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Submodular Memetic Approximation for
Multiobjective Parallel Test Paper Generation

Minh Luan Nguyen, Member, IEEE, Siu Cheung Hui, and Alvis C. M. Fong, Senior Member, IEEE

Abstract—Parallel Test Paper Generation is a biobjective dis-
tributed resource optimization problem, which aims to generate
multiple similarly optimal test papers automatically according
to multiple user-specified assessment criteria. Generating high-
quality parallel test papers is challenging due to its NP-hardness
in both of the collective objective functions. In this paper, we
propose a Submodular Memetic Approximation algorithm for
solving this problem. The proposed algorithm is an adaptive
memetic algorithm, which exploits the submodular property of
the collective objective functions to design greedy-based approx-
imation algorithms for enhancing steps of the multiobjective
memetic algorithm. Synergizing the intensification of submodular
local search mechanism with the diversification of the population-
based submodular crossover operator, our algorithm can jointly
optimize the total quality maximization objective and the fair-
ness quality maximization objective. Our memetic algorithm can
achieve provable near-optimal solutions in a huge search space
of large datasets in efficient polynomial runtime. Performance
results on various datasets have shown that our algorithm has
drastically outperformed the current techniques in terms of paper
quality and runtime efficiency.

Index Terms—Parallel test paper generation, multiobjective
optimization, approximation algorithm, submodular optimiza-
tion, constraint optimization.

I. INTRODUCTION

With the rapid growth of the Internet and mobile devices,
Web-based education has become a ubiquitous learning plat-
form in many institutions to provide students with online learn-
ing courses and materials through freely accessible educational
websites such as Khan Academy1, or online classes such as
Coursera2, and Udacity3. To make learning effective, it is im-
portant to assess the proficiency of the students while they are
learning the concepts. Web-based testing has been popularly
used for automatic self-assessment especially in Web-based
learning environments. The main benefit is that students can
take classes at their own pace and get immediate feedback on
their proficiency. As there may have many students in an online
class [1], to ensure the assessment reliability of large-scale
Web-based testing, pedagogical practitioners have suggested
that it is necessary to compose multiple tests from a large
question pool with equivalent properties.

One promising approach to support large-scale Web-based
testing is parallel test paper generation (k-TPG), which gen-
erates k similarly optimal test papers automatically according
to a user specification based on multiple assessment criteria.
Specifically, it aims to find k optimal disjoint subsets of
questions from a question database to form different test

1http://www.khanacademy.org/
2https://www.coursera.org/
3http://www.udacity.com/

papers according to a user specification based on total time,
topic distribution, difficulty degree, discrimination degree, and
so on. The generated test papers can then be attempted over
the Web by students for assessment purposes.
k-TPG is a challenging problem especially with large num-

ber of questions or large number of generated test papers (i.e.
large k) due to its NP-hardness [2], [3]. Manually browsing
and composing test papers by users is ineffective because of
the exponential number of feasible combinations of questions.
In the past few years, heuristic-based intelligent techniques
such as Tabu Search [4], Particle Swarm Optimization [5]
and Ant Colony Optimization [6] have been proposed for k-
TPG. However, the quality of generated parallel test papers is
often unsatisfactory [4], [5], [6] according to users’ test paper
specifications. One of the main issues of the current techniques
is that they are ineffective to optimize the biobjective functions
simultaneously in the very large search space of possible can-
didates with multicriteria constraints. Although these heuristic-
based techniques are straightforward to implement, they suffer
from some drawbacks. They are mainly based on traditional
vector scalarization method, which uses weighting parameters
to reduce multiobjective optimization to single objective set-
ting. Due to the multiobjective optimization [7], [8], [9], [10],
of test paper generation, using either pre-determined weighting
parameters and fixed number of iterations, tends to get stuck in
a local optimal solution and lose convergence [11] especially
in a huge search space of large-sized question datasets.

Different from other multiobjective optimization problems,
the collective objective functions of k-TPG are defined based
on the evaluation objectives of k generated test papers instead
of a single test paper. In fact, k-TPG is close to the spirit
of optimal distributed allocation problems [12] with collective
objective functions. As such, it is not easy to apply well-known
algorithms for solving k-TPG because they are ineffective for
optimizing the collective objective functions. Formally, k-TPG
is a biobjective optimal distributed resource allocation prob-
lem, which aims to simultaneously maximize two objective
functions under a multidimensional Knapsack constraint [13].
The first objective can be formulated as a Welfare Allocation
problem [2], which aims to maximize the total quality of the
generated test papers. The second objective can be formulated
as a Fairness Allocation problem [3], [14], which aims to
maximize the fairness quality of the generated test papers.
Traditionally, optimizing these two objectives is NP-hard and
considered separately. To the best of our knowledge, there has
been no attempt at finding an effectively near-optimal solution
to both of the objectives simultaneously.

To cope with the NP-hardness of distributed resource allo-



cation problems, submodular-based approximation algorithms,
which are polynomial time algorithms that have provable guar-
antees on the solution quality, have been studied for distributed
optimization problems [15]. Inspired by this, we propose a
Submodular Memetic Approximation (SMA) algorithm for k-
TPG. The key idea of SMA is twofold. Firstly, we analyze
the properties of the two collective objectives and reformulate
the k-TPG problem such that it can be solved effectively
by memetic algorithm. Secondly, we employ submodular
optimization techniques to design greedy-based approximation
algorithm for enhancing steps of multiobjective memetic al-
gorithm. Synergizing the intensification of submodular local
search mechanism with the diversification of the population-
based submodular crossover operator, our SMA algorithm
can jointly optimize the total quality maximization objective
and the fairness quality maximization objective. In particular,
SMA is a deterministic greedy-based approximation algorithm,
which can achieve near-optimal parallel test papers for large
question datasets in efficient polynomial runtime.

II. RELATED WORK

A. Parallel Test Paper Generation

Although there is other research on special-case single
test paper generation (1-TPG) [4], [5], [6], [16], this section
focuses on work related to k-TPG.

In [4], a Tabu Search (TS) approach was proposed to solve
the k-TPG problem, which considers only the fairness maxi-
mization objective under multicriteria constraints. To solve the
problem, the objective function is formulated to minimize the
maximal mutual difference of the average discrimination de-
gree of two arbitrary test papers: minimize max

∀1≤i≤j≤k
|f(Pi)−

f(Pj)|, where f(Pi), i = 1..k is the average discrimination
degree of test paper Pi. Although this formulation seems
reasonable, it does not have any effective method for opti-
mization. Thus, the TS approach is purely heuristic search.
As a result, the quality of the generated test papers is poor
and the computational cost is very high.

In [5], Ho et al. proposed a Partical Swarm Optimization
(PSO) approach to solve the same k-TPG problem as in
[4] with a similar objective function. Performance results
showed that this approach outperforms the Genetic Algorithm
algorithm with different values of k = 2, 3, 4.

In [6], Ant Colony Optimization (ACO) was proposed
for multiple test paper generation. Different from [5], this
work considered both total quality and fairness quality max-
imization. The objective function is formulated as follows:
maxmize

∑k
l=1 f(Pl) −

∑
∀1≤i≤j≤k

|f(Pi) − f(Pj)|, where

f(Pi), i = 1..k is the average discrimination degree of test
paper Pi with four predetermined weighting parameters for
multicriteria constraint satisfaction. There are two possible
issues with this formulation. Firstly, the number of weighting
parameters is 4k, which makes it difficult and time consuming
to determine. Secondly, similar to [4], [5], this objective
function is not easy to optimize as no special property was
exploited. ACO also generates quality papers by optimizing
an objective function. It optimizes the test paper quality by
simulating the foraging behavior of real ants. Test papers are

considered as routes which are constructed by m ants. At each
iteration, m ants are dispatched for stochastically constructing
their own solutions to improve the objective function.

B. Submodular Function Optimization

In this section, we review some fundamental concepts of
submodular functions [17] in combinatorial optimization.

Definition 1 (Discrete Derivative). Given a set X , a non-
negative function f : 2X → R+, S ⊆ X , and x ∈ X . Let
∂f(S)
∂x = 4f (x|S) = f(S ∪ {x}) − f(S) be the discrete

derivative of f at S with respect to x.

The discrete derivative is also called the marginal value of
the set function f(S) : {0, 1}n → R+ at element x.

