
Strathprints Institutional Repository

Ceriotti, M. and Vasile, M. (2010) Automated multigravity assist trajectory planning with a modified
ant colony algorithm. Journal of Aerospace Computing, Information, and Communication, 7 (9). pp.
261-293. ISSN 1542-9423

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9028866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Automated Multigravity Assist Trajectory

Planning with a Modified Ant Colony

Algorithm

Matteo Ceriotti∗

University of Strathclyde, Glasgow, G1 1XJ, United Kingdom

and Massimiliano Vasile†

University of Glasgow, Glasgow, G12 8QQ, United Kingdom

The paper presents an approach to transcribe a multigravity assist tra-

jectory design problem into an integrated planning and scheduling prob-

lem. A modified Ant Colony Optimization (ACO) algorithm is then used

to generate optimal plans corresponding to optimal sequences of gravity

assists and deep space maneuvers to reach a given destination. The mod-

ified Ant Colony Algorithm is based on a hybridization between standard

ACO paradigms and a tabu-based heuristic. The scheduling algorithm is

integrated into the trajectory model to provide a fast time-allocation of

the events along the trajectory. The approach demonstrated to be very

effective on a number of real trajectory design problems.

Nomenclature

A,B,C Polynomial coefficients

a Semimajor axis

b Direction of deflection (binary)

E Eccentric anomaly

e Eccentricity

∗Research Fellow, Advanced Space Concepts Laboratory, Department of Mechanical Engineering, James
Weir Building, AIAA Member.

†Senior Lecturer, Space Advanced Research Team, Department of Aerospace Engineering, James Watt
Buildling South, AIAA Member.

1 of 49

fobj Objective value, km/s

fp/a Binary variable for pericenter or apocenter

G Matrix of combinations of types of transfer

i Generic index for the leg

j Generic index

K Set of Keplerian orbital elements

k Periodicity coefficient

L List

mDSM Magnitude of DSM, m/s

M Point in deep space

nP Number of planets

neval Number of function evaluations

ngen Number of generations

niter Number of iterations

npop Size of population

nrev1 Number of full revolutions in the first arc

nrev2 Number of full revolutions in the second arc

P Planet

Pr Probability

p Semilatus rectum

RP Mean radius of the planet

r Position vector

rp Radius of pericenter (absolute)

rps Signed radius of pericenter

Q Ordered set

q Generic element in the set

S List of solutions

s Solution vector

T Time of flight, d

t Time

U Random function

v Velocity vector, km/s

wplanet Weight for planet selection

wtype Weight for type of transfer selection

x, y Cartesian coordinates, km

α Fraction of time of flight at which the DSM occurs

δ Deflection angle

2 of 49

∆v Change in velocity due to DSM, m/s

∆θ Anomaly increment, rad

ϵ Admissibility threshold, km/s

θ True anomaly

λ Variable for radius of pericenter or launch velocity

µ Planetary constant

ϕ Difference in anomalies

φ0 Launch angle

σ Time of flight weight, km/s/d

τ Pheromone distribution vector

Ω Right ascension of ascending node

ω Anomaly of pericenter

Superscripts

− Incoming

+ Outgoing

⋆ Optimal

(1), (2) First and second solution

Subscripts

0 At launch

d At discontinuity

dep Absolute at departure

DSM Referred to DSM

int Intersection

l Index for feasible solution

o On orbit of planet

P Referred to the planet

s On second arc

temp Temporary

tn In tangential and normal components

xy In cartesian components

∞ Relative at infinity

3 of 49

I. Introduction

In the literature on multigravity assist (MGA) trajectories, their automatic design (i.e., the

definition of an optimal sequence of planetary encounters and the definition of one or more

locally optimal trajectories for each sequence) has been approached with several different

techniques. All of them can be classified in two main categories: two level approaches,

integrated approaches.

Two-level approaches split the problem into two sub-problems which lay at two different

levels: one sub-problem is to find the optimal sequence of planetary encounters, the other is

to find an optimal trajectory for that sequence. Two-level approaches define the planetary

sequence independently of the trajectory itself. Once the sequence (or a set of promising

sequences) has been selected, then one or more optimal trajectories can identified for each

sequence in the set.1 Two-level approaches use a simplified, low fidelity, model for repre-

senting the trajectory2 at the first level. The use of a low-fidelity model allows for a quick

assessment of many sequences, if not all. At the second level, instead, a higher fidelity

model, more computationally expensive, is used.3 Each sequence is represented by a string

of integer numbers, while the associated trajectory is represented with a string of real and

integer numbers defining the time and the characteristics of the events occurring along the

trajectory (e.g. launch, deep space maneuver, arrival at a celestial body, number of revo-

lutions around the Sun, etc.). Therefore, for each sequence, there is an infinite variety of

possible trajectories.

The issue with two-level approaches is the difficult assessment of the optimality of a given

planetary sequence, without an exhaustive search for all possible trajectories associated with

that sequence. Unfortunately, finding an optimal trajectory is a very difficult global opti-

mization problem in itself. This, combined with the fact that usually there exists a very

high number of sequences for a given transfer problem, requires a considerable computa-

tional effort. The computational cost can be reduced by discarding non-promising sequences.

However, if the low-fidelity model is not accurate enough, either some good sequences are

discarded, or many of the retained ones can result to be actually bad.

As opposed to the two-level approaches, integrated approaches define a mixed integer-

continuous optimization problem, which tackles both the search of the sequence and the

optimization of the trajectory, using a single model, at the same time.4 This kind of prob-

lem is known in literature as a hybrid optimization problem.5,6 The main difficulty with

integrated approaches is that a variation of even a single celestial body in the sequence

corresponds to a substantially different set of trajectories. Therefore, if the solution of the

hybrid optimization problem is represented with a single vector, a small variation of some

of its components can lead to a huge variation of the cost function. In addition, a variation

4 of 49

of the length of the sequence implies varying the number of legs of the trajectory, and thus

the total length of the solution vector.

The automatic design of a trajectory with discrete events was recently formulated by Ross

et al. as a Hybrid Optimal Control Problem,5 and a solution was proposed by Wall and

Conway7 with a two-level approach based on Genetic Algorithms. The approach proposed

by Conway does not employ models with different fidelity, removing one of the issue related

to other two-level approaches.

In this paper, it is proposed to formulate the automated design of an MGA trajectory as

an autonomous planning and scheduling problem. The resulting scheduled plan will provide

the planetary sequence for an MGA trajectory and a good estimation of the optimality of

the associated trajectories.

Although the proposed method can fall in the category of the integrated approaches, the

scheduling and the planning of the events are separated at two different levels. At lower

level, a scheduler, integrated within the MGA trajectory model, schedules all the events and

provides an estimation of the feasibility and quality of the trajectories. At upper level, an

algorithm, partially inspired by the Ant Colony Optimization (ACO) paradigm,8 generates

plans to be submitted to the scheduler. The scheduler is integrated into the trajectory model.

The model implements a simplified planar representation of an MGA trajectory in which deep

space maneuvers are applied only at the apsides of conic arcs and the variation of the velocity

is parallel to the local tangent. The experimental results in this paper will demonstrate that

these simplifying assumption are reasonable and provide acceptable results. Note that the

ACO planner, developed in this paper, is independent of the model and accessible as a black

box, or oracle providing the feasibility of the transfer and its cost.

ACO was originally created to solve the Traveling Salesman Problem (TSP),9 and later

successfully applied to a number of other discrete optimization problems. In the litera-

ture, some ACO-derived meta-heuristics exist for the specific solution of different scheduling

problems. In particular, Merkle et al.10 proposed to apply ACO to the solution of the

Resource-Constrained Project Scheduling Problem, while Blum, in his work,11 suggested the

hybridization of Ant Colony Optimization with a probabilistic version of Beam Search for

the solution of the Open Shop Scheduling problem. Here, the original idea behind ACO is

elaborated to solve planning problems in which the optimality of a particular action (e.g.,

a transfer from a celestial body to another, in the case of MGA trajectories) is strongly

dependent on the history of all preceding actions.

The paper is structured as follows: at first the trajectory model with the integrated scheduler

will be presented, then the ACO-based algorithm is illustrated with a description of how plans

are constructed; a discussion will follow comparing the proposed planning algorithm against

standard ACO. Finally, two case studies will demonstrate the effectiveness of the proposed

5 of 49

approach.

II. Trajectory Model

Conceptually, an MGA trajectory can be seen as a scheduled sequence of events (e.g., launch,

deep-space maneuver, swing-by, planetary capture, etc.) characterized by a set of integer

variables, identifying the type of event, and a set of real variables identifying the time and

characteristics of the event.

The proposed trajectory model is an integral part of the solution process and is used to sched-

ule the events. The model is based on a two dimensional linked conic approximation: the

trajectory is composed of a sequence of planar conic arcs linked together through discrete,

instantaneous events. In particular, the sequence is continuous in position and piecewise

continuous in velocity, i.e., each event introduces a discontinuity in the velocity of the space-

craft but not in its position. Note that, although the assumption that the trajectories are

planer may seem very reductive, in the solar system, the inclinations of planetary orbits are

very small (below 3◦), with the exception of Mercury and Pluto. Pluto cannot be used for a

swing-by, being the farthest of the bodies in the solar system, however on the contrary, Mer-

cury is definitely an appealing target, as demonstrated by the NASA Messenger mission12

and the ESA BepiColombo mission.13 A test case will show that the assumption of planarity

is acceptable, and yields good solutions even for a transfer to Mercury. On the other hand,

the model cannot be used for missions which have, by necessity, to go out of the ecliptic

plane,14 such as the ESA-NASA mission Ulysses.15

In summary, the proposed trajectory model is composed of: a launch from the departure

celestial body; a series of deep space flight legs connected by gravity assist maneuvers (mod-

eled through a linked-conic approximation); and a capture into an orbit at a target celestial

body. Each one of these events will be explained in the following together with the way they

are scheduled along the trajectory.

A. Launch

The launch event is modeled as an instantaneous change of the velocity of the spacecraft

with respect to the departure planet. The velocity change is given in terms of the modulus

v0 (which depends on the capabilities of the launcher) and the in-plane direction, specified

through the angle φ0, measured counterclockwise with respect to the planet’s orbital velocity

vector vP at the time of launch t0 (see Fig. 1(a)).

According to Fig. 1(a), the initial relative velocity of the spacecraft, defined with respect to

a reference frame centered in the planet and having the axes tangential and normal to its

6 of 49

(a) (b)

Figure 1. a) Geometry of the launch event. b) Geometry of the swing-by event.

orbit (t̂, n̂), is:

v0,tn = v0 [cosφ0, sinφ0]
T (1)

The vector is then projected onto the heliocentric Cartesian reference frame, to give v0,xy,

and added to the velocity vP of the planet to give:

vdep = v0,xy + vP (2)

The departure time t0 and the direction φ0 are free parameters of the model, while the

launch velocity modulus v0 will be used to target the next planetary encounter and solve the

phasing problem (see Section II.D).

