32,235 research outputs found

    Sub-optimal control design of a semi-active vibration reduction system

    Full text link

    Temperature sensitive controller performance of MR dampers

    Get PDF
    Magnetorheological (MR) dampers can experience large temperature changes as a result of heating caused by energy dissipation, but control systems are often designed without consideration of this fact. Furthermore, due to the highly nonlinear behavior of MR dampers, many control strategies have been proposed and it is difficult to determine which is the most effective. This paper aims to address these issues through a numerical and experimental study of an MR mass isolator subject to temperature variation. A dynamic temperature dependant model of an MR damper is first developed and validated. Control system experiments are then performed using hardware-in-the-loopsimulations. Proportional, PID, gain scheduling, and on/off control strategies are found to be equally affected by temperature variation. Using simulations incorporating the temperature dependant MR damper model, it is shown that this is largely due to a change in fluid viscosity and the associated movement of the lower clipped optimal' control bound. This zero-volts condition determines how close any controller can perform to the ideal semiactive case, thus all types of controller are affected. In terms of relative performance, proportional and PID controllers perform equally well and outperform the on/off and gain scheduling strategies. Gain scheduling methods are superior to on/off control

    A comparison between different optimization criteria for tuned mass dampers design

    Get PDF
    Tuned mass sampers (TMDs) are widely used strategies for vibration control in many engineering applications, so that many TMD optimization criteria have been proposed till now. However, they normally consider only TMD stiffness and damping as design variables and assume that the tuned mass is a pre-selected value. In this work a more complete approach is proposed and then also TMD mass ratio is optimized. A standard single degree of freedom system is investigated to evaluate TMD protection efficiency in case of excitation at the support. More precisely, this model is used to develop two different optimizations criteria which minimize the main system displacement or the inertial acceleration. Different environmental conditions described by various char- acterizations of the input, here modelled by a stationary filtered stochastic process, are considered. Results show that all solutions obtained considering also the mass of the TMD as design variable are more efficient if compared with those obtained without it. However, in many cases these solutions are inappropriate because the optimal TMD mass is greater than real admissible values in practical technical applications for civil and mechanical engineering. Anyway, one can deduce that there are some interesting indications for applications in some actual contexts. In fact, the results show that there are some ranges of environmental parameters ranges where results attained by the displacement criterion are compatible with real applications requiring some percent of main system mass. Finally, the present research gives promising indications for complete TMD optimization application in emerging technical contexts, as micro- mechanical devices and nano resonant beam

    Multi-physics phenomena influencing the performance of the car horn

    Get PDF
    Usually cars are equipped with disk horns. In these devices electromagnetic energy is converted into mechanical energy of two nuclei that vibrate and impact each other \u2013 the impacts excite the disk that radiates sound. This paper aims at understanding the results of acoustic tests carried out on horns with different excitation voltages and different mounting brackets. Since many non-linear phenomena are inherent in the vibrations of the nuclei, a detailed model of the electromechanical system is developed. Results show the dependence of operating frequency on the input voltage and the role played by the various mechanical and electrical parameters on the dynamics of the horn. Particular nonlinear effects, like sub-harmonic excitation, are presented and discussed. A general agreement between experimental results and numerical simulations is found

    Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications

    Get PDF
    This review paper intends to gather and organize a series of works which discuss the possibility of exploiting the mechanical properties of distributed arrays of piezoelectric transducers. The concept can be described as follows: on every structural member one can uniformly distribute an array of piezoelectric transducers whose electric terminals are to be connected to a suitably optimized electric waveguide. If the aim of such a modification is identified to be the suppression of mechanical vibrations then the optimal electric waveguide is identified to be the 'electric analog' of the considered structural member. The obtained electromechanical systems were called PEM (PiezoElectroMechanical) structures. The authors especially focus on the role played by Lagrange methods in the design of these analog circuits and in the study of PEM structures and we suggest some possible research developments in the conception of new devices, in their study and in their technological application. Other potential uses of PEMs, such as Structural Health Monitoring and Energy Harvesting, are described as well. PEM structures can be regarded as a particular kind of smart materials, i.e. materials especially designed and engineered to show a specific andwell-defined response to external excitations: for this reason, the authors try to find connection between PEM beams and plates and some micromorphic materials whose properties as carriers of waves have been studied recently. Finally, this paper aims to establish some links among some concepts which are used in different cultural groups, as smart structure, metamaterial and functional structural modifications, showing how appropriate would be to avoid the use of different names for similar concepts. © 2015 - IOS Press and the authors

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources

    Full text link
    In the paper, a vibration damping system powered by harvested energy with implementation of the so-called SSDV (synchronized switch damping on voltage source) technique is designed and investigated. In the semi-passive approach, the piezoelectric element is intermittently switched from open-circuit to specific impedance synchronously with the structural vibration. Due to this switching procedure, a phase difference appears between the strain induced by vibration and the resulting voltage, thus creating energy dissipation. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results.Comment: 11 page

    Passive stabilization for large space systems

    Get PDF
    The optimal tuning of multiple tuned-mass dampers for the transient vibration damping of large space structures is investigated. A multidisciplinary approach is used. Structural dynamic techniques are applied to gain physical insight into absorber/structure interaction and to optimize specific cases. Modern control theory and parameter optimization techniques are applied to the general optimization problem. A design procedure for multi-absorber multi-DOF vibration damping problems is presented. Classical dynamic models are extended to investigate the effects of absorber placement, existing structural damping, and absorber cross-coupling on the optimal design synthesis. The control design process for the general optimization problem is formulated as a linear output feedback control problem via the development of a feedback control canonical form. The techniques are applied to sample micro-g and pointing problems on the NASA dual keel space station

    A stable and accurate control-volume technique based on integrated radial basis function networks for fluid-flow problems

    Get PDF
    Radial basis function networks (RBFNs) have been widely used in solving partial differential equations as they are able to provide fast convergence. Integrated RBFNs have the ability to avoid the problem of reduced convergence-rate caused by differentiation. This paper is concerned with the use of integrated RBFNs in the context of control-volume discretisations for the simulation of fluid-flow problems. Special attention is given to (i) the development of a stable high-order upwind scheme for the convection term and (ii) the development of a local high-order approximation scheme for the diffusion term. Benchmark problems including the lid-driven triangular-cavity flow are employed to validate the present technique. Accurate results at high values of the Reynolds number are obtained using relatively-coarse grids
    corecore