Definition 2 (Submodularity). Given a set X , a non-negative
function f : 2X → R+ is submodular if for every set S, T ⊆
X ,

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T )

Equivalently, a function f : 2X → R+ is submodular if for
every set A ⊆ B ⊆ X and x ∈ X \B,

4f (x|A) ≥ 4f (x|B)

In addition, a submodular function is monotone if f(S) ≤
f(T ), S ⊆ T . The second condition in Definition 2 can be
deduced from the first condition by substituting S = A∪ {x}
and T = B, where A ⊆ B ⊆ X and x ∈ X \B.

Submodular function optimization has been extensively
studied over the last 30 years since the preliminary work
by L. Lovasz [17]. Generally, there exist efficient polynomial
algorithms for minimizing a submodular function [18], [19],
[20], [21]. However, maximizing a submodular function is
known to be NP-hard [22]. Although NP-hard, the decreasing
marginal property has led to the existence of a general Greedy-
based Approximation Algorithm [23], [24] for the maximiza-
tion problem. It can achieve a good approximation ratio of
(1− 1

e ) ≈ 0.63. This is known to be the best achievable ratio
found in recent literature. Submodular functions have many
useful basic properties such as linearity, linear combination
and truncation [18].

C. Memetic Algorithms

MAs have been widely used for solving various real-
world applications such as scheduling and planning [25], [26],
[27]. MAs are classified into three categories: simple hybrid,
adaptive hybrid, and memetic automation [28], [29]. Both
simple hybrid and adaptive hybrid are commonly used as a
hybridization of evolutionary computation and local search. To
enhance the performance, simple hybrid incorporates domain-
specific knowledge whereas adaptive hybrid uses population
diversity management and adaptation strategies. Simple and
adaptive hybrids focus more on the learning process of MA
while memetic automation focuses more on the evolution-
ary computation, which is designed specifically for complex
problem-solving. Recently, there have been increasing interest
in investigating simple hybrid and adaptive hybrid for tackling
multiobjective optimization problems [30]. In simple hybrid,
special population-based methods [31], [32], [33] or individual



improvement methods [33] are designed to deal with mul-
tiobjective optimization. In adaptive hybrid, some adaptive
coordinations of individual improvement methods [34], [35]
are proposed for handling multiobjective optimization.

In [36], we proposed a memetic algorithm for solving 1-
TPG problem. However, this algorithm is unable to solve the
two collective objectives of k-TPG effectively. In this research,
we propose a novel deterministic greedy-based memetic ap-
proximation algorithm, called SMA that adopts a hybridization
of simple hybrid and adaptive hybrid [7], and submodular
optimization for k-TPG. Based on submodular property of
objective functions, submodular local search and submodular
crossover operator of SMA are able to jointly optimize the
two collective objectives effectively and efficiently.

III. PROBLEM SPECIFICATION FOR K-TPG
A. Question Dataset

Let Q = {q1, q2, .., qn} be a dataset consisting of n
questions, C = {c1, c2, .., cm} be a set of m different topics,
and Y = {y1, y2, .., yk} be a set of k different question types.
Each question qi ∈ Q, where i ∈ {1, 2, .., n}, has 8 attributes
A = {q, o, a, e, t, d, c, y} defined as follows:
• Question q: It is used to store the question identity.
• Content o: It is used to store the content of a question.
• Answer a: It is used to store the answer of a question.
• Discrimination degree e: It is used to indicate how good

the question is in order to distinguish user proficiency. It
is an integer value ranging from 1 to 7.

• Question time t: It is used to indicate the average time
needed to answer a question. It is an integer value in
minutes.

• Difficulty degree d: It is used to indicate how difficult
the question is to be answered correctly. It is an integer
number ranging from 1 to 10.

• Related topic c: It is used to store a set of related topics
of a question.

• Question type y: It is used to indicate the type of a
question. There are mainly three question types, namely
fill-in-the-blank, multiple choice and long question.

Question attributes can be labeled semi-automatically [6]
or manually by human experts. Table I shows a sample Math
question dataset.

B. Test Paper Specification

A test paper specification S = 〈N,T,D,C, Y 〉 is a tuple
of five attributes which are defined based on the attributes of
the selected questions as follows:
• Number of questions N : It is an optional input for the

number of questions specified for the test paper.
• Total time T : It is the total time specified for the test

paper.
• Average difficulty degree D: It specifies the average

difficulty degree for all the questions in the test paper.
• Topic distribution C = {(c1, pc1), (c2, pc2), .., (cM ,
pcM )}: It specifies the proportion of topics. The user can
enter either the proportion or the number of questions for
each topic. If the number of questions is entered, then it
will be converted into the corresponding proportion.

TABLE I
AN EXAMPLE MATH DATASET

(a) Question Table
Q ID o a e t d c y

q1 ... ... 4 9 1 c1 y1
q2 ... ... 7 10 2 c1 y1
q3 ... ... 5 7 6 c1 y1
q4 ... ... 7 10 9 c1 y1
q5 ... ... 6 8 4 c1 y1
q6 ... ... 4 6 5 c2 y3
q7 ... ... 5 2 3 c2 y1
q8 ... ... 3 2 6 c2 y1
q9 ... ... 4 3 8 c1 y2
q10 ... ... 3 5 7 c1 y2
q11 ... ... 6 3 4 c1 y2
q12 ... ... 7 1 9 c2 y2
q13 ... ... 6 3 10 c2 y3

(b) Topic Table
C name

c1 Integration
c2 Differentiation

(c) Question Type Table
Y name

y1 Multiple choice
y2 Fill-in-the-blank
y2 Long Question

• Question type distribution Y = {(y1, py1), (y2, py2), ..,
(yK , pyK)}: It specifies the proportion of question types.
The user can enter either the proportion or the number of
questions for each question type. Similarly, if the number
of questions is entered, then it will be converted into the
corresponding proportion.

C. Parallel Test Paper Generation

In 1-TPG, it selects an optimal subset of questions to form
a test paper P , which maximizes the average discrimination
degree f(P ) = 1

N

∑N
i=1 ei, qi ∈ P while satisfying multiple

user-specified criteria in a test paper specification SP ≈ S.
In parallel test paper generation (k-TPG), user specification

is given as a pair of 〈k,S〉, where k is an integer parameter
in addition to the test paper specification S . The k-TPG aims
to select k disjoint subsets of questions P1, P2, .., Pk from a
question dataset Q = {q1, q2, .., qn} to form k test papers with
specification SPi , which satisfies the test paper specification
such that SPi ≈ S, ∀i ∈ [1, k]. Apart from maximizing
the objective function as in single test paper generation, k-
TPG aims to generate the k test papers with similar optimal
quality according to the specification. It aims to provide similar
quality test papers for different users. As such, there are
two important collective objective functions that need to be
maximized in k-TPG: total quality maximization and fairness
quality maximization. Especially, these objective functions are
defined over the set of k generated test papers instead of each
individual one as in single test paper generation.

Total Quality Maximization: It aims to maximize the sum
of discrimination degrees of k test papers

∑k
i=1 f(Pi), where

f(Pi) is quality objective of test paper Pi, i ∈ [1, k] based on
its question discrimination degrees. Formally, the objective is
stated as follows:

maximize
P1,..,Pk

k∑
i=1

f(Pi)

Fairness Quality Maximization: It aims to maintain the
fairness among the generated test papers with equivalent
discrimination degrees. However, it is not sufficient to solely



maximize the total quality objective function to achieve this
purpose as it is possible that some of the generated test
papers may have very poor discrimination degrees. Most of
the previous studies have formulated the k-TPG problem in
an ineffective manner that makes it difficult to optimize the
formulated objective function [4], [5], [6] due to using either
pre-determined weighting parameters and fixed number of
iterations. Instead, we can optimize for a fair allocation of the
discrimination degrees of k generated test papers as follows:

maximize
P1,..,Pk

min
1≤i≤k

f(Pi)

where fairness quality of the k test papers P1, .., Pk is defined
as min

1≤i≤k
f(Pi). In fact, this way of formulation is more

effective for fairness optimization [14], [37].
Joint Total and Fairness Quality Maximization: Both of the

two collective objectives have been studied individually in the
past. Instead of optimizing these two problems separately, we
can jointly optimize them. The k-TPG problem aims to jointly
maximize the total quality objective function:

maximize
P1,..,Pk

k∑
i=1

f(Pi) (1)

and the fairness quality objective function:
maximize
P1,..,Pk

min
1≤i≤k

f(Pi) (2)

and optimizing multi-objective constraint such that each spec-
ification on 〈N,T,D,C, Y 〉 of the generated test paper SPi
is equivalent to that of S and subject disjoint constraint:
Pi∩Pj = ∅, ∀i 6= j.

