ground truth values beyond 0.6 m were filtered
beforehand.

In Figure [7.8] two estimated weekly composite maps that are based on the thin SIT
model are compared to the corresponding SIT-SMOS maps in the periods from 15-21
October and from 12-18 November 2020. In mid-October, sea ice mainly consisted of the
remaining thick multi-year ice and regions of newly-formed thin ice were observed around
the Beaufort Sea. In this period, only a small amount of under- and overestimated values
are present. Positive deviations can be attributed to most-recently formed thin ice. Until
mid-November, freeze-up had already advanced in the Arctic ocean, and thin sea ice
below 0.6 m became more abundant. The increasing amount of newly-formed thin ice in
the East Siberian Sea and the Laptev Sea, which is visible in the SIT-SMOS product, is

in agreement with the values that were obtained from the NN model. In this period, the
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number of underestimated values increases as sea ice gets thicker. The deviations between
the ground truth and the predicted values reveal that underestimated values are located
around the 0.6 m threshold, where the model range is limited. They can be related to
areas in the Beaufort Sea and the Greenland Sea, where sea ice started to thicken beyond

the sensitivity range of Tp observations.
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Figure 7.7: Evaluation of training and prediction of the thin SIT model. (a) Validation and
training error determined after each epoch; early stopping occurred at 198 iterations
and the model resulted in a MAE of 0.065 m; (b) prediction error after application
of the model to the entire Arctic data set; (c) distribution of the MAE with SIT;

and, (d) relation between predicted and ground truth SIT-SMOS.

Figures [7.9b—d show the evaluation of the full-range SIT model. The model performs
well for thin (< 0.5m) and for thicker ice (> 1.5m), in which a substantial amount of values
is given. These include the individual sub-ranges, where Tpg and altimetry observations
are known to be more sensitive to SIT, and where uncertainties of the SIT-SMOS and
the SIT-CS2SMOS products are expected to be lower. Most part of the elevated value
of the MAE (0.237m) is made up by the high deviations of for SIT between 0.5m and
1.5m (~0.25-0.30m, with a MAE of 0.275m in Table [7.2]). This may occur due to the
fact that, after summer melt and at the beginning of the freeze-up period, mainly thick
multi-year ice remained together with thin newly-formed ice. Instead, only a few values
of sea ice in the intermediate thickness range can be provided for model training during
the observed period. Therefore, the intermediate range may be underrepresented in the
resulting predictions. In addition, the ground truth values are based on Tz and altimetry
observations using an optimal interpolation scheme. This may introduce some artifacts at
intermediate SIT ranges, resulting in distortions in the training that cannot be adequately
conceptualized by the NN model.

In Figure the predicted weekly composite based on the full-range SIT model is
compared to the corresponding SIT-CS2SMOS map in the period from 22-28 October

2020. The over- and underestimations may be due to the large footprint of the antenna,
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Figure 7.9: Evaluation of training and prediction of the full-range SIT model. (a) Valida-

tion and training error determined after each epoch converge close to each other;

early stopping occurred around 353 iterations and the model resulted in a MAE

of 0.237m; (b) prediction error after application of the model to the entire Arc-

tic data set; (c) distribution of the MAE with SIT; (d) relation between pre-

dicted and ground truth SIT-CS2SMOS; Good generalization is obtained for thin
ice (SIT <0.5m) and thicker ice (SIT >1.5m).

which smoothes out the observations, reducing the small-scale variability. Underestima-
tions (indicated in blue) can be attributed to areas of more heterogeneous multi-year ice.
Most of the overestimated values (indicated in red) are located in the Beaufort Sea and

in areas with high contrasts between newly-formed thin ice and thicker ice. Hereby, pre-
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dicted values are within the intermediate SIT range, in which the model performance is
also less accurate. Highly overestimated values are located to the north of the Baffin Bay
around North-Western Greenland. This anomaly may also be due to land-sea contami-

nation or to most recently formed ice, which is not yet captured in the predicted weekly

composite.
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Figure 7.10: Comparison between the weekly composites of Arctic full-range SIT maps (a)
and the corresponding ground truth SIT-CS2SMOS product (b), including their
deviations (c), from 22-28 October 2020.

Figure shows the predicted SIT map over the Antarctic sea from 15 October
to 14 November 2020 (monthly composite), obtained after applying the full-range SIT
model to Antarctic data. The massive ice shelves (e.g., Ronne and Ross) located in the
Ross and Weddell sea were excluded from the predictions. It is important to note that
a disseminated product of SIT at the Antarctic scale was at the time of the study not
available for comparison. Therefore, the model cannot be validated in the same way as
for the Arctic. SIT has an important impact on the melting trend of sea ice and it can
be a good proxy of the upcoming SIE distribution. Antarctic SIE is already decreasing
after having passed its annual sea ice maximum around mid-September. Thus, the spatial
patterns of the distribution of SI'T can be compared to those of future SIE, assuming that
areas consisting of mainly thin ice are supposed to melt first. Because Antarctic sea ice
melts and refreezes almost completely during a course of a year, it is mainly composed
by thinner first-year ice. This is in agreement with the model predictions, which result in
an average SIT of 0.67m for the Antarctic, in comparison with 1.25m obtained for the
Arctic. Additionally, the maximum estimated SIT of 2m in the Antarctic is lower than

in the Arctic, where values up to 2.5 m were predicted.

7.2 FSSCat Sea Ice Products

Following the successful launch of the FSSCat mission on-board Vega flight VV16 on 3
September 2020, and the approximately one-month commissioning of the FMPL-2 instru-
ment and its validation using recordings from 1-13 October 2020, observations between 15

October and 4 December 2020, were selected to provide products of SIT and SIC over sea
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Figure 7.11: Application of the Arctic full-range SIT model to Antarctic data. (a) Distribution
of the predicted SIT values; (b) Monthly composite of Antarctic full-range SIT
from 15 October to 14 November 2020.

ice, sea surface salinity and wind speed over ocean, and soil moisture over land [Herbert|
et al., 2021b|Llaveria et al., 2021,|Munoz-Martin et al., 2021b, Munoz-Martin and Camps,
2021|. All geophysical quantities were determined globally, i.e. sea ice parameters for

both Arctic and Antarctic, by combining FMPL-2 observations with different auxiliary

data based on various NN approaches.

