
Hybrid Meta-Heuristic Algorithms for Independent Job Scheduling

in Grid Computing

Muhanad Tahrir Younis∗, Shengxiang Yang

Centre for Computational Intelligence (CCI), School of Computer Science and Informatics, De Montfort
University, The Gateway, Leicester LE1 9BH, UK

Abstract

The term ’grid computing’ is used to describe an infrastructure that connects geographi-
cally distributed computers and heterogeneous platforms owned by multiple organizations
allowing their computational power, storage capabilities and other resources to be selected
and shared. The job scheduling problem is recognized as being one of the most important
and challenging issues in grid computing environments. This paper proposes two strongly
coupled hybrid meta-heuristic schedulers. The first scheduler combines Ant Colony Op-
timisation and Variable Neighbourhood Search in which the former acts as the primary
algorithm which, during its execution, calls the latter as a supporting algorithm, while the
second merges the Genetic Algorithm with Variable Neighbourhood Search in the same
fashion. Several experiments were carried out to analyse the performance of the proposed
schedulers in terms of minimizing the makespan using well known benchmarks. The ex-
periments show that the proposed schedulers achieved impressive results compared to other
selected approaches from the bibliography.

Keywords: Hybrid meta-heuristic, Ant Colony Optimization, Genetic Algorithm, Variable
Neighbourhood Search, Job Scheduling

1. Introduction

Grid Computing is an infrastructure that connects multiple heterogeneous and autonomous
resources such as databases, computers and servers, from different domains – which can be
geographically distributed worldwide – to perform various complex tasks. Depending upon
their availability, performance and users’ requirements, this infrastructure allows the dy-
namic sharing of various resources and thus creates a virtual supercomputer. Grid computing
was mainly developed to fulfil the significantly increasing requirements for high computing
power being demanded by various organizations and the scientific computing community.
From this perspective, it has been used as a utility for diverse applications that require
intensive computing power from commercial and non-commercial clients [1].

∗corresponding author
Email address: muhanad.younis@dmu.ac.uk (Muhanad Tahrir Younis)

Preprint submitted to Applied Soft Computing May 30, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228196451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The early definitions of grid computing systems were introduced in [2] [3], and since then
many developments have taken place in terms of both in grid infrastructure and middle-
ware, resulting in a better understanding of grid issues. One of the main challenges in a
computational grid is how to efficiently map jobs, also called tasks or applications, to grid re-
sources and hence utilize geographically distributed computers which are connected through
heterogeneous environments in an efficient, reliable and secure manner. This mapping is
called job scheduling in grid computing. Similar to job scheduling in traditional computing
systems, this mapping is known to be an NP complete problem [20]. However, it is more
complicated in grid computing due to its complex, dynamic nature, high degree of job and
resource heterogeneity, problem size, and other factors such as existing local schedulers and
policies [10].

The problem of job scheduling in grid computing has been addressed using different
approaches such as simple queuing algorithms, deterministic heuristic algorithms and meta-
heuristic algorithms. However, to effectively deal with its complexity, meta-heuristic algo-
rithms are preferred [? ]. Meta-heuristic algorithms are well-known approaches which have
been applied effectively to a wide range of NP complete problems. In fact, these algorithms
are considered the best candidate in practice to cope with the complexity of job scheduling
in a computational grid, and accordingly several algorithms have been suggested [? ].

Meta-heuristic approaches such as the Genetic Algorithm (GA), Tabu Search (TS), Par-
ticle Swarm Optimisation (PSO), Variable Neighbourhood Search (VNS) and Ant Colony
Optimisation (ACO) have all proven their effectiveness in solving different scheduling prob-
lems. However, hybridising two or more meta-heuristics shows better performance than
applying a stand-alone approach [4]. The new high level meta-heuristic will inherit the best
features of the hybridised algorithms, increasing the chances of skipping away from local
minima, and hence enhancing the overall performance [23].

Four main issues that must be examined in order to design a new hybrid algorithm,
namely the number of algorithms to hybridize, the type of algorithms to hybridize, the
execution mode (sequential or parallel) and the hybridization type [14]. Meta-heuristic
methods can be hybridized in two ways, either as loosely coupled or strongly coupled [13].
The former refers to the case in which the hybridized algorithms preserve their identity by
running as a chain of executions in which the output of the first algorithm will be used by
the second, and so on; the final solution will be the output of the last algorithm. The latter
refers to the type of hybridization in which the inner procedures of the hybridized algorithms
are interchanged in such a way as one of the methods acts as the main algorithm which,
during its execution, calls other methods to act as supporting algorithms [23].

The literature shows that the use of hybrid meta-heuristics, such as ACO [6], GA [10]
and VNS [16], for the job scheduling problem in grid computing provided impressive re-
sults; however, almost all the proposed meta-heuristic hybrid algorithms in the literature
were loosely coupled. Moreover, the VNS algorithm is considered a framework for building
heuristic algoritjms which has been used efficiently and effectively in various optimization
problems [26]. However, for the job scheduling problem in grid computing, VNS was used
as a stand-alone algorithm in all the available works [16]. These observations pave the way
to the examination of the hybridisation of ACO and GA with VNS in a strongly coupled

2



fashion and compare the performance of such coupling with existing methods.
In this work, the application of VNS for the job scheduling problem in grid computing

is introduced. Four new neighbourhood structures, together with a modified local search,
are proposed. The proposed VNS is hybridised using two meta-heuristic methods in a
strongly coupled fashion, yielding two new sequential hybrid meta-heuristic algorithms for
the problem of job scheduling in grid computing. The first algorithm, called ACO-VNS,
combines a modified ACO of our previous work [8] and VNS in which the former acts as
the primary algorithm which calls during its execution the latter as a supporting algorithm,
i.e., ACO(VNS), while the second algorithm, called GA-VNS, integrates a newly proposed
GA and VNS in the same manner, i.e., GA(VNS). Using the ETC simulation model, several
experiments have been carried out to evaluate the performance of the proposed methods
in terms of minimising the makespan. Three different well known datasets were used for
this purpose rather than generating a special dataset so that we could easily make a fair
comparison to other state-of-the-art methods.

The reminder of the manuscript is organized as follows. The second section presents the
related work on solving the problem of job scheduling in grid computing using meta-heuristic
methods. The third section describes the simulation model used to evaluate the performance
of the proposed methods. The use of VNS, ACO-VNS and GA-VNS for job scheduling in
grid computing are outlined in the fourth, fifth and sixth sections, respectively. The seventh
section discusses parameter tuning, while the experimental results of applying the proposed
methods are presented in the eighth section. Our conclusions are drawn in the ninth and
final section.

2. Related work

The problem of job scheduling in distributed and heterogeneous computing environ-
ments, such as grid computing and cloud computing, has been addressed using different
approaches such as simple queuing and heuristic algorithms. However, to effectively deal
with the associated complexity, meta-heuristic algorithms are preferred [? ]. Meta-heuristic
algorithms are well-known approaches which have been used effectively to solve a wide range
of NP complete problems. In fact, these algorithms are considered the best candidate, in
practice, to cope with the complexity of job scheduling in grid computing, therefore, several
algorithms have been suggested [? ].

Ant Colony Optimization (ACO) is one of these methods. ACO is a meta-heuristic
search method which simulates the behaviour of ants in foraging for food [5]. A loosely
coupled hybrid ACO algorithm has been suggested in [6] which combines ACO with Tabu
Search (TS) to improve the performance of a number of similar approaches proposed in [7].
Their experimental results demonstrate that the hybridization of TS with ACO improves
the makespan of the solutions. However, the hybrid method needed over 3.5 hours to achieve
these results.

A loosely coupled hybrid algorithm, which combines a newly proposed Ant Colony Op-
timisation (ACO) and the Genetic Algorithm (GA) proposed in [7], i.e. ACO+GA, was
suggested in [8] as a promising algorithm. ACO starts first and the output of it will be

3



used by GA which further improves it. The ETC model was used to evaluate the proposed
method by generating a special 512x16 dataset using the range-based method proposed in
[19]. The literature also includes another loosely coupled hybrid ACO-based method pro-
posed in [4] for job scheduling which combines ACO and GA. However, the authors have
also used a non-standard dataset and their implementation is not available to make a fair
comparison.

A swarm intelligence-based scheduler for processing computational mechanics applica-
tions on federated clouds was proposed in [? ]. The proposed scheduler aimed at minimising
both the makespan and the weighted flowtime. It involves scheduling at three levels, namely
broker level, infrastructure level and virtual machines level. In the first level, the proposed
scheduler uses three simple heuristics to select data-centres based on their network latencies.
In the second level, the authors used two meta-heuristic methods, which are ACO and PSO,
to select virtual machines from the chosen data-centres at the first level. In the ACO-based
scheduler, an ant is initialised whenever a virtual machine is created in a data-centre. The
initialised ant searchs for the best host, in terms of minimising both the makespan and the
weighted flowtime, to which it can be assigned. Similarly, the PSO-based scheduler creates
a bee for every virtual machine in the data-centres. Finally, the scheduler at the third level
allocates jobs to the preassigned virtual machines using a job priority heuristic.

ACO is not the only approach; the literature includes many other meta-heuristic al-
gorithms such as the Genetic Algorithm (GA). GA is a meta-heuristic search method that
mimics the evolution of living beings. It has been successfully used for solving many NP-hard
optimization problems such as job scheduling in heterogeneous environments and grid com-
puting. A study presented in [7] suggested eleven static heuristic algorithms to solve the job
scheduling problem in heterogeneous environments (in terms of minimising the makespan).
Their experiments show that the proposed GA achieves better results than the other 10
algorithms explored in the work. The min-min heuristic [9] was used to seed one individual
of the initial generation that consists of 200 solutions, while the remining 199 individuals
were generated randomly.

A GA-based scheduler has been proposed in [10] for solving the multi-objective job
scheduling problem in computational systems. Two ad hoc heuristics, which are the Mini-
mum Completion Time (MCT) [12] and the Longest Job to Fastest Resource−Shortest Job
to Fastest Resource (LJFR−SJFR) [11], were employed along with the random approach to
seed the initial generation in order to introduce diversity. The direct and the permutation
encoding schemes have been considered by the authors. Moreover, various genetic operators
have been implemented.

A strongly coupled hybrid algorithm has been proposed in [13] for the job scheduling
problem which runs GA as the main method and calls Tabu Search (TS) to enhance the
quality of solutions in the population, while a hybrid method was suggested in [14] which
combines the same methods in a loosely coupled fashion. The HyperSim-G Grid simulator
[15] was used for evaluating both algorithms.

A GA-based scheduler for the assignment of virtual machines on federated clouds was
suggested in [? ]. The proposed scheduler aimed at minimising the total cost of the overall
assignment. The scheduling process involves two steps, namely selection of servers and

4



selection of data-centres. In the first step, the proposed scheduler uses a GA-based algorithm
to select servers in a data-centre, while the scheduler uses a shortest path method to select
data-centres on the federated clouds in the second step. The authors used an extension of
the CloudSim simulator, called the REALcloudSim simulator, to test the performance of
the proposed scheduler.

Besides ACO and GA, the literature includes another meta-heuristic method called Vari-
able Neighbourhood Search (VNS), which is based on the systematic change of the neigh-
bourhood during the search process. The traditional VNS starts with an initial solution,
then explores its neighbourhoods and moves to a new one if an improvement is found. The
exploration step is followed by a local search in order to move from solutions in the neigh-
bourhood to a local optimum. A Multi-objective Variable Neighbourhood Search (MVNS)
algorithm has been proposed in [? ] to minimise both makespan and flowtime. The authors
have introduced five different neighbourhood structures and the random Problem Aware
Local Search Heuristic (PALS) was used. The performance of the proposed method has
been compared with some of the methods discussed in the literature and the results show
that MVNS outperforms all of them in all of the cases tested. The work introduced by [16]
studied the use of Two-Phase Variable Neighbourhood Search (TPVNS) for task scheduling
on heterogeneous computing and grid systems. Six different neighbourhood structures have
been introduced and random PALS was also used. The performance of the proposed method
has been evaluated against a number of methods discussed in the literature and the results
show that TPVNS outperforms them in most of the cases investigated.

Several other meta-heuristic methods are also available in the literature. A fuzzy Particle
Swarm Optimisation (PSO) meta-heuristic algorithm for task scheduling on computational
grid was suggested by [17]. Their work focused on the minimisation of the makespan time.
The authors used small- to large-scale resource-job pair problems to test the associated
performance. Their method was compared with a GA and a Simulating Annealing(SA)
approach. The results showed that the fuzzy PSO scheduler has the ability to find faster
and feasible solutions over the GA and SA. The authors in [18] developed a differential
evolution (DE) algorithm to generate schedules which efficiently utilise available resources
and complete the jobs in the minimum time. The results have been compared with findings
in [17] and it has been found that PSO outperforms DE in three instances. However, the
authors in [18] claimed that the solutions found by DE show better resource utilisation.

Despite the many hybrid meta-heuristic algorithms available in the literature which have
tackled the job scheduling problem in grid computing, only one research effort [13] examined
the use of a strongly coupled hybrid meta-heuristic. Moreover, although VNS, whether it
has been hybridized with other algorithms or employed as a stand-alone algorithm, has
proved its effectiveness in dealing with numerous complex hard optimization problems [26],
the hybridization of the VNS algorithm with other meta-heuristics has not been previously
studied with regard to the job scheduling problem on computational grids. Hence, there
remains room to contribute to these lines of research.

5



3. Simulation model

To study the job scheduling problem under different types of heterogeneous environments,
a model that simulates the processing time of jobs on resources is required. Since the early
2000s, a common model called the Expected Time to Compute (ETC) has been used for
this purpose [29]. The ETC model, which was introduced in [19], provides a framework for
testing the performances of different scheduling algorithms under various circumstances.

This model assumes that an accurate estimation or prediction of the size of each job,
the computing power of each resource, and an estimation of the load of the resources are
known in advance. Furthermore, an accurate estimation of the expected execution time for
each job on each resource is computable or is otherwise assumed to be known beforehand.
These assumptions are realistic since it is easy to collect information about the computation
power of resources and the jobs requirements from specifications provided by the user, by
predications or from historic data [14]; see [? ] [? ] [? ] for more details about the methods
used for calculating this estimation based on analytical benchmarking and job profiling. This
estimation is represented in a two-dimensional array called the ETC, where row k of the
ETC array consists of the estimated execution times for job k on each resource. Similarly,
column p of the ETC array contains the estimated execution times of resource p for each
job. Therefore, ETC[i][j] indicates the expected execution time the job i needs to finish on
resource j. It also assumed the the ETC [i, j] entry may include the time required to move
the job i and any data related to it from their known source to resource j [7].

The problem description under the ETC model can be formulated as:

1. A set of n independent jobs J={j0, j1, j2, ..., jn−1} to be assigned to grid resources.
Any job can be handled by any resource. However, these jobs are non-preemptive, i.e.,
each job should be executed entirely by one resource only.

2. A set of m heterogeneous machines R={r0, r1, r2, ..., rm−1} to be used for processing
the submitted n independent jobs.

3. The ETC matrix is of size n x m, where ETC[j][r] denotes the estimated required time
for processing the job j by the resource r.

4. The goal of job scheduling in grid computing is to find a mapping of the submitted
jobs to the available resources that minimizes the makespan, which itself represents
the finishing time of the latest task and can be computed by Equation 1.

makespan = mins∈Smaxj∈J(Finish j) (1)

where S is the set of all possible solutions and Finish j represents the time by which the
job j is finished [? ].

