397 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationIn order to ensure high production yield of semiconductor devices, it is desirable to characterize intermediate progress towards the final product by using metrology tools to acquire relevant measurements after each sequential processing step. The metrology data are commonly used in feedback and feed-forward loops of Run-to-Run (R2R) controllers to improve process capability and optimize recipes from lot-to-lot or batch-to-batch. In this dissertation, we focus on two related issues. First, we propose a novel non-threaded R2R controller that utilizes all available metrology measurements, even when the data were acquired during prior runs that differed in their contexts from the current fabrication thread. The developed controller is the first known implementation of a non-threaded R2R control strategy that was successfully deployed in the high-volume production semiconductor fab. Its introduction improved the process capability by 8% compared with the traditional threaded R2R control and significantly reduced out of control (OOC) events at one of the most critical steps in NAND memory manufacturing. The second contribution demonstrates the value of developing virtual metrology (VM) estimators using the insight gained from multiphysics models. Unlike the traditional statistical regression techniques, which lead to linear models that depend on a linear combination of the available measurements, we develop VM models, the structure of which and the functional interdependence between their input and output variables are determined from the insight provided by the multiphysics describing the operation of the processing step for which the VM system is being developed. We demonstrate this approach for three different processes, and describe the superior performance of the developed VM systems after their first-of-a-kind deployment in a high-volume semiconductor manufacturing environment

    Towards A Computational Intelligence Framework in Steel Product Quality and Cost Control

    Get PDF
    Steel is a fundamental raw material for all industries. It can be widely used in vari-ous fields, including construction, bridges, ships, containers, medical devices and cars. However, the production process of iron and steel is very perplexing, which consists of four processes: ironmaking, steelmaking, continuous casting and rolling. It is also extremely complicated to control the quality of steel during the full manufacturing pro-cess. Therefore, the quality control of steel is considered as a huge challenge for the whole steel industry. This thesis studies the quality control, taking the case of Nanjing Iron and Steel Group, and then provides new approaches for quality analysis, manage-ment and control of the industry. At present, Nanjing Iron and Steel Group has established a quality management and control system, which oversees many systems involved in the steel manufacturing. It poses a high statistical requirement for business professionals, resulting in a limited use of the system. A lot of data of quality has been collected in each system. At present, all systems mainly pay attention to the processing and analysis of the data after the manufacturing process, and the quality problems of the products are mainly tested by sampling-experimental method. This method cannot detect product quality or predict in advance the hidden quality issues in a timely manner. In the quality control system, the responsibilities and functions of different information systems involved are intricate. Each information system is merely responsible for storing the data of its corresponding functions. Hence, the data in each information system is relatively isolated, forming a data island. The iron and steel production process belongs to the process industry. The data in multiple information systems can be combined to analyze and predict the quality of products in depth and provide an early warning alert. Therefore, it is necessary to introduce new product quality control methods in the steel industry. With the waves of industry 4.0 and intelligent manufacturing, intelligent technology has also been in-troduced in the field of quality control to improve the competitiveness of the iron and steel enterprises in the industry. Applying intelligent technology can generate accurate quality analysis and optimal prediction results based on the data distributed in the fac-tory and determine the online adjustment of the production process. This not only gives rise to the product quality control, but is also beneficial to in the reduction of product costs. Inspired from this, this paper provide in-depth discussion in three chapters: (1) For scrap steel to be used as raw material, how to use artificial intelligence algorithms to evaluate its quality grade is studied in chapter 3; (2) the probability that the longi-tudinal crack occurs on the surface of continuous casting slab is studied in chapter 4;(3) The prediction of mechanical properties of finished steel plate in chapter 5. All these 3 chapters will serve as the technical support of quality control in iron and steel production

    Development and Simulation Assessment of Semiconductor Production System Enhancements for Fast Cycle Times

    Get PDF
    Long cycle times in semiconductor manufacturing represent an increasing challenge for the industry and lead to a growing need of break-through approaches to reduce it. Small lot sizes and the conversion of batch processes to mini-batch or single-wafer processes are widely regarded as a promising means for a step-wise cycle time reduction. Our analysis with discrete-event simulation and queueing theory shows that small lot size and the replacement of batch tools with mini-batch or single wafer tools are beneficial but lot size reduction lacks persuasive effectiveness if reduced by more than half. Because the results are not completely convincing, we develop a new semiconductor tool type that further reduces cycle time by lot streaming leveraging the lot size reduction efforts. We show that this combined approach can lead to a cycle time reduction of more than 80%

