1,730 research outputs found

    Geographic information system planning and monitoring best practices for West Africa

    Get PDF
    Phenomenal increases in the number and sizes of urban settlements across the West African coastal region are leading to massive reclamation of swamps and destruction of natural ecosystems. Poor urbanization policies, inefficient planning and monitoring technologies are evident. The consequences include some of the worst types of environmental hazards. Best urbanization practices require integrated planning approaches that result in environmental conservation. Geographic Information systems (GIS) provide the platform for integration and processing of multi-sector Geosciences data in order to accurately predict results of different planning options. This paper presents the West African urban environmental problems. Using some concluded studies, it illustrates the functionality of integrating data in GIS for efficient planning and monitoring while calling on the governments of West Africa to adopt GIS based planning for best results.Key words: GIS, Urban Planning, Urban Monitoring, West Africa, Best Practices, Pollution, floodin

    Fisheries Surveys Are Essential Ocean Observing Programs in a Time of Global Change: A Synthesis of Oceanographic and Ecological Data From U.S. West Coast Fisheries Surveys

    Get PDF
    As climate change and other anthropogenic impacts on marine ecosystems accelerate in the 21st century, there is an increasing need for sustained ocean time series. A robust and collaborative network of regional monitoring programs can detect early signs of unanticipated changes, provide a more holistic understanding of ecosystem responses, and prompt faster management actions. Fisheries-related surveys that collect fisheries-independent data (hereafter referred to as “fisheries surveys”) are a key pillar of sustainable fisheries management and are ubiquitous in the United States and other countries. From the perspective of ocean observing, fisheries surveys offer three key strengths: (1) they are sustained due to largely consistent funding support from federal and state public sector fisheries agencies, (2) they collect paired physical, chemical, and biological data, and (3) they have large and frequently overlapping spatial footprints that extend into the offshore region. Despite this, information about fisheries survey data collection can remain poorly known to the broader academic and ocean observing communities. During the 2019 CalCOFI Symposium, marking the 70th anniversary of the California Cooperative Oceanic Fisheries Investigations (CalCOFI), representatives from 21 ocean monitoring programs on the North American West Coast came together to share the status of their monitoring programs and examine opportunities to leverage efforts to support regional ecosystem management needs. To increase awareness about collected ocean observing data, we catalog these ongoing ocean time series programs and detail the activities of the nine major federal or state fisheries surveys on the U.S. West Coast. We then present three case studies showing how fisheries survey data contribute to the understanding of emergent ecosystem management challenges: marine heatwaves, ocean acidification, and contaminant spills. Moving forward, increased cross-survey analyses and cooperation can improve regional capacity to address emerging challenges. Fisheries surveys represent a foundational blueprint for ecosystem monitoring. As the international community moves toward a global strategy for ocean observing needs, fisheries survey programs should be included as data contributors.publishedVersio

    Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    Get PDF
    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators

    Does the Geographic Information Systems Benefit the Insurance Industry?

    Get PDF
    This research is intended to determine if the insurance companies are benefiting from Geographic Information System technology in the insurance industry. This is based on the consumers\u27 point of view through the use of research, survey results, and technology at the insurance company\u27s disposal. Today, this technology is used in many different areas including renewable energy, delivery business, and city planning. Insurance companies use this technology in order to determine safe driving habits. Some examples include Progressive\u27s Snapshot and State Farm\u27s In-Drive. These devices are used to collect data on response time, speed, and breaking. This is a possible concern due to methods like Elastic Pathing which allows consumers\u27 locations to be predicted over a period of time. Overall, the average survey responses were negative towards the implementation of the data collection devices in consumer vehicles. Consumers felt the device should not be implemented within their vehicles collecting data on their driving behaviors

    REMOTE SENSING DATA ANALYSIS FOR ENVIRONMENTAL AND HUMANITARIAN PURPOSES. The automation of information extraction from free satellite data.