The ETC matrix can be simply generated by dividing the size of a job i by the computing
power of a resource j. One example of this type is the dataset of Liu et al. [17], publicly
available from http://dx.doi.org/10.13140/RG.2.2.10787.04649, which consists of four
instances of different sizes. The authors used the notation (the number of resources, the
number of jobs) to describe each instance. The resource job pairs vary from small-scale
instance (3, 13) to large-scale instances, such as (5, 100), (8, 60) and (10, 50).

6



However, to capture the various characteristics of grid computing environments, two
methods, which are range-based and coefficient of variation (described in [19]), have been
proposed to generate ETC matrices.

Each method defines three different types of metric, namely consistency, job heterogene-
ity, and resource heterogeneity. An ETC matrix is said to be consistent if a resource Ra can
process a job Jx faster than a resource Rb, then the same is true for any job Jk. If this struc-
ture is not maintained, i.e., Ra is not always faster Rb, then the ETC matrix is considered
inconsistent. A mix of these two scenarios is the semi-consistent ETC matrix, which can
be defined as an inconsistent ETC matrix with a consistent sub-matrix. Job heterogeneity
indicates the degree to which the job processing times vary with two values, high or low.
Similarly, resource heterogeneity models the degree to which the resource processing times
vary for a given job and also has two values, high or low. Therefore, twelve distinct ETC
matrices are needed so that we can consider all these various characteristics.

Both methods follow the same design structure to generate ETC instances. Although the
coefficient of variation method allows for greater control over job and resource heterogeneity
through the use of empirical probability distributions, it uses a more complex procedure
than the range-based method [29]. Two ranges are used by the range-based procedure to
generate ETC problem instances, namely [1, Rjob] and [1, Rresource] for job and resource
heterogeneity, respectively. For every job x, the method first generates a random number,
Job, by sampling a uniform distribution from the first range. Similarly, the method generates
another random number, Res, from the second range for every resource y. Then, the rows
of ETC matrix are constructed by multiplying Job by Res [19]. The main steps to generate
ETC problem instances using the range-based method are listed in algorithm 1.

Algorithm 1 The range-based procedure for generating ETC instances.

1: let n and m be the number of jobs and resources respectively.
2: for (x = 0 to n-1) do
3: Job ← a uniformly distributed random number in the range [1, Rjob].
4: for (y=0 to m-1) do
5: Res ← a uniformly distributed random number in the range [1, Rresource].
6: ETC[x, y] ← Job * Res.
7: end for
8: end for

For realistic heterogeneous computing systems such as computational grids, the authors
in [19] suggested typical values for Rjob and Rresource which are reported in the first row of
table 1. However, their work did not create a specific benchmark. The authors in [7] used
the range-based method of [19] to generate the 12 classic ETC problem instances, which are
publicly available from https://www.fing.edu.uy.

These instances, which are known as the Braun et al. dataset, have become a de facto
standard benchmark to evaluate the performance of various scheduling approaches in het-
erogeneous environments and grid systems. However, they did not use the suggested values
for Rjob and Rresource in [19]. Instead, the authors used the values listed in the second row of

7



Table 1: Job and resource heterogeneity parameters.

job heterogeneity resource heterogeneity
ETC model low high low high
Ali et al. Rjob=10 Rjob=100000 Rresource=10 Rresource=1000
Braun et al. Rjob=100 Rjob=3000 Rresource=10 Rresource=1000

table 1. Each instance has 512 jobs and 16 resources. The following abbreviation has been
used to identify the type of ETC matrix, D-T-JHRH.0, where:

- D denotes the probability distribution type.

- T denotes the consistency type, with the following acronyms: c for consistent, i for
inconsistent, and s for semi-consistent.

- JH denotes the heterogeneity of the jobs, with two possibilities either hi for high or lo
for low.

- RH denotes the heterogeneity of the resources, with two possibilities either hi for high
or lo for low.

The authors in [29] have reviewed the existing benchmarks in the literature. They came
to the conclusion that none of the available datasets can actually simulate the current
characteristics of grid computing systems in terms of dataset size. Therefore, they proposed
a new benchmark, known as the Nesmachnow et al. dataset, which is publicly available from
https://www.fing.edu.uy, to cover larger cases. Each case consists of 24 instances which
have been generated using the range-based method described in Ali et al. [19]. However,
the first 12 instances are generated using the job and resource heterogeneity parameters
described in Ali et al. [19] which are listed in the second row of table 1; the other 12 are
generated using the parameters proposed by Braun et al. [7] which appear in the first row
of table 1. The notation M-d-t-jhrh was used to describe each instance where M indicates
the parameters used to generate the instance. The first 12 problem instances were generated
using the proposed values of Ali et al. [19] and therefore the letter A is used to denote them,
while the parameters employed by Braun et al. [7] were used to generate the second twelve
instances and hence the symbol B is used to represent them. The d-t-jhrh notation follows
the above description.

In this work, all the three datasets, namely Liu et al., Braun et al. and Nesmachnow et
al., will be considered to test the performance of the proposed methods.

4. The application of VNS to the job scheduling problem

Variable Neighbourhood Search (VNS) is a simple and effective meta-heuristic algorithm
proposed by Mladenovi and Hansen in 1997 [25]. It represents a flexible framework for
building heuristics for solving a set of optimization problems. VNS uses multiple neighbour-
hood structures to explore various neighbourhoods of the current incumbent solution, and

8



then selects the one which makes an improvement. The main idea of VNS is based on the
systematic change of these structures both in the descent phase, in which the algorithm tries
to find a local minimum, and the perturbation phase, in which VNS tries to escape from the
local minimum.

VNS consists mainly of the following three steps, which are repeated until some stopping
conditions are become true: the shake step, the improvement step and the neighbourhood
change step. The goal of the shaking step is to resolve local minima traps by applying
a set of operators in a certain order. Each operator modifies a given solution S using
predefined neighbourhood structures. The improvement step involves applying a local search
as an attempt to improve the solution produced by the shaking step. Two common search
strategies are used within the improvement step which are the first improvement and the
best improvement. The former strategy stops the local search procedure as soon as an
improvement to the current solution is encountered, while the latter checks all possible
solutions and selects the best among them. Beside these strategies, it is also possible to use
meta-heuristic algorithms for the local search. The neighbourhood change step, which is the
final step in the basic VNS procedure, is used to make a decision about the neighbourhood
to be explored next and whether to accept the current solution as a new incumbent solution
or otherwise. Various neighbourhood change procedures are available in the literature such
as the sequential, cyclic and pipe neighbourhood change procedures [26]. The basic VNS
procedure is illustrated in Algorithm 2.

Algorithm 2 The basic VNS procedure

1: Let: S0 ←initial solution.
2: Let: Nk ←the set of neighbourhood structures, k ∈ [1, kmax].
3: repeat
4: k ← 1.
5: repeat
6: S1 ← shake(S0).
7: S2 ← local search(S1).
8: if (fitness(S2) < fitness(S0)) then
9: S0 ← S2.

10: k ← 1.
11: else
12: k ← k + 1.
13: end if
14: until (k==kmax)
15: until (termination condition)

4.1. Neighbourhood structures for job scheduling in grid computing

The neighbourhood structure provides a way to explore new parts in the solution space.
This exploration is achieved through defining the type of modifications which could be ap-
plied to a given solution to produce new ones. The solution space can be explored in different

9



ways using different neighbourhoods; thus, using well-defined neighbourhood structures will
certainly lead to better exploration.

In the job scheduling problem, any solution S will have at least one resource with a local
makespan time equal to the overall makespan of the solution, where this resource is called
the ’problem resource’. New solutions can be obtained from S by swapping a job currently
assigned to the problem resource with a job assigned to other resource, or by moving a
job currently assigned to the problem resource to a different resource. Therefore, we can
define many new neighbourhood structures based on the concepts of swap and move. In this
study, four new structures have been proposed, which are the Penalty-based Swap (PS), the
Penalty-based Move (PM), the Random Max to Min Move (RMMM) and the Longest Max
to Min Move (LMMTM).

The first structure, PS, alters the solution by finding the set of exchanges of some of
the jobs assigned to the problem resource with some of the jobs assigned to other resources
which best improve the solution in terms of minimising the makespan. The general PS
procedure is illustrated in Algorithm A.1. On the other hand, PM modifies the solution by
finding the set of moves which reallocates some of the job assigned to the problem resource
to other resources that best reduce the makespan time, as shown in Algorithm A.2, while
RMMM, the third neighbourhood structure, moves a random job from the list of the jobs
assigned to the problem resource to the resource with the minimum local makespan time,
as demonstrated in Algorithm A.3. Finally, LMMM defines new neighbours by moving the
job in the list of jobs assigned to the problem resource which has the maximum expected
completion time to the resource which has the minimum processing time for it. Algorithm
A.4 describes the general steps of LMMM.

4.2. The improvement step

As we mentioned earlier, this step involves applying a local search procedure to improve
the solution generated form the shaking step. In this study, a modified version of the Problem
Aware Local Search (PALS) is used. PALS was originally proposed to solve the problem of
DNA fragment assembly problem [27] [28], and a variant thereof called Randomized PALS
has been used for job scheduling in heterogeneous environments [29] [16]. Recently, it has
been used as an efficient technique for some permutation-based optimisation problems [30].

The general steps of the modified random PALS are described in Algorithm 3. The
algorithm selects a resource Pres, which is the resource with the largest local makespan, and
a random resource Rres such that Pres 6= Rres from a given solution S.

The outer loop iterates on some of the jobs of Pres. The number of these jobs is selected
according to the generation of a random number, Pres start, which belongs to the range [1,
Pres list size− 1] where Pres list size is the number of jobs assigned to Pres and another
random number, Pres end, from the range [Pres start, Pres list size].

Similarly, the inner loop works on the jobs of Rres using Rres start and Rres end which
are generated in the same manner as Pres start and Pres end, respectively. This process,
which was suggested in [16], guarantees the selection of different jobs with different sizes in
each iteration, while the randomised PALS used in [29] has used a different method in which
the start job of each loop is generated randomly and the number of jobs in the outer loop is

10



Algorithm 3 The Modified Random Problem Aware Local Search Procedure

1: for (iter=1 to max iter) do
2: sol makespan← makespane(S).
3: Ś ← S .
4: Min makespan←∞.
5: Find the problem resource (Pres) which has the maximum local makespan time.
6: Pres Job List← job list of the resource with maximum local makespan.
7: Pres size← Pres Job List size.
8: Randomly select a resource Rres such that Rres 6= Pres.
9: Rres Job List← job list of the resource with minimum local makespan.

10: Rres size← Rres Job List size.
11: Pres start← random(1, P res size− 1).
12: Pres end← random(Pres start, Pres size).
13: Rres start← random(1, Rres size− 1).
14: Rres end← random(Rres start, Rres size).
15: for (i=Pres start to Pres end) do
16: for (j=Rres start to Rres end) do
17: S1 ← swap resources(Ś,Pres Job List[i],Rres Job List[j]).
18: S2 ← move job(Ś,Pres Job List[i],Rres).
19: if (makespan(S1) < makespan(S2)) then
20: S̋ ← S1.
21: else
22: S̋ ← S2.
23: end if
24: current makespan← makespan(S̋).
25: if (current makespan < Min makespan) then
26: Ś ← S̋.
27: Min makespan← current makespan.
28: end if
29: end for
30: end for
31: if (Min makespan < sol makespan) then
32: S ← Ś.
33: end if
34: end for

fixed to 32, whereas the number of jobs in the inner is set to the number of jobs divided by
20.

The double loop calculates the makespan values when swapping and moving jobs in S1
and S2, respectively. Then it selects the solution with the minimum makespan and compares
this with the best solution so far; if there is an improvement, then it will become the new
best, otherwise it will continue. Therefore, this loop stores the best improvement to the

11



solution with respect to the makespan time obtained by applying (Pres end X Rres end)
swaps or transfers.

This solution is then compared with S to decide whether to accept or reject it. If it is
better than S then the algorithm will accept it as the new S, otherwise it will reject it and
continue. The process is repeated max iter times which means that the best improvement
is applied, whereas the random PALS used in [29] and [16] is applied until an improvement
to the original solution is discovered or until max iter iterations, i.e., the first improvement
strategy was used.

5. The application of hybrid ACO to the job scheduling problem

ACO is a meta-heuristic search algorithm which simulates the behaviour of ants in the
process of foraging for food and how they can find a path between their nest and a source of
food in this process [5]. ACO has been successfully applied for many NP complete problems
which are closely related to the problem of job scheduling in computational grids [31]. This
section introduces an ACO-based scheduler which is a modified version of previous work [8].

Selecting a structure to represent the solution of the problem under examination is the
first step in any ACO-based algorithm. A colony of k ants is used in which each ant
represents the whole solution to the scheduling problem. More precisely, each ant in the
colony is represented as a list with a size equal to the total number of jobs. The value
of ant[a] represents the resource into which the job a is assigned. Thus, we should expect
integers in the range [0, total number of resources-1] for this list.

The ACO algorithm uses two types of information to find a solution to an optimisation
problem, namely the pheromone trial and the heuristic information. The ants use the
pheromone trail to communicate between them. This communication involves sharing useful
information about optimal solutions. A pheromone matrix, τ , of size n x m is required,
where τ [j][r] represents the favourability of allocating job j to resource r. The second piece
of information the ants use to construct their solutions is the heuristic function ηjr. In this
study, the following heuristic is used, which was proposed in [? ]:

ηjr =
1

free[r]
(2)

where the function free[r] represents the time by which the resource r becomes free. ηjr will
be a large value if free[r] is small. Thus, a resource will be more desirable if it is free earlier.

A fitness function is required to measure the quality of the solutions, which is the
makespan in our case. The general throughput of the grid system can be indicated by the
makespan value of the schedule; a small makespan means that the scheduler is producing a
high-quality mapping that best utilizes the available resources.

After each iteration, the pheromone deposit is updated as defined in Equation 3, which
follows the updating rule described in [? ]. This update allows the indirect communication
among ants to share information about the current states of the resources.

τjr =

{
ρ ∗ τjr + ∆τjr if job j is assigned to resource r in local best ant

ρ ∗ τjr otherwise
(3)

12



where ρ, (0 < ρ ≤ 1), represents the decay parameter the ants use to forget poor solutions
and ∆τjr denotes the amount of pheromone deposit on the path and is defined by Equation
4 as:

∆τjr =
makespan(local best ant)

makespan(global best ant)
(4)

Rules 3 and 4 allow the best ant only to deposit pheromone after each iteration. The
best ant could be defined as the local best ant (the best ant in the current iteration) or the
global best ant (the best ant so far). It is worth mentioning that we used different rules to
update the pheromone trial and for ∆τjr in our previous work [8].

To construct its solution, each ant uses the heuristic function as well as the information
encoded in the pheromone trial. Moreover, every ant maintains two lists, namely mapped
and unmapped lists. The former is initially empty, while the latter contains all the submitted
jobs. The ACO-based scheduler chooses the first job-resource pair randomly. The next job-
resource pair is picked out probabilistically by mapping the job j to the resource r using the
transition rule defined in Equation 5 as follows:

pjr =
[τjr]

α ∗ [ηjr]
β ∗ 1

ETC[j,r]∑
[τjr]α ∗ [ηjr]β ∗ 1

ETC[j,r]

(5)

where τjr and ηjr are the existing pheromone trail and the heuristic information, respectively,
and α and β are two parameters used to define the relative weights of the pheromone and the
heuristic, respectively. The pheromone trail τjr provides each ant with information about the
favourability of assigning job j to resource r. On the other hand, the heuristic function ηjr
will find the best available resource r, in terms of being free earlier, to process the job j from
the unmapped jobs list. Furthermore, the inverse of the ETC[j,r] is used as an additional
heuristic function; the inverse was used since lower values are more preferable.

