70 research outputs found

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    230501

    Get PDF
    Cooperative Vehicular Platooning (Co-VP) is a paradigmatic example of a Cooperative Cyber-Physical System (Co-CPS), which holds the potential to vastly improve road safety by partially removing humans from the driving task. However, the challenges are substantial, as the domain involves several topics, such as control theory, communications, vehicle dynamics, security, and traffic engineering, that must be coupled to describe, develop and validate these systems of systems accurately. This work presents a comprehensive survey of significant and recent advances in Co-VP relevant fields. We start by overviewing the work on control strategies and underlying communication infrastructures, focusing on their interplay. We also address a fundamental concern by presenting a cyber-security overview regarding these systems. Furthermore, we present and compare the primary initiatives to test and validate those systems, including simulation tools, hardware-in-the-loop setups, and vehicular testbeds. Finally, we highlight a few open challenges in the Co-VP domain. This work aims to provide a fundamental overview of highly relevant works on Co-VP topics, particularly by exposing their inter-dependencies, facilitating a guide that will support further developments in this challenging field.info:eu-repo/semantics/publishedVersio

    5G-Enabled Autonomous Platooning on Robotic Vehicle Testbed

    Get PDF
    Humanity is progressively moving towards a more intuitive and technological future. The area of Intelligent and Cooperative Transport Systems has revealed itself as one of the areas in great evolution, through technologies of autonomous driving and intravehicle communication. With the main goal of providing accident-free environments as well as optimizing the movement of vehicles on roads all over the world, Vehicle to Everything (V2X) communication is very important when it comes to all kinds of vehicular applications. The CMU|PT FLOYD project focuses on this area, with the aim of developing new systems for possible future implementation. In this report, a vehicular application using a 5G-capable module to perform Vehicle to Infrastructure (V2I) communications was evaluated. This vehicular application is based on an emergency braking scenario, whereby detecting an approaching vehicle in a place where an accident occurred, a message is sent over the network that is picked up by the main vehicle, triggering braking. It should be noted that this sending will be made through the module with 5G capacity, thus being an innovative application. Complementary to this scenario is the tracking of a vehicle by another vehicle, thus making a more complex emergency braking application with a cooperative platoon. This platoon will be maintained through sensors present in the following vehicle, such as LiDAR and ZED camera. With this, image processing and a sensor fusion was done in order to keep the follower at a safe distance but with the ability to follow the leader. In order to validate and test this entire solution, robotic testbeds were used as a low-cost solution, allowing a concrete evaluation, with enlightening physical results of the entire application performed.A humanidade, está a caminhar, progressivamente, para um futuro mais intuitivo e tecnológico. A área dos Sistemas Inteligentes e Cooperativos de Transporte tem-se revelado como uma das áreas em grande evolução, através de tecnologias de condução autónoma e comunicação intra-veicular. Com o objetivo principal de proporcionar ambientes sem acidentes, assim como otimizar o movimento de veículos nas estradas de todo o mundo, a comunicação V2X é muito importante no que toca a todo o tipo de aplicações veiculares. O projeto CMU|PT FLOYD centra-se nesta mesma área, com o intuito de desenvolver novos sistemas de possível implementação futura. Neste relatório, é avaliada assim uma aplicação veicular utilizando um módulo com capacidade 5G para realizar comunicações V2I. Essa aplicação veicular baseiase num cenário de travagem de emergência, em que ao detetar uma aproximação de um veículo num local onde ocorreu um acidente, é enviada uma mensagem pela rede que é captada pelo veículo principal, despoletando a travagem. De destacar que este envio será feito através do módulo com capacidade 5G, sendo desta forma uma aplicação inovadora. Complementado a este cenário está a realização do seguimento de um veículo por parte de um outro veículo, tornando assim uma aplicação mais complexa de travagem de emergência com um pelotão cooperativo. Este pelotão será mantido através de sensores presentes no veículo seguidor como o LiDAR e a ZED camera. Com isto, foi utilizado processamento de imagem e foi feita a fusão de sensores de forma a manter o seguidor a uma distância de segurança mas com capacidade de seguir o líder. Com o objetivo de validar e testar toda esta solução, foram utilizadas plataformas robóticas como solução de baixo custo, permitindo assim ter uma avaliação concreta, com resultados físicos esclarecedores de toda a aplicação realizada

    Improving the Performance of Cooperative Platooning with Restricted Message Trigger Thresholds