We note that constraint includes: content hard-constraint
(topic and question types) and assessment soft-constraint (total
time and discrimination degree constraint). Due to practical
purpose of k-TPG, we only consider one best returned set of
test papers.

IV. PROPOSED SMA APPROACH

A. Problem Reformulation and Intuition

In this section, we further analyze the special properties
of k-TPG on the two objective functions. As discussed, it is
challenging to simultaneously optimize both of the objective
functions. By exploiting the relationship between the two
objective functions based on the submodular property, we can
devise an effective and efficient multiobjective optimization
approach. We observe that the quality function f(P ) is sub-
modular due to the linearity property [24].

Lemma 1. Given a test paper P generated from a question set
Q (P ⊆ Q), the quality evaluation function of discrimination
degree f(P ) : 2Q → R+ is submodular and monotone.

Hence, the total quality objective is also submodular due to
a linear combination of k submodular functions [24].

Corollary 1. The total quality objective function of k test
papers

∑k
i=1 f(Pi), Pi ⊆ Q is submodular and monotone.

Unfortunately, we note that optimizing the total quality
objective alone is not sufficiently good to ensure for fairness
quality maximization. To overcome, we take the advantage of
the submodularity to reformulate the total quality objective
such that it also integrates the fairness quality objective.

Let fφ(P ) = min{f(P ), φ} be a truncated function, where
φ is a non-negative constant. From Lemma 1, fφ(P ) is also
submodular and monotone due to [24]. For any constant φ,
we have the following important observation:

min
l∈{1,..,k}

f(Pl) ≥ φ⇐⇒
k∑
l=1

fφ(Pl) = kφ (3)

Note that k is a constant in the user specification. Hence, this
means that the fairness quality objective value is larger than
or equal to φ if the total quality objective value is kφ and vice
versa. More importantly, we have the following result:

Definition 3 (Relaxed k-TPG). Let ρ be the optimal to-
tal quality value and α be the approximation ratio of a
near-optimal solution for the total quality, i.e.,

∑
f(Pi) ≥

αρ. Assume that the optimal fairness value is φ∗, i.e.,
maxP1,..,Pk minl f(Pl) = φ∗, we define a relaxed problem of
the original k-TPG by maximizing the fairness quality under
a total quality constraint:

maximize
P1,..,Pk

min
1≤i≤k

f(Pi) (4)

s.t.
∑

f(Pi) ≥ αρ, Pi ∩
∀i6=j

Pj = ∅

Theorem 1. Solving the relaxed k-TPG problem is equivalent
to solving the following problem:

max
P1,..,Pk

k∑
l=1

fφ∗(Pl) (5)

s.t.
∑

f(Pi) ≥ αρ, Pi ∩
∀i6=j

Pj = ∅

Proof: The fairness quality objective (4) of the relaxed
k-TPG problem is equivalent to the problem given in (5)
since, by (3), there exists k test papers P1, .., Pk such that∑k
l=1 fφ∗(Pl) = kφ∗. In addition, because of the property of

the truncated function fφ∗(Pl), we have max
∑k
l=1 fφ∗(Pl) ≤

kφ∗. Thus, for any optimal generated papers P1, .., Pk of the
problem in (5), it must satisfy that

∑k
l=1 fφ∗(Pl) = kφ∗.

Hence, we have minl f(P ∗l ) = φ∗ due to (3).
The relaxed k-TPG problem scarifies somewhat on the

optimality of the total quality objective in order to achieve
a near-optimal fairness quality objective. In addition, the
total quality constraint

∑
f(Pi) ≥ αρ is satisfied implicitly

(in Section IV-D) by modifying an algorithm, which always
produces near-optimal total quality value of at least αρ, in
order to also maximize the reformulated objective in (5).
Generally we do not know the optimal value φ∗. Therefore,
we need to find it using the binary search strategy, starting
with the interval [φmin, φmax].

B. Overview of SMA

Based on above intuition, we observe that reformulation
problem (4) can be solved effectively by the local search and
evolutionary computation of memetic algorithm and submod-
ular optimization technique. Thus, we propose novel Submod-
ular Memetic Approximation (SMA) algorithm for k-TPG.

The proposed approach will generate k test papers progres-
sively by using the approximation algorithm for 1-TPG and
adjusting the fairness value φ. Due to the NP-hardness of
1-TPG, when φ approaches its optimal value, we can only



Fig. 1. Proposed SMA Approach

achieve a fraction β ≤ 1 of the optimal objective value of φ,
where β is a constant that will be determined in Section IV-E.
As such, our goal is to allocate questions into k test papers
such that for all k papers, we have fφ(Pl) ≥ βφ,∀l = 1..k.
Figure 1 shows 4 main steps of the proposed SMA approach.
• New Population Estimation: It uses binary search to esti-

mate the optimal fairness value φ of the next evolutionary
optimization process. Then, it detects whether it is possi-
ble to generate k papers such that fφ(Pl) ≥ βφ,∀l = 1..k
for early infeasible allocation detection.

• Submodular Population Generation and Local Search: It
progressively generates k papers for the current evolution-
ary generation by using a greedy-based algorithm.

• Submodular Crossover Operator: It swaps questions of
the k generated test papers by a novel crossover operator
for improving fairness allocation if there exists a test
paper Pl such that fφ(Pl) ≤ βφ.

• Submodular Constraint Improvement: It optimizes indi-
vidually the local constraint satisfaction of all test papers.

C. New Population Estimation
1) Optimal Fairness Value Estimation: In each evolution-

ary generation, a new set of k papers are generated ac-
cording to a new fairness value φ. This step aims to find
a new optimal value of φ to continue the co-optimization
process. We use binary search strategy with the interval
[φmin, φmax] = [0, N × max

q∈Q
f(q)]. In each step, we test

the center φ = (φmin + φmax)/2 of the current interval
[φmin, φmax] of possible fairness value. Specifically, it goes
to the Collective Optimization of Total Quality step to check
whether it is possible to generate k satisfied papers such that

fφ(Pl) ≥ βφ,∀l = 1..k. If it is possible, the optimization
process goes to the next Competitive Optimization of Test
Paper Quality step. The value of φ is increased later on.
Otherwise, the value of φ is decreased. This search process
will terminate after at most dlog2(N ×max

q∈Q
f(q))e steps.

2) Submodular Infeasible Allocation Detection: This step
aims to detect whether it is possible to generate a new
population of k papers such that fφ(Pl) ≥ βφ,∀l = 1..k.
It checks whether the estimated value of φ is appropriate or
not. We define a test paper instance in the population.

Definition 4 (Test Paper Representation). Given a speci-
fication S, a single test paper P is encoded by a subset of
question items P = (q1, q2, ..., qN ), qi ∈ Q; 1 ≤ i ≤ N . The
quality of P is evaluated by an objective function f(P ), which
is the average of the discrimination degree of its questions. A
parallel test paper solution is a set of k disjoint single test
paper P1, P2, ..., Pk.

Our proposed algorithm for this step is a greedy-based
approximation algorithm that generalizes the basic greedy-
based approximation algorithm for submodular function. In
this step, we consider only the linear constraints (4) to simplify
the checking process. As such, the result obtained is the
upper bound of the actual approximate solution. However, it is
sufficient for the early infeasible allocation detection purpose.
This algorithm is outlined in Algorithm 1.

Recall that each of the k papers P1, P2, .., Pk has N
questions. Hence, the main loop consists of k ∗ N iterations
(in Line 2). In each iteration, we first check that whether the
question q is possibly allocate to a paper Pt. If yes, we then
compute the marginal improvement value Ψt,q of allocating
question q into Pt. Next, we greedily choose the best allocation
of test paper and question (Pt∗ , q

∗) with the maximum Ψt,q

value. To verify whether q is possibly allocate into test paper
Pt, we first check whether Pt is full, i.e., |Pt| = N . Then, we
check whether allocating q to Pt will violate the constraints.