The same steps are repeated until the unmapped list becomes empty, i.e., a solution
is constructed. The same procedure is followed by every ant in the colony. When all k
ants construct their solutions, the best local ant in the colony is determined and the VNS
algorithm is performed on it before updating the pheromone trail. The VNS improves the
solution found by the local best ant and hence there is a good possibility that the local
best ant will be the next global best ant. The pheromone update rule, defined in Equation
3, is then applied. The pseudo-code of the proposed ACO-VNS scheduler is illustrated in
Algorithm 4.

It is worth mentioning that the pheromone trail update rule is also applied at the be-
ginning before starting the main ACO-VNS procedure, where the solution found by the
deterministic heuristic min-min algorithm [9] is used to update the pheromone trail in order
to speed up the process of finding good solutions. The min-min heuristic begins by calculat-
ing the minimum completing time (CT) for all jobs and resources. It then determines the job
j with the minimum CT and assigns it to the resource that obtains it. After allocating the
job j, the CT matrix is updated. The same steps are repeated until all jobs are assigned.The
pseudo-code for the min-min heuristic is illustrated in Algorithm A.5.

13



Algorithm 4 The hybrid ACO-VNS algorithm

1: let num and res be the total number of jobs and resources respectively.
2: Set the pheromone trial τnm to a small value.
3: Initialise free[0..res− 1] to 0.
4: Initialise the pheromone evaporation ρ.
5: Initialise global best ant to the solution found by min min algorithm.
6: ms← the makespan of global best ant using Equation 1.
7: ∆τnm ← 1

ms
.

8: Use Equation 3 to update the pheromone trail.
9: while (the stopping condition is not true) do

10: for (every ant) do
11: Randomly select the job-resource pair (a, b).
12: Add (a, b) to the mapped list.
13: for (all unmapped jobs) do
14: free[b]← free[b] + ETC[a, b].
15: Use Equation 2 to compute the heuristic function.
16: Use Equation 5 to compute the probability matrix.
17: Find the highest ρwv value.
18: Determine the next job-resource pair (a=w, b=v).
19: Append (a, b) to the mapped list.
20: end for
21: end for
22: Use Equation 1 to compute the makespan to every ant.
23: Find local best ant, which is the one with the minimum makespan.
24: Apply VNS algorithm, i.e., local best ant ← VNS(local best ant);
25: if ((makespan(local best ant) < makespan(global best ant)) then
26: global best ant← local best ant
27: end if
28: Use Equation 4 to compute ∆τnm.
29: Use Equation 3 to update the pheromone trail.
30: end while

6. The application of hybrid GA to the job scheduling problem

A Genetic Algorithm (GA) is a meta-heuristic search algorithm that mimics the natural
selection process of biological evolution. The GA works on a group of solutions (individuals),
called the population rather than on one solution only. It first generates an initial population
randomly. Each solution in the population is evaluated using a fitness function which assigns
a score that indicates the solution’s quality. The GA then evolves toward an optimal solution
after a number of generations through applying the genetic operators, namely selection,
crossover and mutation.

The GA has been applied successfully for various complex optimization problems that
share the same characteristics with the job scheduling problem in grid computing [34]. This

14



Algorithm 5 The hybrid GA-VNS algorithm
1: t← 0
2: Generate the initial generation Gen(t) of k individuals, where Gen(t)[0]= min min()

and the remaining individuals,Gen(t)[1] to Gen(t)[k-1], are generated randomly.
3: Evaluate the fitness of each individual in the initial generation, i.e., compute Fit-

ness(Gen(t))
4: while (the end criterion is not true) do
5: t← t+ 1
6: Select Parent(t) from Gen(t-1)
7: With probability pc, recombine individuals in Parent(t) to produce Offspr1(t)
8: With probability pm, mutate individuals in Offspr1(t) to produce Offspr2(t) using

VNS algorithm.
9: Evaluate the fitness of each individual, i.e., compute Fitness(Offspr2(t))

10: Replace Gen(t) from Offspr2(t) and/or Gen(t-1)
11: end while
12: return Best found solution

section introduces the use of a strongly coupled hybrid GA for the job scheduling problem
in grid computing. Algorithm 5 illustrates the pseudo-code of the proposed hybrid GA-VNS
and the following subsections explain the main parts of it.

6.1. The solution representation

A key issue in genetic algorithm is the representation of individuals. Two types of en-
codings have been reported in the literature: the direct representation and the permutation-
based representation [10]. In this study, we will consider the direct representation only.

Each solution is represented as a list in the direct representation. The list size is equal
to the total number of jobs. The individual[a] represents the resource into which the job a
is assigned. Hence, we should expect integers in the range [0, total number of resources-1]
for this list.

In the permutation-based scheme, each solution is also represented as a list. However, the
list size is equal to the total number of resources. The individual[a] represents the resource
where a list of jobs will be assigned. Hence, we should expect integers in these lists in the
range [0, total number of jobs-1]. Unlike the direct representation where genes hold the
resources which can be repeated, in this representation each gene represents a list of jobs
which have been assigned to it and are unique.

6.2. The initial generation

The random method is a common way to construct the initial generation of the genetic
algorithm. However, several studies have showed that seeding the initial population of a
genetic algorithm with solutions from other heuristic methods will introduce greater diversity
and hence produce better solutions [8]. In this study, the initial population is generated
as follows: one individual will be seeded with the solution found by the ad hoc min-min

15



heuristic algorithm [9], which is described in section 5. The remaining solutions are generated
randomly.

6.3. The fitness evaluation

As mentioned earlier, this work will focus on minimising the makespan. Therefore, the
fitness of solutions is evaluated using Equation 1. See Section 3 (Simulation model).

6.4. The selection operator

The selection operator refers to the process that determines which individuals are to
be continued and allowed to reproduce and which ones deserve to be eliminated. Several
selection techniques are available in the literature. In this study, the N-Tournament method
suggested in [10] [34] has been used with N=4. In tournament selection, several tournaments
are run among a few individuals which have been selected randomly from the population.
The winner of each tournament (the one with the best fitness) is selected for the next stage.

6.5. The crossover operator

The crossover operator is equivalent to reproduction and biological crossover. New so-
lutions (offspring) are generated by selecting individuals from the parental generation and
exchanging their genes. Crossover enables the search process to explore new regions of
the solution space which have not yet been explored and provide the next generation with
good quality individuals. Several types of crossover operators exist in the evolutionary com-
puting literature, which mainly depend on the solution representation. Therefore, in our
case, three crossover operators, which are one-point (1P), two-point (2P) and Half Uniform
Crossover(HUX), will be considered for the direct representation.

Given two parent solutions, the one-point crossover operator starts by generating a ran-
dom position between 1 and the total number of jobs-1. This position serves as an exchange
point which divides each parent into two parts. Two new offspring are obtained by exchang-
ing the two first segments of the parents.

Given two parent solutions, unlike the one-point crossover, the two-points crossover op-
erator starts by generating two random cutting points between 1 and the total number of
jobs-1. These positions serve as exchange points which divide each parent into three parts.
Two new offspring are obtained by exchanging the segments of the parents between the two
cutting points.

Given two parent solutions, the HUX crossover exchanges exactly half of the non-
matching genes (here genes represent resources according to our solution representation).
To apply HUX, the Hamming distance is first calculated. The Hamming distance in our
case is the number of resources that are different in the two parent solutions. This distance
is divided by two. The resulting number represents the number of non-matching resources
that will be exchanged between the two parents.

16



6.6. The mutation operator

The Mutation operator is one of the most important elements of any genetic algorithm,
which is related to the exploration of the search space. By mutation, individuals are ran-
domly altered to maintain and introduce diversity in the subsequent generations [33]. In this
study, the VNS algorithm has been employed as a mutation operator. The VNS procedure
is applied on each individual with a probability of pm.

6.7. The replacement operator

The replacement operator is the process of deciding which individuals in the population
need to be eliminated to make room for the new offspring. In this paper, the Steady State
Strategy is used, that is, parents and offspring compete for survival, and then the best of
them are selected. Although this causes a premature stagnation of the population, the use
of the Steady State Strategy produces a fast convergence (minimization) of the objective
function [? ] [10] [34]. This characteristic serves our goals since we are interested in
minimizing the makespan in a relatively short time.

7. Parameter Tuning

In order to perform parameter tuning, a fix set of parameters was selected from the
literature for each of the proposed algorithms. The parameter tuning experiments were
carried out using a number of instances with diverse characteristics from all datasets. For
the proposed VNS, the examined parameter was the neighbourhood structures order only.
Population size, α, β, pheromone evaporation rate (p) were among the tested parameters for
the proposed hybrid ACO-VNS. On the other hand, the following parameters were examined
for the proposed hybrid GA-VNS: population size, crossover type, crossover probability and
mutation probability. To select the best parameter values, each algorithm was executed 30
times for each ETC instance and for each parameter, and their average was reported.

7.1. Parameter Tuning for VNS

One of the main advantages of VNS is that it does not need many parameters. The
stopping condition is the maximum number of iterations, which was set to 5. As mentioned
earlier, the order of neighbourhood structures will be the main parameter that will be
examined, as the forward VNS version is used in this study which means that VNS starts
with k=1 and then increases k by one if no improvement is found, otherwise set k=1. Since
we have four different structures, we then have 24 possible combinations. Tables B.1, B.2
and B.3 illustrate the effects of changing the order of neighbourhood structures based on
different instances with different characteristics and sizes. The tables show that case 24 was
the best order recorded in almost all the tested cases.

7.2. Parameter Tuning for ACO-VNS

Three parameters have been examined for the hybrid ACO-VNS which are the population
size, the values of α and β and the value of the pheromone evaporation (p). The population
size is set to 2 due to the attempt to reduce the computational time needed to construct

17



solutions by ants and increase the number of generations. Various studies have suggested
optimal values for α and β which vary between 1 and 10, while the suggested values for
p were between 0.5 and 0.7 [6] [8] [? ] [? ]. Therefore, three values have been used for
α and β, which are 1, 5 and 10. The results indicate that α=10 and β=1 represented the
best combination, as shown in Table 2; similarly, two values were used for the pheromone
evaporation (p), which are 0.5 and 0.7. The best makespan values were achieved when using
p=0.7.

Table 2: Parameter tuning for ACO-VNS algorithm: α and β. The best average makespan results are
reported in bold.

Case α β
512x16

u c hihi.0 u i lohi.0 u s lolo.0
1 1 1 7740919.96 105896.57 3728.38
2 1 5 7751098.51 106078.23 3733.52
3 1 10 7892111.31 106829.59 3737.49
4 5 1 7565030.42 103716.63 3576.45
5 5 5 7653345.35 105214.28 3625.24
6 5 10 7703753.35 105476.08 3629.75
7 10 1 7519709.81 103570.61 3576.83
8 10 5 7588542.95 103586.01 3583.05
9 10 10 7612251.74 104996.28 3601.12

7.3. Parameter Tuning for GA-VNS

Four parameters were tested for the hybrid GA-VNS algorithm which included popula-
tion size, crossover type, crossover probability, mutation probability. The candidate values
for the population size were 10, 20 and 30 individuals. The best results were indicated when
using a population size of 20 solutions. The experiments showed a very slow improvement
rate and that a greater computational time was required to find a good mapping of jobs to
resources when increasing the number of individuals from 20 to 30, suggesting that using a
large population size is not beneficial for the GA-VNS. As mentioned earlier, three differ-
ent crossover operators were used, which were one-point crossover (1P), two-point crossover
(2P) and half uniform crossover (HUX) with the best results being achieved when using the
two-point crossover operator, as illustrated in Fig. 1, while Table 3 reports the values of
other parameters used to compare the performance of different crossover operators. Finally,
the probability of crossover and mutation were examined. A considerable number of studies
in the literature suggested high crossover and mutation probabilities [10] [23] [14] [34][? ];
therefore, the candidate values used were 0.7, 0.8 and 0.9. The best result was recorded
when using pc = 0.7 and pm = 0.8, as shown in Fig. 2.

8. Experimental Results

This section discusses the experimental results of applying the two proposed hybrid meta-
heuristics for job scheduling in grid computing. The Java language was used to implement

18



0 250 500 750 1,000 1,250 1,500 1,750 2,000
7.5

8

8.5
·106

Number of generations

M
a
k
e
sp

a
n 1P 2P HUX

Figure 1: Parameter tuning for different crossover operators of GA-VNS using u-c-hihi.0 instance from the
512x16 dataset.

Table 3: Parameter values used for comparing the performance of different crossover operators

Seeding method min-min algorithm
Number of generations 2000
Probability of crossover 0.7
Population size 20
Selection operator N-Tournament,N=4
Mutation operator VNS
Probability of mutation 0.8
Replacement operator Steady state

Figure 2: Analysis of GA-VNS operators probabilities using u-s-hihi.0 instance from the 512x16 dataset.

the proposed methods in this research. An Intel i5-4570 CPU @ 3.20 GHz PC with 8 GB
RAM has been used to carry out all the experiments reported in this study.

19



In addition to the best, average, and standard deviations, the two samples with unequal
variants t-test, which was used to test the hypothesis that two samples have equal means,
was performed to statistically analyse the performance of the two proposed methods with a
confidence interval of 95%. Moreover, two measures will also be used to compare the results
obtained by applying the two proposed hybrid methods and some of the methods described
in the literature. The first measure is the improvement percentage of one algorithm over,
another which can be computed using Equation 6.

Improvement(%) =
Approach1− Approach2

Approach1
∗ 100% (6)

where Approach1 and Approach2 are the makespan values of the two different approaches.
The second measure is the relative gap value of any approach with respect to the corre-
sponding lower bound, which can be computed using Equation 7.

Gap =
R− LB
LB

(7)

where R represents the makespan time (best or average) achieved by the proposed approach
for the corresponding problem instance and the LB is the lower bound of the problem.

8.1. Results for instances from Liu et al. [17]

To enable a fair comparison, the two proposed methods use the same number of itera-
tions as used in [17], which is (50 x the number of jobs x the number of resources) iterations,
as a stopping condition. To obtain the best, average, standard deviation, and the process-
ing time, each algorithm was executed 10 times for each instance which is also the same
number used by the authors. The two proposed hybrid methods,ACO-VNS and GA-VNS,
were compared against selected algorithms from the literature. In particular, the following
algorithms were selected for comparison: min-min algorithm [9], Genetic Algorithm (GA)
[17], Simulated Annealing (SA) [17], Particle Swarm Optimisation (PSO) [17], Differen-
tial Evolution algorithm (DE) [18], Two-Phase Variable Neighbourhood Search (TPVNS)
[16] and Genetic Algorithm (MGA) [34]. All the competing algorithms were implemented
sequentially. Moreover, all the above are stand-alone meta-heuristic algorithms with the
exception of TPVNS, which is a loosely coupled hybrid meta-heuristic, and min-min, which
is a deterministic heuristic method.