    Get PDF
    This work is aimed at investigating technical possibilities to provide information on environmental parameters that can be used for risk management. The World food Program (WFP) is the United Nations Agency which is involved in risk management for fighting hunger in least-developed and low-income countries, where victims of natural and manmade disasters, refugees, displaced people and the hungry poor suffer from severe food shortages. Risk management includes three different phases (pre-disaster, response and post disaster) to be managed through different activities and actions. Pre disaster activities are meant to develop and deliver risk assessment, establish prevention actions and prepare the operative structures for managing an eventual emergency or disaster. In response and post disaster phase actions planned in the pre-disaster phase are executed focusing on saving lives and secondly, on social economic recovery. In order to optimally manage its operations in the response and post disaster phases, WFP needs to know, in order to estimate the impact an event will have on future food security as soon as possible, the areas affected by the natural disaster, the number of affected people, and the effects that the event can cause to vegetation. For this, providing easy-to-consult thematic maps about the affected areas and population, with adequate spatial resolution, time frequency and regular updating can result determining. Satellite remote sensed data have increasingly been used in the last decades in order to provide updated information about land surface with an acceptable time frequency. Furthermore, satellite images can be managed by automatic procedures in order to extract synthetic information about the ground condition in a very short time and can be easily shared in the web. The work of thesis, focused on the analysis and processing of satellite data, was carried out in cooperation with the association ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action), a center of research which works in cooperation with the WFP in order to provide IT products and tools for the management of food emergencies caused by natural disasters. These products should be able to facilitate the forecasting of the effects of catastrophic events, the estimation of the extension and location of the areas hit by the event, of the affected population and thereby the planning of interventions on the area that could be affected by food insecurity. The requested features of the instruments are: • Regular updating • Spatial resolution suitable for a synoptic analysis • Low cost • Easy consultation Ithaca is developing different activities to provide georeferenced thematic data to WFP users, such a spatial data infrastructure for storing, querying and manipulating large amounts of global geographic information, and for sharing it between a large and differentiated community; a system of early warning for floods, a drought monitoring tool, procedures for rapid mapping in the response phase in a case of natural disaster, web GIS tools to distribute and share georeferenced information, that can be consulted only by means of a web browser. The work of thesis is aimed at providing applications for the automatic production of base georeferenced thematic data, by using free global satellite data, which have characteristics suitable for analysis at a regional scale. In particular the main themes of the applications are water bodies and vegetation phenology. The first application aims at providing procedures for the automatic extraction of water bodies and will lead to the creation and update of an historical archive, which can be analyzed in order to catch the seasonality of water bodies and delineate scenarios of historical flooded areas. The automatic extraction of phenological parameters from satellite data will allow to integrate the existing drought monitoring system with information on vegetation seasonality and to provide further information for the evaluation of food insecurity in the post disaster phase. In the thesis are described the activities carried on for the development of procedures for the automatic processing of free satellite data in order to produce customized layers according to the exigencies in format and distribution of the final users. The main activities, which focused on the development of an automated procedure for the extraction of flooded areas, include the research of an algorithm for the classification of water bodies from satellite data, an important theme in the field of management of the emergencies due to flood events. Two main technologies are generally used: active sensors (radar) and passive sensors (optical data). Advantages for active sensors include the ability to obtain measurements anytime, regardless of the time of day or season, while passive sensors can only be used in the daytime cloud free conditions. Even if with radar technologies is possible to get information on the ground in all weather conditions, it is not possible to use radar data to obtain a continuous archive of flooded areas, because of the lack of a predetermined frequency in the acquisition of the images. For this reason the choice of the dataset went in favor of MODIS (Moderate Resolution Imaging Spectroradiometer), optical data with a daily frequency, a spatial resolution of 250 meters and an historical archive of 10 years. The presence of cloud coverage prevents from the acquisition of the earth surface, and the shadows due to clouds can be wrongly classified as water bodies because of the spectral response very similar to the one of water. After an analysis of the state of the art of the algorithms of automated classification of water bodies in images derived from optical sensors, the author developed an algorithm that allows to classify the data of reflectivity and to temporally composite them in order to obtain flooded areas scenarios for each event. This procedure was tested in the Bangladesh areas, providing encouraging classification accuracies. For the vegetation theme, the main activities performed, here described, include the review of the existing methodologies for phenological studies and the automation of the data flow between inputs and outputs with the use of different global free satellite datasets. In literature, many studies demonstrated the utility of the NDVI (Normalized Difference Vegetation Index) indices for the monitoring of vegetation dynamics, in the study of cultivations, and for the survey of the vegetation water stress. The author developed a procedure for creating layers of phenological parameters which integrates the TIMESAT software, produced by Lars Eklundh and Per Jönsson, for processing NDVI indices derived from different satellite sensors: MODIS (Moderate Resolution Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer) AND SPOT (Système Pour l'Observation de la Terre) VEGETATION. The automated procedure starts from data downloading, calls in a batch mode the software and provides customized layers of phenological parameters such as the starting of the season or length of the season and many others

    Artificial Intelligence Applications for Drones Navigation in GPS-denied or degraded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Smart manufacturing for industry 4.0 using Radio Frequency Identification (RFID) technology