We provide a theoretical result of this step. For general
cases, we prove that it achieves an approximation ratio of 1

2 .
Theorem 2. Consider only the content constraints for the
general cases, i.e., k ≥ 2, the Collective Optimization of Total
Quality step can obtain a set of generated test papers P1, .., Pk
with the total quality value (in Line 7) such that:

k∑
i=1

fφ(Pi) ≥
1

2
max

P ′1,..,P
′
k

k∑
i=1

fφ(P ′i ) =
1

2
OPT

Proof: Let n be the number of questions in the dataset Q.
Let H be the original problem of allocating k ∗ N out of
n questions to k papers P1, .., Pk such that it maximizes the
total quality objective

∑k
i=1 fφ(Pi), where N is the number

of questions in each paper. Let H ′ be the problem on the
n−1 remaining questions after the first question qt is selected
for paper Pj , i.e., the first question is unavailable for further
selection. On the problem H ′, the quality evaluation function
fj(Pj) = fφ(Pj) is replaced by f ′j(Pj) = fj(Pj ∪ {qt}) −
fj({qt}). All other quality evaluation function fi(Pi), i 6= j,
are unchanged. Note that Algorithm 1 can be considered as
first allocating question qt to paper Pj and then allocating



Algorithm 1: Infeasible Allocation Detection
Input: k - number of test papers; S = (N,T,D,C, Y ) -

test paper specification; φ - fairness
Output: Yes - if

∑k
l=1 fφ(Pl) ≤ 1

2kφ; No - if otherwise
begin

1 Pl ← ∅ for all l = 1..k;
2 for i=1 to k*N do

foreach question q ∈ Q \ (P1

⋃
...
⋃
Pk) and

l ∈ {1..k} do
3 if q satisfies the cardinality constraint and

content constraints Pl then
4 Compute the marginal improvement

value: Ψl,q ← w(Pl + {q})− w(Pl) ;

5 (l∗, q∗)← argmax(l,q) Ψl,q ;
6 Pl∗ ← Pt∗

⋃
{q∗};

7 ξ =
∑k
l=1 fφ(Pl);

8 if ξ < 1
2kφ then return Yes ;

else return No ;

the other questions using a recursive call on H ′ until k ∗ N
questions have been allocated.

Let V AL(H) be the value of the allocation produced by
Algorithm 1, OPT (H) be the value of the actual optimal
allocation. Let p = fj({qt}). By definition of H ′, it is
clear that V AL(H) = V AL(H ′) + p. We will show that
OPT (H) ≤ OPT (H ′)+2p. Let P = P1, .., Pk be the optimal
allocation for H and assume that qt ∈ Pi, i.e., question qt is
allocated to paper Pi. Let P ′ = P ′1, .., P

′
k be the allocation of

questions 2th, .., k ∗N th that is similar to P . This is a possible
solution to H ′. Let’s compute its value by comparing it to
OPT (H). All test papers except Pi get the same allocation
and all test papers except Pj have the same quality evaluation
function. Without loss of generality, we may assume that i 6= j.
We see that paper Pi loses at most fi({qt}) since fi is sub-
modular. But fi({qt}) ≤ fj({qt}) = p and test paper Pi loses
at most p. Test paper Pj loses at most p since by monotonicity
of fj , f ′j = fj(Pj ∪{qt})−fj({qt}) ≥ fj(Pj)−p. Therefore,
OPT (H ′) ≥ OPT (H) − 2p. This proof is completed by
induction on H ′ since H ′ is also a submodular function:

OPT (H) ≤ OPT (H)+2p ≤ 2V AL(H ′)+2p = 2V AL(H)

Theorem 2 implicates that Algorithm 1 achieves a 1/2-
approximation ratio for the total quality maximization objec-
tive based on a given fairness value φ. In other words, the
obtained total quality value ξ is greater than or equal to 0.5
times of the actual optimal value. Due to the property of the
truncated function, if the current fairness value φ is smaller
than the near-optimal obtainable value φ∗, the obtained total
quality value must be at least 1

2kφ. In addition, let ξ′ be the
obtained total quality value of Algorithm 1 by considering both
content constraints and assessment constraints. As discussed
before, we have ξ′ ≤ ξ. Therefore, if we know that ξ < 1

2kφ,
then we have ξ′ < 1

2kφ. This means that the current fairness
value φ is larger than the optimal fairness φ∗. Therefore, it

is impossible to allocate k generated test papers such that the
fairness requirement fφ(Pl) ≥ βφ,∀l = 1..k, is satisfied.

D. Submodular Population Generation and Local Search

This step aims to solve progressively k problem instances of
1-TPG to generate a new population of k papers P1, P2, .., Pk.
Based on submodular property of fφ(P ), we greedily select
questions that maximize the objective functions while paying
attention to satisfy the multiple knapsack constraints. Our
motivation is based on some applications, which maximize a
submodular function under a knapsack constraint as follows:

max
S
f(S) s.t.

∑
cx ≤ b, x ∈ S

where c(x) ≥ 0 is a cost function and b ∈ R is a budget
constraint. Sviridenko [38] proposed a greedy-based algorithm
for solving this problem with an approximation ratio of 1− 1

e .
It defines the marginal gain ∆f (x|S)

c(x) when adding an item x
into the current solution S as a ratio between the discrete
derivative ∆f (x|S) and the cost c(x). This algorithm starts
with S = ∅, and then iteratively adds the element x that
maximizes the marginal gain ratio among all elements that
satisfy the remaining budget constraint:

Si+1 = Si ∪ { arg max
x∈V \Si:c(x)≤b−c(Si)

∆(x|Si)
c(x)

}

We extend the algorithm of submodular function maxi-
mization under a knapsack constraint for solving the case of
multiple knapsack constraints. In [36], the 1-TPG problem can
be reformulated as follows:

max
P
f(P ) s.t.

∑
Aq ≤ b, q ∈ P ⊆ Q

where A is a matrix and b is the vector of multiple knapsack
constraints. Algorithm 2 gives the greedy-based algorithm
for this step. This algorithm maintains a set of weights that
are incrementally adjusted in a multiplicative manner. These
weights capture the possibility that each constraint is closed to
be violated when maximizing the objective function of a paper.
In each iteration, the algorithm selects an available question
that maximizes the sum of marginal gain ratio normalized by
the weights as follows:

P i+1
l = P il ∪ {arg max

qj∈Q

m∑
i=1

∆fφ(qj |Pl)
Aijhi

}

The above algorithm returns a set of generated papers,
which are feasible according to the multiple knapsack con-
straints. Recall from Definition 1 that ∆fφ(qj |Pl) is the
incremental marginal value of question qj to the paper Pl.

Lemma 2. Algorithm 2 can attain a set of k generated test
papers, which are feasible according to multiple knapsack
constraints after exactly k ∗N ∗ n iterations, where N is the
number of questions of each paper in the user specification.

Proof: Let Pl, l = 1..k, be a generated paper when the loop
in Line 4 terminates. It is obvious that the loop in Line 4 will
terminate after exactly N main iterations due to the monotone
submodular property of fφ(Pl).

Without loss of generality, we assume that the matrix A ∈
[0, 1]m×n and the vector b ∈ [1,∞)m. Let qv be the first



Algorithm 2: Submodular Population Generation
Input: Aq ≤ b, q ∈ {0, 1}n - 0-1 ILP problem;

A = [aij ]m×n; b ∈ Rm; µ - a parameter
Output: P1, P2, .., Pk - test papers
begin

1 for l=1 to k do
2 Pl ← ∅ ;
3 for i=1 to m do hi = 1/bi;
4 while

∑m
i=1 bihi ≤ µ and |Pl| ≤ N do

5 qj ← arg max
qj∈Q

∑m
i=1

∆fφ
(qj |Pl)

Aijhi
;

6 if q satisfies the cardinality constraint and
content constraints Pl then

7 Pl ← Pl ∪ {qj};
8 for i=1 to m do hi ← hiµ

Aij
bi ;

9 Q ← Q \ {qj} ;

10 return P1, P2, .., Pk

question that induces a violation in some constraints. Suppose
qv induces a violation in constraint i at iteration t < N . In
other words, we have

∑
q∈Pt > bi, and therefore,

bihit = bihi0
∏
q∈Pl

µ
Aij
bi = µ

∑
q∈Pl

Aij
bi > µ

where the last inequality is formed because hi0 = 1/bi. As a
result, we have

∑m
i=1 bihi > µ. This implies a contradiction

with the loop condition specified in Line 4.
The parameter µ in Algorithm 2 is important as it en-

sures that multiple knapsack constraints will not be violated
while maximizing the submodular objective function. Let
H = min{bi/Aij : Aij > 0} be the width of the knap-
sack constraints. By experiments, we found that Algorithm
2 can achieve near-optimal results by setting the parameter
µ = eHm, where e is the natural exponential and m is the
number of knapsack constraints.