Table 4 provides the performance comparison between the two proposed hybrid methods
and other methods from the literature in terms of makespan. In Table 4, the first column
represents the algorithm applied, the second column represents the criteria used in com-
parison, namely Res (Result for deterministic min-min algorithm), Avg (average), time (in
seconds), Best (best makespan found) and σ (standard deviation). There is no information
provided about the best makespan achieved by the algorithms proposed in [17] and [18], the
standard deviation of the algorithms suggested in [18] and [34], or the time the algorithm
proposed in [16] needed to finish. The third, fourth, fifth, and sixth columns represent the
four different instances. The best results are indicated in bold.

20



Table 4: Makespan results for dataset instances from Liu et al. [17]

Algorithm (3, 13) (5, 100) (8, 60) (10, 50)

min-min[9]
Res 56.0000 87.6693 47.8764 42.7346
time 0.0001 0.0010 0.0010 0.0020

GA[17]
Avg 47.1167 85.7431 42.9270 38.0428
σ 0.7700 0.6217 0.4150 0.6613
time 302.9210 2415.9000 2263.0000 2628.1000

SA[17]
Avg 46.6000 90.7338 55.4594 41.7889
σ 0.4856 6.3833 2.0605 8.0773
time 332.5000 6567.8000 6094.9000 6926.4000

PSO[17]
Avg 46.2667 84.0544 41.9489 37.6668
σ 0.2854 0.5030 0.6944 0.6068
time 106.2030 1485.6000 1521.0000 1585.7000

DE[18]
Avg 46.0500 86.3600 42.4800 38.3900
time 22.4400 1550.3227 430.0000 285.2600

TPVNS[16]
Best 46.0000 85.4345 41.7227 35.1586
Avg 46.2500 85.4357 41.7412 35.2478
σ 0.1100 0.1000 0.1200 0.1300

MGA[34]
Best 46.0000 85.5281 41.5808 35.1438
Avg 46.0000 85.5333 41.5941 35.1613
time 4.3787 195.1741 76.2255 70.4771

ACO-VNS

Best 46.0000 85.5281 41.5853 35.1447
Avg 46.0000 85.5283 41.5918 35.1618
σ 0.0000 0.0002 0.0077 0.0215
time 7.2638 751.2500 392.7000 381.2500

GA-VNS

Best 46.0000 85.5279 41.5795 35.1365
Avg 46.0000 85.5281 41.5803 35.1382
σ 0.0000 0.0002 0.0011 0.0022
time 4.3340 140.6454 76.0624 70.3302

The results in Table 4 show clearly that the proposed GA-VNS outperforms the other
approaches, including ACO-VNS, in three instances, namely (3, 13), (8, 60) and (10, 50),
while PSO [26] outperforms the other methods in the (5, 100) instance. It also shows the
standard deviations of the makespans of the solutions achieved by GA-VNS are very small,

21



Table 5: Average improvement percentages of ACO-VNS over selected methods from the literature for
dataset instances from Liu et al. [17].

Instance min-min GA SA PSO DE TPVNS MGA
(3, 13) 17.8571 2.3701 1.2876 0.5764 0.1086 0.5405 0.0000
(5, 100) 2.4421 0.2505 5.7371 -1.7535 0.9631 -0.1084 0.0058
(8, 60) 13.1268 3.1105 25.0050 0.8514 2.0910 0.3580 0.0057
(10, 50) 17.7204 7.5729 15.8584 6.6503 8.4089 0.2439 -0.0017
Avg 12.7866 3.3260 11.9720 1.5812 2.8929 0.2585 0.0025

Table 6: Average improvement percentages of GA-VNS over selected methods from the literature for dataset
instances from et al. [17].

Instance min-min GA SA PSO DE TPVNS MGA
(3, 13) 17.8571 2.3701 1.2876 0.5764 0.1086 0.5405 0.0000
(5, 100) 2.4424 0.2508 5.7374 -1.7532 0.9633 -0.1081 0.0061
(8, 60) 13.1507 3.1371 25.0257 0.8786 2.1179 0.3854 0.0332
(10, 50) 17.7759 7.6352 15.9151 6.7132 8.4706 0.3111 0.0657
Avg 12.8065 3.3483 11.9914 1.6038 2.9151 0.2822 0.0263

Table 7: Average improvement percentages and statistical analysis of GA-VNS over ACO-VNS for dataset
instances from Liu et al. [17].

Instance improvement p-value
(3, 13) 0.0000 not valid
(5, 100) 0.0003 0.01217
(8, 60) 0.0275 <10−5

(10, 50) 0.0674 <10−4

Avg 0.0238

which means that the algorithm can achieve a high-quality makespan in any single execution.
Furthermore, it shows the time needed to finish the search process, which clearly indicates
that the proposed GA-VNS is the fastest of the meta-heuristic methods. On the other hand,
the table shows the performance of ACO-VNS which showed the second-best performance
after GA-VNS. However, the time need to find these results was longer than for MGA [34]
and GA-VNS.

Tables 5 and 6 show the improvement percentages of ACO-VNS and GA-VNS, respec-
tively, over the state-of-the-art methods described in the literature. Table 7 presents the
improvement percentages of GA-VNS over ACO-VNS, which clearly indicates that GA-VNS
performs better than ACO-VNS. Furthermore, Table 7 reports the corresponding p-value
for each problem instance, all of which were less than 0.05; hence, we can reject the null
hypothesis and consider the improvements in the makespan to be statistically significant.
Fig. 3 shows the overall improvements of ACO-VNS and GA-VNS over the deterministic
heuristic min-min algorithm for the problem instances of Liu et al.

22



Figure 3: ACO-VNS and GA-VNS improvement percentages with respect to the min-min heuristic for Liu
et al. dataset.

8.2. Results for instances from Braun et al. [7] 512x16

The second dataset involves the classical 12 problem instances of Braun et al. Each
instance has 512 jobs and 16 resources. The two proposed hybrid methods, ACO-VNS
and GA-VNS, were compared against selected algorithms from the literature, namely min-
min algorithm [9], Genetic Algorithm (GA) [7], Cellular Memetic Algorithms (cMA) [35],
Memetic Algorithm and Tabu Search (MA+TS) [24], Ant Colony Optimization and Tabu
Search (ACO+TS) [6], Tabu Search (TS) [36], parallel Cross generational Heterogeneous
recombination Cataclysmic mutation(pCHC) [29], and Two-Phase Variable Neighbourhood
Search (TPVNS) [16]. All the competing algorithms were implemented sequentially with
the exception of pCHC which was implemented using parallel mode. Moreover, all these
are loosely coupled hybrid meta- heuristics apart from min-min, which is a deterministic
heuristic method. Each algorithm uses different stopping times and different number of
executions. For each problem instance, the deterministic min-min algorithm requires less
than one second to finish the mapping, while GA, ACO-VNS, TS needed 65 s, 3.5 h, and 100
s, respectively, and the average results were reported after 100, 1, and 10 runs, respectively.
cMA, MA+TS, pCHC and TPVNS required 90 s to find the solution and the average results
were achieved after 10, 10, 50 and 50 runs, respectively. In this work, GA-VNS was allowed
to run for 90 seconds while ACO-VNS needed 9 minutes. To obtain the best, average and
standard deviation values, ACO-VNS and GA-VNS were executed 50 times for each problem
instance.

Table 8 provides the results of applying ACO-VNS and GA-VNS compared to the se-
lected methods. The best results are indicated in bold, which show clearly that GA- VNS
outperforms all other approaches in all instances. The GA-VNS algorithm is expected to
find high-quality schedules in any single execution since it has very small standard deviation
values in the range [0.01, 0.07]. The table also shows the results for ACO- VNS which showed
the second-best performance after GA-VNS with relatively small standard deviation values
between 0.03 and 1.0. Although it needed six times longer than GA-VNS, it is typically 140

23



times faster than ACO+TS, outperforming it in 10 instances out of 12.
Tables B.4 and B.5 show the improvement percentages of ACO-VNS and GA-VNS re-

spectively over the selected methods from the bibliography. GA-VNS shows a better im-
provement percentage over all the methods compared with a minimum average improvement
of 0.86, while the minimum average improvement percentage of ACO-VNS, which was the
second best method, was 0.30. These results indicate that ACO-VNS and GA-VNS repre-
sent the new state-of-the-art sequential hybrid algorithms for the job scheduling problem in
grid computing.

The two sample t-test with unequal variants was performed to statistically analyse the
performance of the two proposed hybrid methods. Table B.6 reports the improvement
percentages for GA-VNS over ACO-VNS, which clearly indicate that GA-VNS performs
better than ACO-VNS. Moreover, Table B.6 reports the corresponding p-value for each
instance which were less than 0.05, and hence we can consider the improvement of GA-
VNS over ACO-VNS in terms of makespan to be statistically significant.

In Table 8, the last column represents the Lower Bound (LB) values of each problem
instance, as reported in [28]. Table 9 summarizes the gaps between the average makespan
results for the proposed methods and selected algorithms from the literature and their cor-
responding lower bounds. GA-VNS and ACO-VNS achieved the smallest average gap values
to the lower bound with 0.71 and 1.28, respectively, which indicates that the quality of the
solutions they found are very high compared to the others. The average percentage gap of
GA-VNS for 512x16 problem instances was 0.71%, with 8 out of 12 instances being below
1%, while ACO-VNS achieved an average gap percentage of 1.28% with 5 out of 12 being
less than 1%.

Table 9: The gap values of the average makespan for the proposed methods and selected algorithms from
the literature and the corresponding lower bounds for 512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS ACO-VNS GA-VNS
u c hihi.0 15.17 9.59 4.82 2.50 2.05 1.39 1.83 2.01 1.45 0.78
u c hilo.0 7.41 2.32 1.73 0.80 1.00 0.37 0.80 1.11 0.59 0.28
u c lohi.0 15.83 8.66 5.55 3.00 2.50 1.48 2.23 2.48 0.93 0.48
u c lolo.0 8.06 2.72 1.66 0.80 0.89 0.43 0.95 1.12 0.60 0.31
u i hihi.0 20.78 6.72 9.53 5.13 1.32 1.67 1.64 1.60 1.05 1.03
u i hilo.0 10.54 3.78 3.83 2.81 0.98 0.87 1.08 1.19 0.62 0.46
u i lohi.0 19.25 6.37 9.46 4.70 1.37 2.77 1.60 1.52 1.37 1.09
u i lolo.0 9.89 3.38 3.76 2.67 0.97 0.91 1.12 1.23 0.78 0.55
u s hihi.0 26.99 12.37 8.88 6.34 2.44 2.59 4.32 3.31 1.88 1.01
u s hilo.0 9.56 3.25 3.00 1.84 1.41 0.80 1.40 0.96 0.78 0.42
u s lohi.0 16.46 8.44 7.94 5.96 2.88 2.45 2.94 2.91 4.32 1.40
u s lolo.0 13.26 4.94 3.14 2.03 1.18 1.05 1.68 1.38 1.01 0.68
Avg 14.43 6.04 5.28 3.21 1.58 1.40 1.80 1.73 1.28 0.71

8.3. Results for instances from Nesmachnow et al. [22]: 1024x32 and 2048x64

The third dataset consists of two sizes: 1024x32 and 2048x64, each of which contains
24 problem instances. Unlike the dataset of Braun et al. [7] , which is considered the de
facto standard benchmark for studying the job scheduling problem in grid computing, the

24



T
ab

le
8:

M
ak

es
p

a
n

re
su

lt
s

fo
r

5
1
2
x
1
6

d
a
ta

se
t

in
st

a
n

ce
s

fr
o
m

B
ra

u
n
et

a
l.

In
st

an
ce

m
in

-m
in

[9
]

G
A

[7
]

cM
A

[3
5]

M
A

+
T

S
[2

4]
A

C
O

+
T

S
[6

]
T

S
[3

6]
p

C
H

C
[2

9]
T

P
V

N
S

[1
6]

A
C

O
-V

N
S

G
A

-V
N

S
L

B

re
s

av
g

av
g

av
g

b
es

t
av

g
b

es
t

av
g

b
es

t
av

g
b

es
t

av
g

σ
b

es
t

av
g

σ

u
c

h
ih

i.
0

84
60

67
5.

00
80

50
84

4.
50

77
00

92
9.

80
75

30
02

0.
20

74
97

20
0.

90
74

48
64

0.
50

74
61

81
9.

10
74

81
19

4.
50

74
39

47
1.

80
74

94
25

7.
80

74
29

32
2.

59
74

52
83

6.
64

0.
20

%
7
3
9
1
2
2
6
.2
7

7
4
0
3
8
0
8
.9
1

0.
07

%
73

46
52

4.
20

u
c

h
il

o.
0

16
40

22
.4

4
15

62
49

.2
0

15
53

34
.8

0
15

39
17

.2
0

15
42

34
.6

0
15

32
63

.3
0

15
37

91
.9

0
15

39
24

.0
0

15
32

70
.1

0
15

44
00

.3
0

15
31

83
.7

8
15

35
97

.8
7

0.
11

%
1
5
3
1
0
6
.6
7

1
5
3
1
2
3
.6
7

0.
01

%
15

27
00

.4
0

u
c

lo
h

i.
0

27
58

37
.3

4
25

87
56

.8
0

25
13

60
.2

0
24

52
88

.9
0

24
40

97
.3

0
24

16
72

.7
0

24
15

24
.0

0
24

34
46

.3
0

24
08

03
.3

0
24

40
43

.2
0

23
92

59
.9

8
24

03
42

.0
4

0.
20

%
2
3
9
2
5
8
.2
0

2
3
9
2
8
9
.1
0

0.
01

%
23

81
38

.1
0

u
c

lo
lo

.0
55

46
.2

6
52

72
.3

0
52

18
.2

0
51

73
.7

0
51

78
.4

0
51

55
.0

0
51

77
.5

0
51

81
.6

0
51

54
.8

0
51

90
.3

0
51

48
.1

5
51

63
.6

0
0.

11
%

5
1
4
8
.0
2

5
1
4
8
.5
9

0.
01

%
51

32
.8

0

u
i

h
ih

i.
0

35
13

91
9.

25
31

04
76

2.
50

31
86

66
4.

70
30

58
47

4.
90

29
47

75
4.

10
29

57
85

4.
10

29
52

49
3.

20
29

56
90

5.
70

29
44

07
4.

60
29

55
76

4.
70

29
38

41
6.

02
29

39
90

7.
97

0.
03

%
2
9
3
8
3
8
0
.6
2

2
9
3
9
3
0
1
.2
5

0.
02

%
29

09
32

6.
60

u
i

h
il

o.
0

80
75

5.
68

75
81

6.
10

75
85

6.
60

75
10

8.
50

73
77

6.
20

73
69

2.
90

73
63

9.
80

73
84

7.
10

73
37

8.
00

73
92

7.
00

73
37

7.
99

73
51

2.
45

0.
05

%
7
3
3
6
2
.9
8

7
3
3
9
1
.9
7

0.
02

%
73

05
7.

90

u
i

lo
h

i.
0

12
05

17
.7

1
10

75
00

.7
0

11
06

20
.8

0
10

58
08

.6
0

10
24

45
.8

0
10

38
65

.7
0

10
21

36
.1

0
10

26
77

.3
0

10
20

57
.5

0
10

25
99

.7
0

10
20

52
.9

8
10

24
52

.2
0

0.
18

%
1
0
2
0
5
1
.7
4

1
0
2
1
6
7
.0
7

0.
05

%
10

10
63

.4
0

u
i

lo
lo

.0
27

79
.0

9
26

14
.4

0
26

24
.2

0
25

96
.6

0
25

53
.5

0
25

52
.1

0
25

49
.8

0
25

57
.2

0
25

47
.9

0
25

60
.1

0
25

41
.5

2
25

48
.7

8
0.