B. Swing-by Model

Gravity assist maneuvers, or swing-by’s, are modeled as instantaneous changes of the velocity

vector of the spacecraft due solely to the gravity field of the planet. Given the velocity vector

v− prior to the swing-by (see Fig. 1(b)), the relative incoming velocity at infinity is defined

as:

v−
∞ = v− − vP (3)

The physical properties of unperturbed hyperbolic orbital motion16 prescribe that:

v+∞ = v−∞ = v∞ (4)

7 of 49

which means that the modulus of the outgoing velocity v+∞ at infinity is known. Its direction

can be computed considering the anomaly of the incoming asymptote:

θ∞ = arccos

(
−µP/rp

v2∞ + µP/rp

)
(5)

In this formula, µP is the gravity constant of the planet, and rp is the radius of the pericenter

of the hyperbola. The value of rp can be used to control the deflection of the incoming velocity

and is limited to above the radius of the planet, RP , to avoid a collision, or to above the

atmosphere to preserve incoming v∞.

The deflection angle of the asymptotic relative velocity vector, due to the planet gravity

field, is:

δ = b(2θ∞ − π) (6)

where b = ±1 is a binary variable defining the direction of the deflection, i.e., clockwise

or counter-clockwise. In fact, in the linked conic approximation the actual planetocentric

trajectory is not defined, thus both (2θ∞−π) and (π−2θ∞) are acceptable deflection angles.

In order to avoid introducing an additional parameter, in the practical implementation on

this model we will make use of a signed radius of pericenter rps that can assume negative

values, such that rp = |rps| and b = sgn(rps).

The outgoing relative velocity is found by rotating the incoming velocity by δ:

v+
∞ =

 cos δ sin δ

− sin δ cos δ

v−
∞ (7)

and finally, the absolute velocity is:

v+ = v+
∞ + vP (8)

As for the launch velocity magnitude, the radius of pericenter rps is tuned to meet the

terminal conditions of the transfer leg following the swing-by.

C. Deep space flight

Each deep space flight leg is made of two conic arcs linked, at a point Mi, through a single

discrete event. The leg starts at a departure planet Pi and ends at an arrival planet Pi+1.

The event is an instantaneous change in the heliocentric velocity vector of the spacecraft, or

deep space maneuver (DSM), due to an ignition of the engines. In this model, we assume

that the DSM is performed either at the apocenter or pericenter of the conic arc preceding

the maneuver. In addition, the change in velocity is tangential to that arc. As a consequence,

8 of 49

the DSM will raise or decrease either the pericenter or the apocenter of the orbit, without

changing the line of apsides.

1. First arc

Let us assume that the spacecraft is at a given planet Pi at time ti. Its position ri coincides

with that of the planet rPi
, which is known from the ephemeris. The heliocentric velocity

of the spacecraft vi, instead, depends on either v0, when the first arc starts from planet

P0, or rps. The initial state [ri,vi] can be converted into the six Keplerian elements Ki =

[ai, ei, 0, 0, ωi, θi]
T , where ai is the semi-major axis, ei is the eccentricity, the inclination and

the right ascension of the ascending node are zero, ωi is the argument of the periapsis and

θi is the true anomaly.

If the transfer leg contains a DSM (see Fig. 2(a)), the position of pointMi is arbitrarily set to

be either the pericenter or the apocenter, according to the binary variable fp/a,i. Therefore,

the true anomaly θDSMi
of the ith DSM is given by:

fp/a,i =

{
0⇒ θDSMi

= 0

1⇒ θDSMi
= π

(9)

The Keplerian parameters at point Mi, before performing the maneuver, are:

K−
DSMi

= [ai, ei, 0, ωi, 0, θDSMi
]T (10)

The position vector rDSMi
of the DSM and the velocity vector before performing the ma-

neuver v−
DSMi

are computed from K−
DSMi

. The time of the DSM is found by first computing

the eccentric anomaly corresponding to the departure point θi:

Ei = 2arctan

√
1− ei
1 + ei

tan
θi
2

(11)

Then, by using Kepler’s time law:

tDSMi
=

√
a3i
µ
(2πnrev,1 + EDSMi

− Ei + ei sinEi) + ti (12)

where EDSMi
= θDSMi

+ 2kπ, since the maneuver is either at pericenter or apocenter, and

the integer k must be chosen such that EDSMi
follows Ei. The integer quantity nrev1,i ≥ 0

is the number of full revolutions before the deep space maneuver. The velocity right after

9 of 49

performing the DSM is given by:

v+
DSMi

= v−
DSMi

+
v−
DSMi

v−DSMi

mDSMi
(13)

The parameter mDSMi
is the magnitude and direction of the DSM: if mDSMi

is positive, the

thrust is along the velocity vector of the spacecraft, otherwise it is against the velocity of

the spacecraft. The velocity vector v+
DSMi

is used to compute the post maneuver orbital

elements K+
DSMi

. The time, states and orbital elements right after the DSM define also the

time, states and orbital elements at point Mi:

tMi
= tDSMi

rMi
= r+DSMi

vMi
= v+

DSMi

KMi
= K+

DSMi

(14)

(a) (b)

Figure 2. a) First arc, from planet Pi up to point Mi; the parameter nrev1,i defines the number of
full revolutions (dashed trajectory). b) Second arc from Mi to the selected orbital intersection
with the planet; nrev2,i full revolutions are performed (dashed trajectory) before the orbital
intersection.

If the leg does not contain any DSM, the first arc is propagated up to a fictitious point Mi

defined in terms of anomaly increment ∆θ. The states of the spacecraft at point Mi, rMi
,vMi

are computed from the Keplerian parameters:

KMi
= Ki + [0, 0, 0, 0, 0,∆θ] (15)

The reason for using this forced propagation is twofold: first, to prevent that, if no full

revolutions are considered, the first intersection occurs after a null time; second, to prevent

10 of 49

any event (e.g. a DSM or another swing-by) from happening immediately after the swing-by

or at the same time, which would be infeasible due to operational constraints. The quantity

∆θ has to be larger than the machine numerical precision but small enough to allow for

the modeling of short transfer legs. It is important to underline that ∆θ is not a design

parameter, its value is arbitrary and does not affect the planning process. The only impact

is on the time of the first intersection and therefore on the acceptable minimum length of

the transfer arc. The acceptable minimum length can be easily decided a priori. For this

work, a value ∆θ = 0.3 rad (about 17◦) was chosen.

The time at Mi is found by solving Kepler’s time law:

tMi
=

√
a3i
µ
(EMi

− Ei − ei(sinEMi
− sinEi)) + ti (16)

where EMi
is:

EMi
= 2arctan

√
1− ei
1 + ei

tan
θMi

2
+ 2kπ (17)

with θMi
= θi +∆θ and k such that EMi

follows Ei. Note that, as the DSM can only be at

the pericenter or apocenter, transfer legs containing a DSM cannot be shorter than the time

required to reach either the pericenter or the aproceter.

2. The Second Arc

The second arc starts at point Mi with states [rMi
,vMi

] and is propagated until the inter-

section with the orbit of planet Pi+1 (see Fig. 2(b)).

The intersections between the second arc and the orbit of the planet can be found by solving

the following system of equations:

rs = ro

θs + (ωMi
+ ΩMi

) = θo + (ωPi+1
+ ΩPi+1

)
(18)

The radius rs along the second arc and the radius ro along the orbit of planet Pi+1 are given

by:

rs =
pMi

1 + eMi
cos θs

(19)

ro =
pPi+1

1 + ePi+1
cos θo

(20)

where pMi
= aMi

(1−e2Mi
) and pPi+1

= aPi+1
(1−e2Pi+1

) are, respectively, the semilatus rectum

of the orbit of the spacecraft, and planet. By defining ϕ = (ωMi
+ ΩMi

) − (ωPi+1
+ ΩPi+1

)

11 of 49

and combining Eq. (18) with Eq. (19), after some algebra, we can get:

(pMi
ePi+1

cosϕ− pPi+1
eMi

) cos θs − (pMi
eMi

sinϕ) sin θs + pMi
− pPi+1

= 0 (21)

that is a linear equation in sin θs and cos θs. Now, using the transformation t = tan(θs/2),

Eq. (21) becomes:

(C −B)t2 + 2At+ (B + C) = 0 (22)

where A = (pMi
ePi+1

cosϕ−pPi+1
eMi

), B = (pMi
eMi

sinϕ) and C = pMi
−pPi+1

. Equation (22)

has solutions:

θs = 2arctan

(
−A±

√
A2 +B2 − C2

C −B

)
+ 2kπ, k ∈ Z. (23)

If A2 + B2 − C2 < 0, then there are no real solutions to Eq. (22), which means that the

spacecraft’s orbit does not intersect Pi+1’s orbit. Therefore, either the initial conditions of the

leg, or the parametersmDSMi
and fp/a,i, have to be modified. If instead ∆ = A2+B2−C2 ≥ 0,

then Eq. (23) yields two solutions θ
(1)
s and θ

(2)
s with periodicity n. Since only the first two

intersections are of interest, we can neglect the periodicity by setting n = 0. The true

anomalies of the two intersections along the orbit of the planet can be derived from the

second equation of system (18):

θ(1)(2)o = θ(1)(2)s + ϕ (24)

One of the two intersections is then selected according to the value of the binary variable

f1/2,i, such that:

f1/2,i =

 0 → θint = θ
(1)
s , θ̄ = θ

(1)
o

1 → θint = θ
(2)
s , θ̄ = θ

(2)
o

(25)

where θint, θ̄ are the true anomalies of the selected intersection, respectively, along the orbit

of the spacecraft, and of the planet. From θint, the time of intersection tint can be computed

with Kepler’s time law:

tint =

√
a3Mi

µ
(2πnrev2,i + Eint − eMi

sinEint − EMi
+ eMi

sinEMi
) + tMi

(26)

where Eint is computed from θint using Eq. (11). The integer variable nrev2,i ≥ 0 defines the

number of full revolutions along the second arc. Finally, the Keplerian parameters at the

intersection point are:

Kint = [aMi
, eMi

, 0, ωMi
, 0, θint] (27)

from which the state vector of the spacecraft [rint,vint] can be computed.