Prediction of Arctic and Antarctic SIC and SIE

In addition to the thin and full-range SIT prediction models explained in the section above,
maps of SIC and SIE were obtained using data from both sensors of the FMPL-2 payload —
the recorded points by the GNSS-R instrument and T data of the L-band radiometer. As
auxiliary information, land cover maps from MODIS were used to mask out land masses
to account for potentially contaminated land-sea areas due to the large footprint of the
FMPL-2 antenna. Similar to the approaches for SIT retrieval, skin temperature data
was added to include dependencies on the physical temperature. Two NNs were set up
and trained independently for each of the SIC and SIE retrievals. EUMETSAT OSI-SAF
Global Sea Ice Concentration product OSI-401-b was used as ground truth for network
training. The two SIC models are neural regression networks that produce a continuous
output with values between 0 and 100 %, while the two SIE models consist of a binary
classification output to discriminate OW and sea ice, respectively. In the first network
in each case, only the Ty data — including standard deviation and gradient — and the
two auxiliary data sets were used as input to train the networks. In the second models,
GNSS-R data — reflected signal elevation angle, reflectivity and standard deviation, and
signal-to-noise ratio — were added to the respective inputs of the first networks to achieve
a conditional improvement in retrieval accuracy wherever specular reflection points were
available. In the first network configurations using Tp data, the absolute error for the

SIC retrievals is less than 5% for both poles, and the classification accuracy for the SIE

May 29, 2022



157 7.3. Discussion

estimates are 98.2% for the Arctic and 96.1 % for the Antarctic. Supplementing the
networks with high-resolution GNSS-R data resulted in a lower absolute error for the SIC
retrievals of less than 3 % for both poles and a classification accuracy for the SIE estimates
of 98.9% for the Arctic and 99.0 % for the Antarctic, respectively |Llaveria et al., 2021].
An example of Arctic and Antarctic SIC estimate is given in Figure
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Figure 7.12: Maps of predicted SIC (a) for the Arctic on October 15, 2020 and (b) for the
Antarctic between November 13-15, 2020

Disseminated Sea Ice Products

Images of FSSCat/FMPL-2 Tp and GNSS-R and derived geophysical parameters are
publicly available and can be downloaded at https://catalogue.nextgeoss.eu/. Sea
ice parameters are provided at different processing levels and estimations are projected
onto a 12.5 km EASE-Grid 2.0. and are stored in NetCDF. As for SIT maps, L2, L3, and
L4 processing level products are produced separately and are available for the Arctic and
Antarctic. The range of products comprise the daily estimated tracks of L2 thin SIT, the
weekly composites (running mean) of L3 thin SIT, and the weekly composite (running
mean) of L4 full-range SIT. Examples of maps of the Arctic and Antarctic L3 products
are provided in Figures and and maps of the Arctic and Antarctic L4 products

are provided in Figures and [7.16] respectively.

7.3 Discussion

Based on the first results of the FMPL-2 Ty observations of the FSSCat mission, two
separate SIT models based on regression NN were implemented. The thin SIT model
performed well for sea ice up to ~0.5m. Above 0.5m — where Ty is less sensitive to

SIT — the values are notably underestimated, and the network is not capable of inferring

SIT at higher range from the input feature interactions [Naoki et al., 2008|. The retrieval
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Figure 7.13: Maps of predicted Arctic L3 weekly thin SIT (a) from 2-8 October and (b) from
9-15 November 2020, respectively.
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Figure 7.14: Maps of predicted Antarctic L3 weekly thin SIT (a) from 11-17 October and (b)
from 5-11 November 2020, respectively.
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Figure 7.15: Maps of predicted Arctic L4 weekly full-range SIT (a) from 2-8 October and (b)
from 9-15 November 2020, respectively.

algorithm of the corresponding SIT-SMOS product used as ground truth depends on the

distribution of the physical temperature of sea ice and performs better for cold conditions
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Figure 7.16: Maps of predicted Antarctic L4 weekly full-range SIT (a) from 11-17 October
and (b) from 5-11 November 2020, respectively.

[Tian-Kunze et al., 2014]. This may contribute to the observed deviations between the
model prediction and ground truth data for higher SIT. In order to extend the sensitivity
range of the thin model, the input features are complemented with sea ice F'b observations
from the CS2 mission to yield full-range SIT, using the SIT-CS2SMOS product as ground
truth data. The full-range model performs well for values above 1.5m and for thin SIT.
However, between 0.5 m and 1.5m, a gap of higher errors of magnitudes around 0.25m to
0.3m remains. The uncertainty of the merged SIT-CS2SMOS product is a combination
of those of the original SIT maps that are derived from SMOS (SIT-SMOS) and CS2
(SIT-CS2) |Ricker et al., 2017]. The observed errors of the model predictions in the
intermediate SIT range between 0.5 m and 1.5 m are in agreement with those of the SIT-
SMOS and SIT-CS2 products, revealing high relative uncertainties between 25 % and 75 %
in the same SIT range. Thus, the higher uncertainty of the SIT-CS2SMOS product at the
mostly interpolated intermediate SIT range may affect the learning process during model
training, and it limits the prediction accuracy of the network at that particular range.

Instead of using the interpolated SIT-CS2SMOS product as a single target variable in
the output layer of the network, more consistent predictions may be obtained by using
SIT-SMOS and SIT-CS2 data as two separate variables. The two predicted outputs could
be interpolated a posteriori according to their individual error distributions. A conceivable
solution to generally overcome the challenge of the remaining sensitivity gap — which is not
covered by the altimetry measurements and the radiometry observations at L-band — will
be to introduce another feature to the training set. For example, radiometry observations
at P-band (~ 500 MHz), as indicated in Figure in Section can complement the
lack of sensitivity in the intermediate range. It can provide the necessary information
content to the network to overcome the limitations of both the saturation of Ty for
higher SIT and the predominantly high uncertainties of sea ice Fb corresponding to small
SIT values.