13
%

2
5
4
1
.1
7

2
5
4
2
.9
8

0.
03

%
25

29
.0

0

u
s

h
ih

i.
0

51
60

34
3.

00
45

66
20

6.
00

44
24

54
0.

90
43

21
01

5.
40

41
62

54
7.

90
41

68
79

5.
90

41
98

77
9.

50
42

39
14

6.
30

41
45

94
1.

70
41

97
99

6.
50

41
06

39
1.

16
41

40
09

1.
67

0.
35

%
4
1
0
2
9
0
8
.2
0

4
1
0
4
6
1
3
.5
9

0.
02

%
40

63
56

3.
70

u
s

h
il

o.
0

10
45

40
.7

3
98

51
9.

40
98

28
3.

70
97

17
7.

30
96

76
2.

00
96

18
0.

90
96

62
3.

30
96

75
0.

30
95

87
2.

30
96

33
0.

40
96

11
7.

37
96

16
7.

89
0.

03
%

9
5
7
8
8
.9
7

9
5
8
2
3
.0
4

0.
02

%
95

41
9.

00

u
s

lo
h

i.
0

14
02

84
.4

8
13

06
16

.5
0

13
00

14
.5

0
12

76
33

.0
0

12
39

22
.0

0
12

34
07

.4
0

12
32

51
.5

0
12

39
89

.4
0

12
29

86
.0

0
12

39
54

.3
0

12
35

76
.4

6
12

56
50

.3
1

1.
00

%
1
2
2
0
8
4
.1
0

1
2
2
1
4
3
.2
0

0.
02

%
12

04
52

.3
0

u
s

lo
lo

.0
38

67
.4

9
35

83
.4

0
35

22
.1

0
34

84
.1

0
34

55
.2

0
34

50
.5

0
34

50
.1

0
34

72
.2

0
34

40
.5

0
34

61
.9

0
34

39
.3

5
34

49
.4

6
0.

13
%

3
4
3
6
.6
3

3
4
3
7
.9
7

0.
01

%
34

14
.8

0

25



literature does not include much work which addresses this dataset. The performance of
ACO-VNS and GA-VNS was compared against the following algorithms from the bibliogra-
phy: min-min algorithm [9], parallel Cross generational Heterogeneous recombination Cat-
aclysmic mutation(pCHC) [29], and Two-Phase Variable Neighbourhood Search (TPVNS)
[16]. All the competing algorithms were implemented sequentially apart from pCHC, which
was implemented using parallel mode. Moreover, all of these are loosely coupled hybrid
meta-heuristics apart from min-min, which is a deterministic heuristic method. For both
sizes, GA-VNS was allowed to run for 90 seconds, which was the same time used for pCHC
and TPVNS, while ACO-VNS ran for 9 minutes. To obtain the best, average and standard
deviation values, both schedulers were executed 50 times for each problem instance.

Tables 10 and 11 provide the results of applying ACO-VNS and GA-VNS for the 1024x32
and 2048x64 dataset instances, respectively, compared to the selected methods. The best
results are indicated in bold, which show clearly that the GA-VNS outperforms all other
approaches in all instances. The GA-VNS algorithm is expected to find high quality sched-
ules in any single execution since it has very small standard deviation values, which vary
between 0.02 and 0.33 for the 1024x32 dataset, and between 0.01 and 0.26 for the 2048x64
dataset.

Table B.7 shows the percentages of makespan reduction for ACO-VNS and GA-VNS for
the 1024x32 and 2048x64 dataset instances over the selected methods from the bibliography.
For both sizes, GA-VNS shows a better improvement percentage over all the compared
methods. ACO-VNS achieved the second-best improvement percentages for the 1024x32
dataset; however, it was only the third-best results for the 2048x64 dataset as TPVNS
achieved a slightly better average improvement percentage.

In Tables 10 and 11, the last column represents the Lower Bound (LB) values of each
problem instance as reported in [29]. Table 12 summarizes the gap values between the
average makespan results for ACO-VNS, GA-VNS and selected algorithms from the liter-
ature and its corresponding lower bounds for the 1024x32 and 2048x64 dataset instances.
For 1024x32 instances, GA-VNS achieved the smallest average gaps to the lower bound at
1.26, while min-min, pCHC and TPVNS achieved 21.00, 6.38, and 5.53, respectively. For
2048x64 instances, GA-VNS also achieved the smallest average gap with the lower bound at
2.64, while min-min, pCHC and TPVNS achieved 23.21, 6.77, and 5.46, respectively. This
indicates that the quality of the solutions found by these are very high compared to the
others.

26



T
ab

le
10

:
M

a
k
es

p
a
n

re
su

lt
s

fo
r

1
0
2
4
x
3
2

d
a
ta

se
t

in
st

a
n

ce
s

In
st

an
ce

m
in

-m
in

[9
]

p
C

H
C

[2
9]

T
P

V
N

S
[1

6]
A

C
O

-V
N

S
G

A
-V

N
S

L
B

B
es

t
A

v
g.

B
es

t
A

v
g.

B
es

t
A

v
g.

σ
B

es
t

A
v
g.

σ
A

.u
c

h
ih

i
22

50
80

62
.4

0
20

32
79

24
.0

0
20

51
03

00
.9

0
20

19
49

02
.0

0
20

28
41

91
.0

0
19

80
09

79
.1

0
19

81
88

50
.8

1
0.

04
%

1
9
6
0
2
0
9
8
.3
1

1
9
6
3
6
5
9
5
.2
2

0.
07

%
19

44
92

30
.0

0
A

.u
c

h
il

o
22

55
96

6.
00

20
48

58
2.

70
20

58
35

2.
20

20
46

64
8.

00
20

50
94

2.
20

20
04

75
5.

76
20

33
68

9.
80

1.
01

%
1
9
5
7
5
2
6
.5
0

1
9
5
9
2
0
6
.3
7

0.
02

%
19

51
34

5.
00

A
.u

c
lo

h
i

21
55

.0
0

19
56

.7
0

20
00

.0
0

19
62

.0
0

19
70

.2
0

19
00

.0
8

19
05

.6
4

0.
15

%
1
8
7
6
.5
3

1
8
8
0
.0
2

0.
06

%
18

66
.4

0
A

.u
c

lo
lo

22
5.

90
20

7.
50

21
7.

80
20

6.
70

21
3.

40
20

0.
00

20
0.

25
0.

06
%

1
9
9
.7
2

2
0
0
.0
2

0.
08

%
19

8.
90

A
.u

i
h

ih
i

63
67

76
7.

60
51

69
96

0.
50

52
44

04
6.

90
51

67
78

1.
00

52
21

70
2.

00
51

00
02

6.
33

51
04

78
2.

53
0.

04
%

5
0
5
2
8
1
4
.6
3

5
0
8
5
8
3
8
.6
9

0.
20

%
50

12
20

7.
00

A
.u

i
h

il
o

64
14

38
.4

0
49

02
80

.3
0

49
26

99
.4

0
48

95
25

.2
0

49
38

00
.1

0
48

50
03

.8
0

48
53

16
.3

2
0.

03
%

4
7
8
6
8
1
.9
4

4
8
0
5
9
7
.4
7

0.
18

%
47

44
04

.6
0

A
.u

i
lo

h
i

66
4.

70
51

8.
20

52
3.

60
52

2.
40

53
0.

10
52

0.
02

52
0.

96
0.

09
%

5
0
7
.6
3

5
0
9
.8
5

0.
19

%
50

3.
40

A
.u

i
lo

lo
63

.7
0

50
.6

0
51

.7
0

50
.8

0
51

.9
0

50
.0

0
50

.2
7

0.
26

%
4
9
.4
3

4
9
.6
1

0.
19

%
49

.0
0

A
.u

s
h

ih
i

14
12

58
81

.6
0

12
24

35
60

.0
0

12
43

98
43

.1
0

12
15

57
50

.0
0

12
30

61
22

.0
0

12
00

00
06

.4
8

12
01

16
69

.0
3

0.
06

%
1
1
6
9
0
4
0
2
.2
8

1
1
7
3
0
4
9
0
.6
5

0.
11

%
11

55
36

32
.0

0
A

.u
s

h
il

o
13

19
05

0.
60

11
87

50
6.

40
12

14
30

3.
00

11
75

33
8.

00
11

85
44

3.
20

11
70

12
1.

89
11

75
30

1.
84

0.
34

%
1
1
3
7
0
8
9
.0
7

1
1
4
3
8
1
9
.5
9

0.
17

%
11

26
55

6.
00

A
.u

s
lo

h
i

13
80

.5
0

11
86

.8
0

11
99

.2
0

11
84

.8
0

11
94

.6
0

11
70

.0
2

11
73

.0
5

0.
13

%
1
1
3
1
.0
6

1
1
3
5
.8
6

0.
20

%
11

22
.2

0
A

.u
s

lo
lo

14
0.

60
12

2.
40

12
6.

50
12

2.
00

12
3.

10
12

0.
03

12
2.

14
0.

98
%

1
1
7
.4
9

1
1
7
.7
2

0.
17

%
11

6.
70

B
.u

c
h

ih
i

67
08

22
8.

50
61

69
82

3.
00

62
00

11
8.

00
61

89
68

1.
00

62
00

40
1.

50
60

81
10

3.
22

61
04

93
8.

95
0.

28
%

6
0
0
3
0
8
7
.4
8

6
0
0
8
6
7
6
.3
9

0.
05

%
59

80
87

2.
00

B
.u

c
h

il
o

66
68

4.
50

61
11

4.
70

61
39

0.
10

60
80

7.
50

61
59

9.
20

60
00

6.
62

60
34

1.
92

0.
42

%
5
9
2
8
7
.9
4

5
9
3
7
8
.5
9

0.
06

%
58

94
2.

50
B

.u
c

lo
h

i
23

20
11

.8
0

21
51

49
.2

0
21

81
24

.8
0

21
43

87
.1

0
21

64
81

.5
0

21
00

01
.2

8
21

00
60

.3
0

0.
02

%
2
0
9
1
8
3
.0
2

2
0
9
7
0
1
.1
5

0.
07

%
20

78
92

.8
0

B
.u

c
lo

lo
23

86
.3

0
21

64
.3

0
22

08
.4

0
21

42
.1

0
21

58
.3

0
21

00
.0

4
21

03
.1

3
0.

08
%

2
0
8
4
.1
0

2
0
8
7
.6
9

0.
07

%
20

78
.0

0
B

.u
i

h
ih

i
21

64
57

6.
70

16
30

28
8.

60
16

70
11

2.
70

16
26

08
6.

00
16

28
72

9.
60

16
20

13
5.

38
16

25
04

2.
35

0.
14

%
1
5
8
6
9
2
8
.3
9

1
6
0
1
1
5
1
.4
9

0.
31

%
15

67
17

9.
00

B
.u

i
h

il
o

17
08

3.
10

15
12

1.
50

15
46

4.
10

15
00

3.
10

15
71

5.
80

15
00

1.
07

15
05

9.
49

0.
16

%
1
4
7
0
2
.6
6

1
4
8
4
8
.9
0

0.
33

%
14

58
2.

30
B

.u
i

lo
h

i
56

60
1.

20
49

56
9.

90
50

12
8.

20
49

26
4.

10
49

98
1.

20
48

91
2.

32
49

43
1.

40
0.

81
%

4
8
1
0
1
.7
9

4
8
2
5
9
.1
8

0.
18

%
47

60
6.

90
B

.u
i

lo
lo

58
5.

00
49

6.
10

50
7.

40
49

2.
70

50
1.

40
49

0.
18

49
1.

68
0.

13
%

4
8
2
.2
7

4
8
5
.5
3

0.
27

%
47

7.
40

B
.u

s
h

ih
i

39
67

26
5.

90
33

93
01

0.
20

34
30

21
8.

10
33

44
87

5.
00

33
92

15
7.

30
33

00
41

8.
86

33
28

58
0.

56
0.

54
%

3
2
1
7
7
4
7
.0
8

3
2
4
8
0
0
5
.7
3

0.
33

%
31

78
48

2.
00

B
.u

s
h

il
o

40
69

1.
60

35
98

8.
40

36
51

5.
60

35
35

2.
20

36
91

1.
20

35
00

0.
62

35
04

0.
84

0.
06

%
3
4
2
8
5
.8
7

3
4
7
0
5
.8
0

0.
32

%
33

94
8.

70
B

.u
s

lo
h

i
13

56
24

.6
0

11
51

79
.2

0
11

80
70

.3
0

11
46

53
.3

0
11

70
17

.1
0

11
40

46
.4

8
11

63
87

.5
9

1.
73

%
1
0
9
2
8
8
.5
2

1
0
9
3
8
6
.2
8

0.
03

%
10

83
30

.1
0

B
.u

s
lo

lo
13

33
.2

0
11

91
.7

0
12

30
.3

0
11

73
.5

0
11

96
.4

0
11

70
.1

9
11

72
.3

3
0.

10
%

1
1
4
3
.2
5

1
1
5
3
.2
3

0.
27

%
11

28
.1

0

27



T
ab

le
11

:
M

a
k
es

p
a
n

re
su

lt
s

fo
r

2
0
4
8
x
6
4

d
a
ta

se
t

in
st

a
n

ce
s

In
st

an
ce

m
in

-m
in

[9
]

p
C

H
C

[2
9]

T
P

V
N

S
[1

6]
A

C
O

-V
N

S
G

A
-V

N
S

L
B

B
es

t
A

v
g.

B
es

t
A

v
g.

B
es

t
A

v
g.

σ
B

es
t

A
v
g.

σ
A

.u
c

h
ih

i
19

55
22

21
.8

0
18

11
04

79
.1

0
18

21
82

85
.6

0
17

79
58

63
.0

0
17

80
14

92
.2

0
17

89
56

12
.1

4
17

90
04

36
.4

1
0.

01
%

1
7
2
4
1
1
4
5
.3
9

1
7
2
5
3
4
2
6
.9
0

0.
05

%
17

14
19

77
.4

0
A

.u
c

h
il

o
18

73
13

4.
20

17
48

50
9.

20
17

60
14

1.
20

17
27

24
8.

00
17

36
97

1.
30

17
33

30
0.

10
17

33
70

3.
35

0.
01

%
1
6
7
3
5
3
8
.8
5

1
6
7
6
7
8
4
.2
0

0.
23

%
16

64
59

2.
80

A
.u

c
lo

h
i

19
24

.7
0

17
98

.4
0

18
04

.9
0

17
61

.0
0

17
70

.6
0

17
61

.0
9

17
61

.8
2

0.
02

%
1
7
0
8
.2
4

1
7
1
1
.0
9

0.
17

%
16

95
.3

0
A

.u
c

lo
lo

19
1.

60
17

7.
60

17
8.

10
17

4.
30

17
5.

50
17

6.
48

17
6.

79
0.

09
%

1
6
9
.3
2

1
6
9
.5
9

0.
24

%
16

8.
30

A
.u

i
h

ih
i

32
48

93
5.

40
25

06
25

8.
50

25
46

45
9.

70
24

78
01

1.
00

25
00

93
7.

20
24

70
22

7.
48

25
47

72
5.

05
2.

36
%

2
4
3
4
8
8
0
.1
5

2
4
5
1
0
7
9
.0
4

0.
26

%
23

66
68

2.
10

A
.u

i
h

il
o

36
58

28
.6

0
27

27
41

.3
0

27
38

76
.3

0
27

43
78

.4
0

27
60

00
.1

0
27

10
60

.2
8

27
33

42
.2

1
0.