12 of 49

D. Solution of the Phasing Problem

In order to perform a gravity assist maneuver or a planetary capture, the terminal position

of the spacecraft has to match that of the planet. However, at intersection time tint, planet

Pi+1 is at true anomaly θPi+1
, which is generally different from θ̄. From Eqs. (26), (14) and

(10), the time of intersection is a function of the orbital parameters of the first and second

arc and therefore of the states at the beginning of the first and second arc. If the DSM is

provided by the planner, the time of intersection is a function solely of v0 or rps, depending

on the starting event. Therefore, if one introduces the parameter λ, defined as:

λ ≡

 rps, if i > 0

v0, if i = 0
(28)

the true anomalies of the intersection point and of the planet can be expressed as θ̄(λ) and

θPi+1
(λ). Matching the position of the planet with that of the intersection point at time

tint (also known as the phasing problem), then, translates into finding a value λ = λ∗ that

satisfies the equation (see Fig. 3):

∆θ(λ∗) = θPi+1
(λ∗)− θ̄(λ∗) = 0 (29)

Figure 3. Geometry of the phasing problem.

Figures 4–5 represent the function ∆θ(λ) for different transfer cases. Figure 4 show the

non-resonant transfers: Fig. 4(a) is from Venus to Mercury, following a swing-by of Venus.

In this case, the parameter λ is the radius of pericenter of the swing-by rps. Figure 4(b) is

from Earth to Venus after launching from Earth, so λ ≡ v0.

Figure 5, instead, refers to resonant transfers: Fig. 5(a) is a Venus-to-Venus transfer starting

with a swing-by; Fig. 5(b) is an Earth-to-Earth transfer, starting with launch. It is worth

noting that for some values of λ, ∆θ(λ) is not defined: this is the case when there is no

13 of 49

possible orbit intersection. Examples are in Fig. 4(a), for rp/RP > 2.1, and Fig. 4(b), for

v0 < 2.6 km/s. This is in fact the minimum excess velocity to reach the orbit of Venus

from Earth (with φ0 = π, as in this case). Furthermore, when a leg follows a swing-by, rp is

limited by the radius of the planet, which introduces the constraint:(
rp
RP

< −1
)
∨
(

rp
RP

> 1

)
(30)

Constraint (30) is the reason for the gap in Fig. 5(a). The cases depicted in Fig. 4(a) and

Fig. 4(b), show that the function ∆θ(λ), is continuous, smooth and monotonic over the range

of interest of λ. Hence, the phasing problem has only one solution. This solution can be

found with a simple Newton-Raphson method in one dimension. However, when a resonant

transfer is considered, as in Fig. 5(a) and Fig. 5(b), ∆θ(λ) is discontinuous and multiple

zeros exist. Each zero corresponds to a different resonance with the planet (and of course a

different transfer time). The discontinuity is due to the cyclic nature of ∆θ. In fact, say λd is

the value of λ at which ∆θ is discontinuous, then limλ→λ−
d
∆θ = −π, and limλ→λ+

d
∆θ = +π,

i.e., the planet and the spacecraft are on the opposite sides of the planet’s orbit.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.2

0.4

0.6

0.8

1

r
p
 / R

p

∆θ
, r

ad

(a)

0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

2

v
0
, km/s

∆θ
, r

ad

(b)

Figure 4. a) Venus to Mercury leg following a swing-by of Venus (mDSM = 0 m/s, 4 full
revolutions). b) Earth to Venus leg following launch from Earth (mDSM = 600 m/s, no full
revolutions).

Note that, since there is no easy way, at a given transfer, to prefer one value of λ∗ over

another, all the solutions need to be retained for the evaluation of the following transfers.

In the present implementation, the search for the zeros of the function ∆θ is performed with

the Brent method.17 This method resulted to be fast and robust, since it uses a Newton based

iteration for quick local convergence, but switches to a bisection-like method to overcome

14 of 49

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

r
p
 / R

p

∆θ
, r

ad

(a)

2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3

4

v
0
, km/s

∆θ
, r

ad

(b)

Figure 5. a) Venus to Venus leg following a swing-by of Venus (mDSM = 0, 3 full revolutions).
b) Earth to Earth leg following launch from Earth (mDSM = 0, no full revolutions).

discontinuities and capture multiple solutions. A set of starting points, defining multiple

intervals for the bisection method, need to be provided to initialize the Brent method and

are specified case by case.

E. Complete Trajectory

A complete trajectory is made of a sequence of transfers connecting nP celestial bodies

[P0, P1, . . . , PnP
]. Thus, a complete trajectory with nP + 1 planets has nP transfers, and

nP − 1 swing-by’s.

The solution of Eq. (29), together with Eqs. (26), (12) and (16) provides a complete schedul-

ing of the trajectory given the initial time t0 and the five parameters mDSMi
, nrev1,i, nrev2,i,

fp/a,i and f1/2,i for every i = 0, ..., nP − 1.

Since these five parameters fully characterize all possible legs from a planet Pi to a planet

Pi+1, they are said to define a type of transfer. Conversely, because of the multiplicity of the

zeros of Eq. (29), each transfer corresponds to a set of legs.

Hence, assigning a value to t0, φ0, Pi,mDSMi
, nrev1,i, nrev2,i, fp/a,i and f1/2,i for i = 0, ..., nP−1

creates a tree structure in which every branch is a trajectory. Algorithm 1 illustrates the

procedure to keep track of all the trajectories in the tree. The algorithm yields a list L
containing all the possible conditions of arrival at the last reachable planet. In fact, if no leg

in the set associated to transfer i satisfies the phasing problem, then planet i+ 1 cannot be

reached and the algorithm terminates. Furthermore, an upper bound on the time of flight

of the entire trajectory, or of some legs, is introduced. Trajectories that exceed the total or

15 of 49

partial time of flight constraint are discarded from the list. The information of infeasibility

at a given transfer will be used to fill in a tabu list of broken or impracticable solutions.

The entire tree is a complete transfer from P0 to PnP
and represents a solution of the MGA

trajectory planning problem. Thus, a plan is fully defined by assigning a value to the

parameters in Table 1 for all i = 0, ..., nP − 1. A partial or incomplete plan is the set of

parameters sufficient to describe a solution up to transfer i. Furthermore, if Algorithm 1

exits at planet Pi, the plan is broken and the solution is said to be infeasible at transfer i.

For each solution of the MGA planning problem, the trajectory model computes:

• The sum of all the deep space maneuvers, or total ∆v and the launch excess velocity,

v0, which is the result of the phasing problem for the first leg,

• The relative velocity at the last planet, v∞. This value is usually important for assessing

the optimality of a trajectory, as a low v∞ implies that a small maneuver is needed for

the spacecraft to be captured by the target planet

• The total time of flight of the trajectory. The total time of flight is important when

assessing the trajectory, as long missions may not be feasible due to excessive cost of

the operations.

The whole trajectory model was implemented in ANSI C and compiled as a MEX-file for

interfacing with MATLAB.

Table 1. Summary of the free design parameters defining a solution to the MGA trajectory
planning problem.

Description Variables

Planetary sequence [P0, P1, ..., PnP
]

Departure time t0
Departure angle φ0

Transfer types for i = 0, ..., nP − 1 [mDSMi
, nrev1,i, nrev2,i, fp/a,i, f1/2,i]

III. The ACO-MGA Algorithm

The model described in the previous section yields a set of scheduled trajectories provided

that a complete or partial plan is available. In this section, we present a planning algorithm

based on the ant colony paradigm.

At first, the continuous space of the real parameters t0, φ0 and mDSMi
is reduced to a finite

set of states. Then the optimization algorithm, called ACO-MGA in the following, operates a

16 of 49

Algorithm 1 L list generation

1: For i = 0 find all possible v∗0|∆θ(v∗0) = 0
2: for all v∗0 do
3: find the final conditions of the first leg
4: add the final conditions to the list L
5: for all i = 1, . . . , nP do
6: Ltemp ← Ø
7: for all elements in L do
8: Find all possible r∗ps|∆θ(r∗ps) = 0
9: for all r∗ps do
10: Find the final conditions at planet Pi+1

11: Add final conditions to the list Ltemp

12: end for
13: end for
14: if Ltemp =Ø then
15: Exit
16: end if
17: end for
18: L ← Ltemp

19: end for

search in the finite space of possible values for the design parameters in Table 1. A complete

description of the algorithm ACO-MGA follows.

A. Solution coding

In ACO-MGA, a plan solution is fully defined by assigning values to all the parameters in

Table 1. However, the set of parameters is inhomogeneous as it is made of real, integer and

binary variables. In particular t0, φ0 and mDSMi
are real, continuous variables and need to

be properly discretized. In the present implementation, the values of the departure date t0

and the departure angle φ0 are assumed to be pre-assigned, therefore the two parameters are

removed from the list of the variables. The rationale behind this choice is that, if an algorithm

exists that is able to efficiently generate a complete plan for a given t0, then an unidimensional

search in the time domain can be performed to find the optimal launch date. The angle φ0 on

the other hand can very often be estimated depending on the mission: usually a tangential

departure excess velocity is used for non-resonant legs in order to maximize the change in the

semi-major axis. The departure excess velocity will be in the same direction of the planet

heliocentric velocity, i.e., φ0 = 0, if the second planet in the sequence is outwards; vice versa,

the launch will be in the opposite direction, φ0 = π, if the second planet is inwards.1

For resonant legs, instead, very often φ0 = ±π/2 as this value allows for the maximization of

the radial component of the relative velocity vector at the following swing-by.18 Furthermore,

17 of 49

it is assumed that the departure planet P0 is given, as is consistent with a great majority of

the applications.

Using the additional assumptions on t0, φ0 and P0, each solution representing a plan can

be encoded using a vector s of positive integers. The vector has 2nP components. Each

pair of consecutive components encodes all the parameters necessary to characterize one

transfer, or segment of the plan (see Fig. 6). The first element of the pair encodes the

identification number of the target planet according to the following procedure: an ordered

set QP,i containing all the celestial bodies available as targets for transfer i is predefined,

then if k = s2(i−1)+1, the target planet is qP,ik ∈ QP,i.

Figure 6. Vector for coding a three-leg solution.

The second element of the pair is the row index of the matrix Gi containing all possible

combinations of indexes identifying the elements of the five sets: Q1,i = {q1,i|q1,i ∈ R},
Q2,i = {q2,i|q2,i ∈ N}, Q3,i = {q3,i|q3,i ∈ N}, Q4,i = {q4,i|q4,i ∈ {0, 1}}, Q5,i = {q5,i|q5,i ∈
{0, 1}}. If Q4,i = {0, 1} and Q5,i = {0, 1} then the matrix Gi is:

Gi =

1 1 1 1 1

1 1 1 1 2

1 1 1 2 1

1 1 1 2 2

1 1 2 1 1

1 1 2 1 2

1 1 2 2 1

1 1 2 2 2
...

...
...

