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Resumo

Com os recentes desenvolvimentos em diferentes áreas de conhecimento, como redes
de comunicação sem fio e sensores, bem como a evolução recente em vários tópicos
na área da Computação, os Sistemas Inteligentes e Cooperativos de Transporte (C-
ITSs) tornaram-se um tema muito importante, e espera-se que comecem a ser cada
vez mais implementados num futuro próximo.

Nesta tese, é feita uma análise sobre estes sistemas e diferentes possiveis cenários
focando no cenário de Platooning, assim como sobre comunicações Veículo-a-Tudo
(V2X) com foco no ETSI ITS-G5, o standard europeu mais amplamente aceite na
indústria automóvel para este tipo de comunicações.

O desenvolvimento de duas ferramentas de co-simulação para análise de cenários
C-ITS usando comunicações veículo para veículo (V2V), foi feito no contexto desta
tese. COPADRIVe é uma ferramenta de co-simulação que junta um simulador de
rede e um simulador robótico. A outra ferramenta de co-simulação, é uma fer-
ramenta hardware-in-the-loop que úne um simulador robótico com comunicações
feitas através de hardware real, On-Board units (OBUs). Ambas as ferramentas
foram desenvolvidas e usadas como forma de análise e teste de situações de Pla-
tooning e componentes de software para implementação neste tipo de cenários. Este
desenvolvimento teve origem na necessidade de existência deste tipo de ferramentas
para suporte dos desenvolvimentos feitos no contexto dos Projetos europeus de I&D
SafeCOP e ENABLE-S3, onde o CISTER participava ativamente.

Keywords— Sistemas Inteligentes e Cooperativos de Transporte , Comunicações
inter-veiculares, Pelotões de veículos , Simulação de Rede, Simulaçao Robótica, ROS
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Abstract

With the developments in different areas like Wireless Communication Networks and
sensors, as well as, the recent evolution on various topics on Computing, Cooperative
Intelligent Transportation Systems(C-ITSs) became a hot topic for research, and are
expected to be increasingly deployed in the future.

From the different possible scenarios, in this thesis, we focus in analyzing Co-
operative Platooning and particularly, in enabling a set of simulation tools capable
of encompassing the supporting Vehicle-to-Everything(V2X) communications guar-
anteed by the ETSI ITS-G5, the most widely accepted European standard on the
automotive industry for these kind of communications.

Therefore this thesis presents the development of two co-simulation tools for
analysis of C-ITS scenarios using Vehicle-to-Vehicle(V2V) communications.

First, COPADRIVe is a co-simulation tool joining together a network simulator
and a robotic simulator. The other co-simulation tool, uses a a hardware-in-the-
loop approach one bridging a robotic simulator with real communications via On-
Board-Units (OBUs). Both tools were developed and used as the means to test and
analyze Platooning scenarios and software components relevant in such applications,
importantly. These tools’ were developed in line with the R&D European Projects
SafeCOP and ENABLE-S3, where CISTER was and active participant.

Keywords— Cooperative Intelligent Transportation Systems, V2V Communic-
ations, Vehicular Platooning, Network Simulation, Robotic Simulation, ROS
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1
Overview

1.1 Introduction

Modern embedded systems, coupled with the advancements on digital communica-
tion technologies, have been enabling a new generation of systems, tightly interacting
with the physical environment via sensing and actuating actions: Cyber Physical Sys-
tems (CPS). These systems, characterized by an unprecedented levels of ubiquity,
have been increasingly relying upon wireless communication technologies to provide
seamless services via flexible cooperation. As these Cooperating CPS (Co-CPS) reach
into safety-critical application domains (e.g. automated vehicles platooning in the
automotive domain), safety becomes a crucial topic that must be carefully analyzed.

As in some areas of application of CPS’s, such as in aviation or automotive, the
initial phase of technology development poses a significant toll in terms of cost and
risk, there is an increasing interest in depending on simulation tools.