60
%

2
6
9
0
2
2
.0
7

2
6
9
8
8
7
.0
9

0.
19

%
26

09
04

.5
0

A
.u

i
lo

h
i

32
0.

90
26

6.
30

26
7.

50
26

5.
90

26
6.

20
26

5.
10

27
0.

54
1.

56
%

2
6
2
.0
2

2
6
3
.5
0

0.
19

%
25

5.
20

A
.u

i
lo

lo
32

.3
0

26
.4

0
26

.5
0

26
.7

0
26

.9
0

26
.0

1
26

.7
6

1.
93

%
2
5
.7
0

2
6
.0
0

0.
24

%
25

.1
0

A
.u

s
h

ih
i

11
24

56
79

.6
0

97
56

49
9.

70
98

21
93

4.
50

95
24

60
3.

00
96

01
36

4.
00

93
10

63
6.

32
95

06
57

0.
57

1.
75

%
9
2
9
1
5
2
2
.5
2

9
3
1
7
6
0
4
.6
4

0.
15

%
90

50
26

0.
80

A
.u

s
h

il
o

10
42

94
8.

50
92

40
94

.9
0

93
79

98
.8

0
89

46
95

.3
0

90
93

81
.6

0
88

08
35

.1
6

91
04

36
.5

3
0.

66
%

8
7
4
0
0
8
.8
2

8
7
9
8
6
9
.2
5

0.
20

%
85

13
99

.9
0

A
.u

s
lo

h
i

10
56

.0
0

94
7.

10
95

2.
30

93
1.

60
93

6.
10

94
7.

85
94

8.
69

0.
05

%
9
0
6
.9
5

9
0
9
.9
9

0.
17

%
88

8.
90

A
.u

s
lo

lo
11

5.
30

99
.6

0
10

0.
40

97
.0

0
98

.9
0

96
.0

9
97

.8
2

0.
55

%
9
5
.5
5

9
6
.2
1

0.
21

%
92

.3
0

B
.u

c
h

ih
i

55
64

66
4.

30
52

90
12

8.
20

53
00

31
6.

10
52

09
57

3.
00

52
19

96
1.

30
51

83
52

6.
58

51
85

28
8.

69
0.

02
%

5
0
0
6
2
7
0
.9
9

5
0
1
3
2
1
2
.5
3

0.
11

%
49

75
77

8.
80

B
.u

c
h

il
o

59
35

2.
80

55
31

6.
20

55
34

3.
10

53
96

0.
30

54
00

1.
50

53
12

6.
29

54
41

4.
88

0.
13

%
5
2
5
0
6
.2
4

5
2
5
7
9
.5
8

0.
17

%
52

24
0.

60
B

.u
c

lo
h

i
19

08
42

.4
0

17
70

63
.4

0
17

76
12

.4
0

17
54

29
.4

0
17

69
81

.2
0

17
54

07
.8

8
17

57
93

.5
8

0.
13

%
1
7
3
3
5
1
.6
6

1
7
3
3
9
9
.6
5

0.
01

%
16

73
81

.1
0

B
.u

c
lo

lo
19

27
.7

0
18

14
.7

0
18

18
.3

0
17

86
.3

0
17

91
.0

0
17

85
.0

0
17

85
.9

2
0.

02
%

1
7
8
0
.8
7

1
7
8
1
.4
3

0.
02

%
17

15
.0

0
B

.u
i

h
ih

i
92

92
95

.8
0

77
01

10
.6

0
77

49
93

.0
0

76
59

66
.9

0
76

91
21

.1
0

76
57

27
.5

3
77

07
71

.6
0

0.
32

%
7
6
2
4
6
8
.5
5

7
6
4
8
7
2
.1
4

0.
18

%
73

51
01

.5
0

B
.u

i
h

il
o

10
31

8.
40

79
06

.5
0

79
32

.9
0

78
96

.9
0

79
10

.1
0

78
96

.4
7

79
20

.6
0

0.
17

%
7
8
8
2
.4
2

7
9
0
7
.5
6

0.
18

%
75

36
.3

0
B

.u
i

lo
h

i
34

07
1.

00
26

94
1.

20
27

20
7.

30
27

11
8.

90
27

90
0.

40
27

02
3.

34
27

63
7.

86
0.

34
%

2
6
2
1
2
.0
4

2
6
5
3
9
.7
6

0.
20

%
25

68
1.

20
B

.u
i

lo
lo

35
5.

70
26

2.
40

26
4.

70
26

4.
90

26
5.

80
26

1.
13

26
5.

42
1.

19
%

2
5
5
.4
3

2
5
6
.7
7

0.
19

%
25

0.
50

B
.u

s
h

ih
i

32
93

15
7.

10
29

10
50

7.
60

29
23

85
7.

10
28

65
25

0.
00

28
76

31
0.

00
28

67
10

5.
20

28
85

34
1.

34
0.

05
%

2
7
4
5
5
5
7
.7
4

2
7
5
3
0
9
9
.9
0

0.
19

%
27

10
02

4.
00

B
.u

s
h

il
o

33
44

5.
40

29
44

2.
20

29
51

8.
60

28
52

0.
40

28
73

1.
20

28
44

1.
56

29
05

3.
08

0.
99

%
2
7
9
1
2
.3
9

2
8
0
0
1
.9
4

0.
20

%
27

26
8.

00
B

.u
s

lo
h

i
11

12
37

.4
0

98
60

7.
00

98
75

8.
30

94
77

7.
90

95
10

1.
40

94
46

5.
30

95
24

3.
41

0.
65

%
9
3
4
6
1
.5
1

9
3
6
8
3
.7
3

0.
20

%
90

72
7.

30
B

.u
s

lo
lo

11
63

.8
0

10
14

.3
0

10
19

.7
0

99
5.

80
10

03
.2

0
99

0.
35

10
13

.0
1

0.
12

%
9
5
6
.9
7

9
5
9
.5
8

0.
18

%
93

9.
00

28



Table 12: The gaps for the average makespan for the proposed ACO-VNS and GA-VNS methods and
selected algorithms from the literature and their corresponding lower bounds for the 1024x32 and 2048x64
datasets.

Instance
1024x32 2048x64

min-min pCHC TPVNS ACO-VNS GA-VNS min-min pCHC TPVNS ACO-VNS GA-VNS
A.u c hihi 15.73 5.46 4.29 1.90 0.96 14.06 6.28 3.85 4.42 0.65
A.u c hilo 15.61 5.48 5.10 4.22 0.40 12.53 5.74 4.35 4.15 0.73
A.u c lohi 15.46 7.16 5.56 2.10 0.73 13.53 6.46 4.44 3.92 0.93
A.u c lolo 13.57 9.50 7.29 0.68 0.56 13.84 5.82 4.28 5.04 0.77
A.u i hihi 27.05 4.63 4.18 1.85 1.47 37.28 7.60 5.67 7.65 3.57
A.u i hilo 35.21 3.86 4.09 2.30 1.31 40.22 4.97 5.79 4.77 3.44
A.u i lohi 32.04 4.01 5.30 3.49 1.28 25.74 4.82 4.31 6.01 3.25
A.u i lolo 30.00 5.51 5.92 2.60 1.25 28.69 5.58 7.17 6.61 3.59
A.u s hihi 22.26 7.67 6.51 3.96 1.53 24.26 8.53 6.09 5.04 2.95
A.u s hilo 17.09 7.79 5.23 4.33 1.53 22.50 10.17 6.81 6.93 3.34
A.u s lohi 23.02 6.86 6.45 4.53 1.22 18.80 7.13 5.31 6.73 2.37
A.u s lolo 20.48 8.40 5.48 4.67 0.87 24.92 8.78 7.15 5.98 4.24

B.u c hihi 12.16 3.67 3.67 2.07 0.46 11.84 6.52 4.91 4.21 0.75
B.u c hilo 13.13 4.15 4.51 2.37 0.74 13.61 5.94 3.37 4.16 0.65
B.u c lohi 11.60 4.92 4.13 1.04 0.87 14.02 6.11 5.74 5.03 3.60
B.u c lolo 14.84 6.28 3.86 1.21 0.47 12.40 6.02 4.43 4.14 3.87
B.u i hihi 38.12 6.57 3.93 3.69 2.17 26.42 5.43 4.63 4.85 4.05
B.u i hilo 17.15 6.05 7.77 3.27 1.83 36.92 5.26 4.96 5.10 4.93
B.u i lohi 18.89 5.30 4.99 3.83 1.37 32.67 5.94 8.64 7.62 3.34
B.u i lolo 22.54 6.28 5.03 2.99 1.70 42.00 5.67 6.11 5.95 2.50
B.u s hihi 24.82 7.92 6.72 4.72 2.19 21.52 7.89 6.14 6.47 1.59
B.u s hilo 19.86 7.56 8.73 3.22 2.23 22.65 8.25 5.37 6.55 2.69
B.u s lohi 25.20 8.99 8.02 7.44 0.97 22.61 8.85 4.82 4.98 3.26
B.u s lolo 18.18 9.06 6.05 3.92 2.23 23.94 8.59 6.84 7.88 2.19
Avg 21.00 6.38 5.53 3.18 1.26 23.21 6.77 5.46 5.59 2.64

Table B.8 presents the improvement percentages for GA-VNS over ACO-VNS for the
1024x32 and 2048x64 dataset instances, which clearly indicate that GA-VNS performs bet-
ter than ACO-VNS. Moreover, the table reports the corresponding p-value when applying
the two sample t-test with unequal variants for each instance to statistically analyse the
performance of the two proposed hybrid methods. The p-values were less than 0.05, and
hence, we can consider the improvement of GA-VNS over ACO-VNS in terms of makespan
to be statistically significant.

8.4. Results summary for Braun et al. [7] and Nesmachnow et al. [22] datasets
Table 13 and Fig. 4 summarize the average improvements of ACO-VNS and GA-VNS

over the deterministic heuristic min-min algorithm for the problem instances of Braun et
al. and Nesmachnow et al., where the improvement percentages are categorized based on
consistency. The average improvement percentages of ACO-VNS with respect to the min-
min heuristic were always above 7% and 12% for the consistent and semi-consistent instances,
respectively, while GA- VNS was more accurate showing average improvement percentages
of no less than 9% and 13%, respectively. For the inconsistent instances, both algorithms
achieved average improvements above 12% for the 512x16 dataset. However, this percentage
increased significantly to greater than 21% for larger problem instances.

Table 14 reports the average gap percentage of ACO-VNS and GA-VNS with regard
to the lower bound for the datasets of Braun et al. and Nesmachnow et al. based on the

29



Table 13: ACO-VNS and GA-VNS average improvement percentages with respect to the min-min heuristic
based on the consistency: Braun et al. and Nesmachnow et al. datasets.

Consistency
512x16 A-1024x32 B-1024x32 A-2048x64 B-2048x64

ACO-VNS GA-VNS ACO-VNS GA-VNS ACO-VNS GA-VNS ACO-VNS GA-VNS ACO-VNS GA-VNS
consistent 9.51 9.89 11.18 12.53 9.96 10.88 8.02 11.21 7.59 9.51
inconsistent 12.15 12.30 21.72 22.65 16.35 17.71 19.93 22.04 21.14 22.74
semiconsistent 12.26 13.21 13.50 16.06 14.06 16.42 13.37 15.79 13.21 16.50

Figure 4: The graphical average improvement percentages of ACO-VNS and GA-VNS with respect to the
min-min heuristic based on the consistency: Braun et al. and Nesmachnow et al. datasets.

consistency. For consistent and inconsistent instances, ACO-VNS showed stable behaviour.
However, for the semi-consistent instances, it may be noted that ACO-VNS has a high
average gap percentages for all datasets. GA-VNS showed stable behaviour regarding all
types of consistency.

Fig. 5 demonstrates the average improvement percentages of ACO-VNS and GA-VNS
over the ad hoc min-min method and the average percentages of the corresponding gap to
the lower bounds of the Braun et al. and Nesmachnow et al. datasets. It may be noted
that ACO-VNS and GA-VNS are capable of achieving high-quality mappings which are very
close to the lower bounds. However, as the dataset size grows, the average gap percentage
for ACO-VNS increases compared to GA-VNS, indicating greater stability.

Table 14: ACO-VNS and GA-VNS average gap percentages with respect to the lower bound based on the
consistency: Braun et al. and Nesmachnow et al. datasets.

Consistency
512x16 A-1024x32 B-1024x32 A-2048x64 B-2048x64

ACO-VNS GA-VNS ACO-VNS GA-VNS ACO-VNS GA-VNS ACO-VNS GA-VNS ACO-VNS GA-VNS
consistent 0.89 0.46 2.22 0.76 1.68 0.64 4.39 0.71 4.38 2.22
inconsistent 0.96 0.78 2.56 1.36 3.45 1.77 6.26 3.58 5.88 3.71
semiconsistent 2.00 0.88 4.37 1.20 4.82 1.91 6.17 3.60 6.47 2.43

30



Figure 5: ACO-VNS and GA-VNS average improvement percentages over the min-min heuristic and the
corresponding gap to LB: Braun et al. and Nesmachnow et al. datasets.

9. Conclusions and future work

The mapping of jobs to resources or job scheduling in distributed and heterogeneous
environments such as grid computing systems is considered one of the most significant and
difficult tasks. The overall performance of such systems can be improved significantly by
using an effective job scheduler. The job scheduling in grid computing shares the property
of being an NP complete problem with conventional distributed systems. However, in the
former systems, it is particularly complex as it is dynamic, multi-objective and has a high
degree of heterogeneity in terms of jobs and resources. Therefore, and to cope in practice with
its difficulty and complexity, the use of meta-heuristics is necessary. ACO and GA are robust
search methods which have been used to successfully solve this problem. However, the results
achieved by these methods could be further improved by combining them with other meta-
heuristic approaches. In this work, two meta-heuristic methods, ACO and GA, have been
hybridized with a novel VNS in a strongly coupled fashion to tackle the static independent
job scheduling problem in grid computing. The new high-level algorithms inherit the best
characteristics of the combined methods. Four new neighbourhood structures and a modified
PALS have been proposed for the novel VNS, which use the concepts of move and transfer of
some jobs to or from the problem resource, which is the resource that has a local makespan
equal to the total makespan of the solution. Through the use of these structures and the
modified local search, VNS improves the performance of the ACO and GA algorithms by
introducing diversity to the colony and the population, respectively, and by exploring new
parts of the state space of the problem.

To evaluate the performance of the proposed methods, the ETC model has been used.
Three different well-known datasets have been used to perform several experiments. The
experimental results show that GA-VNS achieved results that were significantly better than
other selected approaches from the literature for all three benchmarks used in terms of
minimising the makespan; therefore, we can claim that it represents the new state-of-the-art
sequential hybrid algorithm for job scheduling in grid computing. With very low standard

31



deviation values, it should be expected that GA-VNS can find high-quality schedules in
any single run. Moreover, GA-VNS achieved results that show the smallest gap with the
lower bound in all the problem instances examined in this study. ACO-VNS was almost
the second-best algorithm in terms of makespan results; however, it needed a longer time
to construct high-quality solutions. For relatively small problem instances, the result for
ACO-VNS were very close to the ones achieved by GA-VNS; however, as the dataset size
increased, the quality of the solutions found by ACO-VNS decreases, which means that
longer times will be needed to improve the results.