...
...

|Q1,i| |Q2,i| |Q3,i| 2 2

(31)

where |.| is the cardinality of a set. Each row of Gi is a vector representing a different type

18 of 49

of transfer. In general, the matrix has |Q1,i| · |Q2,i| · |Q3,i| · |Q4,i| · |Q5,i| rows, which is also

the number of possible different transfers for a given segment of a plan. The parameters for

the jth type of transfer (i.e., jth row of Gi) can be obtained from:

mDSMi
= q1,ik1 (32)

nrev1,i = q2,ik2 (33)

nrev2,i = q3,ik3 (34)

fp/a,i = q4,ik4 (35)

f1/2,i = q5,ik5 (36)

where k1 = Gi,j1, k2 = Gi,j2, k3 = Gi,j3, k4 = Gi,j4, k5 = Gi,j5.

B. The Tabu and Feasible Lists

The transfer from planet Pi to planet Pi+1 can be feasible or infeasible, for the same set of

parameters, depending on all the preceding transfers from 1 to (i−1). For this reason, when

a plan contains an infeasible transfer, it is necessary to store the whole path that led to that

infeasible transfer. Thus, all the parameters characterizing the partial solution up to Pi are

stored in a tabu list.

In particular, if the problem involves nP transfers, the same number of tabu lists are used.

The tabu list of transfer i contains all the partial solutions, which are feasible up to Pi. The

tabu list is stored in a matrix (one for each transfer), which has an arbitrary number of rows

and 2i columns.

The number of elements in the tabu lists can be limited, to limit the memory requirements

and the search time. Once one of the tabu lists is full, the optimizer can either stop or simply

start replacing the older elements.

Dual to the list of tabu partial solutions, the feasible list stores all the solutions, which are

completely feasible, i.e., reach the destination planet. This is, once more, a matrix with an

arbitrary number of rows and 2nP columns. Since each solution contained in the feasible list

is complete, then it is possible to associate an objective value to each one of them because

the value of the launch excess velocity v0, all the deep space maneuvers, the arrival relative

velocity v∞, and the time of flight T are available. A scalar value can be computed from

these quantities identifying the value of the trajectories. In the following test cases, for

example, we will use, as objective value, v∞ and a combination of v∞ and T . Note that,

since, in general, there is more than one trajectory for a given solution, the objective value

of a solution is given by the best trajectory value. As for the tabu list, the feasible list length

can also be limited for memory saving. In this case, when the list is full, the optimization can

19 of 49

either stop or simply the feasible solutions with the worst objective value can be replaced.

C. Plan Generation

The search space is organized as an acyclic oriented tree. Each branch of the tree represents

a transfer, while each node (or leaf) represents a different destination planet and type of

transfer. A population of m virtual ants are dispatched to explore the tree, searching for

an optimal solution. The search runs for a given number of iterations niter,max, or until a

maximum number of objective function evaluations neval,max has been reached. An evaluation

is a call to the trajectory model, in order to compute the objective value associated to a

given solution. Algorithm 2 illustrates the main iteration loop. Each iteration consists of

two steps: first, a solution generation step (lines 2 to 8), and then a solution evaluation step

(line 9). In the former step, the ants incrementally compose a set of solution vectors, while

the latter invokes the trajectory model to assess the feasibility and the objective value of

each generated solution. When the main loop of the search stops, the feasible list contains

all the solutions, which were found feasible, with their corresponding objective value. The

solutions are then sorted according to their objective value.

Algorithm 2 Main ACO-MGA search engine

1: Set number of ants equal to m
2: for all k = 1, ...,m do
3: Generate planetary sequence
4: Generate types of transfers
5: if s is not discarded then
6: S ← S ∪ {s}
7: end if
8: end for
9: Evaluate all solutions in S
10: Update feasible list and tabu list
11: Termination Unless niter > niter,max ∨ neval > neval,max, goto Step 1

At each iteration, each one of the m ants explores the tree independently of the others,

but taking into account the information collected in the feasible and tabu lists by all the

ants at the previous iterations. As an ant moves along a branch, it progressively composes

a complete solution by first assigns a value to the odd entries of the solution vector, i.e.,

composes the sequence of planetary encounters, and then to the even entries of the solution

vector, i.e., the parameters defining the types of transfers.

20 of 49

1. Planetary Sequence Generation

As the departure planet is given, an ant has to choose the destination planet for each trans-

fer. The choice is made probabilistically by picking from the list QP,i. The selection de-

pends on the pheromone distribution vector τP,i (one for every transfer), which contains the

pheromone level associated to each body in the list QP,i. Note that we use the same notion of

pheromone as in standard ACO,8 however there are some differences. Here, the pheromone

level of each possible choice at each leg depends on the previous legs, and therefore it is

computed at every step. Furthermore, due to the different pheromone update rule, here the

amount of pheromone is not upper limited to 1.

Every time an ant is at transfer i, the pheromone distribution vector is reset to τP,i =

[1, 1, . . . , 1]T . As it will be explained, this is equivalent to state that all the planets have equal

probability to be chosen. The ant sweeps the entire list QP,i substituting the identification

number of each element in QP,i into the ith odd component of the solution vector s. Then,

the feasible list is searched for all the solutions that have a (partial) planetary sequence

which matches the one in s. Say that the jth element of QP,i is added to s, and the resulting

partial sequence matches the partial sequence of the lth solution in the feasible lists, then

the pheromone level τP,ij associated to the jth element of QP,i is increased as follows:

τP,ij ← τP,ij +
1

fobj,l
wplanet (37)

The amount of pheromone which is added depends on the objective value fobj,l of the match-

ing solution in the feasible list, and on the weight wplanet. Once the pheromone update has

been done for all the possible choices, the probability of selecting one of them is given by

PrP,ij =
τP,ij∑
j τP,ij

(38)

and a random selection is performed according to this probability distribution. Thus, the

probability of choosing the jth planet increases according to how many times it generates a

promising sequence (leading to a feasible solution), to the value of the feasible solution itself,

and to the parameter wplanet.

This mechanism (summarized in Algorithm 3) is analogous to the pheromone deposition of

standard ACO and aims at driving the search of the ants toward good planetary sequences.

In fact, those planets which generate (partial) sequences that appear either frequently in the

feasible list, or rarely but with a low objective function, are selected with a higher probability.

On the other hand, the probability of selecting other planets remains positive, such that one

or more ants can probabilistically choose a planet that generates an undiscovered sequence.

Note that, if the feasible list is empty, then all the planets have the same probability to be

21 of 49

selected.

The parameter wplanet controls the learning rate of the ants. A low value of wplanet will make

the term wplanet/fobj,l small, and thus the probability distribution will not change much,

even if the solution appears repeatedly in the feasible list, or with low values of fobj. Thus,

a relatively low value of wplanet will favor a global exploration of the search space, while a

high value of wplanet will greatly increase the probability of choosing a planet which led to a

feasible sequence.

Algorithm 4 assigns a value to the index j, given the pheromone distribution vector τP,i.
8

The procedure iterates for all the transfers. At the end, all the odd entries of the solution s

contain a target planet and the planetary sequence is complete. The next step is to find the

type of transfers for each segment of the plan, thus filling the even entries of s and complete

the solution.

Algorithm 3 Planetary sequence generator

1: for all i = 1, ..., nP do
2: set τ ← [1, 1, . . . , 1]T

3: for all target body j available at transfer i do
4: s(1+2(i−1)) ← j
5: for all solutions l, in the feasible list, that match s do
6: τP,ij ← τP,ij +

1
fobj,l

wplanet

7: end for
8: end for
9: s(1+2(i−1)) ← SelectProbabilityDistribution(τP,i)
10: end for

Algorithm 4 Function j ← SelectProbabilityDistribution(τ)

1: r ← U(0, 1)
∑

j τj
2: j ← 1
3: p← d1
4: while p < r do
5: j ← j + 1
6: p← p+ dj
7: end while

2. Type of Transfer Generation

Once an ant has filled in the odd components of a solution s, it proceeds by assigning values

to the even components. Similarly to the planet sequence generation, for each transfer all the

available types of transfer are assigned, one at a time, to the solution s. A vector s for which

a value is assigned to both the odd and even components up to leg i represents a partial

solution. For each new partial solution, the tabu list is first checked. If the partial solution

22 of 49

appears in the tabu list, then it means that this solution will be infeasible regardless of the

way it is completed. The pheromone of the type of transfer associated to that sequence is

set to zero to avoid future selection of that type of transfer. If the partial solutions does

not appear in the tabu list, the feasible list is searched for any matching partial solution.

For every match found, the pheromone distribution for that type of transfer is modified as

follows:

τt,ij ← τt,ij +
1

fobj,l
wtype (39)

where the vector τ t,i contains the pheromone distribution associated to the rows of the

matrix Gi, and the weight wtype is introduced with analogous meaning to wplanet. In fact,

the higher the coefficient, the higher the chances that solutions similar to the feasible ones

are generated. Conversely, a low value of wtype will favor the selection of sequences with a

different type of transfer, thus increasing the random exploration of the whole solution space.

If, at a given i, all possible transfer types correspond to partial solutions in the tabu list, the

vector of pheromone distribution τ t,i will be full of zeros. As a consequence, the solution s

(which can be partial or complete) is discarded, and the ant can stop its exploration of that

branch of the tree.

At the end of the solution generation step, the solution s is either discarded or completed.

Once all the ants complete their exploration, the result is a number of solutions (less than or

equal to the number of antsm) to be evaluated. The procedure is summarized in Algorithm 5.

Algorithm 5 Transfer type generator

1: for all i = 1, . . . , nP do
2: set τ t,i ← [1, 1, . . . , 1]T

3: for all target body j available at transfer i do
4: s(2+2(i−1)) ← j
5: if s is in tabu list of transfer i then
6: τt,ij ← 0
7: else
8: for all solutions l, in the feasible, that match s do
9: τt,ij ← τt,ij +

1
fobj,l

wtype

10: end for
11: end if
12: end for
13: if

∑
j τt,ij = 0 then

14: Discard solution, Terminate
15: else
16: s(2+2(i−1)) ← SelectProbabilityDistribution(τ t,i)
17: end if
18: end for

23 of 49

3. Solution Evaluation

Once a set of plans S has been composed by the ants, each plan has to be evaluated to assess

its feasibility and objective value. This is done by calling the trajectory model. If a solution

is infeasible at transfer number i, its objective value is set to fobj = +∞ and the solution is

stored in the ith tabu list. If a solution is feasible, instead, it is stored in the feasible list.