This is clearly the case of cooperative ITS’s such as cooperative platooning, in
which, automated vehicles cooperate to follow each other during a certain path,
with different advantages, according to [1] vehicles on a single line can reduce fuel
consumption by up to 20% for non-leading vehicles. Besides, the use of a leader can
greatly reduce the need for V2I information exchange for trajectory tracking since
only the leader would need to receive the data regarding the route while the others
would only receive the follow-up information from the leader.

As autonomous vehicles start to become much more relevant, and regarded as

1



CHAPTER 1. OVERVIEW

the future of transportation, it is important to notice the complexity of it, as well
as, all the implications of these kind of future implementations. The deployment of
human-free driving vehicles requires not only for their intra-vehicle systems to be
well-tested and safety assured but, also, to have a whole lot of systems deployed all
around cities and highways, in order to make sure that these vehicles are not able to
cause any kind of harm to neighbour vehicles or even pedestrians.

The study of Platooning advances in several areas, such as control models, V2V
and V2I communication [2], energy consumption, safety, interaction with other
vehicles and platoons, among others. In addition, their modeling demands know-
ledge of real conditions so that systems can be simulated accurately before being
implemented in the real world. Thus advanced simulation tools that can mimic real
sensors and actuators, control models and networks, must be deployed to better
evaluate performance and detect the safety limits of such cooperative scenarios.

To address these challenges it is important to carry out a tough analysis of these
systems regarding different aspects such as control and communications, using sim-
ulation is the most efficient way to go for these tests since automotive scenarios that
are very critical in terms of safety are very cost-heavy.

In this thesis, we address these issues by developing two co-simulation frame-
works, bridging the capabilities of robotic simulators for control and network simu-
lators for vehicular communications support. Creating a toolset for a more compre-
hensive and inclusive analysis of these systems.

1.2 Research Context

This thesis’ proposal emerged from the SafeCOP european project, where CISTER/ISEP
was a participant, under the use case 3, control loss warning. The aim of this work
was to develop new tools and technologies for increased safety that could be applied to
future cooperative autonomous functions in vehicular scenarios. COPADRIVe[3][4]
appears as a simulation tool that is able to evaluate communications impact on
platooning scenarios, while the HiL simulation tool was a cooperative work between
CISTER and GMV Skysoft SA in an attempt to provide a simulation framework that
was able to test out safety software modules for a cooperative platooning scenario
depending on real communication hardware.

2 Bruno Vieira



1.3. RESEARCH OBJECTIVES

1.3 Research Objectives

The main objective of this thesis is to provide technologies that can support the
analysis of the impact of communications on cooperative Platooning scenarios, as
well as, validate safety mechanisms (e.g Control Loss Warning). Implementation and
test results will be shown as well, as a way, to demonstrate this tools’ capabilities
and possible future deployments.

1.4 Research Contributions

In this thesis the main contributions are:

• Overview of different Cooperative Intelligent Transportation System (C-ITS)
scenarios, focusing on the way vehicular communications can take part in them.

• Implementation and adaptation of a Cooperative Platooning control model
fully-based on Vehicle-to-vehicle (V2V) communications.

• Overview of the main ITS communications standard for Europe (ETSI ITS-G5)
and its adequancy for supporting Cooperative Platooning scenarios.

• Development of a Co-simulation tool(COPADRIVe), integrating a robotic (Gazebo)
and a network simulator (OMNeT++) over ROS[3][4].

• Development of a Hardware-in-the-loop simulation framework that brings to-
gether a robotic simulator (Gazebo) and a ITS communications On-Board Unit
(Cohda’s MK5 OBU).

• Performance analysis of different ETSI ITS-G5 communications stack settings
and its impact upon Cooperative Platooning control using COPADRIVe[3][4].

• Validation of a Control Loss Warning (CLW) mechanism for increased safety
on Platooning scenarios, using the Hardware-in-the-loop simulation tool.

• Writing and publishing of two, already accepted, conference articles [3][4], ap-
pendixes A and B, respectively.

