2,373 research outputs found

    Submodular memetic approximation for multiobjective parallel test paper generation

    Get PDF
    Parallel test paper generation is a biobjective distributed resource optimization problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified assessment criteria. Generating high-quality parallel test papers is challenging due to its NP-hardness in both of the collective objective functions. In this paper, we propose a submodular memetic approximation algorithm for solving this problem. The proposed algorithm is an adaptive memetic algorithm (MA), which exploits the submodular property of the collective objective functions to design greedy-based approximation algorithms for enhancing steps of the multiobjective MA. Synergizing the intensification of submodular local search mechanism with the diversification of the population-based submodular crossover operator, our algorithm can jointly optimize the total quality maximization objective and the fairness quality maximization objective. Our MA can achieve provable near-optimal solutions in a huge search space of large datasets in efficient polynomial runtime. Performance results on various datasets have shown that our algorithm has drastically outperformed the current techniques in terms of paper quality and runtime efficiency

    Automated multigravity assist trajectory planning with a modified ant colony algorithm

    Get PDF
    The paper presents an approach to transcribe a multigravity assist trajectory design problem into an integrated planning and scheduling problem. A modified Ant Colony Optimization (ACO) algorithm is then used to generate optimal plans corresponding to optimal sequences of gravity assists and deep space manoeuvers to reach a given destination. The modified Ant Colony Algorithm is based on a hybridization between standard ACO paradigms and a tabu-based heuristic. The scheduling algorithm is integrated into the trajectory model to provide a fast time-allocation of the events along the trajectory. The approach demonstrated to be very effective on a number of real trajectory design problems

    Automatic MGA trajectory planning with a modified ant colony optimization algorithm

    Get PDF
    This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including the sequence of planetary encounters. The problem is treated as planning and scheduling of events, such that the original mixed combinatorial-continuous problem is discretised and converted into a purely discrete problem with a finite number of states. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its effectiveness

    Hybrid meta-heuristic algorithms for independent job scheduling in grid computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The term ’grid computing’ is used to describe an infrastructure that connects geographically distributed computers and heterogeneous platforms owned by multiple organizations allowing their computational power, storage capabilities and other resources to be selected and shared. The job scheduling problem is recognized as being one of the most important and challenging issues in grid computing environments. This paper proposes two strongly coupled hybrid meta-heuristic schedulers. The first scheduler combines Ant Colony Optimisation and Variable Neighbourhood Search in which the former acts as the primary algorithm which, during its execution, calls the latter as a supporting algorithm, while the second merges the Genetic Algorithm with Variable Neighbourhood Search in the same fashion. Several experiments were carried out to analyse the performance of the proposed schedulers in terms of minimizing the makespan using well known benchmarks. The experiments show that the proposed schedulers achieved impressive results compared to other selected approaches from the bibliography
    corecore