D. Comparison with Standard ACO

The way in which the ants generate the solutions in ACO-MGA (or tours, to use ACO

nomenclature) is similar to what happens in the TSP with standard ACO:8 each ant, inde-

pendently of the others, generates a tour by adding nodes (or cities) one at a time. Each

node is chosen probabilistically among a set of available nodes: for the TSP, the available

nodes are the cities which have not been visited in the current tour; for the MGA, nodes are

all the possible pairs of bodies and types of transfers. For both frameworks, the pheromone

is distributed over all the possible choices, and then a selection is made, according to the

pheromone distribution. In the case of standard ACO, the probability associated to each city

depends on a heuristic function and on the pheromone deposited along the edge connecting

the current city to the next one. ACO-MGA, instead, progressively builds a surrogate model

of the feasible and infeasible regions of the search space by saving the feasible and infeasible

solutions in the feasible and tabu lists. The decision on which city (planet) to visit next,

therefore, is made by interrogating the feasible and tabu lists rather than the model.

The model is interrogated only to evaluate the feasibility and cost of a solution not already

in either the feasible or tabu list. In this sense, the evaluation step can be seen as analogous

to the pheromone deposition in standard ACO.

On the other hand, in the case of the MGA trajectory model presented in this paper, the

pheromone cannot be assigned to individual transfers: this is due to the fact that each trans-

fer (identified by its pair of integers) has no intrinsic value within the plan, if disconnected

from the previous transfers. In fact, the actual value of a transfer depends on its initial

conditions, which are in turn dependent on all the previous transfers. Therefore, there is a

strong dependency of every decision on all previous ones.

To illustrate the dependency problem, we make reference to Fig. 7 and Fig. 8(a): the former

shows a typical instance of the TSP. In this problem, the distance between each pair of cities

is fixed, and the relative distances of n cities can be stored in a n× n matrix.8 This means

that an edge will give the same contribution to the overall length of the tour, regardless

of the rest of the tour. For example, Fig. 7 shows two different tours for the given TSP

instance: 1-4-3-2-5 (continuous line) and 1-2-4-3-5 (dashed line). The edge 3-4 is shared

by both tours and will obviously contribute in the same way to their objective functions,

24 of 49

i.e., the total distance covered by the tour. This is not true in the MGA case. Fig. 8(a)

is a representation of a simple instance of the MGA problem: it has 3 transfers, 2 sets of

parameters for each transfer, 2 planets for the swing-by’s, and 1 target planet. Each node

represents a possible planet in combination with a type of transfer. The pairs of numbers

next to each node in Fig. 8(a) are the two integers identifying the transfer in the solution

vector (see Section III.A). A solution is generated by selecting one node for each transfer,

thus generating a tour which connects the starting node to one of the final nodes. The figure

represents two possible solutions to the MGA problem: [1, 1, 2, 1, 1, 1] (continuous line)

and [2, 2, 2, 1, 1, 1] (dashed line). These two solutions share the same parameters for the

last transfer: [1, 1]. This means that they reach the same target planet with the same type

of transfer. Because of the dependency of each transfer on the initial conditions, it is not

possible to state that the last transfer has the same value for both solutions: in fact, the two

trajectories can be consistently different, and lead to different final conditions and objective

functions. For this reason, it makes no sense, for example, to assign a value to the set of

parameters [1, 1] of Transfer 3 in Fig. 8(a); while it is possible to assign a value to the edge

3-4 in Fig. 7.

Figure 7. A five-node instance of the TSP, with two possible solutions identified by continuous
and dashed arrows.

A different representation of the continuous-line solution in Fig. 8(a) is the one shown in

Fig. 8(b) in which every branch of the tree depends on the previous ones. In Fig. 8(b), it is

clear that the set of parameters [1, 1] for Transfer 3 belongs to two different solutions.

Note that the dependency problem would affect any method (exact or stochastic) that pro-

ceeds incrementally along the graph, evaluating one leg at the time.

IV. Case Studies

The proposed optimization method was applied to two case studies inspired by the Bepi-

Colombo13 and Cassini19 missions. The two test cases were taken from a previous work by

25 of 49

(a) (b)

Figure 8. Two different representations of the MGA problem: a) TSP-like representation of
a three-leg MGA problem with two solutions, identified by continuous and dashed arrows; b)
expanded tree representation of the same MGA problem.

the authors20 and made more challenging by incresing the number of degrees of freedom.

Furthermore, the analysis and comparisons were extended, with respect to Ref.,20 with new

results on the performance of all the tested algorithms.

For both tests, t0 and φ0 are pre-assigned and correspond to the launch date and direction

of known optimal solutions. The tests, in fact, aim at assessing the ability of ACO-MGA

to efficiently generate a complete plan given a set of initial conditions. ACO-MGA was

tested against two implementations of genetic algorithms: the MATLABr Genetic Algorithm

and Direct Search Toolbox (GATBX),21 and NSGA-II.22 Settings for all the optimizers will

be specified for each test case. While NSGA-II can deal with discrete variables, GATBX

operates on real variables only, therefore a wrapper for the objective function was coded to

round the continuous solution vector to the closest integer. Due to the stochastic nature of

the heuristics used in the tests, all the algorithms were run 100 times. Two performance

indexes are used to compare ACO-MGA against the other global optimizers: the percentage

of times an algorithm finds feasible solutions, called feasibility rate in the following, and the

percentage of times the objective value fobj of the feasible solutions is fobj < f̃obj + ϵ, called

admissibility rate in the following. The value f̃obj is the best known objective function for

a given problem. According to the theory developed in Ref.,23–25 100 runs give an error in

the determination of the exact rate (admissibility or feasibility) of less than 6% with 92%

confidence. This means that two results that differ by less than 12% cannot be said, with

26 of 49

100% confidence, to be different. For the sake of completeness, the mean and variance of the

best solution over 100 runs were also reported.

It is important to underline the differences and commonalities between the application of

ACO-MGA, NSGA-II and GTABX to the solution of the test cases presented in this sec-

tion. All three optimizers are applied to the same instances of the same problems. They

all interrogate exactly the same black-box function (the trajectory model in Section II), op-

erate on exactly the same solution vector (the vector s in Fig. 6), and explore exactly the

same search space. However, while ACO-MGA builds s incrementally, both NSGA-II and

GATBX assign a value to all the components of s simultaneously. Furthermore, ACO-MGA

interrogates both the feasible and tabu lists before calling the model, if necessary, to fill in

the components of s, while NSGA-II and GATBX only call the model to decide whether to

retain or reject an individual.

Some preliminary tests showed that the best performance of ACO-MGA is achieved if the

algorithm is run in 2 steps, using different sets of parameters. In particular, in the first

step the weights wplanet, wtype are set to 0. Remembering Eq. (37) and Eq. (39), this choice

translates into an initial pure random search. In fact, the solutions in the feasible list do

not alter the pheromone distribution. On the other hand, the pheromone of tabu partial

solutions is still set to zero to avoid their re-exploration. In the second step, weights are set

to non-null values to intensify the exploration around known feasible solutions. The values

of wplanet and wtype are chosen such that:

wplanet, wtype = w · f̂obj (40)

where f̂obj is the expected minimum value for the objective function. In this way, by choosing

for example w = 1, a 1 is added to the pheromone of a given element every time a matching

solution with objective f̂obj appears in the feasible list. The value of the added pheromone

is higher if the objective value of the matching feasible solution is lower than f̂obj.

This two-step procedure can be explained in the following way. The first step allows a

random sampling of the solution space, with the aim of finding a good number of feasible

solutions. This is done to prevent the algorithm stagnating around the first feasible solution

found. The second step intensifies the search around the feasible solutions which were found

in the first step. Because of Eqs. (37) and (39), feasible solutions with low objective values

are likely to be investigated further. In addition, the random component in the process does

not forbid the exploration of the rest of the search space.

All the tests were run on an Intelr Coretm 2 Quad Q9650 (3 GHz) machine running

Microsoftr Windowsr Vista, without using any multitasking.

27 of 49

A. BepiColombo Case Study

In this mission, the spacecraft departs from Earth on 15 August 2013 (t0 = 4974.5 MJD2000)

to reach a scientific orbit around Mercury with a minimum relative arrival velocity v∞. The

magnitude of the deep space maneuvers is assumed to be limited and can only be one of the

values in Q1. The relative arrival velocity is instead free and needs to be minimized to have

acceptable transfers. As such it was decided to include only v∞ in the objective function

for this problem. The launch date was set to match the one of the European Space Agency

(ESA) chemical option for BepiColombo.26 Four transfers (and thus three swing-by’s) are

considered for the planning problem, with the launch angle set to φ0 = π. For the first and

second transfer, the following sets of values were used:

QP = {Mercury, Venus, Earth}

Q1 = {0}

Q2 = ∅

Q3 = {0, 1, 2, 3, 4}

Q4 = ∅

Q5 = {0, 1}

Since there is no DSM, the sets Q2 and Q4 are empty. In general, there is no easy way

to identify whether the first or the second orbital intersection is the best one, thus Q5 has

cardinality 2. For the third leg, the following sets of values were used:

QP = {Mercury}

Q1 = {−50, 0, 50} m/s

Q2 = {0}

Q3 = {0, 1, 2, 3, 4}

Q4 = {0, 1}

Q5 = {0, 1}

In this case, a DSM can be exploited to reach Mercury with a minimum v∞. The fourth and

last leg is a Mercury resonant swing-by. Here the DSM is particularly important to change

28 of 49

the relative velocity, therefore a wider set of magnitudes were adopted:

QP = {Mercury}

Q1 = {−100,−50, 0, 50, 100} m/s

Q2 = {0}

Q3 = {0, 1, 2, 3, 4}

Q4 = {0, 1}

Q5 = {0, 1}

The modulus of the departure excess velocity v0 is constrained to be between 2 and 4 km/s,

which implies the following set of starting guess points for the Brent’s method: [2, 2.5, 3, 3.5, 4] km/s.

The following set of starting points for rp was used instead for both Venus and Mercury:

[0.9, 0.92, 0.94, . . . , 5]RP ; and rps = [−rp, +rp]. Note that swing-by’s with radius of peri-

centre lower than RP are not physically feasible: there are two reasons which motivated this

choice. The first is that due to the fast dynamics of the inner part of the solar system, a

higher number of feasible solutions are found if we consider lower radii of pericenter. The

second is that solutions with radii of pericenter within the extended range can still be re-

optimized with a complete model, and the proper constraint rp > RP . The total time of

flight was limited to a maximum of 10 years, with the objective function set to the v∞ at

Mercury. Based on experience and similar previous missions, we define admissible solutions

as those solutions whose objective value is below 6 km/s.

With the sets of values presented above, the average time for the evaluation of one plan is

0.64 ms, and there exist 5,400,000 distinct possible plans. Thus, a systematic scan of all the

possibilities would require about 3456 s (57.6 hours).