1.5 Thesis Structure

In the remaining of this thesis, Chapter 2, will focus on different C-ITS scenarios and
in particular on cooperative platooning by looking into its advantages and challenges.

Bruno Vieira 3
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Vehicular communications will be overviewed in Chapter 3 in regards to V2X
communications, ETSI ITS-G5 and IEEE 802.11p will be focused, it is the current
European baseline for enabling ITS communications.

A state-of-the-art analysis regarding different kinds of simulators and frameworks
is done in Chapter 4, as a way to establish the background for the COPADRIVe
simulation tool.

Under Chapter 5, the development of the COPADRIVe[3][4] simulation tool will
be presented and analyzed.

In a similar fashion, Chapter 6 will provide a clear overview on the development
of the Hardware-in-the-loop simulation framework.

Simulation Results regarding the two developed tools, previously mentioned, will
be shown at Chapter 7, along with some simulation conclusions.

Finally, this Thesis closes with Chapter 8 where conclusions are withdrawn , as
well as, some thoughts about future work and developments related to these projects.

4 Bruno Vieira



2
Cooperative Intelligent Transportation Systems

Scenarios - Cooperative Platooning

Cooperative Intelligent Transport Systems (C-ITS) must rely heavily on commu-
nications and data exchange between different peers, in order to, guarantee safety
mechanisms during all the different and complex scenarios where they can be in-
volved.

With this in mind, in this section, some examples of possible C-ITS scenarios
will be shown. Only C-ITS scenarios that can or have already been using vehicular
communications in their safety assurance models, will be presented. Most of this
next subsection will be focused on [5], considering its insights about many different
scenarios already over viewed by automotive experts, as scenarios that can and will
require vehicular communications.

Then the Platooning scenario will be focused as the implemented and evaluated
scenarios on both of the developed simulation frameworks. In this subsection, a
particular V2V communications fully reliant platoon following control model will be
presented and detailed.

2.1 Scenario Examples

Following [5], and as previously mentioned, C-ITS scenarios/applications may be
split all over three major groups:

5



CHAPTER 2. COOPERATIVE INTELLIGENT TRANSPORTATION SYSTEMS SCENARIOS
- COOPERATIVE PLATOONING

• Co-operative road safety.

• Traffic efficiency.

• Other applications/scenarios.

On this section, some examples, that feature the each of the above groups, will
be presented with a short description of each other and a graphical representation,
if relevant.

2.1.1 Co-operative road safety scenarios

Co-operative road safety scenarios implement mechanisms that provide help to main-
tain and guarantee safety to both pedestrians and vehicles’ passengers. Three ex-
amples are described:

Emergency electronic brake lights - Supports signaling from any vehicle of its
hard breaking to its local followers. In such case, the hard braking triggers the switch
of emergency electronic brake lights.(Figure 1)

Figure 1: Emergency electronic brake lights use case scenario [5]

Safety function out of normal condition warning - Supports signaling of
steering, braking, etc... abnormal safety condition to others. (at 6.2, a similar
application is tested out and analyzed)

Overtaking vehicle warning - An overtaking (passing) vehicle signals its action
to other local vehicles to secure the overtaking situation.

2.1.2 Traffic efficiency scenarios

Traffic efficiency scenarios are use-cases where C-ITSs help to improve traffic effi-
ciency by inter exchanging information in between ITS participants and inducing

6 Bruno Vieira
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some kind of behavioural conduct in them. Following, some examples:

Regulatory/contextual speed limits - Support for a capable Road Side Unit
to broadcast at a given frequency the current local speed limits (regulatory and
contextual).

Intersection management - Consider all the V2V and V2I co-operation possib-
ilities to improve the traffic efficiency at a road intersection for example through
traffic lights synchronization.

Co-operative flexible lane change - Support of flexible allocation of a dedicated
lane (e.g. reserved to public transport) to some vehicles which get a permanent or
temporary access right under specific conditions (e.g. if no bus is present).

