234 research outputs found

    Annual Report: 2008

    Get PDF
    I submit herewith the annual report from the Agricultural and Forestry Experiment Station, School of Natural Resources and Agricultural Sciences, University of Alaska Fairbanks, for the period ending December 31, 2008. This is done in accordance with an act of Congress, approved March 2, 1887, entitled, “An act to establish agricultural experiment stations, in connection with the agricultural college established in the several states under the provisions of an act approved July 2, 1862, and under the acts supplementary thereto,” and also of the act of the Alaska Territorial Legislature, approved March 12, 1935, accepting the provisions of the act of Congress. The research reports are organized according to our strategic plan, which focuses on high-latitude soils, high-latitude agriculture, natural resources use and allocation, ecosystems management, and geographic information. These areas cross department and unit lines, linking them and unifying the research. We have also included in our financial statement information on the special grants we receive. These special grants allow us to provide research and outreach that is targeted toward economic development in Alaska. Research conducted by our graduate and undergraduate students plays an important role in these grants and the impact they make on Alaska.Financial statement -- Grants -- Students -- Research reports: Partners, Facilities, and Programs; Geographic Information; High-Latitude Agriculture; High-Latitude Soils, Management of Ecosystems; Natural Resources Use and Allocation; Index to Reports -- Publications -- Facult

    Hydrology

    Get PDF
    In this book, an attempt is made to highlight the recent advances in Hydrology. The several topics examined in this book form the underpinnings of larger-scale considerations, including but not limited to topics such as large-scale hydrologic processes and the evolving field of Critical Zone Hydrology. Computational modeling, data collection, and visualization are additional subjects, among others, examined in the set of topics presented

    Earth resources: A continuing bibliography with indexes, issue 50

    Get PDF
    This bibliography lists 523 reports, articles and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    The use of earth observation multi-sensor systems to monitor and model Pastures: a case of Savannah Grasslands in Hluvukani Village, Bushbuckridge Local Municipality, Mpumalanga Province, South Africa

    Get PDF
    Grassland degradation associated with climate change and inappropriate grassland management has been characterized as a global environmental concern driving decreased grassland ecosystem's ecological functioning. More than 60% of South African grassland is degraded or permanently transformed to other land uses and nearly 2% properly conserved. Yet, grasslands are a major source of food for livestock grazing and provide material and non-material benefits to many livelihoods. Therefore, grassland above-ground biomass (AGB) estimation is crucial in planning and managing pastoral agriculture and the benefits derived from it. However, current grassland monitoring techniques used in rural smallholder livestock farms rely on conventional methods, which are destructive, labour-intensive, costly, and restricted to small areas. This study investigated the monitoring and modelling of protected grasslands biomass using current Earth observation systems (EOS), an approach, which is non-destructive, cost-effective, cover larger areas and is a time-saving alternative to conventional methods. Hence, the research objectives were: (i) to map the trends and advances in data and models used in the monitoring of grassland (pastures) with Earth observation systems, and (ii) to assess above-ground biomass estimation in semi-arid savannah grassland integrating Sentinel-1 and Sentinel-2 data with Machine-Learning. This goal was to assess if this approach could provide the requisite information, which could contribute to the long-term goal of developing a semi-automated system for data processing, and mapping grassland biomass to benefit local communities. For this investigation, it was crucial to understanding what research had achieved so far in this area of pasture management. An assessment of the Scopus database showed the recent developments in European Union (EU) programs and Sentinel missions, including statistical models and machine learning for monitoring grassland changes at multiple scales. However, Sentinel-1 and Sentinel-2 data, machine learning models, and variable importance techniques were applied for grassland AGB estimation. These techniques have been used in similar studies to determine optimum machine learning models, influential variables, and the capability of integrated Sentinel datasets for mapping grassland AGB, spatial distribution, and abundance. Results showed improved performance with the Random forest regression (RFR) model (R² of 34.7%, RMSE of 9.47 Mg and MAE of 7.68 Mg ). The study also observed optimum sensitivity of Difference Vegetation Index (DVI) and Enhanced Vegetation Index (EVI) in all three machine learning models for modelling grassland AGB estimation in the study area. A further, statistical comparison of all three machine learning models showed an insignificant difference in the predictive capacity for AGB in the study area with Gradient Boosting regression (GBR) model (R² of 27.7, RMSE of 9.97 Mg and MAE of 8.03 Mg ) and Extreme Gradient Boost Regression (XGBR) model (R² of 17.3%, RMSE of 10.66 Mg and MAE of 8.83 Mg ). The study revealed that an integration of Sentinel-1 and Sentinel-2 has improved capabilities for monitoring grassland AGB estimation. This research sheds light on the timely and cost-effective techniques for grassland management strategies to enhance or restore the ecological functioning of grassland ecosystems and promote community sustainability.Thesis (MSc) -- Faculty of Science and Agriculture, 202

    Linkages between Atmospheric Circulation, Weather, Climate, Land Cover and Social Dynamics of the Tibetan Plateau