ACO-MGA always used 10 ants, and was tuned with the following weights: wplanet, wtype = 0

for the first step, followed by a second step with wplanet, wtype = 20f̂obj and f̂obj = 3 km/s.

However, because of the normalization in Eq. (40), the weight values appear to have general

validity and can be applied to other transfer problems, as will be shown in the next case

study. The algorithm was run for an increasing number of function evaluations (500, 1000,

2000 function evaluations) until the feasibility rate reached 100% and the admissibility rate

was over 90%. For 500 function evaluations, the first step was limited to 50 iterations, while

the second step was limited to 125 iterations, which is enough to reach the required maximum

number of function evaluations. For the tests with higher number of function evaluations,

the number of iterations was increased proportionally, such that neval/niter = constant.

The performance indexes for 500, 1000, 2000 function evaluations are presented in Fig. 9. It

is worth noting that even for 500 evaluations, the feasibility rate of ACO-MGA is 100% with

29 of 49

an admissibility rate of 45%, i.e., all runs are feasible and one out of two is admissible. For

2000 function evaluations, the admissibility rate increases up to 95%, therefore neval = 2000

evaluations will be used as reference value for this problem.

500 1000 2000
0

20

40

60

80

100

Number of evaluations

N
um

be
r

of
 r

un
s

Feasible
< 6 km/s

(a)

500 1000 2000
4

6

8

10

12

14

Number of evaluations

f ob
j, k

m
/s

(b)

Figure 9. Performance indexes of ACO-MGA on the BepiColombo problem, over 100 runs,
for different number of function evaluations. a) Number of runs returning an admissible (< 6
km/s) or feasible solution. b) Minimum, mean, standard deviation and maximum of the best
solution over the runs that returned a feasible solution.

Figure 10 shows the minimum, mean, standard deviation and maximum of the best solution

over 100 runs of ACO-MGA using 2000 function evaluations, as a function of the iteration

number. Each run stops after about 450 iterations, as at that point it reaches 2000 function

evaluations. Figure 10(a) shows that after about 350 iterations, the number of admissible

runs reaches 95%. Nevertheless, Fig. 10(b) shows that in the last 50 iterations, the standard

deviation of the feasible runs decreases dramatically, meaning that the last few iterations are

used to converge locally but the basin of attraction of the admissible solutions is identified

earlier on for a lower number of iterations. Note also the change in the slope of the admis-

sibility rate and the mean of the best solution after about 200 iterations: this is the point

in which ACO-MGA switches from the first step to the second step, changing the weights in

Eq. (40), and favoring a local search.

Since GATBX and NSGA-II are all-purpose optimizers that work with any black-box prob-

lem, a tuning of the main parameters of these optimizers was performed before comparing

them to ACO-MGA. This is done to ensure that they achieve the best performances on

this specific problem. The tuning was performed by running the optimizers with different

settings. For each setting, the optimizer was run 100 times and feasibility rate, admissibility

rate, mean and variance of the best solution were computed. For each run, the optimization

was stopped after 2000 function evaluations.

30 of 49

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

Iteration

N
um

be
r

of
 r

un
s

Feasible
< 6 km/s

(a)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

Iteration

f ob
j, k

m
/s

(b)

Figure 10. Performance indexes of ACO-MGA over 100 runs for 2000 function evaluations. a)
Number of runs returning an admissible (< 6 km/s) or feasible solution. b) Minimum, mean,
standard deviation and maximum of the best solution over the runs that returned a feasible
solution.

The size of the population npop was tuned for both NSGA-II and GATBX. In addition, we

tuned the parameters pcross bin ∈ (0, 1) and pmut bin ∈ (0, 1) (whose default value is 0.5 for

both) for NSGA-II and parameters CrossoverFraction ∈ (0, 1) andMigrationFraction ∈ (0, 1)

(whose default values are 0.8 and 0.2 respectively) for GATBX. These parameters are the

ones that resulted to have the most influence on the final outcome of an optimization.

It was assumed that each parameter could only take values from a pre-defined set. The total

number of settings is given by the Cartesian product of all the sets of all the parameters.

Hence, each setting corresponds to a possible combination of values for each parameter. For

NSGA-II, the sets were:

npop ∈ {12, 20, 40, 80}

pcross bin ∈ {0.25, 0.5, 0.75}

pmut bin ∈ {0.25, 0.5, 0.75}

These sets of parameters generate 36 different settings: for example, the first setting is

obtained by taking the first parameter in each set; the second setting is obtained by taking

npop = 12, pcross bin = 0.25, and pmut bin = 0.5; and so on. Analogously, for GATBX, the

31 of 49

sets are:

npop ∈ {12, 20, 40, 80}

CrossoverFraction ∈ {0.2, 0.5, 0.8}

MigrationFraction ∈ {0.2, 0.5, 0.8}

The number of generations ngen was set such that npop · ngen = neval. Figure 11 shows

the performances of each setting over 100 runs. Figure 11(a) shows the number of runs

that produced feasible and admissible solutions, while Fig. 11(b) shows minimum, mean,

standard deviation and maximum of the best solution over the feasible runs.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Combination

N
um

be
r

of
 r

un
s

Feasible
< 6 km/s

(a)

0 5 10 15 20 25 30 35
4

6

8

10

12

14

16

18

Combination

f ob
j, k

m
/s

(b)

Figure 11. NSGA-II tuning on the BepiColombo problem. Results over 100 runs for each
setting. a) Number of runs returning an admissible (< 6 km/s) or feasible solution. b)
Minimum, mean, standard deviation and maximum of the best solution over the runs that
returned a feasible solution.

The combinations that produced the best results are 1, 4 and 7. Table 2 shows the parameters

for these combinations and the corresponding performance indexes. Combination 1 led to

the lowest mean and the highest number of admissible solutions, therefore it was considered

to be optimal for this problem.

The results of the tuning of GATBX are reported in Fig. 12. In this case the combinations

that returned the highest number of admissible solutions are 31, 32 and 36 (see Table 3).

Combination 31 has a lower mean, but a lower value of admissible solutions with respect

to Combination 32 while Combination 36 has a lower number of admissible solutions with

respect to the other two. The number of admissible solutions is assumed here to be the most

significant performance index (see Ref.23–25 for a technical justification of this choice), for

the selection of the most appropriate setting. Therefore, Combination 32 was considered to

32 of 49

Table 2. Three combinations of settings which provided the highest percentage of admissible
solutions for NSGA-II

Combination no. 1 4 7

npop 12 12 12

pcross bin 0.25 0.5 0.75

pmut bin 0.25 0.25 0.25

neval/npop 166.67 166.67 166.67

% Admissible (< 6 km/s) 41 36 34

% Feasible 100 100 100

Mean, km/s 6.9629 7.1451 7.4541

Std. deviation, km/s 1.7349 1.8367 1.9501

be optimal for GATBX. Note that the best combination for GATBX has a large population,

while NSGA-II resulted to work better with a small population (and more iterations).

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

Combination

N
um

be
r

of
 r

un
s

Feasible
< 6 km/s

(a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Combination

f ob
j, k

m
/s

(b)

Figure 12. GATBX tuning on the BepiColombo problem. Results over 100 runs for each
combination of the parameters of the optimizer. a) Number of runs returning an admissible
(¡ 6 km/s) or feasible solution. b) Minimum, mean, standard deviation and maximum of the
best solution over the runs that returned a feasible solution.

Figures 13 and 14 show the performance indexes over 100 runs of NSGA-II and GATBX,

respectively, for an increasing number of function evaluations. Since the performance indexes

of both optimizers were relatively poor compared to ACO-MGA using 2000 evaluations, the

tests were repeated extending the number of function evaluations up to 8000. Nonethe-

less, neither optimizer could reach the performance of ACO-MGA, even with 8000 function

evaluations.

Figure 15 shows a plot of the best solution found by ACO-MGA for this problem. The

33 of 49

Table 3. The three settings which provided the highest percentage of admissible solutions for
GATBX

Combination no. 32 31 36

npop 80 80 80

CrossoverFraction 0.5 0.5 0.8

MutationFraction 0.5 0.2 0.8

neval/npop 25 25 25

% Admissible (< 6 km/s) 19 18 16

% Feasible 82 82 90

Mean, km/s 9.1658 9.1371 9.6991

Std. deviation, km/s 3.0166 2.7518 3.2726

500 1000 2000 4000 6000 8000
0

20

40

60

80

100

Number of evaluations

N
um

be
r

of
 r

un
s

Feasible
< 6 km/s

(a)

500 1000 2000 4000 6000 8000
0

5

10

15

20

25

Number of evaluations

f ob
j, k

m
/s

(b)

Figure 13. Performance of NSGA-II on the BepiColombo problem, over 100 runs, for different
number of function evaluations. a) Number of runs returning an admissible (< 6 km/s) or
feasible solution. b) Minimum, mean, standard deviation and maximum of the best solution
over the runs that returned a feasible solution.

34 of 49

500 1000 2000 4000 6000 8000
0

20

40

60

80

100

Number of evaluations

N
um

be
r

of
 r

un
s

Feasible
< 6 km/s

(a)

500 1000 2000 4000 6000 8000
4

6

8

10

12

14

16

18

20

Number of evaluations

f ob
j, k

m
/s

(b)

Figure 14. Performance of GATBX on the BepiColombo problem, over 100 runs, for different
number of function evaluations. a) Number of runs returning an admissible (< 6 km/s) or
feasible solution. b) Minimum, mean, standard deviation and maximum of the best solution
over the runs that returned a feasible solution.

sequence for this solution is EVVMe. The solution has an objective value (relative velocity

at Mercury) of fobj = v∞ = 4.8275 km/s with a time of flight of 4.8275 years, and a departure

velocity v0 = 3.6293 km/s. The parameters for this solution can be found in Table 4. As

a comparison, the solution chosen as chemical baseline at ESA/ESOC27 departs with an

excess velocity of 3.794 km/s, and the velocity relative to Mercury at the second swing-by

is 5.472 km/s. The trajectory exploits only one DSM of 45 m/s. This trajectory, however,

is computed using a three-dimensional model.

Table 4. Parameters of the best solution found by ACO-MGA for the BepiColombo case
study.

Parameter Leg 1 Leg 2 Leg 3 Leg 4

Planet V V Me Me

mDSM , m/s 0 0 -50 100

nrev1 0 0 0 0

nrev2 1 4 2 1

fp/a 0 0 1 1

f1/2 0 1 1 1

The solutions presented so far were found by fixing the departure time t0. In order to find

the optimal launch date, ACO-MGA can be re-iterated for different t0. An example is shown

in Fig. 16(a), where the feasibility and admissibility rates (fobj < 6 km/s) for each launch

date are shown. Figure 16(b) instead represents the average of the best solutions found over

35 of 49

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
8

−1.5

−1

−0.5

0

0.5

1

x 10
8

x, km

y,
 k

m

Swing−by at Me

Arrival at Me

1st Swing−by at V Departure from E

2nd Swing−by at VDSM’s

Figure 15. Trajectory of the best solution found by ACO-MGA for the BepiColombo problem.