Although ancillary data at higher resolution are added to reveal information of sea
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ice at smaller scale, the large radiometer footprint (~ 350x500 km? smoothes out the ob-
servations and limits the detectable small-scale features of the SIT. Large-scale averaging
overall reduces the standard deviation and the dynamic range of the Ty observations.
Predictions of the full-range model are currently underestimated at areas of predomi-
nately thicker and more heterogeneous multi-year ice, where Tz observations at L-band
are already saturated. Overestimated values are mostly located at the transitions between
first-year and multi-year ice, and where high contrasts in SI'T due to local variability are
given. Therefore, the accuracy of SIT estimations while considering smaller scales is
limited by the local heterogeneity of sea ice. The actual resolution of the FMPL-2 ob-
servations also depends on the orientation between the flight direction relative to the
contrasts in surface structures of sea ice. Thus, it would be feasible to deploy a network
of FMPL-2 like sensors in a constellation of CubeSats to shorten the revisit time.

The Tx discontinuities between land and sea ice close to coastal areas can lead to os-
cillations in the image reconstruction process (Gibbs phenomenon). T observations over
land are sensitive to the soil moisture content, and values at L-band for circular-polarized
near-nadir observations can range between around 175-275 K [De Roo et al., 2004]. This
often results in higher T and an overestimation of SIT in land-sea contaminated areas.
The accompanied artifacts can be corrected using a Gibbs algorithm similar to that which
is used to derive Tp maps from SMOS data, but has not yet been implemented in the
FMPL-2 Tjp retrievals [Oliva et al., 2020].

Regarding the range and density of values of Arctic training data, and Antarctic
prediction data, the application of the full-range model to predict Antarctic SIT was
considered to be reliable during the study period. Because the Arctic and Antarctic
regions represent different environments, accurate models require greater understanding
on the temporal variability, sensitivity, and uncertainty contributions of the selected input
features with respect to SIT estimations. So far, there is no validated product of Antarctic-
wide SIT available using a process-based approach, mainly because these models require
information on the physical properties, including snow cover. The signatures of radiometry
measurements at L-band are sensitive to the intrinsic ice-physical properties, which change
over the course of a year, and the conversion of satellite altimeter observations of Fb to SI'T
requires accurate knowledge of snow cover. Snow depth has been successfully estimated
using approaches that are based on both emission models and NNs [Maafk et al., 2013} Liu
et al., 2019]. The uncertainty of SIT retrievals is largely determined by the uncertainty
of current snow products, and the development of statistics-based models based on a
appropriate set of features is promising, but it still remains challenging.

Because the seasons of freeze up and melting in the Northern Hemisphere are the
opposite of those in the Southern Hemisphere and sea ice is located towards lower latitudes
in the Antarctic, it largely consists of first-year ice throughout the year, which is generally
shallower than in the Arctic. This is in agreement with the predictions of the full-range

model, which result in an average SI'T of 1.25m for the Arctic and 0.67 m for the Antarctic,
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respectively. In the beginning of the Arctic freeze up, sea ice mainly consists of newly-
formed thin ice and thick multi-year ice, agreeing with the range of thicker ice between
2m and 2.5m, which was only predicted over the Arctic. Unlike in the Arctic, parts of
Antarctic sea ice surface temperatures reach the melting point during the observed period,
which limits the reliability of the full-range model predictions for these particular values.
In case the period of available training data was longer than the observed two months,
the model training set should be periodically updated with new data, once any of the

input features of the Antarctic prediction data set reaches the limits of the training set.
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8 Conclusions

This dissertation has addressed novel data-driven approaches to synergize Earth Obser-

vation data to improve the retrieval of subsurface SM, and sea ice parameters.

In the first part, the relationship between satellite-based SM and RZSM observations
were investigated on the basis of DTW — a TSA technique capable of quantifying the
time lag between non-linearly shifted and distorted time series based on their common
prominent features. The DTW technique was used to estimate the response time between
the surface-sensitive, high-resolution SMOS L4 product, provided by the BEC, and in-situ
profile SM. Topsoil and RZSM observations at 5, 25 and 50 cm from four representative
stations within the semi-arid REMEDHUS SM network were selected regarding their land
use and soil properties. DTW was applied to the normalized trend series of SMOS L4
and to in-situ observations from 2016 to 2018, and the time lag evolution was obtained
accordingly. DTW parameters were customized to the particular input time series to
obtain a robust and meaningful time lag. Positive and negative slopes, which correspond
to the rate of accumulation and reduction of time lag, respectively, were controlled to
consider the natural behaviour of dry periods and heavy rains. In the case of the anormal
year 2017, intermittent heavy rains with drier conditions in summer resulted erroneously
in an unreasonable accumulation of the time lag, when time series in fact showed clear
alignment. To account for this phenomenon, a method based on the curvature of the
cumulative sum of precipitation was implemented to determine the onsets of pronounced
precipitation events. When alignment of the time series was forced at heavy precipitation

events and the time lag was reset to zero, the time lag continued to evolve naturally.

The response time shows strong seasonal variations and differences among different
soil properties and land uses. The capability of the method to include the relevant SM-
related factors was investigated to understand its impact on the resulting time lag. Cli-
mate conditions are mainly variable on large spatial scales and are therefore considered
to be captured similarly in both the areal satellite and the point-scale observations. The
comparison of long-term precipitation recordings and PET estimations over REMED-
HUS allowed the classification of SM seasons, which is specific for a semi-arid region —
i.e. recharge, utilization and deficit. Similar climatic conditions and a distinction of the
prevailing processes among these three seasons support the interpretation of the time lag.

In contrast, the presence of crops and the influence of processes such as root-water uptake
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during the main growing season are relevant at the smaller field scale, making SM also
locally variable. MODIS NDVT time series at 1km revealed the phenological cycle of the
predominant land use of the study area, which mainly consists of rainfed cereals. Dur-
ing the main growing season, the spatial heterogeneity of land cover was analyzed from
Sentinel-2 NDVT images at 10 m resolution to estimate the level of spatial representativ-
ity of the SMOS L4 pixel with the corresponding in-situ stations. The spatial scale of
cultivated fields is typically much smaller than the 1km pixel, and heterogeneity led to
non-negligible differences among observations at in-situ stations in the area integrated by
the satellite product.

The following conclusions can be drawn regarding the evolution of time lag at the
particular stations. Finer-textured soils result in higher time lag. The deficit season
clearly shows the highest time lag. When abundant rains prevent long-term dry out during
recharge and utilization seasons, essentially less time lag is accumulated. In most cases,
time lag increases with increasing depth. This is given for the two most representative
stations M5 and E10. An inverse behaviour could be observed at station J12, where strong
root-water uptake was present during the main growing season. Hereby, RZSM was
consumed rapidly, whereas soil at shallow depths dried out more slowly, which resulted
in less accumulation of time lag.