Although the proposed methods seem promising approaches to scheduling in grid com-
puting systems, the work presented in this line of research can be extended in various
directions. We are in the process of investigating the proposed methods in a loosely coupled
fashion to directly compare which hybridization scheme is better. Furthermore, research into
solving the dynamic version of the problem is already underway. The suggested methods in
this work addressed the minimisation of a single objective, which is the makespan. Adding
another objective, such as flowtime, will convert the problem into a multi-objective one.
There- fore, future work needs to be carried out to establish whether the proposed meth-
ods can tackle the multi-objective job scheduling problem in grid computing or otherwise.
Moreover, the two methods proposed in this study are sequential; it would be interesting
to examine their performances in parallel mode. More broadly, the prospect of being able
to apply the proposed methods in this work to other distributed and heterogeneous en-
vironments, such as cloud computing systems, serves as a continuous incentive for future
research.

Appendix A. Algorithms

Algorithm A.3 The Random Max to Min Move (RMMM) procedure

1: Find the problem resource (pr) which has the maximum local makespan time.
2: Pres Job List← job list of pr.
3: Pres size← Pres Job List size.
4: Find the resource (mr) which has the minimum local makespan time.
5: i ← Random number in the range [0..Pres size]
6: S ← move job(S,Pres Job List[i],mr).

Algorithm A.4 The Longest Max to Min Move (LMMM) procedure

1: Find the problem resource (pr) which has the maximum local makespan time.
2: Pres Job List← job list of pr.
3: Pres size← Pres Job List size.
4: Find the job (lj) in Pres Job List which has the longest processing time.
5: Find the resource (br) which is the fastest resource that can process lj.
6: S ← move job(S,lj,br).

32



Algorithm A.1 The Penalty-based Swap (PS) procedure

1: Ś ← S.
2: Min penalty ← makespan(S).
3: penalty ← 0.
4: Find the problem resource (pr) which has the maximum local makespan time.
5: Pres Job List← job list of pr.
6: Pres size← Pres Job List size.
7: for (i=0 to Pres size− 1) do
8: for (j=0 to total number of jobs-1) do
9: if (Ś[j] 6= pr) then

10: Ś ← swap resources(Ś,Pres Job List[i],j).
11: end if
12: penalty ← makespan(Ś).
13: if (penalty < Min penalty) then
14: S ← Ś.
15: Min penalty ← penalty.
16: else
17: Ś ← S.
18: end if
19: end for
20: end for

Algorithm A.5 The min-min algorithm

1: For every job in the job set, calculate the completion time (CT)
2: jobs removed← 0
3: while (jobs removed<total number of jobs) do
4: Find the job i in the job set with the earliest completion time and the resource j

which obtains it
5: Assign i to j
6: Delete i from the job set
7: jobs removed← jobs removed+ 1
8: Update the ready time and the completion time (CT) of resource j
9: end while

33



Algorithm A.2 The Penalty-based Move (PM) procedure

1: Ś ← S.
2: Min penalty ← makespan(S).
3: penalty ← 0.
4: Find the problem resource (pr) which has the maximum local makespan time.
5: Pres Job List← job list of pr.
6: Pres size← Pres Job List size.
7: for (i=0 to Pres size− 1) do
8: for (j=0 to total number of jobs-1) do
9: if (Ś[j] 6= pr) then

10: Ś ← move job(Ś,Pres Job List[i],resource assigned to j).
11: end if
12: penalty ← makespan(Ś).
13: if (penalty < Min penalty) then
14: S ← Ś.
15: Min penalty ← penalty.
16: else
17: Ś ← S.
18: end if
19: end for
20: end for

Appendix B. Tables

Table B.1: Neighbourhood structures order testing for 512x16 dataset using ACO-VNS and GA-VNS. The
best average makespan results are reported in bold.

Case Nieghbourhood order
ACO-VNS GA-VNS

u c hihi.0 u i lohi.0 u s lolo.0 u c hihi.0 u i lohi.0 u s lolo.0
1 LMMM-RMMM-PM-PS 7523303.74 103461.03 3481.22 7401282.59 102232.20 3438.25
2 LMMM-RMMM-PS-PM 7461538.54 103078.38 3457.79 7398202.08 102179.12 3437.50
3 LMMM-PM-RMMM-PS 7611599.66 103997.77 3478.69 7411587.14 102221.50 3438.21
4 LMMM-PM-PS-RMMM 7524070.13 103482.83 3482.79 7401789.80 102201.54 3437.58
5 LMMM-PS-RMMM-PM 7600087.64 103967.27 3478.99 7410696.30 102236.81 3438.85
6 LMMM-PS-PM-RMMM 7459931.99 103198.71 3457.50 7397718.21 102120.02 3437.46
7 RMMM-LMMM-PM-PS 7551520.11 105017.89 3469.67 7405678.69 102217.07 3437.73
8 RMMM-LMMM-PS-PM 7462071.33 103116.24 3458.66 7398272.19 102159.67 3437.39
9 RMMM-PM-LMMM-PS 7599243.67 105076.61 3474.15 7410640.19 102249.57 3438.82
10 RMMM-PM-PS-LMMM 7594642.93 103994.63 3479.86 7410271.22 102193.77 3438.72
11 RMMM-PS-LMMM-PM 7553116.25 105017.03 3471.81 7406281.88 102213.49 3437.66
12 RMMM-PS-PM-LMMM 7460072.38 103203.13 3456.87 7397780.11 102106.96 3437.28
13 PM-LMMM-RMMM-PS 7591135.20 104000.94 3479.76 7410258.33 102223.43 3437.62
14 PM-LMMM-PS-RMMM 7561004.72 104996.28 3472.56 7407923.88 102219.43 3438.65
15 PM-RMMM-LMMM-PS 7589684.18 104002.36 3479.01 7409102.55 102184.40 3438.24
16 PM-RMMM-PS-LMMM 7556095.14 103983.93 3480.05 7406360.38 102228.86 3437.95
17 PM-PS-LMMM-RMMM 7515881.57 103435.80 3483.89 7399881.73 102140.62 3438.68
18 PM-PS-RMMM-LMMM 7513822.99 103479.53 3483.81 7399236.34 102133.93 3438.36
19 PS-LMMM-RMMM-PM 7559978.72 105089.96 3470.11 7406828.91 102137.04 3438.84
20 PS-LMMM-PM-RMMM 7558180.40 104980.12 3469.33 7406386.82 102161.24 3437.88
21 PS-RMMM-LMMM-PM 7519709.81 103431.85 3482.50 7401020.83 102220.94 3437.68
22 PS-RMMM-PM-LMMM 7516257.85 103405.53 3481.77 7400174.26 102155.29 3438.37
23 PS-PM-LMMM-RMMM 7450970.91 102989.42 3455.84 7396901.61 102078.33 3437.08
24 PS-PM-RMMM-LMMM 7450700.08 102986.64 3455.20 7396602.01 102079.87 3437.00

34



Table B.3: Neighbourhood structures order testing for 2048x64 dataset using GA-VNS. The best average
makespan results are reported in bold.

Case Nieghbourhood order
2048x64

A u c hihi A u i lohi A u s lolo B u c hihi B u i lohi B u s lolo
1 LMMM-RMMM-PM-PS 17329758.17 271.58 98.05 5192962.37 27626.06 1023.43
2 LMMM-RMMM-PS-PM 17300487.28 270.21 98.06 5193408.62 27667.20 1023.14
3 LMMM-PM-RMMM-PS 17576466.56 266.50 96.67 5190129.16 27786.74 1020.39
4 LMMM-PM-PS-RMMM 17342620.80 266.55 96.60 5190226.34 27782.87 1021.07
5 LMMM-PS-RMMM-PM 17895612.14 277.24 97.90 5193043.81 27668.28 1023.84
6 LMMM-PS-PM-RMMM 17298123.19 267.94 97.32 5201998.91 27660.77 1017.73
7 RMMM-LMMM-PM-PS 17348268.18 264.77 96.44 5183541.63 27740.10 1014.81
8 RMMM-LMMM-PS-PM 17304399.31 269.30 97.10 5205107.60 27634.76 1023.59
9 RMMM-PM-LMMM-PS 17562688.19 275.93 98.04 5193154.02 27623.50 1023.16
10 RMMM-PM-PS-LMMM 17527866.89 265.16 96.19 5184622.14 27730.96 1015.17
11 RMMM-PS-LMMM-PM 17350083.18 265.83 96.96 5205203.61 27725.04 1018.14
12 RMMM-PS-PM-LMMM 17299174.48 264.70 96.07 5183556.56 27620.64 1014.32
13 PM-LMMM-RMMM-PS 17473300.78 269.38 97.25 5205296.95 27652.03 1018.06
14 PM-LMMM-PS-RMMM 17453691.98 265.93 96.84 5190182.62 27752.64 1020.58
15 PM-RMMM-LMMM-PS 17471395.15 277.24 97.88 5193431.42 27646.29 1024.74
16 PM-RMMM-PS-LMMM 17351215.31 269.27 96.86 5202465.61 27658.80 1017.91
17 PM-PS-LMMM-RMMM 17304924.24 268.15 96.71 5190033.71 27769.42 1020.34
18 PM-PS-RMMM-LMMM 17307863.53 266.50 96.49 5190356.49 27753.35 1019.29
19 PS-LMMM-RMMM-PM 17402234.93 276.24 98.02 5192938.86 27660.52 1024.81
20 PS-LMMM-PM-RMMM 17431016.29 273.99 96.97 5202429.73 27662.95 1017.81
21 PS-RMMM-LMMM-PM 17313463.77 264.47 96.21 5183963.24 26250.05 1014.23
22 PS-RMMM-PM-LMMM 17322004.51 265.96 96.63 5190446.58 27770.68 1018.56
23 PS-PM-LMMM-RMMM 17297647.10 264.58 96.14 5183888.83 27731.93 1015.26
24 PS-PM-RMMM-LMMM 17296457.38 264.40 96.06 5183526.58 26212.04 1012.09

Table B.2: Neighbourhood structures order testing for 1024x32 dataset using GA-VNS. The best average
makespan results are reported in bold.

Case Nieghbourhood order
1024x32

A u c hihi A u i lohi A u s lolo B u c hihi B u i lohi B u s lolo
1 LMMM-RMMM-PM-PS 19643438.29 509.12 117.67 6006892.32 48406.90 1154.24
2 LMMM-RMMM-PS-PM 19626269.27 509.21 117.82 6007711.65 48302.94 1155.78
3 LMMM-PM-RMMM-PS 19657920.41 523.56 117.76 6007551.36 48330.08 1152.01
4 LMMM-PM-PS-RMMM 19643457.42 509.14 117.53 6006002.32 48433.67 1155.66
5 LMMM-PS-RMMM-PM 19660121.85 513.39 117.70 6003632.80 48326.10 1151.69
6 LMMM-PS-PM-RMMM 19613038.68 510.31 117.71 6003572.70 48314.61 1151.59
7 RMMM-LMMM-PM-PS 19644635.99 510.44 117.56 6011272.23 48469.71 1155.60
8 RMMM-LMMM-PS-PM 19626361.29 519.79 117.85 6008885.71 48749.34 1173.66
9 RMMM-PM-LMMM-PS 19656575.77 524.92 117.66 6017031.42 49110.39 1167.62
10 RMMM-PM-PS-LMMM 19657689.51 539.15 118.13 6015187.21 48339.17 1173.18
11 RMMM-PS-LMMM-PM 19645028.50 510.77 117.97 6010550.78 48461.77 1156.15
12 RMMM-PS-PM-LMMM 19622239.02 515.96 117.52 6008207.79 48290.17 1150.47
13 PM-LMMM-RMMM-PS 19654694.13 540.57 118.09 6047644.20 49422.94 1173.04
14 PM-LMMM-PS-RMMM 19653061.61 519.12 117.95 6006780.22 48498.56 1168.86
15 PM-RMMM-LMMM-PS 19652586.53 535.51 117.77 6016053.12 48935.74 1171.78
16 PM-RMMM-PS-LMMM 19646435.45 518.17 117.69 6008831.75 48402.21 1174.69
17 PM-PS-LMMM-RMMM 19632369.46 511.96 117.74 6007237.32 48407.83 1153.47
18 PM-PS-RMMM-LMMM 19632264.93 519.21 117.87 6028125.68 48630.20 1167.84
19 PS-LMMM-RMMM-PM 19648718.79 538.67 118.14 6013598.95 48565.02 1170.48
20 PS-LMMM-PM-RMMM 19650481.38 535.77 118.02 6009139.61 48838.69 1170.11
21 PS-RMMM-LMMM-PM 19636753.80 520.92 117.73 6008435.59 48388.69 1170.01
22 PS-RMMM-PM-LMMM 19640581.93 513.65 117.55 6005952.55 48441.65 1155.76
23 PS-PM-LMMM-RMMM 19612333.61 522.06 119.74 6014647.15 48598.23 1172.40
24 PS-PM-RMMM-LMMM 19609730.66 507.18 117.50 6003413.46 48288.67 1150.38

35



Table B.4: Average improvement percentages of ACO-VNS over some methods from the literature for the
512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS
u c hihi.0 11.91 7.43 3.22 1.03 0.59 -0.06 0.38 0.55
u c hilo.0 6.36 1.70 1.12 0.21 0.41 -0.22 0.21 0.52
u c lohi.0 12.87 7.12 4.38 2.02 1.54 0.55 1.28 1.52
u c lolo.0 6.90 2.06 1.05 0.20 0.29 -0.17 0.35 0.51
u i hihi.0 16.34 5.31 7.74 3.88 0.27 0.61 0.57 0.54
u i hilo.0 8.97 3.04 3.09 2.12 0.36 0.24 0.45 0.56
u i lohi.0 14.99 4.70 7.38 3.17 -0.01 1.36 0.22 0.14
u i lolo.0 8.29 2.51 2.87 1.84 0.18 0.13 0.33 0.44
u s hihi.0 19.77 9.33 6.43 4.19 0.54 0.69 2.34 1.38
u s hilo.0 8.01 2.39 2.15 1.04 0.61 0.01 0.60 0.17
u s lohi.0 10.43 3.80 3.36 1.55 -1.39 -1.82 -1.34 -1.37
u s lolo.0 10.81 3.74 2.06 0.99 0.17 0.03 0.65 0.36
Avg 11.30 4.43 3.74 1.85 0.30 0.11 0.50 0.44

Table B.5: Average improvement percentages of GA-VNS over some methods from the literature for the
512x16 dataset.