Co-operative vehicle-highway automation system (Platoon) - This use case
is based on the use of V2X CAM messages and unicast exchanges for vehicles to
operate safely as a platoon on a highway or specific lane.(Figure 2)

Figure 2: Platoon use case scenario [5]

As already mentioned, this is the use case applied as a baseline on both de-
veloped simulation tools. On the next section, an overview on Platooning and on
the implemented algorithm will be shown.

2.1.3 Other scenarios

There are other scenarios proposed, however they are not so interesting to be analysed
in the context of this thesis, either way, some more examples can be seen at [5]
Annex C Section 3. Some of these examples, have already some real deployments
working on some urban areas, some already running for some years on. It’s relevant
to see that [5] was published 10 years ago (June 2009), so it’s actually easy to see
why some of these scenarios are already deployed. However, the use-case scenarios
relative to co-operative road safety and traffic efficiency have a really low percentage
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of deployment, since most of them require some level of autonomy on vehicles, and
even new car models coming out recently don’t have these capabilities implemented.

2.2 Cooperative Platooning

Vehicular Platooning (VP) as previously stated, is one of the most interesting scen-
arios to develop within ITS because of the many advantages it can bring to trans-
portation, both in safety measures and cost-efficiency. VP can potentiate several
benefits, such as increasing road capacity and fuel efficiency and even reducing ac-
cidents [6], by having vehicle groups traveling close together and following similar
paths. However, VP presents several safety challenges, considering it can heavily de-
pend on wireless communications to exchange safety-critical information, and upon
a set of sensors that can be affected by noise. For instance, quite often in VP, wire-
less exchanged messages contribute to maintain the inter-vehicle safety distance, or
to relay safety alarms to the following vehicles. Message losses or delays may lead
to serious crashes among the vehicles in the platoon with dramatic consequences to
them and to the remaining road members [2].

To implement a platooning application, technologies need to be able to follow
the preceding vehicle in the platoon while keeping a safe and small inter-vehicle gap.
The platooning benefits is proportional to the distance between platoon members.
The smaller the distance, more vehicles we can have on the road (better traffic
efficiency), and more aerodynamic drag is reduced (better fuel efficiency). However,
reducing the distance clearly causes safety issues. Therefore, a trade off is required
between inter-vehicle distances and safety to provide fuel efficiency, while preserving
safety. In order to implement a platoon model that can handle all these requirements
two general approaches can be considered. The first one, completely dependent on
V2V communications, where in a platoon of N vehicles, all but the global leader
are simultaneously local leaders and followers in what their role on the platoon is
regarded. For this approach, every vehicle should have a proper Control algorithm
based only on inputs from their local leader, such as, current speed, steering angle,
heading, GPS coordinates. In this first approach, and as it is fully dependent on
V2V communications, these ones must be assured to be properly working and safe,
as any minor issue regarding information reception can be dangerous for a proper
platoon maintenance. As this can have serious implications for passenger’s safety,
the following platooning control approach should be considered. This complementary
approach, besides V2V communications must encompass a form of control performed
mainly using intra-vehicle sensors, like a LiDAR or a Camera, to be able to properly
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follow its local leader (car in-front). Obviously, for this approach to be viable and
cleanly implemented, the hardware components involved must be very precise and
calibrated i.e LiDAR. Adding to this, the software developed must be tested and
guarantee some level of reliability so we can depend completely on this approach to
maintain the platoon running in the event of communications shortage. These two
approaches are important to co-exist in this context, in order to have a flexible and
stable way of assuring the proper running of a platoon.

Figure 3: Platooning Overview

Vehicular Platoon Model Implemented The model used for platoon following
in this project was based in the one proposed at [7]. This model, belongs to the
group of fully V2V communication dependent models previously stated.

