998 research outputs found

    Energy regeneration from suspension dynamic modes and self-powered actuation

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper concerns energy harvesting from vehicle suspension systems. The generated power associated with bounce, pitch and roll modes of vehicle dynamics is determined through analysis. The potential values of power generation from these three modes are calculated. Next, experiments are carried out using a vehicle with a four jack shaker rig to validate the analytical values of potential power harvest. For the considered vehicle, maximum theoretical power values of 1.1kW, 0.88kW and 0.97kW are associated with the bounce, pitch and roll modes, respectively, at 20 Hz excitation frequency and peak to peak displacement amplitude of 5 mm at each wheel, as applied by the shaker. The corresponding experimentally power values are 0.98kW, 0.74kW and 0.78kW. An experimental rig is also developed to study the behavior of regenerative actuators in generating electrical power from kinetic energy. This rig represents a quarter-vehicle suspension model where the viscous damper in the shock absorber system is replaced by a regenerative system. The rig is able to demonstrate the actual electrical power that can be harvested using a regenerative system. The concept of self-powered actuation using the harvested energy from suspension is discussed with regard to applications of self-powered vibration control. The effect of suspension energy regeneration on ride comfort and road handling is presented in conjunction with energy harvesting associated with random road excitations.Peer reviewedFinal Accepted Versio

    A review study on energy harvesting systems for vehicles

    Get PDF
    The widespread and increasing consumption of fossil-based fuels as an energy source causes a rapid decrease of these natural sources, as well as an increase of pollution in the atmosphere. Fuel oil, one of the products of fossil fuels, is today the commonly used energy source for transportation. The importance of contributing to the fuel economy and of increasing environmental consciousness have necessitated certain measures in the automotive sector, as well as in other industrial sectors. Therefore, the technological developments recently carried out in the automotive sector aim to reduce the consumption of fossil fuels, for example by recovering waste energy in vehicles. In this direction, efforts have been centered upon the development of energy harvesting systems that provide energy recovery from dynamic parts of the vehicles, such as suspensions. Moreover, the regenerative braking systems that recover some amount of kinetic energy of the vehicles slowing down have been developed and have been in use long since. In this study, research studies on providing the recovery of the vehicles’ waste energy are reviewed with their comparisons

    Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System

    Get PDF
    To improve vehicle fuel economy whilst enhancing road handling and ride comfort, power generating suspension systems have recently attracted increased attention in automotive engineering. This paper presents our study of a regenerative hydraulic shock absorber system which converts the oscillatory motion of a vehicle suspension into unidirectional rotary motion of a generator. Firstly a model which takes into account the influences of the dynamics of hydraulic flow, rotational motion and power regeneration is developed. Thereafter the model parameters of fluid bulk modulus, motor efficiencies, viscous friction torque, and voltage and torque constant coefficients are determined based on modelling and experimental studies of a prototype system. The model is then validated under different input excitations and load resistances, obtaining results which show good agreement between prediction and measurement. In particular, the system using piston-rod dimensions of 50–30 mm achieves recoverable power of 260 W with an efficiency of around 40% under sinusoidal excitation of 1 Hz frequency and 25 mm amplitude when the accumulator capacity is set to 0.32 L with the load resistance 20 Ω. It is then shown that the appropriate damping characteristics required from a shock absorber in a heavy-haulage vehicle can be met by using variable load resistances and accumulator capacities in a device akin to the prototype. The validated model paves the way for further system optimisation towards maximising the performance of regeneration, ride comfort and handling

    A novel fault diagnosis method for rotating machinery based on S transform and morphological pattern spectrum

    Get PDF
    With the continuing expansion of the applications of rotating machinery, an earlier and more accurate fault diagnosis method is required. In this paper, a novel characterization method based on S transform and morphological pattern spectrum (ST-MPS) was put forward. In order to verify the application of the method, ST-MPS was applied to a set of experimental signals obtained in a bearing test bench, and the results verified that the proposed feature extraction method is an effective approach to accurately classify the types of bearing fault