    Aide à la prise de décision en temps réel dans un contexte de production adaptative

    Get PDF
    La dynamique des marchĂ©s a Ă©voluĂ© et les entreprises manufacturiĂšres ont dĂ» s’adapter pour rester compĂ©titives. Une usine se dĂ©finissait historiquement par les biens qu’elle produisait. La valeur de ces biens Ă©tait Ă©valuĂ©e avant tout par leurs composants. Mais sous la pression du marchĂ© et de son dynamisme accru, les usines souhaitant rester compĂ©titives deviennent de plus en plus des centres de service. Cela provoque des changements et des problĂšmes de gestion pour lesquels elles n’étaient pas prĂ©parĂ©es. L’efficacitĂ© Ă©conomique de la crĂ©ation de valeur n’est plus aujourd’hui la seule propriĂ©tĂ© des produits, mais se dĂ©place vers les processus. Cela signifie que les potentiels qui seront dĂ©cisifs ne sont pas Ă  chercher dans les capacitĂ©s des produits, mais dans les capacitĂ©s des processus. En effet, la mondialisation accroit l’anonymat des produits tout au long de chaĂźnes d’approvisionnement plus longues et plus complexes. Toute entreprise souhaitant se dĂ©marquer de la compĂ©tition doit proposer Ă  ses clients de la valeur ajoutĂ©e additionnelle tels qu’une flexibilitĂ© accrue, des dĂ©lais de livraison plus courts, un meilleur respect des dĂ©lais, un plus grand choix d’options. Ces propriĂ©tĂ©s sont le fruit des processus. Leur valeur ajoutĂ©e se transfĂšre Ă  leur rĂ©sultat et donc au client. Une des conditions nĂ©cessaires Ă  la transparence des processus est leur capacitĂ© Ă  coller en temps rĂ©el au flux de valeur de l’entreprise. Les processus doivent ĂȘtre en mesure de s’adapter aux conditions changeantes de l’environnement, de rĂ©agir Ă  des Ă©vĂ©nements imprĂ©vus et de rĂ©soudre ces difficultĂ©s en collaborant. C’est Ă  ces conditions qu’ils pourront devenir des processus adaptatifs. Cette thĂšse s’intĂ©resse aux processus de rĂ©ordonnancement en milieu industriel. Elle vise l’implantation de composantes d’aide Ă  la prise de dĂ©cision en temps rĂ©el ainsi que des mĂ©canismes de boucle rĂ©troactive intĂ©grant l’optimisation et les techniques de simulation au sein d’applications ERP et MES permettant ainsi de connecter l’atelier de production au reste de l’entreprise. La plateforme qui a Ă©tĂ© mise en place permet de rĂ©pondre en temps rĂ©el aux divers alĂ©as survenant dans l’atelier et peut ĂȘtre Ă©tendue au-delĂ  de la problĂ©matique de l’ordonnancement.----------ABSTRACT The market dynamics have evolved and manufacturing facilities have followed this trend to stay competitive. The classic factory has been defined by its manufactured goods. The value of these goods has been measured primarily by their material components. But under the market pressure and its increasing dynamism, factories wishing to stay competitive are becoming modern service centers. It has resulted in management problems for which many companies are not yet prepared. Today, the economic efficiency of value creation is not a property of the products but rather of the process. It means the decisive potentials of companies are to be found not so much in their production capability but in their process capability. Indeed, increasing globalization is necessarily leading towards more anonymous products out of long supply chains. Any enterprise wishing to stand out from the competition in the future needs a strategy which offers the customer an additional added value, such as, for example, high flexibility, short delivery times, high delivery reliability, and wide range of variants. These properties are created by the processes. The requirement for process capability gives rise in turn to the requirement that all value-adding processes be geared to the process result and thus to the customer. A necessary condition of process transparency is the ability to map the company's value stream in real time. Processes must be able to adapt to environmental changing conditions, react to unforeseen events and to solve these difficulties by collaborating. Under these conditions they can be called adaptive processes. This thesis focuses on scheduling process in manufacturing environments. The main objective is to implement real time decision-making support components as well as feedback loop mechanisms integrating optimization and simulation techniques in ERP and MES applications allowing connecting the shop floor to the rest of the enterprise. The proposed platform responds in real time to various events occurring on the shop floor and may be extended beyond the scheduling issue. The works developed during this thesis are based on four published, accepted or submitted papers to specialized papers