100 runs, as a function of t0. Note that in the given range of t0, the optimal sequence does

not change. Figure 16(a) reveals that for some launch dates, the probability of finding a

good solution is quite low. One reason is that the region of the search space containing the

best solution is particularly narrow. This suggests that for those dates, small variations of

the departure time would result in a steep increase of the mission cost.

B. Cassini Case Study

Cassini is the ESA-NASA mission to Saturn. The planetary sequence chosen for this mis-

sion, Earth-Venus-Venus-Earth-Jupiter-Saturn, allowed a substantial reduction of the to-

tal required ∆v to reach Saturn. For testing ACO-MGA, the launch date was set to

t0 = −779 MJD2000, corresponding to 13 November 1997, and the following sets of val-

ues were used for the first three transfers:

QP = {Venus, Earth, Mars, Jupiter}

Q1 = {−600,−350,−200, 0, 200, 350, 600}m/s

Q2 = {0}

Q3 = {0}

Q4 = {0, 1}

Q5 = {0, 1}

36 of 49

16/7/2013 15/8/2013 14/9/2013
0

20

40

60

80

100

t
0

N
um

be
r

of
 r

un
s

Feasible
< 6 km/s

(a)

16/7/2013 15/8/2013 14/9/2013
2

4

6

8

10

12

t
0

f ob
j

(b)

Figure 16. BepiColombo Launch window: 100 runs for each launch date. a) Number of
runs returning an admissible (< 6 km/s) or feasible solution. b) Minimum, mean, standard
deviation and maximum of the best solution over the runs that returned a feasible solution.

37 of 49

For the forth transfer, no DSM is allowed:

QP = {Venus, Earth, Mars, Jupiter}

Q1 = {0}km/s

Q2 = ∅

Q3 = {0}

Q4 = ∅

Q5 = {0, 1}

And finally, for the last transfer, the Saturn has to be targeted:

QP = {Saturn}

Q1 = {0}

Q2 = ∅

Q3 = {0}

Q4 = ∅

Q5 = {0, 1}

The maximum number of full revolutions was set to 0 to limit the total time of flight of

the mission. Since the trajectory is going outwards from the orbit of the Earth, every full

revolution implies more than one additional year in transfer time. The total number of

distinct solutions for this test is 22,478,848 and the average time to evaluate a solution is

0.39 ms. This translates into 8765 s (or about 146 hours) to systematically evaluate all the

solutions.

As for BepiColombo, the launch excess velocity module was bounded between 2 km/s and

4 km/s. For the swing-by’s of Earth and Venus, the radii of pericenter are [1.1, 1.2, 1.3, . . . , 5]RP

while a different choice was adopted for Jupiter. Since, the mass of this planet is considerably

higher than the masses of Venus or Earth, higher radii of pericenter are sufficient to achieve

considerable deviations. Furthermore, since the function ∆θ(rps) is smooth in this case, the

first guesses are spaced with a 5 Jupiter radii step size: [5, 10, 15, . . . , 100]RP .

Regarding the choice of the objective function, it has to be noted that for all the missions to

outer planets, the time of flight becomes very important, as very long missions are needed

to reach farther destinations. Even limiting the number of complete revolutions to zero is

not enough to guarantee a mission with reasonable duration. Therefore, it is important to

include the total time of flight T in the objective function, in addition to the total ∆v. Since

the current algorithm cannot deal with multi-objective optimization, the total time of flight

38 of 49

and the v∞ were weighed inside the objective function in the following way:

fobj = v∞ + σT (41)

with the weight σ = 1/1000 km/s/d.

The total time of flight was limited to a maximum of 100 years. This bound may seem to be

too high since a realistic time span of a transfer to Saturn is around 10 years, however the

model considers all the solutions longer than the specified time of flight threshold infeasible,

and the optimizer saves them as tabu. Therefore, limiting the time of flight to lower values

would over-constrain the search for optimal solutions. Better results are obtained by allowing

long solutions to be returned as feasible, and introducing their duration into the objective

function. The admissibility threshold was set to 16 km/s.

For this case study, a procedure similar to the one presented in the previous section was

followed. ACO-MGA used the same weights as for BepiColombo, but since the search space

is larger, the algorithm was run for 1000, 2000, 4000, 6000 function evaluations at which point

more than 95% of the runs returned admissible solutions. At 6000 function evaluations, the

number of iterations for the first and second step was set to 1000. For other numbers of

function evaluations, the number of iterations was modified proportionally. The performance

indexes are presented in Fig. 17. Note that ACO-MGA is able to identify, already for 1000

function evaluations, a solution that has an objective value of 6.9 km/s, despite the mean

value of the best solutions is about 15 km/s. This solution is particularly difficult to find

in the search space, and more than 6000 evaluations would be necessary to ensure that

ACO-MGA hits the threshold value with over 95% probability.

The behavior of ACO-MGA at 6000 function evaluations is shown in Fig. 18. Figure 10(a)

shows that after about 1600 iterations, the number of admissible runs reaches 95%. Fig-

ure 10(b) shows that in the last 400 iterations, the standard deviation of the feasible runs

decreases dramatically, meaning that the last few iterations are used to converge locally but

the basin of attraction of the admissible solutions is identified earlier on for a lower number

of iterations. Note also the change in slope of the admissibility rate and the mean of the best

solution after about 1000 iterations: this is the point in which ACO-MGA switches from the

first step to the second step, changing the weights in Eq. (40), and favoring local search.

NSGA-II and GATBX were fine-tuned again on this problem following the same procedure

presented in Section IV.A. In this case, the reference number of function evaluations for

the tuning is 6000. The set of parameters for the two optimizers are the same as in Section

IV.A, except for the range of the population size, which was increased as the problem is

39 of 49

1000 2000 4000 6000
0

20

40

60

80

100

Number of evaluations

N
um

be
r

of
 r

un
s

Feasible
< 16 km/s

(a)

1000 2000 4000 6000
5

10

15

20

25

30

Number of evaluations

f ob
j, k

m
/s

(b)

Figure 17. Performance of ACO-MGA on the Cassini problem, over 100 runs, for different
number of function evaluations. a) Number of runs returning an admissible (< 16 km/s) or
feasible solution. b) Minimum, mean, standard deviation and maximum of the best solution
over the runs that returned a feasible solution.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

Iteration

N
um

be
r

of
 r

un
s

Feasible
< 16 km/s

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
5

10

15

20

25

30

35

Iteration

f ob
j, k

m
/s

(b)

Figure 18. Performance indexes over 100 runs, for to 6000 function evaluations. a) Number
of runs returning an admissible (< 16 km/s) or feasible solution. b) Minimum, mean, standard
deviation and maximum of the best solution over the runs that returned a feasible solution.

40 of 49

more difficult. For NSGA-II:

npop ∈ {20, 60, 100, 200}

pcross bin ∈ {0.25, 0.5, 0.75}

pmut bin ∈ {0.25, 0.5, 0.75}

For GATBX:

npop ∈ {20, 60, 100, 200}

CrossoverFraction ∈ {0.2, 0.5, 0.8}

MigrationFraction ∈ {0.2, 0.5, 0.8}

Figure 19 shows the performances indexes of each setting.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

Combination

N
um

be
r

of
 r

un
s

Feasible
< 16 km/s

(a)

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

40

Combination

f ob
j, k

m
/s

(b)

Figure 19. NSGA-II tuning on the Cassini problem. Results of 100 runs for each combination
of the parameters of the optimizer. a) Number of runs returning an admissible (< 16 km/s) or
feasible solution. b) Minimum, mean, standard deviation and maximum of the best solution
over the runs that returned a feasible solution.

The combinations with the best performance indexes are 1, 4 and 7. Table 5 shows the

parameters for these combinations and the corresponding statistical figures over 100 runs.

In this case, Combinations 1 and 4 led to the same admissibility, but 1 has a higher feasibility

rate, therefore this combination was chosen as the best tuning of NSGA-II.

The results of the tuning of GATBX are reported in Fig. 20. In this case the combinations

that yielded the best performance indexes are 32, 34, and 36 (see Table 6). Combination 34

has the highest admissibility and feasibility, and hence it was selected as the optimal tuning

for GATBX.

41 of 49

Table 5. The four settings which provided the highest percentage of admissible solutions for
NSGA-II

Combination no. 1 4 7 22

npop 20 20 20 100

pcross bin 0.25 0.5 0.75 0.5

pmut bin 0.25 0.25 0.25 0.25

neval/npop 300 300 300 60

% Admissible (< 16 km/s) 8 8 6 6

% Feasible 46 41 47 43

Mean, km/s 17.8707 18.8932 18.4111 19.3408

Std. deviation, km/s 2.6524 4.0020 3.0397 4.0692

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

Combination

N
um

be
r

of
 r

un
s

Feasible
< 16 km/s

(a)

0 5 10 15 20 25 30 35
10

15

20

25

30

Combination

f ob
j, k

m
/s

(b)

Figure 20. GATBX tuning on the Cassini problem. Results of 100 runs for each combination
of the parameters of the optimizer. a) Number of runs returning an admissible (< 16 km/s) or
feasible solution. b) Minimum, mean, standard deviation and maximum of the best solution
over the runs that returned a feasible solution.

42 of 49

Table 6. The three combinations of settings which provided the highest percentage of admis-
sible solutions for GATBX

Combination no. 34 36 32

npop 200 200 200

CrossoverFraction 0.8 0.8 0.5

MutationFraction 0.2 0.8 0.5

neval/npop 30 30 30

% Admissible (< 16 km/s) 5 3 3

% Feasible 17 16 15

Mean, km/s 17.0286 17.2979 17.2576

Std. deviation, km/s 1.4476 1.7689 1.5494

Figures 21 and 22 show the results of 100 runs of NSGA-II and GATBX, respectively, for an

increasing number of function evaluations. Since the performance of both the optimizers was

relatively poor at 6000 evaluations, the tests were extended up to 18000 evaluations. Even

for this test case, ACO-MGA outperforms the other general-purpose optimizers, using far

less function evaluations. Note that NSGA-II and GATBX are able to find the best-known

solution only for 12000 function evaluations or more.