    Power regeneration in the primary suspension of a railway vehicle

    Get PDF
    This paper presents an assessment of the potential for the use of power regenerating dampers (PRDs) in railway vehicle primary suspension systems equipped with the ‘Hybrid Mode’ and ‘Replace Mode’, and the evaluation of the potential/recoverable power that can be obtained. The power regenerating damper is configured as a hydraulic-electromagnetic based damper. Implications for ride comfort and running safety are also commented for investigating the performance of the suspension system. Several case studies of generic railway vehicle primary suspension systems are modelled and configured to include a power regenerating damper with two different configuration modes. Simulations are then carried out on track with typical irregularities for a generic UK passenger vehicle. The performance of the modified vehicle including regenerated power, ride comfort and running safety is evaluated. Analysis of key influencing factors are also carried out to examine their effects on power capability, ride comfort and running safety to guide the primary suspension design/specification

    Implementation of a Novel Hydraulic Hybrid Powertrain in a Sports Utility Vehicle

    Get PDF
    Hydraulic hybrid transmissions offer an efficient and high performance alternative to electric hybrid transmission in on-road vehicles. One of the principle benefits of hydraulic over electric hybrids is the higher power density offered by their energy storage media. This enables hydraulic hybrids to capture virtually all of the available kinetic energy from braking. In contrast electric hybrids are often forced to dissipate part of this energy through friction brakes due to the lower power density inherent in their energy storage media. To date various hydraulic hybrid architectures have been investigated and put into production. However as is typically true there always exists room for improvement. This paper details the integration of a novel blended hydraulic hybrid transmission with improved performance and efficiency into a demonstration vehicle. Also included is a discussion of various unique control strategies which were designed for this powertrain as well as a discussion of initial measurement

    An Innovative Energy Harvesting Shock Absorber System for Motorbikes

    Get PDF
    This article presents an innovative energy recovery shock absorber system for motorcycles. The shock absorber is named synchronous pulley - energy harvesting shock absorber (SP-EHSA). The SP-EHSA is the first system specifically designed to maximize the energy recovery of motorcycles without compromising their dynamic behavior. Throughout the article, the theoretical design, computer modeling, optimization, design, and testing of the system are presented. The article results in a validated computer model of the SP-EHSA shock absorber. The validation is done by manufacturing and testing a physical prototype on a test bench. A study of the energy recovery potential for different road profiles at speeds between 20 and 100 km/h was carried out, obtaining in a typical type B road at 60 km/h an estimated 19.68 W average power. Finally, the effect of energy management (i.e., battery's state of charge) on the dynamic behavior of the vehicle is analyzed

    A novel mode-switching hydraulic hybrid for an on-highway vehicle: A study of architecture and control

    Get PDF
    Increasing demand for fossil fuels, their limited reserves and the environmental effects resulting from the transportation sector has raised severe concerns to government agencies, transportation industry as well as the end-users. This has raised interests in improving the fuel economy of road vehicles. One of the promising technologies in this regard is hybridization of vehicle transmission. Hydraulic hybrids have progressively gained acceptance due to their high power density and low component costs relative to their electric counterpart. Many different hydraulic hybrid architectures have been developed to achieve better power management and regenerative braking and have been tested for performance and efficiency on transmission test rigs and off-highway vehicles. The most commonly used architecture is the series hybrid which offers great flexibility for implementation of power management strategies. But the direct connection of the high pressure accumulator to the system often results in operation of the hydraulic units in high pressure and low displacement mode. However, in this operating mode the hydraulic units are highly inefficient. Also, the accumulator renders the system highly compliant and makes the response of the transmission sluggish. In contrast, a hydrostatic transmission has a very stiff response which ensures a good drivability. However, it lacks energy storage. Keeping these in mind, a blended hybrid architecture was recently developed. However, the complexity of the architecture results in diculties while developing control strategies and results in poor drivability while mode switching. Drivability is a major concern along with performance in an on-highway vehicle. This work focuses on the development of a new hydraulic hybrid architecture called the Mode-Switching Hybrid . This novel architecture combines the merits of a hydrostatic transmission as well as a series hybrid and separates the power transmission and energy recovery function to achieve better drivability. The hydrostatic mode facilitates stiff response and hence, a good driving experience. On the other hand the energy recovered through regenerative braking can be used at a later time to boost the performance of the vehicle by operating it in secondary control mode. The aim of this work is to design the mode switching hybrid for an on-highway vehicle and implement it on a prototype and develop control strategies to improve its drivability. For this work, a non linear system model was developed and the operating modes like acceleration, deceleration and braking along with energy recovery were simulated. The model was linearized and control strategies were developed to improve the drivability of the vehicle. A 1999 Range Rover 4.0 was selected as the prototype vehicle to test the new transmission. A packaging architecture was designed using 3D modeling and implemented on the prototype vehicle. A data acquisition system was designed to record different parameters while conducting the experiments. Different control strategies were implemented and the performance of these control strategies was demonstrated

