6,951 research outputs found

    What will anisotropies in the clustering pattern in redshifted 21 cm maps tell us?

    Full text link
    The clustering pattern in high redshift HI maps is expected to be anisotropic due to two distinct reasons, the Alcock-Paczynski effect and the peculiar velocities, both of which are sensitive to the cosmological parameters. The signal is also expected to be sensitive to the details of the HI distribution at the epoch when the radiation originated. We use simple models for the HI distribution at the epoch of reionizaation and the post-reionization era to investigate exactly what we hope to learn from future observations of the anisotropy pattern in HI maps. We find that such observations will probably tell us more about the HI distribution than about the background cosmological model. Assuming that reionization can be described by spherical, ionized bubbles all of the same size with their centers possibly being biased with respect to the dark matter, we find that the anisotropy pattern at small angles is expected to have a bump at the characteristic angular size of the individual bubbles whereas the large scale anisotropy pattern will reflect the size and the bias of the bubbles. The anisotropy also depends on the background cosmological parameters, but the dependence is much weaker. Under the assumption that the HI in the post-reionization era traces the dark matter with a possible bias, we find that changing the bias and changing the background cosmology has similar effects on the anisotropy pattern. Combining observations of the anisotropy with independent estimates of the bias, possibly from the bi-spectrum, may allow these observations to constrain cosmological parameters.Comment: Minor changes, Accepted to MNRA

    Spectral Line De-confusion in an Intensity Mapping Survey

    Get PDF
    Spectral line intensity mapping has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, line intensity mapping makes use of all available photons and measures the integrated light in the source confusion limit, to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube. The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [CII] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [CII] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [CII] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible line intensity mapping experiments.Comment: 13 pages, 14 figures, accepted by Ap

    PIC Simulations of the Effect of Velocity Space Instabilities on Electron Viscosity and Thermal Conduction

    Get PDF
    In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, p⊥,j>p∣∣,jp_{\perp,j} > p_{||,j}, if the magnetic field B⃗\vec{B} is amplified (p⊥,jp_{\perp,j} and p∣∣,jp_{||,j} denote the pressure of species jj [electron, ion] perpendicular and parallel to B⃗\vec{B}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, ion-cyclotron, and electron whistler instabilities, through continuous amplification of the magnetic field ∣B⃗∣|\vec{B}| by an imposed shear in the plasma. In the regime 1≲βj≲201 \lesssim \beta_j \lesssim 20 (βj≡8πpj/∣B⃗∣2\beta_j \equiv 8\pi p_j/|\vec{B}|^2), the saturated electron pressure anisotropy, Δpe/p∣∣,e\Delta p_e/p_{||,e}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ∼1.5−2\sim 1.5-2 decrease due to the trapping of electrons by the mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality βj≳1\beta_j \gtrsim 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.Comment: 10 pages, 8 figure

    SILC: a new Planck Internal Linear Combination CMB temperature map using directional wavelets

    Get PDF
    We present new clean maps of the CMB temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretised wavelets --- Scale-discretised, directional wavelet ILC or SILC. Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localise the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimise the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining the use of directional and axisymmetric wavelets depending on scale could yield higher quality CMB temperature maps. Our results set the stage for the application of SILC to polarisation anisotropies through an extension to spin wavelets.Comment: 15 pages, 13 figures. Minor changes to match version published in MNRAS. Map products available at http://www.silc-cmb.or

    Anisotropy in the matter distribution beyond the baryonic acoustic oscillation scale

    Full text link
    Tracing the cosmic evolution of the Baryonic Acoustic Oscillation (BAO) scale with galaxy two point correlation functions is currently the most promising approach to detect dark energy at early times. A number of ongoing and future experiments will measure the BAO peak with unprecedented accuracy. We show based on a set of N-Body simulations that the matter distribution is anisotropic out to ~150 Mpc/h, far beyond the BAO scale of ~100M pc/h, and discuss implications for the measurement of the BAO. To that purpose we use alignment correlation functions, i.e., cross correlation functions between high density peaks and the overall matter distribution measured along the orientation of the peaks and perpendicular to it. The correlation function measured along (perpendicular to) the orientation of high density peaks is enhanced (reduced) by a factor of ~2 compared to the conventional correlation function and the location of the BAO peak shifts towards smaller (larger) scales if measured along (perpendicular to) the orientation of the high density peaks. Similar effects are expected to shape observed galaxy correlation functions at BAO scales.Comment: 4 pages, 3 figures, accepted for publication in ApJ

    Spatially Resolved Patchy Lyman-α\alpha Emission Within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Get PDF
    We report the detection of extended Lyman-α\alpha emission from the host galaxy of SDSS~J2222+2745, a strongly lensed quasar at z=2.8z = 2.8. Spectroscopic follow-up clearly reveals extended Lyman-α\alpha in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging, and resolve spatial scales as small as ∼\sim200 parsecs. In the source plane we recover the host galaxy morphology to within a few hundred parsecs of the central AGN, and map the extended Lyman-α\alpha emission to its physical origin on one side of the host galaxy at radii ∼\sim0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyman-α\alpha and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyman-α\alpha, host galaxy Lyman-α\alpha, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.Comment: Accepted to ApJ Letters; 7 pages, 5 figure
    • …
    corecore