    Integration of software tools to aid the implementation of a DFM strategy

    Get PDF

    Predictive model-based quality inspection using Machine Learning and Edge Cloud Computing

    Full text link
    © 2020 The Authors The supply of defect-free, high-quality products is an important success factor for the long-term competitiveness of manufacturing companies. Despite the increasing challenges of rising product variety and complexity and the necessity of economic manufacturing, a comprehensive and reliable quality inspection is often indispensable. In consequence, high inspection volumes turn inspection processes into manufacturing bottlenecks. In this contribution, we investigate a new integrated solution of predictive model-based quality inspection in industrial manufacturing by utilizing Machine Learning techniques and Edge Cloud Computing technology. In contrast to state-of-the-art contributions, we propose a holistic approach comprising the target-oriented data acquisition and processing, modelling and model deployment as well as the technological implementation in the existing IT plant infrastructure. A real industrial use case in SMT manufacturing is presented to underline the procedure and benefits of the proposed method. The results show that by employing the proposed method, inspection volumes can be reduced significantly and thus economic advantages can be generated

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    Online Simulation in Semiconductor Manufacturing

    Get PDF
    In semiconductor manufacturing discrete event simulation systems are quite established to support multiple planning decisions. During the recent years, the productivity is increasing by using simulation methods. The motivation for this thesis is to use online simulation not only for planning decisions, but also for a wide range of operational decisions. Therefore an integrated online simulation system for short term forecasting has been developed. The production environment is a mature high mix logic wafer fab. It has been selected because of its vast potential for performance improvement. In this thesis several aspects of online simulation will be addressed: The first aspect is the implementation of an online simulation system in semiconductor manufacturing. The general problem is to achieve a high speed, a high level of detail, and a high forecast accuracy. To resolve these problems, an online simulation system has been created. The simulation model has a high level of detail. It is created automatically from underling fab data. To create such a simulation model from fab data, additional problems related to the underlying data arise. The major parts are the data access, the data integration, and the data quality. These problems have been solved by using an integrated data model with several data extraction, data transformation, and data cleaning steps. The second aspect is related to the accuracy of online simulation. The overall problem is to increase the forecast horizon, increase the level of detail of the forecast and reduce the forecast error. To provide useful forecast results, the simulation model contains a high level of modeling details and a proper initialization. The influences on the forecast quality will be analyzed. The results show that the simulation forecast accuracy achieves good quality to predict future fab performance. The last aspect is to find ways to use simulation forecast results to improve the fab performance. Numerous applications have been identified. For each application a description is available. It contains the requirements of such a forecast, the decision variables, and background information. An application example shows, where a performance problem exists and how online simulation is able to resolve it. To further enhance the real time capability of online simulation, a major part is to investigate new ways to connect the simulation model with the wafer fab. For fab driven simulation, the simulation model and the real wafer fab run concurrently. The wafer fab provides several events to update the simulation during runtime. So the model is always synchronized with the real fab. It becomes possible to start a simulation run in real time. There is no further delay for data extraction, data transformation and model creation. A prototype for a single work center has been implemented to show the feasibility

    Entwicklung und EinfĂŒhrung von Produktionssteuerungsverbesserungen fĂŒr die kundenorientierte Halbleiterfertigung