    Get PDF
    Cooperative Vehicular Platooning (Co-VP) is one of the most prominent and challenging applications of Intelligent Traffic Systems. To support such vehicular communications, the ETSI ITS G5 standard specifies event-based communication profiles, triggered by kinematic parameters such as speed. The standard defines a set of threshold values for such triggers but no careful assessment in realistic platooning scenarios has been done to confirm the suitability of such values. In this work, we investigate the safety and performance limitations of such parameters in a realistic platooning co-simulation environment. We then propose more conservative threshold values, that we formalize as a new profile, and evaluate their impact in the longitudinal and lateral behaviour of a vehicular platoon as it carries out complex driving scenarios. Furthermore, we analyze the overhead introduced in the network by applying the new threshold values. We conclude that a pro-active message transmission scheme leads to improved platoon performance for highway scenarios, notably an increase greater than 40% in the longitudinal performance of the platoon, while not incurring in a significant network overhead. The obtained results also demonstrated an improved platoon performance for semi-urban scenarios, including obstacles and curves, where the heading error decreases in 26%, with slight network overhead.info:eu-repo/semantics/publishedVersio

    A simulation approach for increased safety in advanced C-ITS scenarios

    Get PDF
    Com os recentes desenvolvimentos em diferentes áreas de conhecimento, como redes de comunicação sem fio e sensores, bem como a evolução recente em vários tópicos na área da Computação, os Sistemas Inteligentes e Cooperativos de Transporte (CITSs) tornaram-se um tema muito importante, e espera-se que comecem a ser cada vez mais implementados num futuro próximo. Nesta tese, é feita uma análise sobre estes sistemas e diferentes possiveis cenários focando no cenário de Platooning, assim como sobre comunicações Veículo-a-Tudo (V2X) com foco no ETSI ITS-G5, o standard europeu mais amplamente aceite na indústria automóvel para este tipo de comunicações. O desenvolvimento de duas ferramentas de co-simulação para análise de cenários C-ITS usando comunicações veículo para veículo (V2V), foi feito no contexto desta tese. COPADRIVe é uma ferramenta de co-simulação que junta um simulador de rede e um simulador robótico. A outra ferramenta de co-simulação, é uma ferramenta hardware-in-the-loop que úne um simulador robótico com comunicações feitas através de hardware real, On-Board units (OBUs). Ambas as ferramentas foram desenvolvidas e usadas como forma de análise e teste de situações de Platooning e componentes de software para implementação neste tipo de cenários. Este desenvolvimento teve origem na necessidade de existência deste tipo de ferramentas para suporte dos desenvolvimentos feitos no contexto dos Projetos europeus de I&D SafeCOP e ENABLE-S3, onde o CISTER participava ativamente.With the developments in different areas like Wireless Communication Networks and sensors, as well as, the recent evolution on various topics on Computing, Cooperative Intelligent Transportation Systems(C-ITSs) became a hot topic for research, and are expected to be increasingly deployed in the future. From the different possible scenarios, in this thesis, we focus in analyzing Cooperative Platooning and particularly, in enabling a set of simulation tools capable of encompassing the supporting Vehicle-to-Everything(V2X) communications guaranteed by the ETSI ITS-G5, the most widely accepted European standard on the automotive industry for these kind of communications. Therefore this thesis presents the development of two co-simulation tools for analysis of C-ITS scenarios using Vehicle-to-Vehicle(V2V) communications. First, COPADRIVe is a co-simulation tool joining together a network simulator and a robotic simulator. The other co-simulation tool, uses a a hardware-in-theloop approach one bridging a robotic simulator with real communications via OnBoard-Units (OBUs). Both tools were developed and used as the means to test and analyze Platooning scenarios and software components relevant in such applications, importantly. These tools’ were developed in line with the R&D European Projects SafeCOP and ENABLE-S3, where CISTER was and active participant

    Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems

    Get PDF
    Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use casesinfo:eu-repo/semantics/publishedVersio

    Overview of platooning systems

    Get PDF
    This paper presents an overview of current projects that deal with vehicle platooning. The platooning concept can be defined as a collection of vehicles that travel close together, actively coordinated in formation. Some expected advantages of platooning include increased fuel and traffic efficiency, safety and driver comfort. There are many variations of the details of the concept such as: the goals of platooning, how it is implemented, mix of vehicles, the requirements on infrastructure, what is automated (longitudinal and lateral control) and to what level. The following projects are presented: SARTRE a European platooning project; PATH a California traffic automation program that includes platooning; GCDC a cooperative driving initiative, and; Energy ITS a Japanese truck platooning project
    corecore