This platoon model supports a global decentralized approach. In a decentralized
approach, the control is distributed among vehicles and is not located in one of them.
The considered platoon is composed of N identical autonomous vehicles and one
different vehicle called the global leader: it is driven manually by a professional driver
and it is responsible for defining the platoon properties such as the inter-distance,
the speed and the followed trajectory. Each vehicle is defined by its position in a
global referential (X,Y,Z). A vehicle Vi is considered as a follower of the vehicle Vi-1
and a local leader of its preceding vehicle Vi+1 . The decentralized approach may
increase the dependency in the platoon since each vehicle makes its own decisions
and transfers data to the next car that may be affected by the decision error of
preceding local leaders.

Following Figure 4, let us suppose a data message mi,i+1 sent by a local leader
Vi to its follower Vi+1 . Each mi,i+1 contains the following elements: the local leader
orientation θi and the local leader GPS coordinates (Xi, Yi). Once the vehicle Vi+1

receives mi,i+1 , it performs the control process to accomplish the tracking goal. The
follower Vi+1 should gather the following information: the vehicle orientation (its
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direction to the north) θi+1 , the inter vehicle distance between two vehicles Di+1

and mi,i+1 data.

Figure 4: Platoon model. [7]

Regarding the following actuating control done on the followers, it’s important to
understand at first, what kind of information does the follower receive from its local
leader, the data received through V2V communications is: GPS coordinates, Heading
value (relative to the GPS North axis) and Current speed. Of course, some more data
could be exchanged and used by the control algorithm for it to get optimized.

The properly applied control for both lateral(steering) and longitudinal(throttle/brake)
control was done using PID algorithms for both controls. With inputs being the
ones gathered from V2V communication messages and data gathered from the self-
vehicle(follower).

For the longitudinal control, the comparison is simple, the PID error is calculated
using the GPS distance between both follower and leader vehicles and comparing it
to a previously specified set point, i.e if the cars are 10 meters apart and the defined
set point is 8 meters, the follower should proceed to accelerate, in order to, reduce
this distance. Algorithm 1 was the one implemented following this approach.

For the lateral control, GPS positions, and Heading from both vehicles are used as
inputs for the PID algorithm. In this case, the heading of both vehicles is compared
to retrieve the PID error, the leader’s current heading is used as the set point value
for this. Worth to take a look into a developed contribution to this control, that refers
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Algorithm 1 Algorithm for longitudinal distance control
Input: KP, KI, KD, distance, SAFETY_DISTANCE, speed1 (speed at k),

speed2(speed at k+1), currentSpeed(Cruise control current speed value), old-
Value, integral,dt

Output: result
function PIDsetSafeDistance()

1: if speed1 = speed2 then
2: V followed ←speed1
3: else
4: V followed ← currentSpeed
5: end if
6: error ← distance-SAFETY_DISTANCE
7: diff ← (error-oldValue)/ dt
8: result ← ((KP × err) + Vfollowed) + (KI × integral) + (KD × diff)
9: Return result

to the bearing angle value being used as a input for this PID. These bearing and
heading angles are demonstrated at Figure 5, Hl and Hf being the heading values of
both leader and follower vehicles and B being the Bearing angle (calculated through
the GPS coordinates) between both vehicles. This bearing component is added to
the PID error computation using the existent bearing difference and trying to reach
a set point of 0◦which means that both vehicles are perfectly aligned in relation to
their current heading directions. For instance, at Figure 5 the currently follower,
even though their heading is aligned, has to steer to its right in order to follow
its leader. Algorithm 2 shows the algorithm used for this control on the developed
model.

On some tests and analysis done earlier we were able to evaluate this new bearing
component impact on the platoon execution. In Figure 6(a) we can see the traject-
ory of a 5-car platoon going through a simulation of this lateral control without the
Bearing component taken into account. At figure 6(b) we can see the same trajectory
result of this Bearing addiction on the same platoon run. We can, easily, acknow-
ledge the difference result of this component in regards to lateral differences between
vehicles. Each line drawn represents each car of the platoon.