1000 2000 4000 6000 12000 18000
0

10

20

30

40

50

60

70

Number of evaluations

N
um

be
r

of
 r

un
s

Feasible
< 16 km/s

(a)

1000 2000 4000 6000 12000 18000
5

10

15

20

25

30

35

Number of evaluations

f ob
j, k

m
/s

(b)

Figure 21. Performance of NSGA-II on the Cassini problem, over 100 runs, for different
number of function evaluations. a) Number of runs returning an admissible (< 16 km/s) or
feasible solution. b) Minimum, mean, standard deviation and maximum of the best solution
over the runs that returned a feasible solution.

The parameters associated to the best found solution are shown in Table 7, and the trajectory

is shown in Fig. 23(a). As a comparison, in Table 8 and Fig. 23(b) we report the the best

43 of 49

1000 2000 4000 6000 12000 18000
0

5

10

15

20

25

30

35

40

45

Number of evaluations

N
um

be
r

of
 r

un
s

Feasible
< 16 km/s

(a)

1000 2000 4000 6000 12000 18000
6

8

10

12

14

16

18

20

22

Number of evaluations

f ob
j, k

m
/s

(b)

Figure 22. Performance of GATBX on the Cassini problem, over 100 runs, for different number
of function evaluations. a) Number of runs returning an admissible (< 16 km/s) or feasible
solution. b) Minimum, mean, standard deviation and maximum of the best solution over the
runs that returned a feasible solution.

solution known so far with a complete 3D model.a

Table 8 and Fig. 23(b) demonstrate that although the model in Section II is only a bi-

dimensional, low-fidelity approximation of a MGA trajectory, it is accurate enough to cor-

rectly identify optimal MGA transfers and to provide a good estimation of their cost.

Table 7. Parameters of the best solution found by ACO-MGA for the Cassini case study.

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5

Planet V V E J S

mDSM , m/s 600 −350 0 0 0

nrev1 0 0 0 0 0

nrev2 0 0 0 0 0

fp/a 0 1 0 0 0

f1/2 0 1 0 0 1

The sequence EVVEJS is not the only one that ACO-MGA found for this problem. All other

feasible sequences that were found during the optimization process are reported in Fig. 24

together with their objective value. Note that Mars appears only in one sequence.

ahttp://www.esa.int/gsp/ACT/inf/op/globopt/edvdvdedjds.htm, last accessed June 10, 2010

44 of 49

−10 −5 0

x 10
8

−2

0

2

4

6

8

10

12
x 10

8

x, km

y,
 k

m

Arrival at S

Swing−by at J

DSM

DSM
2nd swing−by

at V 1st swing−by
at V

Swing−by at E

(a)

−10 −5 0

x 10
8

−2

0

2

4

6

8

10

12
x 10

8

x, km

y,
 k

m

Arrival at S

DSM
Swing−by at J

DSMDSM

DSM

2nd swing−by
at V

Swing−by at E

1st swing−by
at V

(b)

Figure 23. Solution to the Cassini problem: a) 2D solution from ACO-MGA, b) Cassini best
known solution

0

5

10

15

20

25

f ob
j, k

m
/s

EVVEJS

EVVEES

EVEEJS

EVEEM
S

EVEEES

EVVVES

EVVVVS

Sequence

Figure 24. Classification of the transfer sequences for the Cassini test case.

45 of 49

Table 8. Comparison between the best solution found by ACO-MGA and the best known
solution for this trajectory.

Variable ACO-MGA Best known

v0, km/s 3.139 3.266

∆v1, m/s 600 473

∆v2, m/s 350 398

∆v3, m/s 0 0

∆v4, m/s 0 0

∆v5, m/s 0 0

v∞, km/s 4.216 4.247

T1,d 168.18 167.36

T2,d 423.68 424.09

T3,d 53.00 53.31

T4,d 596.37 589.74

T5,d 2290.27 2199.97

α1 0.83 0.77

α2 0.52 0.53

α3 0.16 0.35

α4 0.02 0.10

α5 0.13 0.48

rp,1 1.61 1.36

rp,2 1.25 1.05

rp,3 1.32 1.31

rp,4 68.3 71.38

46 of 49

V. Conclusions

The paper introduced a novel formulation of the automatic trajectory planning problem

and proposed an algorithm (ACO-MGA), based on the ant colony paradigm, to generate

optimal plans. Each plan is then translated into a complete optimal trajectory made of a

scheduled sequence of events. A specific model was developed to efficiently generate families

of scheduled trajectories for MGA transfers.

The 2D trajectory model proved to be accurate enough to closely reproduce known MGA

transfers even with moderate inclinations. Furthermore, the scheduling of the trajectories

was shown to be fast and reliable, allowing for the evaluations of thousands of plans in a few

seconds.

The planning algorithm, ACO-MGA, operates an effective search in the finite space of pos-

sible plans. The algorithm demonstrated the remarkable ability to find good solutions with

a very high success rate, outperforming known implementations of genetic algorithms.

As ACO-MGA requires very little information on the MGA problem under investigation,

it represents a valuable tool for the complete automatic design of future space missions.

Furthermore, the proposed use of tabu lists appears to be an effective solution to those

planning problems in which the value of one segment of the plan depends on all the preceding

segments.

Future work aims at a more efficient handling of the lists, which is currently the major

bottleneck of the ACO-MGA implementation.

References

1Petropoulos, A. E., Longuski, J. M., and Bonfiglio, E. P., “Trajectories to Jupiter via gravity assists from

Venus, Earth, and Mars,” Journal of Spacecraft and Rockets, Vol. 37, No. 6, 2000, pp. 776–783.

2Labunsky, A. V., Papkov, O. V., and Sukhanov, K. G., Multiple gravity assist interplanetary trajectories,

Earth Space Institute Book Series, Gordon and Breach Science Publishers, 1998, pp. 33–49.

3Battin, R. H., An introduction to the mathematics and methods of astrodynamics, AIAA Education Series,

AIAA, New York, revised ed., 1999, pp. 419–436.

4Vasile, M. and De Pascale, P., “Preliminary Design of Multiple Gravity-Assist Trajectories,” Journal of

Spacecraft and Rockets, Vol. 43, No. 4, 2006, pp. 794–805.

5Ross, I. M. and D’Souza, C. N., “Hybrid optimal control framework for mission planning,” Journal of

Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 686–697.

6Stryk, O. V. and Glocker, M., “Decomposition of mixed-integer optimal control problems using branch

and bound and sparse direct collocation,” ADPM 2000 The 4th International Conference on Automation of

Mixed Processes: Hybrid Dynamic Systems, Shaker Verlag GmbH, Dortmund, Germany, 2000.

7Wall, B. J. and Conway, B. A., “Genetic algorithms applied to the solution of hybrid optimal control

problems in astrodynamics,” Journal of Global Optimization, Vol. 44, No. 4, 2009, pp. 493–508.

47 of 49

8Dorigo, M. and Stützle, T., Ant colony optimization, The MIT Press, Cambridge, Massachusetts, 2004.

9Dorigo, M. and Gambardella, L. M., “Ant colony system: A cooperative learning approach to the traveling

salesman problem,” IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, 1997, pp. 53–66.

10Merkle, D., Middendorf, M., and Schmeck, H., “Ant colony optimization for resource-constrained project

scheduling,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 4, 2002, pp. 333–346.

11Blum, C., “Beam-ACO - Hybridizing ant colony optimization with beam search: An application to open

shop scheduling,” Computers and Operations Research, Vol. 32, No. 6, 2005, pp. 1565–1591.

12McAdams, J. V., Dunham, D. W., Farquhar, R. W., Taylor, A. H., and Williams, B. G., “Trajectory

design and maneuver strategy for the MESSENGER mission to Mercury,” Journal of Spacecraft and Rockets,

Vol. 43, No. 5, 2006, pp. 1054–1064.

13Yárnoz, D. G., Jehn, R., and Croon, M., “Interplanetary navigation along the low-thrust trajectory of

BepiColombo,” Acta Astronautica, Vol. 59, No. 1–5, 2006, pp. 284–293.

14Pisarevsky, D. M. and Gurfil, P., “A Memetic Algorithm for Optimizing High-Inclination Multiple Gravity-

Assist Orbits,” Proceedings of IEEE Congress on Evolutionary Computation, CEC 2009 , IEEE, Trondheim,

Norway, 2009.

15Marsden, R. and Angold, N., “The epic voyage of ulysses,” European Space Agency Bulletin, , No. 136,

2008, pp. 3–7.

16Kaplan, M. H., Modern spacecraft dynamics and control , John Wiley and Sons, New York, 1976.

17Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical recipes in C: the art of

scientific computing , Cambridge University Press, second edition ed., 1992.

18Ceriotti, M., Vasile, M., and Bombardelli, C., “An incremental algorithm for fast optimisation of mul-

tiple gravity assist trajectories,” Proceedings of 58th International Astronautical Congress, International

Astronautical Federation, Hyderabad, India, 2007.

19Peralta, F. and Flanagan, S., “Cassini interplanetary trajectory design,” Control Engineering Practice,

Vol. 3, No. 11, 1995, pp. 1603–1610.

20Ceriotti, M. and Vasile, M., “Automatic MGA trajectory planning with a modified Ant Colony Opti-

mization algorithm,” Proceedings of the 21st International Symposium on Space Flight Dynamics, CNES,

Toulouse, France, September 28, October 2 2009.

21Goldberg, D. E., Genetic algorithms in search, optimization and machine learning , Addison Wesley,

Boston, MA, USA, 1989.

22Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., “A fast elitist non-dominated sorting genetic algo-

rithm for multi-objective optimization: NSGA-II,” Proceedings of 6th International Conference on Parallel

Problem Solving from Nature, PPSN VI , Paris, France, 2000.

23Vasile, M., Minisci, E., and Locatelli, M., “On testing global optimization algorithms for space trajectory

design,” Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit , AIAA, Honolulu,

Hawaii, USA, 2008.

24Vasile, M., Minisci, E., and Locatelli, M., “A Dynamical System Perspective on Evolutionary Heuristics

Applied to Space Trajectory Optimization Problems,” Proceedings of the 2009 IEEE Congress on Evolution-

ary Computation (CEC2009), IEEE, Trondheim, Norway, May 2009.

25M. Vasile, E. Minisci, M. L., “Analysis of Some Global Optimization Algorithms for Space Trajectory

Design,” Journal of Spacecraft and Rockets, Vol. 47, No. 2, 2010, pp. 334–344.

48 of 49

26Yárnoz, D. G., De Pascale, P., Jehn, R., Campagnola, S., and Corral, C., “BepiColombo Mercury cor-

nerstone consolidated report on mission analysis,” MAO Working Paper 466, ESA-ESOC Mission Analysis

Office, 2006.

27Jehn, R., Yárnoz, D. G., and Yanez, A., “BepiColombo Mercury cornerstone mission analysis: chemical

options,” MAO Working Paper 486, ESA-ESOC Mission Analysis Office, 2005.

49 of 49