The exponential filter is an independent TSA method which is often used to validate
the results of novel RZSM retrieval algorithms. The method was applied to SMOS L4
time series to determine the SWI while optimising the characteristic time length in days
up to which profile SM is influenced by previous satellite observations. For each station
and depth level, the time length was optimized on the basis of different validation metrics
for the respective SM seasons. The representative SM-season-specific optimal time lengths
largely resemble the seasonally averaged response time results using DTW — which were
particularly high during the deficit season. By considering the time length to be charac-
teristic for each SM season — rather than being a constant for each station and depth only
—led to a better performance of the exponential filter. Besides the analysis of the seasonal
differences in SM dynamics, the relationship between SM time series and other surrogate
parameters — such as land use information — that clearly influence the SM regime, require
further investigation to enhance the retrieval of profile SM.

The second part of the thesis is focused on the segmentation of sea ice using a Bayesian
Unsupervised learning framework to combine multi-source satellite observations, and the
retrieval of SIT using data of the FSSCat mission on the basis of an NN approach.

In a first application, the 2D Bayesian approach was used to segment high-resolution
Sentinel-1 SAR images to discriminate water from sea ice, with the aim of estimating
the fraction of closed surface water including melt ponds and leads, and the associated
SIC. A common challenge in current sea ice classification algorithms using SAR imagery
is the dependence of the backscatter coefficient on small variations in surface roughness

as well as its non-linear angular dependence, which shows differences between different
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sea ice types and calm waters compared to rough, wind-induced waves over the ocean.
Images at incidence angles lower than 30° were discarded and a single slope correction
was applied to account for angular variation along the period when sea ice was present.
Unambiguous categorization through the observed SAR surface signatures is only possible
when sufficient contrast is given, which limits the accuracy of any segmentation method.
Bayesian inference was preceded by an EM step to estimate whether the amount of data
points in the observed area representing water is significantly high to form a separate class
in the segmentation.

The method was applied to an area in the northern Barents Sea which allowed the
estimation of high-resolution SIC during a full annual cycle from the Arctic freeze-up
in September to the ice-free period in August. The obtained patterns of the segmented
images were compared with optical data from Sentinel-2 at the dates, when the extracted
SIC largely differed from the reference SIC. These differences may have originated from
the presence of melt ponds. Since the optical images are affected by cloud coverage, the
collection of sufficient ground-truth images is challenging, but can be further considered
for evaluating the classes. Due to the probabilistic approach, the model uncertainty of
the detected surface water class can be determined from the class probability distribution
for each pixel. The method may be a major step towards the automatic segmentation of
SAR images to produce high-resolution SIC maps, and to overcome the known limitations
of SIC retrievals based on low-resolution microwave radiometry observations only.

In a second application, the approach was applied to multi-incidence angle SMOS
Tp observations over the Arctic in the period of late summer melt and early freeze-
up in 2016. Classes are formed based on the the link between the sea ice properties
and the differences and similarities of the PR at high incidence angles. The number of
relevant classes was determined a priori from the PR distribution, and it was verified
a posteriori using GSI. Model uncertainty was determined using information entropy
which allowed to distinguish well-determined regions from uncertain ones. High global
separability was achieved considering two classes during late summer melt and three
classes during freeze up, respectively. A comparison with existing maps of thin sea ice
(SIT-SMOS product) indicated that classes can be attributed to SIT ranges. During late
summer melt, two classes could be attributed to remaining thick ice, and a transition
zone, showing differences in the correlations of the input features. With the beginning of
the formation of new thin ice during freeze up, an additional class could be discriminated
based on the occurrence of higher PR values. However, the decrease in relative abundance
of newly formed ice to the total sea ice during freeze up resulted thin sea ice to be less
significant and led to higher overlap between classes. The underlying sea ice properties
and the corresponding variation in PR have to be better understood to draw conclusions
of the obtained classes, considering an entire annual cycle of Arctic sea ice formation and
melting.

The 2D-segmentation performed individually at each time step showed limited tempo-
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ral stability of the classes. Along the freeze-up, the number of significant classes changes
and classes have consistently different physical meaning, because not all ice types are
equally well represented during the development of sea ice, showing non-negligible shifts
in the resulting class mean values. The segmentation requires reasonable manual selec-
tion of the number of classes, which makes its formation unreliable under changing ice
conditions, and automatic segmentation — which is necessary for operational monitoring
— is constrained. So far, the algorithm was applied to observations comprising the late
summer melt, and the beginning of the freeze up and classes were mainly analyzed during
the formation of sea ice. Sea ice undergoes an annual cycle of freezing and melting periods
and classes emerge and disappear seasonally according to the changing surface conditions.

The 2D spatial algorithm was extended to three dimensions to include temporal in-
teraction to be able to capture the full spatio-temporal context of sea ice. The algorithm
was successfully verified to be able to reconstruct the underlying structure of a synthetic
four-featured 3D data set, generated with Gaussian emission functions. The basic idea is
that all data points are connected in space and time, based on a Markov field, and the
information of each voxel gradually iterates through the entire model space. Voxel-based
segmentation has the advantage over pixel-based implementation that the total number of
significant classes with respect to the selected set of input features needs to be determined
only once. Classes are supposed to recur on an annual basis, and 3D segmentation can
be performed without manual guidance at each time step.

3D segmentation was applied to SMOS and AMSR2 Tg data to investigate the joint
effect of multi-frequency observations, similar to those of the future CIMR mission. A total
number of six classes along an entire annual cycle seemed a suitable choice with respect
to the evolution of spatial patterns in physical space. The corresponding location of the
mean values of the clusters in the marginal features space between 18 and 36 GHz is often
used in common algorithms to infer SIC. The segmented classes were ranked in ascending
order regarding the mean values of SMOS low-frequency feature. Feature-specific mean
values of each class can be related to the frequency-depending radiometric properties —
such as scattering phenomena — to reveal the underlying sea ice state, and the linear
dependence between the features is characterized by the covariance matrix. Variability of
class membership clearly indicates both the beginning of the freezing period and the start
of the melting season. In summer, sea ice conditions change due to stronger irradiation and
higher air temperatures, and observations lose sensitivity to sea ice composition, such that
these classes could be associated with different stages of wet conditions. Segmentation of
data in courser time intervals over the period from 2012 to 2019 resulted in temporally
stable annually recurring classes.