    Get PDF
    Production control in a semiconductor production facility is a very complex and timeconsuming task. Different demands regarding facility performance parameters are defined by customer and facility management. These requirements are usually opponents, and an efficient strategy is not simple to define. In semiconductor manufacturing, the available production control systems often use priorities to define the importance of each production lot. The production lots are ranked according to the defined priorities. This process is called dispatching. The priority allocation is carried out by special algorithms. In literature, a huge variety of different strategies and rules is available. For the semiconductor foundry business, there is a need for a very flexible and adaptable policy taking the facility state and the defined requirements into account. At our case the production processes are characterized by a low-volume high-mix product portfolio. This portfolio causes additional stability problems and performance lags. The unstable characteristic increases the influence of reasonable production control logic. This thesis offers a very flexible and adaptable production control policy. This policy is based on a detailed facility model with real-life production data. The data is extracted from a real high-mix low-volume semiconductor facility. The dispatching strategy combines several dispatching rules. Different requirements like line balance, throughput optimization and on-time delivery targets can be taken into account. An automated detailed facility model calculates a semi-optimal combination of the different dispatching rules under a defined objective function. The objective function includes different demands from the management and the customer. The optimization is realized by a genetic heuristic for a fast and efficient finding of a close-to-optimal solution. The strategy is evaluated with real-life production data. The analysis with the detailed facility model of this fab shows an average improvement of 5% to 8% for several facility performance parameters like cycle time per mask layer. Finally the approach is realized and applied at a typical high-mix low-volume semiconductor facility. The system realization bases on a JAVA implementation. This implementation includes common state-of-the-art technologies such as web services. The system replaces the older production control solution. Besides the dispatching algorithm, the production policy includes the possibility to skip several metrology operations under defined boundary conditions. In a real-life production process, not all metrology operations are necessary for each lot. The thesis evaluates the influence of the sampling mechanism to the production process. The solution is included into the system implementation as a framework to assign different sampling rules to different metrology operations. Evaluations show greater improvements at bottleneck situations. After the productive introduction and usage of both systems, the practical results are evaluated. The staff survey offers good acceptance and response to the system. Furthermore positive effects on the performance measures are visible. The implemented system became part of the daily tools of a real semiconductor facility.Produktionssteuerung im Bereich der kundenorientierten Halbleiterfertigung ist heutzutage eine sehr komplexe und zeitintensive Aufgabe. Verschiedene Anforderungen bezĂŒglich der Fabrikperformance werden seitens der Kunden als auch des Fabrikmanagements definiert. Diese Anforderungen stehen oftmals in Konkurrenz. Dadurch ist eine effiziente Strategie zur Kompromissfindung nicht einfach zu definieren. Heutige Halbleiterfabriken mit ihren verfĂŒgbaren Produktionssteuerungssystemen nutzen oft prioritĂ€tsbasierte Lösungen zur Definition der Wichtigkeit eines jeden Produktionsloses. Anhand dieser PrioritĂ€ten werden die Produktionslose sortiert und bearbeitet. In der Literatur existiert eine große Bandbreite verschiedener Algorithmen. Im Bereich der kundenorientierten Halbleiterfertigung wird eine sehr flexible und anpassbare Strategie benötigt, die auch den aktuellen Fabrikzustand als auch die wechselnden Kundenanforderungen berĂŒcksichtigt. Dies gilt insbesondere fĂŒr den hochvariablen geringvolumigen Produktionsfall. Diese Arbeit behandelt eine flexible Strategie fĂŒr den hochvariablen Produktionsfall einer solchen ProduktionsstĂ€tte. Der Algorithmus basiert auf einem detaillierten Fabriksimulationsmodell mit RĂŒckgriff auf Realdaten. Neben synthetischen Testdaten wurde der Algorithmus auch anhand einer realen Fertigungsumgebung geprĂŒft. Verschiedene Steuerungsregeln werden hierbei sinnvoll kombiniert und gewichtet. Wechselnde Anforderungen wie Linienbalance, Durchsatz oder Liefertermintreue können adressiert und optimiert werden. Mittels einer definierten Zielfunktion erlaubt die automatische Modellgenerierung eine Optimierung anhand des aktuellen Fabrikzustandes. Die Optimierung basiert auf einen genetischen Algorithmus fĂŒr eine flexible und effiziente Lösungssuche. Die Strategie wurde mit Realdaten aus der Fertigung einer typischen hochvariablen geringvolumigen Halbleiterfertigung geprĂŒft und analysiert. Die Analyse zeigt ein Verbesserungspotential von 5% bis 8% fĂŒr die bekannten Performancekriterien wie Cycletime im Vergleich zu gewöhnlichen statischen Steuerungspolitiken. Eine prototypische Implementierung realisiert diesen Ansatz zur Nutzung in der realen Fabrikumgebung. Die Implementierung basiert auf der JAVA-Programmiersprache. Aktuelle Implementierungsmethoden erlauben den flexiblen Einsatz in der Produktionsumgebung. Neben der Fabriksteuerung wurde die Möglichkeit der Reduktion von Messoperationszeit (auch bekannt unter Sampling) unter gegebenen Randbedingungen einer hochvariablen geringvolumigen Fertigung untersucht und geprĂŒft. Oftmals ist aufgrund stabiler Prozesse in der Fertigung die Messung aller Lose an einem bestimmten Produktionsschritt nicht notwendig. Diese Arbeit untersucht den Einfluss dieses gĂ€ngigen Verfahrens aus der Massenfertigung fĂŒr die spezielle geringvolumige Produktionsumgebung. Die Analysen zeigen insbesondere in Ausnahmesituationen wie AnlagenausfĂ€llen und KapazitĂ€tsengpĂ€sse einen positiven Effekt, wĂ€hrend der Einfluss unter normalen Produktionsbedingungen aufgrund der hohen ProduktvariabilitĂ€t als gering angesehen werden kann. Nach produktiver EinfĂŒhrung in einem typischen Vertreter dieser Halbleiterfabriken zeigten sich schnell positive Effekte auf die Fabrikperformance als auch eine breite Nutzerakzeptanz. Das implementierte System wurde Bestandteil der tĂ€glichen genutzten Werkzeuglandschaft an diesem Standort