Instance min-min GA cMA MA+TS ACO+TS TS pCHC TPVNS
u c hihi.0 12.49 8.04 3.86 1.68 1.25 0.60 1.03 1.21
u c hilo.0 6.64 2.00 1.42 0.52 0.72 0.09 0.52 0.83
u c lohi.0 13.25 7.52 4.80 2.45 1.97 0.99 1.71 1.95
u c lolo.0 7.17 2.35 1.33 0.49 0.58 0.12 0.64 0.80
u i hihi.0 16.35 5.33 7.76 3.90 0.29 0.63 0.60 0.56
u i hilo.0 9.12 3.20 3.25 2.29 0.52 0.41 0.62 0.72
u i lohi.0 15.23 4.96 7.64 3.44 0.27 1.64 0.50 0.42
u i lolo.0 8.50 2.73 3.09 2.06 0.41 0.36 0.56 0.67
u s hihi.0 20.46 10.11 7.23 5.01 1.39 1.54 3.17 2.22
u s hilo.0 8.34 2.74 2.50 1.39 0.97 0.37 0.96 0.53
u s lohi.0 12.93 6.49 6.05 4.30 1.44 1.02 1.49 1.46
u s lolo.0 11.11 4.06 2.39 1.32 0.50 0.36 0.99 0.69
Avg 11.80 4.96 4.28 2.40 0.86 0.68 1.06 1.01

Table B.6: Average improvement percentages and statistical analysis of GA-VNS over ACO-VNS for Braun
512x16 dataset

Instance Improvement p-value
u c hihi.0 0.66 <10−5

u c hilo.0 0.31 <10−5

u c lohi.0 0.44 <10−5

u c lolo.0 0.29 <10−5

u i hihi.0 0.02 0.00056
u i hilo.0 0.16 <10−5

u i lohi.0 0.28 <10−5

u i lolo.0 0.23 <10−5

u s hihi.0 0.86 <10−5

u s hilo.0 0.36 <10−5

u s lohi.0 2.79 <10−5

u s lolo.0 0.33 <10−5

Avg 0.56

36



T
ab

le
B

.7
:

A
ve

ra
ge

im
p

ro
ve

m
en

t
p

er
ce

n
ta

ge
s

of
A

C
O

-V
N

S
a
n

d
G

A
-V

N
S

ov
er

so
m

e
m

et
h

o
d

s
fr

o
m

th
e

li
te

ra
tu

re
fo

r
th

e
1
0
2
4
x
3
2

a
n

d
2
0
4
8
x
6
4

d
at

as
et

s.

In
st

an
ce

10
24

x
32

20
48

x
64

A
C

O
-V

N
S

G
A

-V
N

S
A

C
O

-V
N

S
G

A
-V

N
S

m
in

-m
in

p
C

H
C

T
P

V
N

S
m

in
-m

in
p

C
H

C
T

P
V

N
S

m
in

-m
in

p
C

H
C

T
P

V
N

S
m

in
m

in
p

C
H

C
T

P
V

N
S

A
.u

c
h

ih
i

11
.9

5
3.

37
2.

29
12

.7
6

4.
26

3.
19

8.
45

1.
74

-0
.5

6
11

.7
6

5.
30

3.
08

A
.u

c
h

il
o

9.
85

1.
20

0.
84

13
.1

5
4.

82
4.

47
7.

44
1.

50
0.

19
10

.4
8

4.
74

3.
47

A
.u

c
lo

h
i

11
.5

7
4.

72
3.

28
12

.7
6

6.
00

4.
58

8.
46

2.
39

0.
50

11
.1

0
5.

20
3.

36
A

.u
c

lo
lo

11
.3

6
8.

06
6.

16
11

.4
6

8.
16

6.
27

7.
73

0.
74

-0
.7

3
11

.4
9

4.
78

3.
37

A
.u

i
h

ih
i

19
.8

3
2.

66
2.

24
20

.1
3

3.
02

2.
60

21
.5

8
-0

.0
5

-1
.8

7
24

.5
6

3.
75

1.
99

A
.u

i
h

il
o

24
.3

4
1.

50
1.

72
25

.0
8

2.
46

2.
67

25
.2

8
0.

20
0.

96
26

.2
3

1.
46

2.
21

A
.u

i
lo

h
i

21
.6

3
0.

50
1.

72
23

.3
0

2.
63

3.
82

15
.6

9
-1

.1
3

-1
.6

3
17

.8
9

1.
50

1.
01

A
.u

i
lo

lo
21

.0
8

2.
76

3.
14

22
.1

2
4.

04
4.

41
17

.1
5

-0
.9

8
0.

52
19

.5
0

1.
89

3.
35

A
.u

s
h

ih
i

14
.9

7
3.

44
2.

39
16

.9
6

5.
70

4.
68

15
.4

6
3.

21
0.

99
17

.1
5

5.
13

2.
96

A
.u

s
h

il
o

10
.9

0
3.

21
0.

86
13

.2
8

5.
80

3.
51

12
.7

1
2.

94
-0

.1
2

15
.6

4
6.

20
3.

25
A

.u
s

lo
h

i
15

.0
3

2.
18

1.
80

17
.7

2
5.

28
4.

92
10

.1
6

0.
38

-1
.3

5
13

.8
3

4.
44

2.
79

A
.u

s
lo

lo
13

.1
3

3.
44

0.
78

16
.2

7
6.

94
4.

37
15

.1
6

2.
57

1.
10

16
.5

6
4.

17
2.

72

B
.u

c
h

ih
i

8.
99

1.
54

1.
54

10
.4

3
3.

09
3.

09
6.

82
2.

17
0.

66
9.

91
5.

42
3.

96
B

.u
c

h
il

o
9.

51
1.

71
2.

04
10

.9
6

3.
28

3.
60

8.
32

1.
68

-0
.7

7
11

.4
1

4.
99

2.
63

B
.u

c
lo

h
i

9.
46

3.
70

2.
97

9.
62

3.
86

3.
13

7.
89

1.
02

0.
67

9.
14

2.
37

2.
02

B
.u

c
lo

lo
11

.8
7

4.
77

2.
56

12
.5

1
5.

47
3.

27
7.

36
1.

78
0.

28
7.

59
2.

03
0.

53
B

.u
i

h
ih

i
24

.9
3

2.
70

0.
23

26
.0

3
4.

13
1.

69
17

.0
6

0.
54

-0
.2

1
17

.6
9

1.
31

0.
55

B
.u

i
h

il
o

11
.8

5
2.

62
4.

18
13

.0
8

3.
98

5.
52

23
.2

4
0.

16
-0

.1
3

23
.3

6
0.

32
0.

03
B

.u
i

lo
h

i
12

.6
7

1.
39

1.
10

14
.7

4
3.

73
3.

45
18

.8
8

-1
.5

8
0.

94
22

.1
0

2.
45

4.
88

B
.u

i
lo

lo
15

.9
5

3.
10

1.
94

17
.0

0
4.

31
3.

17
25

.3
8

-0
.2

7
0.

14
27

.8
1

3.
00

3.
40

B
.u

s
h

ih
i

16
.1

0
2.

96
1.

87
18

.1
3

5.
31

4.
25

12
.3

8
1.

32
-0

.3
1

16
.4

0
5.

84
4.

28
B

.u
s

h
il

o
13

.8
9

4.
04

5.
07

14
.7

1
4.

96
5.

97
13

.1
3

1.
58

-1
.1

2
16

.2
8

5.
14

2.
54

B
.u

s
lo

h
i

14
.1

8
1.

43
0.

54
19

.3
5

7.
35

6.
52

14
.3

8
3.

56
-0

.1
5

15
.7

8
5.

14
1.

49
B

.u
s

lo
lo

12
.0

7
4.

71
2.

01
13

.5
0

6.
26

3.
61

12
.9

6
0.

66
-0

.9
8

17
.5

5
5.

90
4.

35
A

v
g

14
.4

6
2.

99
2.

22
16

.0
4

4.
78

4.
03

13
.8

8
1.

09
-0

.1
2

16
.3

0
3.

85
2.

68

37



Table B.8: Average improvement percentages and statistical analysis of GA-VNS over ACO-VNS for the
1024x32 and 2048x64 datasets.

Instance
1024x32 2048x64

ACO-VNS p-value ACO-VNS p-value
A.u c hihi 0.92 <10−5 3.61 <10−5

A.u c hilo 3.66 <10−5 3.28 <10−5

A.u c lohi 1.34 <10−5 2.88 <10−5

A.u c lolo 0.11 <10−5 4.07 <10−5

A.u i hihi 0.37 <10−5 3.79 <10−5

A.u i hilo 0.97 <10−5 1.26 <10−5

A.u i lohi 2.13 <10−5 2.60 <10−5

A.u i lolo 1.31 <10−5 2.84 <10−5

A.u s hihi 2.34 <10−5 1.99 <10−5

A.u s hilo 2.68 <10−5 3.36 <10−5

A.u s lohi 3.17 <10−5 4.08 <10−5

A.u s lolo 3.62 <10−5 1.64 <10−5

B.u c hihi 1.58 <10−5 3.32 <10−5

B.u c hilo 1.60 <10−5 3.37 <10−5

B.u c lohi 0.17 <10−5 1.36 <10−5

B.u c lolo 0.73 <10−5 0.25 <10−5

B.u i hihi 1.47 <10−5 0.77 <10−5

B.u i hilo 1.40 <10−5 0.16 0.00009
B.u i lohi 2.37 <10−5 3.97 <10−5

B.u i lolo 1.25 <10−5 3.26 <10−5

B.u s hihi 2.42 <10−5 4.58 <10−5

B.u s hilo 0.96 <10−5 3.62 <10−5

B.u s lohi 6.02 <10−5 1.64 <10−5

B.u s lolo 1.63 <10−5 5.27 <10−5

Avg 1.84 2.79

References

[1] I. Foster, C. Kesselman, The history of the grid, computing 20 (21) (2010) 22.
[2] F. Ian, K. Carl, The grid: blueprint for a future computing infrastructure (1999).
[3] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling scalable virtual organizations,

International journal of high performance computing applications 15 (3) (2001) 200–222.
[4] M. M. Alobaedy, K. R. Ku-Mahamud, Scheduling jobs in computational grid using hybrid acs and

ga approach, in: Computing, Communications and IT Applications Conference (ComComAp), 2014
IEEE, IEEE, 2014, pp. 223–228.

[5] M. Dorigo, M. Birattari, et al., Swarm intelligence., Scholarpedia 2 (9) (2007) 1462.
[6] G. Ritchie, J. Levine, A hybrid ant algorithm for scheduling independent jobs in heterogeneous com-

puting environments.
[7] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson,

M. D. Theys, B. Yao, D. Hensgen, et al., A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing systems, Journal of Parallel and
Distributed computing 61 (6) (2001) 810–837.

[8] M. T. Younis, S. Yang, B. Passow, Meta-heuristically seeded genetic algorithm for independent job
scheduling in grid computing, in: European Conference on the Applications of Evolutionary Computa-
tion, Springer, 2017, pp. 177–189.

[9] O. H. Ibarra, C. E. Kim, Heuristic algorithms for scheduling independent tasks on nonidentical proces-
sors, Journal of the ACM (JACM) 24 (2) (1977) 280–289.

[10] J. Carretero, F. Xhafa, A. Abraham, Genetic algorithm based schedulers for grid computing systems,
International Journal of Innovative Computing, Information and Control 3 (6) (2007) 1–19.

[11] A. Abraham, R. Buyya, B. Nath, Nature?s heuristics for scheduling jobs on computational grids, in:

38



The 8th IEEE international conference on advanced computing and communications (ADCOM 2000),
2000, pp. 45–52.

[12] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. F. Freund, Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems, Journal of parallel and distributed computing
59 (2) (1999) 107–131.

[13] F. Xhafa, J. A. Gonzalez, K. P. Dahal, A. Abraham, A ga (ts) hybrid algorithm for scheduling in
computational grids., HAIS 9 (2009) 285–292.

[14] F. Xhafa, J. Kolodziej, L. Barolli, A. Fundo, A ga+ ts hybrid algorithm for independent batch schedul-
ing in computational grids, in: Network-Based Information Systems (NBiS), 2011 14th International
Conference on, IEEE, 2011, pp. 229–235.

[15] F. Xhafa, J. Carretero, L. Barolli, A. Durresi, Requirements for an event-based simulation package for
grid systems, Journal of Interconnection Networks 8 (02) (2007) 163–178.

[16] S. Selvi, D. Manimegalai, Task scheduling using two-phase variable neighborhood search algorithm on
heterogeneous computing and grid environments., Arabian Journal for Science & Engineering (Springer
Science & Business Media BV) 40 (3).

[17] H. Liu, A. Abraham, A. E. Hassanien, Scheduling jobs on computational grids using a fuzzy particle
swarm optimization algorithm, Future Generation Computer Systems 26 (8) (2010) 1336–1343.

[18] S. Selvi, D. Manimegalai, A. Suruliandi, Efficient job scheduling on computational gridwith differential
evolution algorithm, International Journal of Computer Theory and Engineering 3 (2) (2011) 277.

[19] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, Task execution time modeling for heterogeneous
computing systems, in: Heterogeneous Computing Workshop, 2000.(HCW 2000) Proceedings. 9th,
IEEE, 2000, pp. 185–199.

[20] F. Xhafa, A. Abraham, Computational models and heuristic methods for grid scheduling problems,
Future generation computer systems 26 (4) (2010) 608–621.

[21] J. Ko lodziej, F. Xhafa, Enhancing the genetic-based scheduling in computational grids by a structured
hierarchical population, Future Generation Computer Systems 27 (8) (2011) 1035–1046.

[22] S. Nesmachnow, H. Cancela, E. Alba, A parallel micro evolutionary algorithm for heterogeneous com-
puting and grid scheduling, Applied Soft Computing 12 (2) (2012) 626–639.

[23] F. Xhafa, J. Kolodziej, L. Barolli, V. Kolici, R. Miho, M. Takizawa, Evaluation of hybridization of ga
and ts algorithms for independent batch scheduling in computational grids, in: P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), 2011 International Conference on, IEEE, 2011, pp. 148–155.

[24] F. Xhafa, A hybrid evolutionary heuristic for job scheduling on computational grids, in: Hybrid Evo-
lutionary Algorithms, Springer, 2007, pp. 269–311.

[25] N. Mladenović, P. Hansen, Variable neighborhood search, Computers & operations research 24 (11)
(1997) 1097–1100.

[26] P. Hansen, N. Mladenović, R. Todosijević, S. Hanafi, Variable neighborhood search: basics and variants,
EURO Journal on Computational Optimization 5 (3) (2017) 423–454.

[27] E. Alba, G. Luque, A new local search algorithm for the dna fragment assembly problem, Evolutionary
Computation in Combinatorial Optimization (2007) 1–12.

[28] A. B. Ali, G. Luque, E. Alba, K. E. Melkemi, An improved problem aware local search algorithm for
the dna fragment assembly problem, Soft Computing 21 (7) (2017) 1709–1720.

[29] S. Nesmachnow, E. Alba, H. Cancela, Scheduling in heterogeneous computing and grid environments
using a parallel chc evolutionary algorithm, Computational Intelligence 28 (2) (2012) 131–155.

[30] G. F. Minetti, G. Luque, E. Alba, The problem aware local search algorithm: an efficient technique for
permutation-based problems, Soft Computing (2017) 1–14.

[31] J. Eaton, S. Yang, Dynamic railway junction rescheduling using population based ant colony optimi-
sation, in: Computational Intelligence (UKCI), 2014 14th UK Workshop on, IEEE, 2014, pp. 1–8.

[32] M. Dorigo, T. Stützle, The ant colony optimization metaheuristic: Algorithms, applications, and ad-
vances, in: Handbook of metaheuristics, Springer, 2003, pp. 250–285.

[33] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, I. de la Iglesia, A. Perallos, Crossover versus mutation:
a comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial

39



optimization problems, The Scientific World Journal 2014.
[34] M. T. Younis, S. Yang, A genetic algorithm for independent job scheduling in grid computing.
[35] F. Xhafa, E. Alba, B. Dorronsoro, B. Duran, A. Abraham, Efficient batch job scheduling in grids using

cellular memetic algorithms, in: Metaheuristics for Scheduling in Distributed Computing Environments,
Springer, 2008, pp. 273–299.

[36] F. Xhafa, J. Carretero, B. Dorronsoro, E. Alba, A tabu search algorithm for scheduling independent
jobs in computational grids, Computing and informatics 28 (2) (2012) 237–250.

40


