371 research outputs found

    Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    Get PDF
    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation

    A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    Get PDF
    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro optoelectromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final microintegrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3mm s−1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/ assembly with other optical micro components for OCT integrated imagingThis work is supported by FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Multimodal Optical Imaging by Microendoscope

    Get PDF
    In the past decades, optical imaging field has been developing rapidly. Noninvasive imaging enabled by microendoscopes has become a promising tool for early cancer detection and imaging-guided surgery. In this chapter, we will mainly introduce most advances in the miniaturized microendoscope development, including photoacoustic, confocal fluorescence, multiphoton fluorescence, second-harmonic generation (SHG) label-free imaging, wide-field fluorescence, surface-enhanced Raman scattering (SERS) nanoparticle-based Raman spectroscopy. Enabled by the frontier micromachining techniques, micro-opto-electromechanical system (MOEMS)-based novel microendoscopes with various imaging modalities have been prototyped and further translated into clinics. The working principle of representative microendoscopes and optical imaging modalities will be introduced in detail

    Optical MEMS

    Get PDF

    Smartspectrometer—embedded optical spectroscopy for applications in agriculture and industry

    Get PDF
    The ongoing digitization of industry and agriculture can benefit significantly from optical spectroscopy. In many cases, optical spectroscopy enables the estimation of properties such as substance concentrations and compositions. Spectral data can be acquired and evaluated in real time, and the results can be integrated directly into process and automation units, saving resources and costs. Multivariate data analysis is needed to integrate optical spectrometers as sensors. Therefore, a spectrometer with integrated artificial intelligence (AI) called SmartSpectrometer and its interface is presented. The advantages of the SmartSpectrometer are exemplified by its integration into a harvesting vehicle, where quality is determined by predicting sugar and acid in grapes in the field

    A novel approach to programmable imaging using MOEMS

    Get PDF
    New advancements in science are frequently sparked by the invention of new instruments. Possibly the most important scientific instrument of the past fifty years is the digital computer. Among the computers many uses and impacts, digital imaging has revolutionized images and photography, merging computer processing and optical images. In this thesis, we merge an additional reconfigurable micro-mechanical domain into the digital imaging system, introducing a novel imaging method called Programmable Imaging. With our imaging method, we selectively sample the object plane, by utilizing state-of-the-art Micro-Optical-Electrical-Mechanical Systems (MOEMS) of mirror arrays. The main concept is to use an array of tiny mirrors that have the ability to tilt in different directions. Each mirror acts as an “eye” which images a scene. The individual images from each mirror are then reassembled, such that all of the information is placed into a single image. By exact control of the mirrors, the object plane can be sampled in a desired fashion, such that post-processing effects, such as image distortion and digital zoom, that are currently performed in software can now be performed in real time in hardware as the image gets captured. It is important to note that even for different sampling or imaging functions, no hardware components or settings are changed in the system.In this work, we present our programmable imaging system prototype. The MOEMS chipset used in our prototype is the Lucent LambdaRouter mirror array. This device contains 256 individually-controlled micro-mirrors, which can be tilted on both the x and y axes ±8o. We describe the theoretical model of our system, including a system model, capacity model, and diffraction results. We experimentally prototype our programmable imaging system using both a single mirror, followed by multiple mirrors. With the single mirror imaging, we explore examples related to single projection systems and give details of our required mirror calibration. Using this technique, we show mosaic images, as well as images in which a single pixel was extracted for every mirror tilt. Using this single pixel approach, the greatest capabilities of our programmable imaging are realized. When using multiple mirrors to image an object, new features of our system are demonstrated. In this case, the object plane can be viewed from different perspectives. From these multi-perspective images, virtual 3-D images can be created. In addition, stereo depth estimation can be performed to calculate the distance between the object and the image plane. This depth measurement is significant, as the depth information is taken with only one image from only one camera.Ph.D., Electrical Engineering -- Drexel University, 200