E. Submodular Crossover Operator

This step devises a novel crossover operator to optimize the
fairness quality objective for the entire population. Recall that
our goal is to allocate questions into k test papers such that for
all papers, we have fφ(Pl) ≥ βφ,∀l = 1..k. However, this is
not easy to achieve especially when φ approaches the optimal
value. This is because in the small and less abundant pool of
questions, Algorithm 2 greedily selects all questions with high
value fφ(q) for some of the generated papers P1, P2, .., Ps
to satisfy fφ(Pl) ≥ βφ,∀l = 1..s. As a result, subsequent
paper Ps+1, .., Pk might not have enough good questions to
satisfy this requirement. In this case, we need to swap some
of the questions from the satisfied papers with questions from
unsatisfied papers to achieve a fair allocation.

We will move questions from satisfied papers to unsatisfied
papers and vice versa, until all papers satisfy the requirement
fφ(Pl) ≥ βφ,∀l = 1..k. To do that, we sort all test paper
Pi according to their paper quality f(Pi) in decreasing order.

Algorithm 3: Submodular Crossover Operator
Input: P1, P2, .., Pk - papers with unfair allocation
Output: P ′1, P ′2, .., P ′k - papers with fair allocation
begin

1 Sort Pi, i = 1..k according to f(Pi) decreasingly;
while true do

2 Select best test paper Pi ;
3 Select worst test paper Pj ;
4 if fφ(Pj) < βφ and fφ(Pi) ≥ 3βφ then
5 Select swapping questions from Pi:

Λi = {qi1, qi2, ...qit} and Pj :
Λj = {qj1, q

j
2, ...q

j
t };

6 foreach qi ∈ Λi do
7 Pj ← {Pj \ {qj}} ∪ {qi};
8 Pi ← {Pi \ {qi}} ∪ {qj};

9 Re-sort Pi according to f(Pi) decreasingly;

10 return P1, P2, .., Pk

Let’s define the swapping operation as follows. Select a best
satisfied paper Pi = {qi1, qi2, ...qiN} for which fφ(Pi) ≥ 3βφ.
Such a paper is always ensured through appropriate choice
of α and β as shown in Lemma 4. Then, we select a
worst unsatisfied paper Pj , i.e., fφ(Pj) ≤ βφ. In the paper
Pi, choose t < N such that fφ({qi1, qi2, ...qit−1}) < βφ,
fφ({qi1, qi2, ...qit}) ≥ βφ, and fφ({qit}) < βφ. Let Λi =
{qi1, qi2, ...qit}. As fφ(∅) = 0, the set Λi is not empty. In the
reversed direction, let Λj = {qj1, q

j
2, ...q

j
t } be a set of questions

in Pj such that each pair of questions qil , l = 1..t, and
qjl , l = 1..t, has the same topic and question type. This is done
because both test papers Pi and Pj satisfy the hard constraints
on topic and question types. Therefore, in crossover operator,
we can always find such matching parts, which have the same
topic and question type, to do the swapping We reallocate
the questions of papers Pi and Pj by swapping questions of
the two sets Λi and Λj . We note that the swapping operation
does not violate the multiple knapsack constraints. Thus, all
newly generated papers remain feasible. Finally, we re-sort
the entire test papers after swapping. More importantly, this
operation improves the fairness allocation among all papers.
The swapping operation is given in Algorithm 3.

Lemma 3. The swapping operation improves the fairness
allocation of test papers Pi and Pj as follows:
fφ((Pj\Λj)∪Λi) ≥ βφ, and fφ((Pi\Λi)∪Λj) ≥ fφ(Pi)−2βφ

Proof: Due to the monotone property of fφ, we have fφ(Pj∪
Λi) ≥ fφ(Λi) ≥ βφ. It remains to prove that fφ((Pi \ Λi) ∪
Λj) ≥ fφ(Pi) − 2βφ. Suppose that fφ(Pi − Λi) < fφ(Pi) −
2βφ. Let P ′i = Pi − Λi. Then, we have

fφ(P ′i ∪ Λi)− fφ(P ′i ) > 2βφ

But fφ(Λi) ≤ fφ({qi1, qi2, ...qit−1}) + fφ({qit}) < 2βφ
due to submodularity of fφ and the fact that fφ({qit}) < βφ.
Hence, adding Λi to P ′i increases more value than adding Λi
to an empty set. This contradicts the submodularity of fφ.



Therefore, swapping questions will not reduce the value
of fφ(Pi) greater than 2βφ. Hence, Pi is still satisfied.
Moreover, the unsatisfied test paper now becomes satisfied by
this operation. We also guarantee that we can always perform
these swapping operations, until all test papers are satisfied.
This issue is solved by choosing β = α/3, where α = 1/2 is
the approximation ratio of the Algorithm 1 in Section IV-C2
for the total quality maximization.

Lemma 4. If we choose β = α/3 = 1/6, it is guaranteed
that after at most k swapping operations, all test papers will
be satisfied, i.e., fφ(Pl) ≥ βφ,∀l = 1..k.

Proof: To simplify the notation, without loss of generality,
let’s assume that φ = 1. Since the optimal fairness quality
for fφ = f1 is 1, the optimal total quality for f1 is about k.
Algorithm 2 obtains an allocation P of k test papers that is a
fraction α of the optimal. Hence, we have

∑k
i=1 f1(Pi) ≥ αk.

Recall that the sum
∑k
i=1 f1(Pi) is the total quality of P. We

need to estimate the maximal number of unsatisfied papers
that can have. Let θ be the fraction of unsatisfied papers.

We have: kθβ + k(1− θ) ≥ αk. Since the maximum value
θ is obtained if all the papers are satisfied, i.e., having the
total quality of about k(1− θ), and the unsatisfied papers are
obtained without being satisfied, i.e., having the total quality
of about kθβ. Hence, we have: θ ≤ 1−α

1−β .
Let’s consider the total quality Φ, which is allocated over

the satisfied papers. We know that Φ is at least:

Φ ≥ αk − θkβ ≥ kα(1− β)− β(1− α)

1− β
(7)

The first question swapping is possible if: Φ
k(1−Φ) ≥ 3β.

since if the average remaining total quality over all (1 − θ)k
satisfied papers is 3β, then there must be at least one paper
such that question swapping can be executed. Since each swap
decreases the total quality Φ by no more 2β as previously
proved, and since θk swaps is needed to satisfy all unsatisfied
papers, it is sufficient to constrain that

Φ− 2θkβ

k(1− θ)
≥ 3β ⇒ Φ ≥ 3βk − βθk (8)

From (7) and (8), a sufficient condition for β such that enough
moves can be carried out to satisfy all unsatisfied papers is

α(1− β)− β(1− α)

1− β
≥ 3β − β 1− α

1− β
⇒ β ≤ α/3

by solving this inequality for β and removing the infeasible
solution β ≥ 1. Because β is the approximation ratio, we want
to maximize β with respect to the above constraint. Hence, we
choose β = α/3 = 1/6.

F. Submodular Constraint Improvement

So far, we have achieved a set of k test papers, having
guarantee on the collective objective values and satisfying
the content hard-constraints on topics and question types.
However, these test papers have not yet been optimized based
on the assessment constraints. To tackle this, we propose an
efficient local search for assessment constraint optimization to

improve the generated paper quality while preserving the ob-
tained objective values and other constraints. Here, we propose
an effective method for assessment constraint optimization
based on the submodular property.