The spatial consistency of the segmentation result was evaluated by comparing the
class patterns with maps of SoD of operational ice charts, and current SIC and SIT prod-
ucts. Class shapes can be identified with those of the most common SoD, including nilas,

thin FYI and old ice in early winter, and thick FYI and old ice as sea ice formation pro-
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gresses. Concerning SIC, Class 0 represents newly formed sea ice with low concentration
at the sea ice edge, Class 1 can be primarily associated with ponded ice with reduced
SIC due to the presence of melt ponds during advanced melting in late summer, and
the remaining classes contain fully ice-covered areas. Within the freeze-up period classes
can be clearly attributed to SIT ranges. Classes 0-2 resemble thin SIT ranges, where
low-frequent observations have sufficient penetration depth. Classes 3-5 can be related to
the full-range SIT-CS2SMOS product and show a clear positive trend along the freeze-up.
This could be explained because as sea ice ages, its surface conditions change. Thus, sea
ice age can be used as a proxy to indirectly estimate SIT ranges beyond the sensitivity
range of microwave radiometry observations.

The use of nanosatellite data for Earth observation applications to determine geophys-
ical parameters can be a cost-effective alternative or valuable complement to large satellite
missions. A novel approach was developed to retrieve SIT maps over polar areas based
on predictive regression NNs using the first results of the FMPL-2 L-band microwave ra-
diometry observations of the FSSCat mission. Unlike process-based or simple regression
models, data-driven approaches enable to adequately address the complex nature of sea
ice. Information regarding non-linearly related sea ice parameters are contained in the
link between a selected number of variables. These relationships were considered in the
hidden layers of the NN model.

Two independent models have been implemented and trained with Arctic data to
yield maps of Arctic thin SIT and full-range SIT. The model input features comprise
the FMPL-2 Tp observations and ancillary data, including SIC and skin temperature
maps. A thin SIT model was implemented using the SIT-SMOS product as ground truth
data and targets SIT values up to 0.6 m, being limited by the sensitivity of L-band Tpg
observations. Adding complementary information of CS2 sea ice Fb data to the existing
input features allowed us to extend the sensitivity range to values that are larger than
those covered by the thin SIT model. This enabled implementing a second model yielding
full-range SIT, which was evaluated using maps of the merged SIT-CS2SMOS product as
ground truth data.

Both models were trained on Arctic data during early Arctic freeze up from 15 October
to 4 December 2020. Hyperparameters were adjusted to prevent the models from data
overfitting to obtain the optimal fit through the minimization of the MAE cost function.
The thin ice model shows good performance with an overall MAE of 0.065m, and it
generalizes well up to a SIT of 0.5 m, while underestimating for higher SIT values. The
best fit of the full-range model results in a MAE of 0.237m, and the predictions match
well for thin ice and SIT above 1.5 m. Hereby, the main error contribution originates from
predicted values in the intermediate SIT range. Major losses may be attributed to either
an existing sensitivity gap of the sensors or to the limited availability of sufficient values for
training during the observed period. The predictive models allowed for producing weekly

composite maps of thin and full-range SIT at the Arctic scale. The full-range model that
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was obtained from Arctic data was also applied to Antarctic data to produce monthly
composites of Antarctic SIT. It is important to note that a disseminated product of full-
range SI'T maps at Antarctic scale was not available for comparison during the observed

period.
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9 Future Work

The link between surface-sensitive and profile SM measurements has been investigated
using DTW to quantify the time lag based on the similarity between SMOS 14 data and
in-situ time series. Both time series respond to heavy precipitation events and the time
lag shows seasonal variability with larger values in the SM deficit season. Assuming that
the response time between subsurface and surface sensitive SM is a constant — as it is
common using the exponential filter technique — can significantly reduce the accuracy of
RZSM retrievals for certain seasons due to potential oversmoothing. The precipitation
and PET patterns allowed to define SM seasons, i.e. periods of recharge, utilization and
deficit, which reflect the variability of the typical SM regime of the investigated semi-arid
region. Future work could include applying the approach to other SM networks in other
climates where the coupling between surface and RZSM is different, and SM seasons can
be defined accordingly. In humid climates, after continuous rain, another surplus season
may occur after continuous recharge when the field capacity — which limits the SM stor-
age — is reached. Once the relationship between the SM regime and the response time for
different climates is better understood, the RZSM can be estimated assuming individual
characteristic time lengths for each SM season.

In addition to the importance of different climatic conditions and soil types for the soil-
water balance, other factors such as the heterogeneity of land use and the representativity
of the network station within the satellite pixel can also have a critical impact on the reli-
ability of the technique. A harmonic analysis of successive land cover observations derived
from the satellite-based NDVTI (indicating the plant’s health) can be performed to describe
the temporal variation of land use, i.e. typical land use, and higher harmonic terms, ob-
tained from the frequency of specific land covers in the observed time series.

The large spatial sampling of satellite-based SM products is an ongoing challenge since
satellite sensor designs are a trade-off between sensitivity and spatial resolution. Down-
scaling approaches such as the SMOS L4 algorithm will continue to rely on approximations
using auxiliary information like NDVI and land surface temperature to capture the small-
scale variation. The analysis of subsurface SM together with the atmospheric state vari-
ables temperature and humidity in coupled land-atmosphere data assimilation approach
may lead to mutual enhancement of the analysis to provide SM at higher resolution more
accurately |[Reichle et al., 2008,|De Lannoy et al., 2019|.
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The warping path as being the evolution of the time lag, could be introduced into a
neural network framework together with atmospheric parameters to investigate the con-
tribution of each variable to the RZSM. The total warping path can be used as a global
measure which represents the overall dissimilarity between the time series. It can be used
to categorize the relationship between observations at different locations to estimate the
characteristic coupling between surface and RZSM. It can also serve as a proxy for the
penetration depth of the signal into the ground by assessing the sensitivity of the satellite-
based time series to finely sampled multi-depth sensors.

TSA techniques have the advantage — unlike process-based models that solve for the flow
and transport equations — that they do not depend on many variables, which is a useful
simplification when there is not enough information to fully understand all the processes.
Since time series are the only source of information on which TSA techniques rely, it is
important to understand the influence of temporal sampling and total data length on the
estimations. The temporal evolution of the response time can be investigated at different
timescales to better assess which processes are captured in the time lag between surface

and subsurface SM.