    Cycle Time Estimation in a Semiconductor Wafer Fab: A concatenated Machine Learning Approach

    Get PDF
    Die fortschreitende Digitalisierung aller Bereiche des Lebens und der Industrie lĂ€sst die Nachfrage nach Mikrochips steigen. Immer mehr Branchen – unter anderem auch die Automobilindustrie – stellen fest, dass die Lieferketten heutzutage von den Halbleiterherstellern abhĂ€ngig sind, was kĂŒrzlich zur Halbleiterkrise gefĂŒhrt hat. Diese Situation erhöht den Bedarf an genauen Vorhersagen von Lieferzeiten von Halbleitern. Da aber deren Produktion extrem schwierig ist, sind solche SchĂ€tzungen nicht einfach zu erstellen. GĂ€ngige AnsĂ€tze sind entweder zu simpel (z.B. Mittelwert- oder rollierende MittelwertschĂ€tzer) oder benötigen zu viel Zeit fĂŒr detaillierte Szenarioanalysen (z.B. ereignisdiskrete Simulationen). Daher wird in dieser Arbeit eine neue Methodik vorgeschlagen, die genauer als Mittelwert- oder rollierende MittelwertschĂ€tzer, aber schneller als Simulationen sein soll. Diese Methodik nutzt eine Verkettung von Modellen des maschinellen Lernens, die in der Lage sind, Wartezeiten in einer Halbleiterfabrik auf der Grundlage einer Reihe von Merkmalen vorherzusagen. In dieser Arbeit wird diese Methodik entwickelt und analysiert. Sie umfasst eine detaillierte Analyse der fĂŒr jedes Modell benötigten Merkmale, eine Analyse des genauen Produktionsprozesses, den jedes Produkt durchlaufen muss – was als "Route" bezeichnet wird – und entwickelte Strategien zur BewĂ€ltigung von Unsicherheiten, wenn die Merkmalswerte in der Zukunft nicht bekannt sind. ZusĂ€tzlichwird die vorgeschlagene Methodik mit realen Betriebsdaten aus einerWafer-Fabrik der Robert Bosch GmbH evaluiert. Es kann gezeigt werden, dass die Methodik den Mittelwert- und Rollierenden MittelwertschĂ€tzern ĂŒberlegen ist, insbesondere in Situationen, in denen die Zykluszeit eines Loses signifikant vom Mittelwert abweicht. ZusĂ€tzlich kann gezeigt werden, dass die AusfĂŒhrungszeit der Methode signifikant kĂŒrzer ist als die einer detaillierten Simulation
    • 

    corecore