Algorithm 4: Submodular Constraint Improvement
Input: S = (N,T,D,C, Y ) - test paper specification;

P1, P2, .., Pk - test papers; ε - a parameter
Output: P ′1, P

′
2, .., P

′
k - Improved test papers

begin
1 for l=1 to k do
2 Q′ ← Q \ {P1 ∪ ... ∪ Pk};
3 while ∃qi, qj : qi ∈ Pl, qj ∈ Q′ such that

fξ({Pl − {qi}} ∪ {qj}) > (1 + ε
|Nqi |2

)fξ(Pl) do
/* Nqi neighborhood of qi */

4 Pl ← {Pl − {qi}} ∪ {qj} ;

5 return P1, P2, .., Pk

Consider a test paper P 0 = Pl = {q1, q2, .., qN}, l = 1..k,
which is generated with feasible satisfaction of multiple knap-
sack constraints. Let q = {0, 1}n, |q| = N be the binary
representation of the initial solution P . From the previous
step, we have Aq0 ≤ b, which is the 0-1 ILP formulation
of the corresponding 1-TPG problem. This step aims to turn
the existing solution q0 to q1 such that Aq1 = b. This is the
Subset Vector Sum problem, which is known to be NP-hard in
general. However, as shown in Section IV-D, the existing test
paper Pl has completely satisfied the proportion constraints
and cardinality constraint. Hence, we only need to optimize the
total time and difficulty degree constraints. Let

∑n
l=1 ailq ≤ bi

be the total time constraint and
∑n
l=1 ajlq ≤ bj be the diffi-

culty degree constraint. Here, we would like to optimize the
assessment constraints while ensuring the objective function
value f(Pl) will not decrease. Note that in this step, we use
the quality function f discussed in Lemma 4 instead of fφ
because we are dealing with the assessment constraints and the
objective function has already satisfied the fairness objective.
To optimize the assessment constraints, we reformulate the 1-
TPG problem to unconstrained submodular maximization by
introducing Lagrange multipliers λ1 and λ2 as follows:

fξ(P ) = f(P )− λ1|
n∑
l=1

ailq − bi| − λ2|
n∑
l=1

ajlq − bj |

It is not difficult to show that the problem max fξ(Pl) is an
unconstrained non-monotone submodular maximization [39].
We adapt an efficient deterministic local search proposed by
Feige et al. [39] for unconstrained non-monotone submodular
maximization. Algorithm 4 presents the local search algorithm.
As shown in [39], this local search algorithm will produce
a good solution with approximation ratio of 1

3 and runtime
complexity of O(n2 × log 1

ε × log n), where 0 < ε < 1 is an
algorithm parameter that could be set to any small value.

G. Termination

The paper generation process is repeated until the following
termination condition is reached: φmax − φmin ≤ δ, where δ
is a predefined threshold. This is because the existing fairness



value φ is near-optimal. The parameter δ represents a tradeoff
between the runtime time and quality of constraint satisfaction.
An optimal value of δ = 0.05 was found experimentally.

H. Complexity Analysis

We summarize the approximation results of the proposed
SMA approach for multiobjective optimization of k-TPG.

Theorem 3. The proposed SMA approach achieves the fol-
lowing theoretical multiobjective approximation results of the
total quality maximization and fairness quality maximization:

k∑
i=1

f(Pi) ≥
1

2
max

P ′1,..,P
′
k

k∑
i=1

f(P ′i ) =
1

2
OPT

min
l=1..k

f(Pl) ≥
1

6
max
P ′1,..,P

′
k

min
l=1..k

f(P ′l )

In addition, the multiple knapsack equality constraints are also
guaranteed to achieve a constant approximation ratio of 1

3 .

Moreover, polynomial time complexity is also achieved. Let
ϑ = max

q∈Q
f(q)), ε is the parameter in the local constraint

improvement step. The computational time of the objective
function evaluation is denoted as τf in our analysis. The total
time complexity of the SMA approach is in the order of:
O(dlog2(N × ϑ)e × (k × n×N × τf + k × n×N × τf +

k3 ×Nτf + k × n2 × log 1
ε × log n× τf )

≈ O(dlog2(N × ϑ)e × k × τf (2nN + k2N + n2 log n log 1
ε ))

≈ O(log 1
ε × k × log2(N × ϑ)× n2 log n× τf )

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
SMA approach for k-TPG. The experiments are conducted in
a Windows XP environment, using an Intel Core 2 Quad 2.66
GHz CPU with 3.37 GB of memory. The performance of SMA
is measured and compared with other techniques including the
following 3 re-implemented algorithms for k-TPG: k-TS [4],
k-PSO [5] and k-ACO [6] based on related published articles.
In addition, we also compare SMA with DAC-MA [36]. As
DAC-MA is designed for 1-TPG, we generate each of k test
papers of DAC-MA sequentially after eliminating questions of
the previously generated test papers. We run each experiment
of the stochastic approaches k-TS, k-PSO and k-ACO five
times and select the best result for comparison.

A. Datasets

We generate 4 large-sized synthetic datasets, namely
D1, D2, D3 and D4, for performance evaluation. In the 2
datasets, D1 and D3, the value of each attribute is generated
according to a uniform distribution. However, in the other 2
datasets, D2 and D4, the value of each attribute is generated
according to a normal distribution. Our purpose is to measure
the effectiveness and efficacy of the test paper generation
process of each algorithm for both balanced datasets D1 and
D3, and imbalanced datasets D2 and D4. Intuitively, it is more
difficult to generate good quality test papers for the datasets
D2 and D4 than the datasets D1 and D3. Table II summarizes
the 4 datasets.

TABLE II
TEST DATASETS

#Questions #Topics #Question Types Distribution
D1 20000 40 3 uniform
D2 30000 50 3 normal
D3 40000 55 3 uniform
D4 50000 60 3 normal

B. Experiments
To evaluate the performance of the SMA approach, we

aim to analyze the quality and runtime efficiency of the
SMA approach for k-TPG based on 4 large-scale datasets by
using different specifications. Here, we have designed 12 test
specifications in the experiments. We vary the parameters in
order to have different test criteria in the test specifications.
The number of topics is specified between 2 and 40. The
total time is set between 20 and 240 minutes, and it is
also set proportional to the number of selected topics for
each specification. The average difficulty degree is specified
randomly between 3 and 9. To evaluate the effectiveness of
the proposed approach, we have conducted the experiments
according to 5 different values of k, i.e., k = 1, k = 5,
k = 10, k = 15, k = 20. In the experiments, the performance
of the proposed SMA approach is evaluated and compared
based on runtime and paper quality. The performance of SMA
is measured and compared with other k-TPG techniques.

C. Quality Measures for k-TPG
To evaluate the quality of the generated test papers for

parallel test paper generation, we use the Average Total Quality
and Average Constraint Violation. In addition to the average
quality, the corresponding Deviate Total Quality and Deviate
Constraint Violation are also used to measure the similarity
in quality of the k generated test papers based on the same
user specification S. To begin with, we define Average Total
Quality and Average Constraint Violation.

Definition 5 (Average Total Quality). Given a specification
〈k,S〉. Let P = P1, ..., Pk be the set of generated test papers
from the specification S. The Average Total QualityMk,S

d (P)
is defined as average of the quality of f(Pi), i = 1..k.

Constraint violation indicates the differences between the
test paper specification and generated test paper. Let S =
〈N, T,D,C, Y 〉 be a test paper specification and SP =
〈N,TP , DP , CP , YP 〉 be a generated test paper specification.
Constraint violations can be measured according to total time,
average difficulty degree, topic distribution and question type
distribution between the test paper specification (S) and the
generated test paper specification (SP ) as follows:
• Total time constraint violation:
4T (SP ,S) = |TP−T |

T
• Average difficulty degree constraint violation:
4D(SP ,S) = |DP−D|

D
• Topic distribution constraint violation:

4C(SP ,S) = DKL(pcp||pc) =
M∑
i=1

pcp(i) log
pcp(i)

pc(i)

• Question type distribution constraint violation:

4Y (SP ,S) = DKL(pyp||py) =
K∑
j=1

pyp(j) log
pyp(j)

py(j)
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Fig. 2. Performance Results Based on Average Runtime

where DKL is the Kullback-Leibler Divergence [40] which
is used to measure the statistical differences of the topic and
question type distributions between SP and S.

The constraint violations (CV) of a generated test paper P
w.r.t. the test paper specification S can then be calculated as
the average of the 4 violations:

CV (P,S) =
λ ∗ 4T + λ ∗ 4D + log4C + log4Y

4

A high quality test paper P should maximize the average
discrimination degree and minimize constraint violations. In
other words, it should have a high value on EP and a low value
on the constraint violation CV (P,S). The constant λ = 100 is
used to rebalance the contribution of 4C,4Y and 4T,4D.

Definition 6 (Average Constraint Violation and Variant
Constraint Violation). Given a specification 〈k,S〉. Let P =
P1, P2, ..., Pk be the generated test papers on a question
dataset D from the specification S . The Average Constraint
Violation Mk,S

c (P) of k generated test papers P1, P2, ..., Pk
from the same specification S is defined as the average
of the Constraint Violation CV (Pi,S), i = 1..k. The Vari-
ant Constraint Violation Vk,Sd (P) is defined as the variance
V ar(CV (P1,S), .., CV (Pk,S)), i = 1..k

As such, we can determine the quality of the generated test
papers for k-TPG. For high quality parallel test papers, the
Mean Discrimination Degree should be high and the Mean
Constraint Violation should be small. We set a threshold
Mk,D

c ≤ 10, which is obtained experimentally, for high
quality parallel test papers. In addition, both of the Deviate
Discrimination Degree Vk,Dd and Deviate Constraint Violation
Vk,Dc should also be low. We note that Vk,Sd (P) and Vk,Sc (P)

are 0 when k = 1. Hence, Vk,Dd and Vk,Dc should also be 0 in
that case. Note that the variant discrimination degree Vk,Sd (P)

and variant constraint violation Vk,Sd (P) are 0 when k = 1.