Observations of polar-orbiting satellites, which acquire data in the low-microwave spec-
trum, have resolutions ~ 10-50 km and do not resolve the small-scale heterogeneous state
of sea ice. The large satellite pixels comprise a distribution of SIT, but only provide a
single value if the spatial interaction are not considered. The implemented probabilis-
tic inference model using HMRF takes into account the interactions in space and time
between neighboring voxels. The multivariate Gaussian distributions of classes comprise
mixed sea ice states. Each pixel has a non-zero probability to belong to each of the seg-
mented classes, which are previously validated and assigned to a specific sea ice state,
i.e. encompassing a certain SIT range. If the relationship between each class and sea ice
parameters, such as the SIT ranges, is known, the SIT distribution at each voxel can be
estimated based on the respective class membership probability. Each pixel then contains
the information about the typically occurring classes in a given spatial and temporal sur-
rounding. In theory — this enables the algorithm to capture the sub-pixel distribution of
SIT.

Changes in SIT can then be predicted by evaluating the transitions between classes in
the probability distribution — which typically occur at a certain geographic location and
time of the year, or due to specific external atmospheric forcing and irradiation — over a
longer period (e.g. several years). The transition between classes (which can be referred to
sea ice states) can be investigated to better understand the local and seasonal behavior of
sea ice growth and melting. Automated segmentation of the polar regions requires reliable
and physically meaningful classes representing the same sea ice properties with multi-year
consistency to determine SIT and SIC of similar quality as in current operational products

produced by experienced sea ice analysts — also on the local and seasonal level. So far,
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the positive trend along the freeze-up period between SIT-CS2SMOS and Classes 4-6
has been verified at Arctic scale. Beyond the sensitivity range of microwave radiometry
observations to thin ice, sea ice age can be used as a reliable proxy for SIT estimation if
the relationship between classes and the sea ice state is fully understood on the seasonal
and local scale.

The estimated classes can be evaluated using a RTM such as the Snow Microwave
Radiative Transfer (SMRT) thermal emission and backscatter model |Picard et al., 2018].
Different sets of segmented input features yield hidden field patterns which represent
different sea ice properties. For each resulting class the expected electromagnetic signal
can be simulated in a forward modelling approach to estimate the corresponding sea ice
properties as model parameters. The model parameters can be adjusted accordingly for
single or mixed ice types to approximate the radiations which resemble the class mean
values for all the respective input features best. The relationship of satellite observations
at multiple frequencies can be assessed to obtain an appropriate set of input features
that enhances the sensitivity to sea ice parameters, such as SIT. Also, in case a set of
observations is included in a retrieval, it is important to know which of the observed
properties dominates the formation of a particular class. It can be further evaluated
which observation can be added or removed as an input feature to improve the total
information content by reducing redundancy in order to optimally resolve the remaining
ambiguities.

However, the data are never completely sufficient to unambiguously characterize all
the relevant sea ice properties of interest. For many applications, the information content
from the data provided by current satellite missions is limited. The number of model
parameters to fully characterize the state of sea ice exceeds the space-based capability to
provide all necessary observations, and the inference problem remains ill-posed. Therefore,
retrieval algorithms continue to rely to some extent on auxiliary data, simplifications, and
empirical relationships to constrain the model parameters.

Future missions such as CIMR, the Copernicus Polar Ice and Snow Topography Al-
timeter (CRISTAL), and the Radar Observing System for Europe — L-band (ROSE-L),
are planning the deployment of new sensors with higher spatial and temporal resolutions,
and increased coverage to fill existing capacity gaps to eventually reduce the model un-
certainty. In particular, the simultaneous collection of multi-sensor data (as in CIMR)
would greatly reduce representativity errors that occur when combining non-collocated
observations. As a general tool to evaluate the synergistic effect of combining spatial
and temporal multi-source data sets, the algorithm has a wide range of applications and
is particularly useful to assess in advance how the data produced by these new satellite
missions can be efficiently blended together.

The sea ice edge is the most variable zone where sea ice forms newly and the fastest
changes and the largest variation in sea ice parameters occur. For example, the signif-

icance of the definition of SIC depends on the observed scale, and for smaller grid cells
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— apart from the sea ice edge — only values of 0 and 1 are obtained. Therefore, SIC
can be considered a continuous variable around the marginal ice zone. Apart from the
wet conditions during summer melt, which are generally difficult to determine based on
microwave radiometry observations, the large areas of closed ice are only gradually chang-
ing and mostly stable in the short term. The proposed unsupervised machine learning
algorithm segments sea ice into a number of most significant classes, and the resulting
patterns are formed according to the most frequently occurring values. Since all data
points are required to be assigned to one of the classes, some classes are more robust and
separable, where others are less cohesive and contain a broader range of values. In terms
of sea ice, the least significant class in which the highest uncertainty may comprise the
most interesting areas for specific applications where values change the fastest and over
the shortest distances like in deformations and the opening of leads. In the application
of the algorithm to multi-incidence SMOS data, the thin ice class encompasses observa-
tions where input features are the least correlated, but may contain the most valuable
information about the underlying sea ice properties. In the detection of deformations or
rarely occurring surface signatures based on SAR images, the misclassified pixels may
be the target. Future work could focus more on the sea ice margin in an informative
segmentation to give more weight to this most relevant areas and to better resolve the
distributions. This spatial target areas could be pinpointed, for example, by evaluating
when sea ice-related atmospheric conditions change beyond a certain threshold, or by

using a hierarchical algorithm and performing local segmentation for the uncertain areas.