2.3 Conclusions

Throughout this section, many different C-ITS scenarios were presented as result or
improvements that can be guaranteed with the addiction of V2X communications to
these systems.
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Figure 5: Bearing and Heading
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(a)

(b)

Figure 6: (a) Platoon without bearing component (b)Platoon with bearing component.
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Algorithm 2 Algorithm for steering control
Input: KP, KI, KD, bearing _threshold, leader_heading, follower_heading, old-

Value, integral, dt, bearing
Output: result

function PIDsetSteer()
1: leader_heading, follower_heading, bearing ← convert values from −π to
π(rad) into 0◦ to 360◦

2: headingfix ← calculate the difference between leader’s and follower’s heading
values

3: bearingfix ← similar to headingfix, calculate the difference between follower’s
heading value and the bearing angle value

4: if bearingfix < bearing_threshold then
5: bearingfix ← 0
6: end if
7: error ← headingfix+bearingfix
8: diff ← (error-oldValue) / dt
9: result ← (KP × err) + (KI × integral) + (KD × diff)

10: Return result

The platoon model used in this Thesis relies solely on V2V communications.
Although posing a safety risk in case of communications shortage, it is important as
the means to represent a worst-case scenario for the evaluation of he communications
impact on platooning.

14 Bruno Vieira



3
Vehicular Communication Technologies

This section presents the current status regarding vehicular communications with a
focus on how they can support different C-ITS scenarios where vehicles have some
kind of level of autonomy. ETSI ITS-G5, most probably, the most ready to be
deployed standard in Europe for this kind of networks and application, will be over
viewed, by particularly focusing on the most relevant modules, regarding the specific
use-case scenario analyzed within this thesis.

3.1 General C-ITS Architecture

In many respects, today’s vehicles are already connected devices. However, in the
very near future they will also interact directly with each other and with the road
infrastructure. This interaction is the domain of Cooperative Intelligent Transport
Systems (C-ITS), which will allow road users and traffic managers to share inform-
ation and use it to coordinate and co-decide on their actions. The connection and
data exchange referred previously is often called and referenced as a Vehicular ad
hoc Network (VANET).

A VANET is a sub-form of Mobile Ad-Hoc Network (MANET), since their net-
work nodes (mostly, vehicles) are usually mobile and capable of taking decisions
autonomously regarding their positioning or even in their role inside this kind of
network. For VANETs, their most relevant basic components are Road-side Units
(RSU), On-board units (OBU) and Application-units (AU). Usually, a vehicle is
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Figure 7: ITS-G5 Architecture [8]

equipped with the last two, AUs and OBUs usually communicate using Intra-car
wireless networks, that often include other participants like sensors and, usually,
have an interface to other intra-car networks(e.g CAN bus). OBUs are responsible
to deal and manage external communications, from these ones Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) are the most relevant. RSUs are, typic-
ally, fixed communication units, that provide relevant data (like traffic conditions)
to vehicles in their communication range and are connected to the Internet, in order
to, provide remote access to infrastructure/road managers.

Figure 7, a full communication architecture for C-ITSs defined by ETSI[8] is
shown. In this figure, every possible wireless communication link and participants in
a city traffic scenario are presented. Emphasis should be on V2V and V2I provided
by ETSI ITS-G5, RSUs previously mentioned are represented as RSE’s (Road Side
Equipment) in this architecture. Adding to this, satellite links are, as well, shown,
providing different services, focus on GPS which is a technology already very mature
and deployed. Of course, Internet connectivity is worth to be mentioned since it is
almost obligatory to every intelligent system nowadays to be Internet connected as
a consequence of all the possible services that can be provided through it. Internet
connection, can be achieved through two major forms, cellular networks, 4G/5G, or
by getting authenticated access to WLANs through Wi-Fi.

16 Bruno Vieira



3.2. ETSI ITS-G5

These can be two inter-dependent architectures that, soon, we should be able
to see deployed with the majority of the vehicles being driven across urban areas,
mainly on big cities. With these kind of communication systems properly deployed
and fulfilling certain security and safety requirements, the possibilities of intelligent
cooperative services to be developed and deployed seems to be virtually limitless.