Definition 7 (Mean of Average Total Quality and Deviate
of Average Total Quality). Let P1,P2, .. .,P12 be the sets of
a fixed k generated test papers on a question dataset D w.r.t.
the corresponding test paper specifications Si, i = 1..12. The
Mean of Average Total Quality Mk,D

d is defined as the mean
of the 12 average discrimination degrees of Mk,Si

d (Pi). The
Deviate of Average Total Quality Vk,Dd is defined as:

Vk,Dd =

∑12
i=1 log(Vk,Sid (Pi)

1
2 )

12

Definition 8 (Mean of Fairness Quality). Let P1,P2, ..
.,P12 be the sets of a fixed k generated test papers on a ques-

tion dataset D w.r.t. the corresponding test paper specifications
Si, i = 1..12. The Mean of Fairness Quality Mk,D

f is defined
as the mean of the 12 fairness quality of Pi.

Definition 9 (Mean Constraint Violation and Deviate Con-
straint Violation). Let P1,P2, .. .,P12 be the sets of a fixed
k generated test papers on a question dataset D w.r.t. the
corresponding test paper specifications Si, i = 1..12. The
Mean Constraint Violation Mk,D

c is defined as the mean
of the average constraint violation Mk,Si

c (Pi). The Deviate
Constraint Violation Vk,Dc is defined as:

Vk,Dc =

∑12
i=1 log(Vk,Sic (Pi)

1
2 )
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D. Performance Results for k-TPG

Performance on Runtime: Figure 2 compares the runtime
performance of the 4 techniques based on the 4 datasets. The
results have clearly shown that the proposed SMA approach
significantly outperforms the other heuristic techniques in
runtime for the different datasets. SMA generally requires
less than 6 minutes to complete the parallel paper generation
process. Moreover, the proposed SMA approach is quite
scalable in runtime on different dataset sizes and distributions.
In contrast, the other techniques are not efficient to generate
high quality parallel test papers. Particularly, the runtime
performance of these techniques degrades quite badly as the
dataset size or the number of generated parallel test papers
gets larger, especially for imbalanced datasets D2 and D4.

Performance on Quality: Table III and Figure 3 shows the
quality performance results of the 4 techniques based on the
Mean Discrimination Degree Mk,D

d and Deviate Discrimi-
nation Degree Vk,Dd . As can be seen from Figure 3, SMA
has consistently achieved higher Mean Discrimination Degree
Mk,D

d and lower Deviate Discrimination Degree Vk,Dd than the
other heuristic k-TPG techniques for the generated parallel test
papers. Particularly, SMA can generate high quality test papers
with Mk,D

d ≈ 7. Note that the lower Deviate Discrimination
Degree Vk,Dd value indicates that the generated parallel test
papers have similar quality in terms of discrimination degree.

Generally, for a specific value of k, we observe that the
quality of the generated parallel test papers of all 4 techniques
based on the Mean Discrimination Degree Mk,D

d and the
Deviate Discrimination Degree Vk,Dd tend to be improved
when the dataset size gets larger. Table III gives the quality
performance based on discrimination degree of the 4 tech-
niques. As can be observed from Table III, the quality of
the generated parallel test papers for the other 3 techniques
(i.e., k-PSO, k-ACO and k-TS) seem not to be improved
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Fig. 4. Performance Results based on Mean Fairness Quality Mk,D
f

on D2 as compared with D1 even though the dataset size
of D2 is 1.5 times larger than D1. On the other hand, the
quality improvement of the other 3 techniques on datasets D3

and D4 as compared with D1 is quite significant. Note that
the dataset sizes of D3 and D4 are 2 and 2.5 times larger
than D1 respectively. This shows that a slight increase of
the imbalanced dataset size may not help improve the quality
while a significant increase may help improve the quality of
the generated parallel test papers.

In addition, we observe from Table III that when the number
of generated parallel test papers k gets larger, the Mean
Discrimination DegreeMk,D

d on a specific dataset D tends to
decrease. Similarly, the Deviate Discrimination Degree Vk,Dd
tends to increase when k gets larger. These results have
shown that the quality of the generated parallel test papers
on a specific dataset D tends to degrade when k gets larger.
This degradation is small for the proposed SMA approach.
However, it is quite significant for the other k-TPG techniques.
We also find that this degradation is less significant for all 4
techniques when the dataset size gets larger.

Figure 4 shows the performance results of the 4 techniques
based on the Mean Fairness Quality Mk,D

f . As can be seen
from Figure 4, SMA has consistently achieved higher Mean
Fairness Quality Mk,D

f than the other k-TPG techniques.
Particularly, SMA can generate high quality test papers with
Mk,D

f ≈ 6. Note that the higher Mk,D
f value indicates that

the generated parallel test papers have similar optimal quality.
Table IV and Figure 5 give the quality performance results

of the 4 techniques based on the Mean Constraint Viola-
tion MD,kc and Deviate Constraint Violation VD,kc . We also
observe that SMA has consistently outperformed the other
techniques on Mean Constraint Violation MDc and Deviate
Constraint Violation VD,kc based on the 4 datasets. The Mean
Constraint Violation of SMA tends to decrease whereas the
Mean Constraint Violations of the other 3 techniques increase
quite fast when the dataset size or the number of specified
constraints gets larger. In particular, SMA can generate high
quality parallel test papers with MD,kc ≤ 10 for all datasets.

TABLE III
QUALITY PERFORMANCE COMPARISON BASED ON AVERAGE TOTAL

QUALITY OF SMA AND 3 k-TPG TECHNIQUES (Mk,D
d ± Vk,D

d )

Algorithm D1 D2 D3 D4

1-DACMA 6.0± 0 6.03± 0 6.02± 0 6.0± 0
1-PSO 5.20± 0 4.70± 0 5.63± 0 5.45± 0
1-ACO 5.30± 0 4.80± 0 5.97± 0 5.51± 0
1-TS 5.60± 0 5.01± 0 6.10± 0 5.60± 0
1-SMA 6.70± 0 6.75± 0 6.90± 0 6.80± 0
5-DACMA 4.78± 1.55 4.85± 1.1 5.41± 0.67 5.3± 0.85
5-PSO 6.70± 1.50 4.72± 1.40 5.35± 1.20 5.37± 1.02
5-ACO 5.30± 1.20 5.03± 1.23 5.84± 1.12 5.38± 1.11
5-TS 5.18± 1.40 4.88± 1.30 5.48± 1.04 5.78± 1.34
5-SMA 6.43± 0.50 6.61± 0.60 6.83± 0.35 6.71± 0.55
10-DACMA 4.56± 2.1 4.36± 1.5 5.09± 1.4 4.77± 1.18
10-PSO 4.25 ±2.70 4.05± 2.40 5.17± 1.37 5.05± 1.37
10-ACO 4.91± 1.50 4.43± 1.60 5.51± 1.35 5.13± 1.25
10-TS 4.71± 2.30 4.38± 2.10 5.21± 1.23 4.93± 1.23
10-SMA 6.28± 0.64 6.38± 0.69 6.68± 0.64 6.58± 0.74
15-DACMA 4.06± 2.3 3.69± 2.1 4.78± 1.68 4.42± 1.58
15-PSO 3.77± 2.30 3.65± 2.30 4.97± 1.43 4.55± 1.43
15-ACO 4.51± 1.74 4.01± 1.84 4.81± 1.34 4.61± 1.54
15-TS 4.53± 2.60 3.95± 2.40 5.03± 1.46 4.75± 1.46
15-SMA 6.22± 0.78 6.29± 0.78 6.51± 0.72 6.39± 0.72
20-DACMA 3.75± 2.7 3.1± 2.4 4.5± 1.82 3.76± 1.82
20-PSO 3.50± 2.70 3.25± 2.80 4.37± 1.57 3.85± 1.77
20-ACO 4.19± 2.35 3.71± 2.15 4.58± 1.65 4.13± 1.65
20-TS 4.20± 2.50 3.33± 2.25 4.71± 1.85 4.08± 1.85
20-SMA 6.02± 0.82 6.22± 0.85 6.42± 0.83 6.25± 0.93

Avg-DACMA 4.63± 1.73 4.40± 1.42 5.16± 1.11 4.85± 1.08
Avg-PSO 4.33± 1.84 4.07± 1.78 5.10± 1.11 4.85± 1.12
Avg-ACO 4.84± 1.36 4.40± 1.36 5.34± 1.10 4.95± 1.11
Avg-TS 4.84± 1.76 4.31± 1.61 5.31± 1.12 5.03± 1.15
Avg-SMA 6.33± 0.55 6.45± 0.53 6.67± 0.47 6.71± 0.48

Also, SMA is able to generate higher quality parallel test
papers on larger datasets while the other techniques generally
degrade on the quality of the generated test papers when the
dataset size gets larger.