NNs have the advantage to be adaptive to new data sets and models are able to cap-
ture variable sea ice conditions and changing relationships of the input variables when
considering longer learning periods. Future tasks may comprise the application of the
methodology to additional data to better identify limitations and to evaluate model per-
formance on regional scale. The inferred products demonstrated the success of the FSSCat
mission and the potential of applying FMPL-2 Ty to estimate SIT over polar areas us-
ing data from a single CubeSat. Using a constellation of 3Cat-5/A-like CubeSats may
effectively increase the satellite revisit and the spatial resolution of Tg maps, with the
potential to improve overall model accuracy. These constellations would provide a feasible
moderate-cost alternative to complement large satellite missions. They may substitute
them during gaps of non-existent data in order to guarantee the continuous monitoring

of polar sea ice at both hemispheres.
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A Application of DTW to Relate Gaus-

sian Distributions

In Chapter 4, DTW technique is applied to compare SM time series from satellite obser-
vations and multi-depth in-situ measurements. In this example, the technique is demon-
strated by means of synthetic data which represent the diffusion of a random variable.
The time series to be related are represented by two snapshots of Gaussian distributions.
This example could represent how an initial concentration of a substance (e.g. caused by

a spillage or leak), is spreading over time due to diffusion and advection processes.

The intermediate steps to obtain the optimal warping path between the two time series
are visualized in Figure In Figure [A.Th, the initial and final distributions are given.
The initial concentration is represented by a sharper distribution gaussi, with the mean
at time step 40. The time-lagged final distribution gauss2 has the mean at time step 100.
The Euclidean distance matrix Dp is pairwise computed from the differences in magnitude
at every sample (Figure ) The largest distances between the two series are given at
the row and column entries along the corresponding maxima of the distributions. Hereby,
element (40,100) shows a local distance minimum represented by a clear bottleneck. The
accumulated cost matrix Cy.. is computed from the distance matrix and reveals a clear
low-cost valley, along which the optimal warping path p®* evolves (Figure ) The
saddle point of the warping path coincides with the aforementioned local minimum with
a forced alignment at the elements (0,0) and (200,200). Throughout the entire period,
the concentration in distribution gauss1 accelerates faster and hence is always ahead of
distribution gauss2. The allocation plot between the two time series is given in Figure
[A.Td. One sample of gaussi is always allocated to multiple samples of gauss2, which

eventually leads to an accumulated time lag of the warping path.

Both distributions converge monotonically towards zero concentration and, since gauss1
is faster-accelerating than gauss2 within the entire period, the time lag is accumulating
until the boundary condition forces alignment at (200,200). Unless the change of con-
centration in the synthetically created input series is already negligible for gaussi at
long times, the warping path gets trapped at very high time lags. In nature, these non-
detectable low values can be in the order of the noise level where the concentration is

already of irrelevant magnitude. Customization of the DTW technique, described in the
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Figure A.1: DTW technique explained on the basis of a synthetic example: [a] input time
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optimal warping path with forced alignment boundary conditions at the beginning
and the end of the sequences. The diagonal of the cost matrix is indicated by a
white line and represents the alignment of the time series along the entire period;

[d] corresponding point allocations.

next Section can avoid unreasonable time lag evolution, when tailored for specific

application. Hereby, an adequate step-size can control the speed of the warping path and

a maximum allowed time lag prevents the warping path to become trapped at high time

lags.
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B Implementation of the Bayesian Seg-

mentation Algorithm

Algorithm 1: Parallel Gibbs sampler

Input : k-Colored MRF, y, @ =(qu"", 2", "), x"

| for thekcolors k,: ie{l2.. .k} do

2 parafor all voxels in the i-th color je V.
3 calculate the local a posteriori distribution p(X |y_!.,xﬂ_l_‘”,,u_\_)_"”,Z_\__I_[”,,B“’];
4 draw candidate x, ~ p(X,|y,.x, V.0 "2 BV
5 calculate the local energy U'(x_:, xall_m),U'(xﬂ’),xal‘_m);
6 accept x| = x_fxwith probability min{L_exp[U'(xf.”,xafm)—U‘(x;,xa{[”)]} :
7 end parafor
& end for
Return x'*")

Figure B.1: Scheme of the parallel Gibbs sampler [Wang et al., 2017].
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Algorithm 2: Bayesian parameter estimation using M-H algorithm

I]'lpllt . y , (D{i) — (I-I(U;EU),/BU}), xf:+|)

1 for thelabel [€{1,2,..,n} do

(t+1) (1+1) (1+1)

(1-+1)

update z” to u"*" conditional on Zi={u ", . u " u, " p, "),y X",

0, B0,
3 end for
4 for the label 16{1,2,...,;7} do

update X\ to X! conditional on E={x " % "z U 'z "
5
() ),
B
6 end for

(r+1) (r+1) (1+1)
3 2 Z

7 update B to """ conditional on y,x""", p

Return q)(m} — (“U—-I)’E{r-ﬂjaﬁ(lﬂl)

(i+1)

?yJX k]

Figure B.2: Scheme of the parameter estimation using a Metropolis-Hastings algorithm [Wang

| et al., 2017].
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C Preliminary Comparison between
SAR images and Airborne EM

Several airborne field campaigns were conducted in the Arctic and Antarctic to estimate
SIT using EMI measurements such as ESA’s SMOSIce |Haas et al., 2009, Kaleschke et al.,
2016| or laser altimetry observations such as NASA’s Operation IceBridge [Kurtz et al.,
2013| that has be used for validation. Here, the Bayesian segmentation approach is applied
to assess the relationship between Sentinel-1 SAR images and the tracks of airborne EMI
observations. In this first attempt, aim was to segment the 1D tracks into a number of
classes and to estimate how the backscatter coefficient and the SIT are related in each case
for preliminary classification. In the 1D approach, the heterogeneous model parameter 5
is a scalar which takes into account the spatial interactions between the two neighboring

points of a central observation along the track.

The input data for segmentation consist of the EMI-derived SIT data acquired from
9-11 November 2017 in the Wester Ross Sea (https://doi.pangaea.de/10.1594/PANGAEA.
925092 and the Sentinel-1 L1 GRD EW HH images at 15 m resolution (https://www.
sentinel-hub.com/. The airborne EMI measurements have a footprint of approx. 45 m,
with a sampling of 6 m and a total survey length of approx. 800 km, and the derived SIT
is provided with an accuracy of 0.1 m. Figure illustrates the SIT survey tracks and
the corresponding SAR image with the backscattering coefficient created at the same time
interval as the field campaign. Since the backscattering coefficient shows strong angular
variations (19-47 °), a subset is selected for segmentation in which the incidence angle
variation of less then 2 ° (corresponding to the section in Figure ) The grid centres
of the SAR images are projected onto the airborne EMI samples using nearest neighbor
interpolation to obtain regularly sampled 1D =, data at the same locations as the SIT
data points).