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG

    Polymer based microfabrication and its applications in optical MEMS and bioMEMS

    Get PDF
    Due to its ease of fabrication, low cost and great variety of functionalities, polymer has become an important material in microfabrication. MEMS devices with polymer as the structure material have found applications in various fields, especially in BioMEMS and optical MEMS. In this dissertation, three polymer based microfabricated devices/components have been developed and tested. Various polymer based fabrication techniques, such as high aspect ratio SU-8 photolithography, three dimensional polydimethylsiloxane (PDMS) soft lithography, multi-layer soft lithography and PDMS double casting technique have been developed/studied and employed in the device fabrication process. The main contribution of this dissertation includes: (1) Developed two novel methods for the fabrication of out-of-plane microlens. The PDMS and UV curable polymer (NOA73) replication technique made possible the fast replication of out-of-plane microlens and broaden the lens material selection. The in-situ pneumatical microlens fabrication technique, on the other hand, provides feasible method to integrate out-of-plane microlens into microfluidic chips requiring minimal design footprint and fabrication complexity. (2) Design, fabrication and test of a microchip flow cytometer with 3-D hydrofocusing chamber and integrated out-of-plane microlens as on-chip optical detection component. The developed micro flow cytometer offers 3-D hydrofocusing like conventional cytometer cuvette, and has on-chip microlens for optical signal collection to improve the detection efficiency. With the latest design improvement, the hydrofocusing chamber can focus the sample stream down to less than 10 m in diameter in both vertical and horizontal directions. (3) Development of a PDMS microchip based platform for multiplex immunoassay applications. Integrated micro valves were employed for manipulation of fluidic reagents in the microchannel network. PDMS surface was used as the solid phase substrate for immuno-reactions. Preliminary results showed that, even with low cost polyclonal goat anti-mouse IgG as the reporter antibody, the detection limit of goat mouse IgG can reach as low as 5 ng/mL (about 33 pM). With the continuous advance in microfabrcation technique and polymer science, polymer based microfabrication and polymer MEMS devices will keep to evolve. In the future, more work needs to be done in this field with great potential and endless innovations

    Diffractive micro-electronical structures in Si and Si Ge

    Get PDF

    Wafer scale manufacturing of high precision micro-optical components through X-ray lithography yielding 1800 Gray Levels in a fingertip sized chip

    Get PDF
    We present a novel x-ray lithography based micromanufacturing methodology that offers scalable manufacturing of high precision optical components. It is accomplished through simultaneous usage of multiple stencil masks made moveable with respect to one another through custom made micromotion stages. The range of spectral flux reaching the sample surface at the LiMiNT micro/nanomanufacturing facility of Singapore Synchrotron Light Source (SSLS) is about 2 keV to 10 keV, offering substantial photon energy to carry out deep x-ray lithography. In this energy range, x-rays penetrate through resist materials with only little scattering. The highly collimated rectangular beam architecture of the x-ray source enables a full 4″ wafer scale fabrication. Precise control of dose deposited offers determined chain scission in the polymer to required depth enabling 1800 discrete gray levels in a chip of area 20 mm2^{2} and with more than 2000 within our reach. Due to its parallel processing capability, our methodology serves as a promising candidate to fabricate micro/nano components of optical quality on a large scale to cater for industrial requirements. Usage of these fine components in analytical devices such as spectrometers and multispectral imagers transforms their architecture and shrinks their size to pocket dimension. It also reduces their complexity and increases affordability while also expanding their application areas. Consequently, equipment based on these devices is made available and affordable for consumers and businesses expanding the horizon of analytical applications. Mass manufacturing is especially vital when these devices are to be sold in large quantities especially as components for original equipment manufacturers (OEM), which has also been demonstrated through our work. Furthermore, we also substantially improve the quality of the micro-components fabricated, 3D architecture generated, throughput, capability and availability for industrial application. Manufacturing 1800 Gray levels or more through other competing techniques is either limited due to multiple process steps involved or due to unacceptably long time required owing to their pencil beam architecture. Our manufacturing technique presented here overcomes both these shortcomings in terms of the maximum number of gray levels that can be generated, and the time required to generate the same
    • 

    corecore