    Regenerative Braking Experimental Tests and Results for Formula Student Car

    Get PDF
    In this paper, the tuning process of a regenerative braking system for a full electric Formula Student car is reported. Experimental results will be discussed and recovered energy will be measured. In order to obtain the best tuning some preliminary requirements have been decided: no-slip motion of traction wheels during braking phase, no over current and over voltage of Li-ion cells and the best feeling from the braking pedal for the driver. The main target of the regenerative braking system is to obtain the maximum recovered energy during the Endurance event in a typical Formula Student Competition (FS Germany, Hockenheim ring). First, an accurate estimation of the admissible braking torques with the tires used was carried out, starting from the magic formula of Pacejka of the tires. The maximum electric braking torque that the installed engine can provide at various speeds was then estimated, compatibly with the charging currents allowed by the storage system. Subsequently, a mechanical regulating device for regenerative braking was designed and described here, installed directly on the gear lever system that connects the brake pedal to the brake pumps. The proposed system is able to appropriately delay the entry into action of the hydraulic brake pumps and this delay is mechanically adjustable by acting on threaded pins. In this way, the interval of actuation of the brake pedal which activates only the electric braking can be adjusted and tuned. Finally, the overall project was tested on the track, in order to validate the hypotheses previously calculated and determine the setting capable of optimizing the energy recovered during a test equivalent to the Endurance event, compatibly with the constraints of the installed systems on board

    Influence of Architecture Design on the Performance and Fuel Efficiency of Hydraulic Hybrid Transmissions

    Get PDF
    Hydraulic hybrids are a proven and effective alternative to electric hybrids for increasing the fuel efficiency of on-road vehicles. To further the state-of-the-art this work investigates how architecture design influences the performance, fuel efficiency, and controllability of hydraulic hybrid transmissions. To that end a novel neural network based power management controller was proposed and investigated for conventional hydraulic hybrids. This control scheme trained a neural network to generalize the globally optimal, though non-implementable, state trajectories generated by dynamic programming. Once trained the neural network was used for online prediction of a transmission’s optimal state trajectory during untrained cycles forming the basis of an implementable controller. During hardware-in-the-loop (HIL) testing the proposed control strategy improved fuel efficiency by up to 25.5% when compared with baseline approaches. To further improve performance and fuel efficiency a novel transmission architecture termed a Blended Hydraulic Hybrid was proposed and investigated. This novel architecture improves on existing hydraulic hybrids by partially decoupling power transmission from energy storage while simultaneously providing means to recouple the systems when advantageous. Optimal control studies showed the proposed architecture improved fuel efficiency over both baseline mechanical and conventional hydraulic hybrid transmissions. Effective system level and supervisory control schemes were also proposed for the blended hybrid. In order to investigate the concept’s feasibility a blended hybrid transmission was constructed and successfully tested on a HIL transmission dynamometer. Finally to investigate controllability and driver perception an SUV was retrofitted with a blended hybrid transmission. Successful on-road vehicle testing showcased the potential of this novel hybrid architecture as a viable alternative to more conventional electric hybrids in the transportation sector
    corecore