Segmentation was applied for 300 iterations to the set of two 1D vectors of SIT and
7o for a significant number of 5 classes predefined using BIC score. The diagnostics of the
segmentation are given in Figure Figure[C.2] comprising the evolution of the heterogeneity
coefficient and the class-specific correlation obtained in the iterative sampling process.
The segmented latent field is initially heterogeneous and evolves into more homogeneous

patterns for more iterations when considering the spatial interactions between neighboring
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Figure C.1: Tracks of EMI-derived SIT and Sentinel-1 SAR image recorded at the same days
over the Western Ross Sea. (a) entire 3 airborne tracks acquired from 9-11 Novem-
ber 2017 with a total track length of approx. 800 km; (b) smaller section of the

SIT track and the corresponding 7 background.

points. The resulting latent field in physical space is presented in Figure [C.4]

The 5 classes can be classified according to the structures of the underlying SAR
image, and the location of the clusters in feature space (Figure . For example, in
the upper section of the track the magnified circular feature (Figure top) as part of
class 4 reveals a thick multi-year ice floe. Class 1 in the section (Figure bottom)
can be attributed to a very thin ice layer and smooth surface conditions. A possible
interpretation between the classes with regard to the state of sea ice is given in Table
[CI] The consistency of this preliminary classification is limited due to the fact that the
exact time of the EMI acquisitions show a temporal mismatch with the collected SAR
images, which is non-negligible considering high sea ice drift velocities. To match the
two techniques more precisely, one can select a region where all relevant ice types can be
observed, but where the sea ice is less dynamic - such as in ice plugs, where sea ice can

remain largely static over multiple years.
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Figure C.2: Segmentation diagnostics of the iterative sampling process using SIT and 7. (a)
heterogeneity coefficient 3; (b) Correlation between the SIT and g for each class;
(c) segmented latent field patterns along the 6500 samples for each iteration step.
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Figure C.4: Results of the 1D segmentation in physical space. (a) Magnified features com-
prising a rough and thick MYT floe (top) and smooth and thin ice (bottom); (b)
segmented patterns of 5 classes; ¢) model uncertainty using entropy obtained from

the class probability.

Table C.1: Statistical and spatial class interpretation based on the attributed intervals of SIT
and g values and their correlation.

Class Correlation SIT Backscatter Interpretation
0 Low Thin High Thin young ice,
< 0.3 < 0.5m > -14 dB rough surface
1 Low Thin Low Water or very thin
< 0.3 < 0.5 m < -12 dB ice, smooth surface
2 Moderate Medium Medium FYI, heterogeneous SIT,
03<0<05 <1Im -17dB <9y <-8dB thermodynamic ice growth
3 Strong Medium High FYI, deformation-
> 0.5 >15m > -12 dB induced ice growth
4 Strong Thick High Rough and deformed
> 0.5 >1m >-14 dB thick MYI
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Figure D.1: Evolution of the SIT distribution for each class with respect to the thin SIT-SMOS
product along the freeze-up period from October 15, 2016 to April 15, 2017.
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Figure D.2: Evolution of the SIT distribution with respect to the full-range merged SIT-
CS2SMOS product along the freeze-up period from October 15, 2016 to April

15, 2017.
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Publications and Conference Contribu-

tions

First-author Journal Publications

Herbert, C.; Pablos, M.; Vall-llossera, M.; Camps, A.; and Martinez-Fernandez, J. An-
alyzing spatio-temporal factors to estimate the response time between SMOS and in-situ

soil moisture at different depths, Remote Sensing (2020).

Herbert, C.; Camps, A.; Wellmann, F.; Vall-Llossera, M. Bayesian unsupervised machine
learning approach to segment Arctic sea ice using SMOS data, Geophysical Research Let-
ters (2021).

Herbert, C.; Munoz-Martin, J.F.; LLaveria, D.; Pablos, M.; Camps, A. Sea ice thick-
ness estimation based on regression neural networks using L-band microwave radiometry
data from the FSSCat mission, Remote Sensing (2021).

Other Journal Publications

Munoz-Martin, J.F.; LLaveria, D.; Herbert, C.; Pablos, M.; Park, H.; Camps, A. Soil
moisture estimation synergy using GNSS-R and L-band microwave radiometry data from

FSSCat/FMPL-2, Remote Sensing (2021).
LLaveria, D.; Munoz-Martin, J.F.; Herbert, C.; Pablos, M.; Park, H.; Camps, A. Sea ice

concentration and sea ice extent mapping with L-band microwave radiometry and GNSS-R

data from the FFSCat Mission using neural networks, Remote Sensing (2021).
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Selected Talks and Conference Publications

ESA Living Planet Symposium (05/2022):
Organizer of the polar scientific session ‘Sea Ice Remote Sensing’, Spatial and Temporal
Segmentation to Synergize CIMR-equivalent SMOS and AMSR2 Observations for Sea Ice

Parameter Retrieval (oral presentation).

ESA Earth Observation Phi-Week (10/2021):
Invited keynote speaker: First results of sea ice thickness retrieval using data of the FSS-

Cat CubeSat Mission (oral presentation).

International Geoscience and Remote Sensing Symposium (IGARSS) (07/2021):
Chair of the session ‘Sea Ice’, "Probabilistic inference method to discriminate closed water

from sea ice using Sentinel-1 SAR signatures (oral presentation).

European Geosciences Union (EGU) General Assembly (04,/2021):
Sea ice thickness retrieval based on predictive regression neural networks using L-band

microwave radiometry data from the FSSCat mission (oral presentation).

Microwave Radiometry and Remote Sensing of the Environment (MicroRAD) (11/2020):
Estimating Arctic sea ice distribution from SMOS multi-incidence angle brightness tem-

peratures using unsupervised learning algorithms (oral presentation).

European Geosciences Union (EGU) General Assembly (05,/2020):
Dynamic time warping analysis of the evolution of SMOS surface and in-situ soil moisture

time series (poster presentation).

American Geophysical Union (AGU) Fall Meeting (12/2019):
The inference of Arctic sea ice thickness from SMOS multi-incidence angle brightness

temperature using unsupervised learning algorithms (poster presentation).
European Geosciences Union General Assembly (04/2019):

Extracting heterogeneity of subsoil from geophysical measurements using unsupervised

learning algorithms (oral presentation).
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