    Get PDF
    Industry 4.0 (I4.0) presents a unique challenge of efficiently transforming traditional manufacturing to smart and autonomous systems.Integrating manufacturing systems, materials, machinery, operators, products and consumers, improve interconnectivity and traceability across the entire product life cycle in order to ensure the horizontal and vertical integration of networked Smart Manufacturing (SM) systems. Manufacturing functions of Material Handling (MH)-control, storage, protection and transport of raw materials, work in process (WIP) and finished products- throughout a manufacturing and distribution process will need a revamp in ways they are currently being carried in order to transition them into the SM era. Radio Frequency Identification (RFID), an Automated Identification Data Capture (AIDC) technology increasingly being used to enhance MH functions in the (SM) industry, due to opportunities it presents for item tracking, out of sight data capturing, navigation and space mapping abilities. The technology readiness level of RFID has presented many implementation challenges as progress is being made to fully integrate the technology into the preexisting MH functions. Recently, many researchers in academia and industry have described various methods of using RFID for improving and efficiently carrying out MH functions as a gradual transition is being made into I4.0 era. This paper reviews and categorize research finding regarding RFID application developments according to various MH functions in SM, tabulates how various I4.0 enablers are needed to transform various traditional manufacturing functions into SM. It aims to let more experts know the current research status of RFID technology and provide some guidance for future research

    Coastal management and adaptation: an integrated data-driven approach

    Get PDF
    Coastal regions are some of the most exposed to environmental hazards, yet the coast is the preferred settlement site for a high percentage of the global population, and most major global cities are located on or near the coast. This research adopts a predominantly anthropocentric approach to the analysis of coastal risk and resilience. This centres on the pervasive hazards of coastal flooding and erosion. Coastal management decision-making practices are shown to be reliant on access to current and accurate information. However, constraints have been imposed on information flows between scientists, policy makers and practitioners, due to a lack of awareness and utilisation of available data sources. This research seeks to tackle this issue in evaluating how innovations in the use of data and analytics can be applied to further the application of science within decision-making processes related to coastal risk adaptation. In achieving this aim a range of research methodologies have been employed and the progression of topics covered mark a shift from themes of risk to resilience. The work focuses on a case study region of East Anglia, UK, benefiting from the input of a partner organisation, responsible for the region’s coasts: Coastal Partnership East. An initial review revealed how data can be utilised effectively within coastal decision-making practices, highlighting scope for application of advanced Big Data techniques to the analysis of coastal datasets. The process of risk evaluation has been examined in detail, and the range of possibilities afforded by open source coastal datasets were revealed. Subsequently, open source coastal terrain and bathymetric, point cloud datasets were identified for 14 sites within the case study area. These were then utilised within a practical application of a geomorphological change detection (GCD) method. This revealed how analysis of high spatial and temporal resolution point cloud data can accurately reveal and quantify physical coastal impacts. Additionally, the research reveals how data innovations can facilitate adaptation through insurance; more specifically how the use of empirical evidence in pricing of coastal flood insurance can result in both communication and distribution of risk. The various strands of knowledge generated throughout this study reveal how an extensive range of data types, sources, and advanced forms of analysis, can together allow coastal resilience assessments to be founded on empirical evidence. This research serves to demonstrate how the application of advanced data-driven analytical processes can reduce levels of uncertainty and subjectivity inherent within current coastal environmental management practices. Adoption of methods presented within this research could further the possibilities for sustainable and resilient management of the incredibly valuable environmental resource which is the coast

    An integrated compilation of data sources for the development of a marine protected area in the Weddell Sea

    Get PDF
    The Southern Ocean may contribute a considerable amount to the proposed global network of marine protected areas (MPAs) that should cover about 10 % of the world’s oceans in 2020. In the Antarctic, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) is responsible for this task, and currently Germany leads a corresponding scientific evaluation of the wider Weddell Sea region. Compared to other marine regions within the Southern Ocean, the Weddell Sea is exceptionally well investigated. A tremendous amount of data and information has been produced over the last 4 decades. Here, we give a systematic overview of all data sources collected in the context of the Weddell Sea MPA planning process. The compilation of data sources is comprised of data produced by scientists and institutions from more than 20 countries that were either available within our institutes, downloaded via data portals or transcribed from the literature. It is the first compilation for this area that includes abiotic data, such as bathymetry and sea ice, and ecological data from zooplankton, zoobenthos, fish, birds and marine mammals. All data layer products based on this huge compilation of environmental and ecological data are available from the data publisher PANGAEA via the six persistent identifiers at https://doi.org/10.1594/PANGAEA.899595 (Pehlke and Teschke, 2019), https://doi.org/10.1594/PANGAEA.899667 (Teschke et al., 2019a), https://doi.org/10.1594/PANGAEA.899645 (Teschke et al., 2019b), https://doi.org/10.1594/PANGAEA.899591 (Teschke et al., 2019c), https://doi.org/10.1594/PANGAEA.899520 (Pehlke et al., 2019a) and https://doi.org/10.1594/PANGAEA.899619 (Pehlke et al., 2019b). This compilation of data sources including the final data layer products will serve future research and monitoring well beyond the current MPA development process
    • …
    corecore