    Get PDF
    The Tibetan Plateau (TP) is an important landmass that plays a significant role in both regional and global climates. In recent decades, the TP has undergone significant changes due to climate and human activities. Since the 1980s anthropogenic activities, such as the stocking of livestock, land cover change, permafrost degradation, urbanization, highway construction, deforestation and desertification, and unsustainable land management practices, have greatly increased over the TP. As a result, grasslands have undergone rapid degradation and have altered the land surface which in turn has altered the exchange of heat and moisture properties between land and the atmosphere. But gaps still exist in our knowledge of land-atmosphere interactions in the TP and their impacts on weather and climate around the TP, making it difficult to understand the complete energy and water cycles over the region. Moreover, human, and ecological systems are interlinked, and the drivers of change include biophysical, economic, political, social, and cultural elements that operate at different temporal and spatial scales. Current studies do not holistically reflect the complex social-ecological dynamics of the Tibetan Plateau. To increase our understanding of this coupled human-natural system, there is a need for an integrated approach to rendering visible the deep interconnections between the biophysical and social systems of the TP. There is a need for an integrative framework to study the impacts of sedentary and individualized production systems on the health and livelihoods of local communities in the context of land degradation and climate change. To do so, there is a need to understand better the spatial variability and landscape patterns in grassland degradation across the TP. Therefore, the main goal of this dissertation is to contribute to our understanding of the changes over the land surface and how these changes impact the plateau\u27s weather, climate, and social dynamics. This dissertation is structured as three interrelated manuscripts, which each explore specific research questions relating to this larger goal. These manuscripts constitute the three primary papers of this dissertation. The first paper documents the significant association of surface energy flux with vegetation cover, as measured by satellite based AVHRR GIMMS3g normalized difference vegetation index (NDVI) data, during the early growing season of May in the western region of the Tibetan Plateau. In addition, a 1°K increase in the temperature at the 500 hPa level was observed. Based on the identified positive effects of vegetation on the temperature associated with decreased NDVI in the western region of the Tibetan Plateau, I propose a positive energy process for land-atmosphere associations. In the second paper, an increase in Landsat-derived NDVI, i.e., a greening, is identified within the TP, especially during 1990 to 2018 and 2000 to 2018 time periods. Larger median growing season NDVI change values were observed for the Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grassland regions, in comparison to the other three regions studied. Land degradation is prominent in the lower and intermediate hillslope positions in comparison to the higher relative topographic positions, and change is more pronounced in the eastern Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grasslands. Geomorphons were found to be an effective spatial unit for analysis of hillslope change patterns. Through the extensive literature review presented in third paper, this dissertation recommends using critical physical geography (CPG) to study environmental and social issues in the TP. The conceptual model proposed provides a framework for analysis of the dominant controls, feedback, and interactions between natural, human, socioeconomic, and governance activities, allowing researchers to untangle climate change, land degradation, and vulnerability in the Tibetan Plateau. CPG will further help improve our understanding of the exposure of local people to climate and socio-economic and political change and help policy makers devise appropriate strategies to combat future grassland degradation and to improve the lives and strengthen livelihoods of the inhabitants of the TP

    The use of earth observation multi-sensor systems to monitor and model Pastures: a case of Savannah Grasslands in Hluvukani Village, Bushbuckridge Local Municipality, Mpumalanga Province, South Africa

    Get PDF
    Grassland degradation associated with climate change and inappropriate grassland management has been characterized as a global environmental concern driving decreased grassland ecosystem's ecological functioning. More than 60% of South African grassland is degraded or permanently transformed to other land uses and nearly 2% properly conserved. Yet, grasslands are a major source of food for livestock grazing and provide material and non-material benefits to many livelihoods. Therefore, grassland above-ground biomass (AGB) estimation is crucial in planning and managing pastoral agriculture and the benefits derived from it. However, current grassland monitoring techniques used in rural smallholder livestock farms rely on conventional methods, which are destructive, labour-intensive, costly, and restricted to small areas. This study investigated the monitoring and modelling of protected grasslands biomass using current Earth observation systems (EOS), an approach, which is non-destructive, cost-effective, cover larger areas and is a time-saving alternative to conventional methods. Hence, the research objectives were: (i) to map the trends and advances in data and models used in the monitoring of grassland (pastures) with Earth observation systems, and (ii) to assess above-ground biomass estimation in semi-arid savannah grassland integrating Sentinel-1 and Sentinel-2 data with Machine-Learning. This goal was to assess if this approach could provide the requisite information, which could contribute to the long-term goal of developing a semi-automated system for data processing, and mapping grassland biomass to benefit local communities. For this investigation, it was crucial to understanding what research had achieved so far in this area of pasture management. An assessment of the Scopus database showed the recent developments in European Union (EU) programs and Sentinel missions, including statistical models and machine learning for monitoring grassland changes at multiple scales. However, Sentinel-1 and Sentinel-2 data, machine learning models, and variable importance techniques were applied for grassland AGB estimation. These techniques have been used in similar studies to determine optimum machine learning models, influential variables, and the capability of integrated Sentinel datasets for mapping grassland AGB, spatial distribution, and abundance. Results showed improved performance with the Random forest regression (RFR) model (R² of 34.7%, RMSE of 9.47 Mg and MAE of 7.68 Mg ). The study also observed optimum sensitivity of Difference Vegetation Index (DVI) and Enhanced Vegetation Index (EVI) in all three machine learning models for modelling grassland AGB estimation in the study area. A further, statistical comparison of all three machine learning models showed an insignificant difference in the predictive capacity for AGB in the study area with Gradient Boosting regression (GBR) model (R² of 27.7, RMSE of 9.97 Mg and MAE of 8.03 Mg ) and Extreme Gradient Boost Regression (XGBR) model (R² of 17.3%, RMSE of 10.66 Mg and MAE of 8.83 Mg ). The study revealed that an integration of Sentinel-1 and Sentinel-2 has improved capabilities for monitoring grassland AGB estimation. This research sheds light on the timely and cost-effective techniques for grassland management strategies to enhance or restore the ecological functioning of grassland ecosystems and promote community sustainability.Thesis (MSc) -- Faculty of Science and Agriculture, 202

    Practical Guide to Measuring Wetland Carbon Pools and Fluxes

    Get PDF
    Wetlands cover a small portion of the world, but have disproportionate infuence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fuxes. However, the underlying biogeochemical processes that afect wetland C pools and fuxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fuxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fuxes. We frst defne each of the major C pools and fuxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of fndings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions
    corecore