In addition, we find that when k gets larger, the Mean
Constraint Violation Mk,D

c on a specific dataset D tends to
decrease. Similarly, the Deviate Constraint Violation Vk,Dc
quality tends to increase when k gets larger. These results
have shown that the quality based on constraint violation on a
specific dataset D tends to degrade when k gets larger. Table
IV gives the quality performance based on constraint violation
of the 4 techniques. As can be seen, the quality degradation
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Fig. 5. Performance Results on Quality based on Mean Constraint Violation Mk,D
c and Deviate Constraint Violation Vk,D

c

TABLE IV
QUALITY PERFORMANCE COMPARISON BASED ON CONSTRAINT

VIOLATION OF SMA AND 3 k-TPG TECHNIQUES (Mk,D
c ± Vk,D

c )

Algorithm D1 D2 D3 D4

1-DACMA 5.85± 0 6.65± 0 5.31± 0 5.01± 0
1-PSO 20.19± 0 22.17± 0 26.92± 0 30.81± 0
1-ACO 18.20± 0 20.81± 0 21.26± 0 28.41± 0
1-TS 17.30± 0 19.85± 0 23.25± 0 29.17± 0
1-SMA 6.05± 0 6.95± 0 5.56± 0 5.25± 0
5-DACMA 7.19± 1.2 7.55± 2.9 5.85± 1.28 6.13± 1.0
5-PSO 22.90± 3.5 27.90± 3.8 31.29± 3.5 36.29± 3.3
5-ACO 20.25± 3.2 25.25± 4.2 29.25± 3.2 34.25± 3.6
5-TS 18.93± 3.4 23.93± 4.4 28.93± 3.4 33.93± 3.9
5-SMA 7.35± 1.5 8.15± 1.8 6.05± 1.5 7.15± 1.2
10-DACMA 7.72± 1.5 7.87± 2.57 6.05± 1.43 6.48± 1.35
10-PSO 32.17± 4.7 37.17± 5.1 37.17± 3.7 42.17± 4.5
10-ACO 22.90± 5.5 26.90± 5.9 32.90± 4.5 36.90± 4.9
10-TS 19.85± 5.3 29.85± 5.9 30.85± 4.3 38.85± 4.4
10-SMA 7.68± 1.8 8.38± 2.6 6.38± 1.7 7.38± 1.6
15-DACMA 8.26± 1.8 7.98± 3.18 6.72± 1.83 6.98± 1.55
15-PSO 36.92± 5.2 41.92± 6.2 45.92± 4.2 49.92± 5.2
15-ACO 26.60± 6.7 32.60± 7.7 39.60± 5.2 47.60± 4.7
15-TS 21.25± 6.6 35.25± 7.4 35.25± 5.6 45.25± 5.4
15-SMA 8.65± 2.4 8.75± 3.3 7.15± 2.2 7.85± 1.8
20-DACMA 8.61± 2.2 9.01± 3.49 7.06± 2.21 7.51± 1.89
20-PSO 40.81± 6.9 45.81± 6.9 50.81± 4.9 54.81± 5.9
20-ACO 29.94± 6.4 34.94± 7.6 46.94± 5.4 52.94± 6.6
20-TS 26.17± 7.2 38.17± 7.8 48.17± 5.6 53.17± 6.8
20-SMA 9.5± 2.6 9.85± 3.9 7.55± 2.6 8.55± 2.5

Avg-DACMA 7.53± 1.35 7.81± 2.42 6.20± 1.35 6.42± 1.16
Avg-PSO 30.59± 4.1 34.99± 4.4 38.42± 3.3 42.80± 3.8
Avg-ACO 23.57± 4.4 28.10± 5.1 33.99± 3.7 40.022± 4.0
Avg-TS 20.7± 4.5 29.41± 5.1 33.29± 3.8 40.07± 4.1
Avg-SMA 7.84± 1.7 8.42± 1.8 6.54± 1.5 7.23± 1.4

is small for the proposed SMA approach whereas it is quite
significant for the other k-TPG techniques.
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Fig. 6. Number of Better Quality Instances of SMA and other Approaches

Figure 6 shows the number of significant better quality
instances of SMA as compared to the best solution among
k-TS, k-PSO and k-ACO for each pair of dataset and a given
k. A set of test papers is significant better in quality than
another set of test papers if it is strictly better in 3 aspects
including Total Quality (Mk,D

d and Vk,Dd ), Fairness Quality
(Mk,D

f ) and Constraint Violation (Mk,D
c and Vk,Dc ). As can

be seen, SMA has a consistent high number of significant
better quality instances in the 4 datasets. For small k = 1, 5,
SMA has approximately 67% of better quality instances in
the total of 96 instances. For large k = 10, 15, 20, SMA has
achieved a better performance of 91% better quality instances

in the total of 144 instances.
Compare SMA with DAC-MA: As we can observe in Figure

2, the runtime of DAC-MA is not scalable. It increases linearly
with the number of test papers k while that of SMA increases
much slower. This is because DAC-MA is designed for 1-
TPG and it was run k times to generate k test papers. Figure
3 clearly shows that SMA has consistently outperformed
DAC-MA in terms of Mean Discrimination Degree Mk,D

d

and Deviate Discrimination Degree Vk,Dd . This shows the
effectiveness of SMA in optimizing the two objective functions
simultaneously over k test papers while DAC-MA only opti-
mizes the quality function of each paper separately. However,
DAC-MA has consistently outperformed SMA in terms of
the Mean Constraint Violation Mk,D

c . It is because DAC-MA
pay more attention to constraint violation minimization when
optimizing the quality objective function of each paper.

Discussion: The good performance of SMA is due to 2
main reasons. Firstly, as SMA is an approximation algorithm
with constant performance guarantee, it can find the near-
optimal solution for objective functions of k-TPG effectively
and efficiently while satisfying the multiple constraints with-
out using weighting parameters. As such, SMA can achieve
better paper quality and runtime efficiency as compared with
other heuristic-based k-TPG techniques. Secondly, SMA is a
submodular greedy-based algorithm, which is able to produce
good solution in efficient polynomial runtime. Thus, SMA
can also improve its computational efficiency on large-scale
datasets as compared with the other k-TPG techniques.

Furthermore, the deviation of discrimination degree and
deviation of constraint violation of the SMA approach tend
to increase slightly while these deviations grow quite fast for
the other 3 techniques when k gets larger. It is because the
SMA approach has effective techniques to generate parallel
test papers with fairness quality while the other 3 techniques
do not. Intuitively, when k gets larger, it needs more questions
with appropriate attributes to generate parallel quality test pa-
pers of similar quality. However, with a fixed question dataset,
the number of questions with appropriate attributes is limited.
Hence, without an appropriate technique to generate parallel
test papers of similar quality, the deviation of discrimination
degree and deviation of constraint violation of the generated
parallel test papers tend to grow fast.

VI. CONCLUSION

In this paper, we have proposed an effective and efficient
Submodular Memetic Approximation (SMA) approach for
multiobjective parallel test paper generation (k-TPG). The key



success of SMA lies in the synergy of the iterative diversifica-
tion process in a population-based evolutionary computation
with the intensification process of local improvement. This
process uses a submodular local search mechanism and sub-
modular crossover operator to jointly optimize the total quality
maximization objective and the fairness quality maximization
objective of the k test papers. Specifically, SMA employs
submodular optimization techniques for enhancing steps of
an iteratively multiobjective memetic algorithm framework.
The proposed SMA approach is a deterministic greedy-based
approximation algorithm to find the near-optimal solution
by exploiting the special submodular structure of objective
functions. To the best of our knowledge, SMA is a pioneering
multiobjective memetic algorithm, which can achieve provably
near-optimal solutions in polynomial runtime for a real-world
problem. The performance results on various datasets have
shown that the SMA approach has achieved generated parallel
test papers with not only high quality, but also runtime
efficiency when compared with other k-TPG techniques.
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