3.2 ETSI ITS-G5

Regarding the type of vehicular communications that are the focus on the tools de-
veloped within this thesis’ scope, V2V, as previously stated, ETSI ITS-G5 is currently
the most widely accepted standard within the biggest European industry players in
the automotive area, similarly, in the US, IEEE 1609 WAVE is the region equivalent
accepted standard, it is very close in technical terms to what ETSI ITS-G5 specifies,
and they both share IEEE 802.11p, as underlying communications layer.

However, there’s currently a discussion going on regarding the possibility of usage
the LTE technology (LTE-V2X) [9], with 5G in mind, and its advantages comparing
to ETSI ITS-G5 usage of IEEE 802.11p, this comparison will not be analyzed within
the scope of this project, since the goal is to develop tools, in order to, analyze and
evaluate ITS-G5 implementations on different automotive scenarios using the IEEE
802.11p lower layers. Moreover, a recent(04/2019) update on the standard previews
the transmission of CA Messages over LTE-V2X channels[10].

As previously stated, ETSI ITS-G5 appears, as the standard with biggest chances
of getting implemented on the future of the automotive industry, at least, in Europe.
Because of all the complexity existing on all the ITS scenarios, communications and
information exchanges are done and should be possible in between different ITS sub-
systems, that can have a wide variety of topologies, since the most obvious ones,
vehicles, to RSUs that can provide useful information regarding the current status
of its surroundings, or even, road walk pedestrians carrying a smart phone that can
be implied in whatever scenario exists at the moment. Some of these sub-systems
are illustrated at Figure 8, as well as, their relative stack architecture.

Since only V2V communications are focused in this thesis, a more in-depth over-
view of the stack architecture expected in a vehicle is shown under Figure 9, where
3 major components can be seen, The ITS-S host, which is the main focus for this
project, and represents the component responsible for the majority of the imple-
mentation required by ETSI ITS-G5 going since the application layer, until the
lower layers that are, as well, implemented on the ITS-S router component. The
Vehicle ITS-S gateway is the component responsible for the interface of both pre-
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Figure 8: Illustration of ITS sub-systems [8]

viously referenced pieces with the Proprietary in-vehicle Network that should vary
within different manufacturers, in most cases, this gateway will connect the ITS-S
components to a CAN Network, in order to, get access and exchange information
with the car’s ECUs responsible for the vehicle actuators and to gather some useful
data as well.

Figure 9: Vehicle ITS station in a vehicle sub-system [8]
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At Figure 10, the stack architecture that is present in a typical Vehicular ITS-S
Host is represented, with some example elements possible to be implemented within
each layer. According to the usually used as reference OSI model [11],the OSI’s
Application layer can be incorporated within both the Applications and Facilities
layers specified by ETSI, just like the Access layer defined by ETSI, that brings
together the Physical and data link layers from the OSI model.

With this in mind, this section and following work will mostly be focused on the
analysis of the Application and Facilities layers and the way they interchange in-
formation, in order to, verify possible co-influences under different implementations.

Figure 10: Examples of possible elements in the ITS station reference architecture [8]

Starting by providing an overview on these different layers within the ITS-G5
stack:
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Application

Applications on ITS scenarios can vary in a wide spectrum of types, however, ITS-G5
divides them in three major groups:

• Road Safety.

• Traffic efficiency.

• Other Applications.

Platooning, the focused ITS scenario on this thesis, belongs to the second referred
group of applications, however, can be stated, as well, as a Road Safety application,
since the platoon members should implement safety measures in order to guarantee
that they don’t cause any harm on the normal traffic work flow.

For most of these ITS applications, certain requirements should be guaranteed
by their supportive communication services. ETSI ITS-G5 defines the following
requirements as the ones to be more or less strictly imposed:

• Reliability.

• Security.

• Latency.

• Other performance parameters.

With all of this in mind, ETSI ITS-G5 defines a set by the name of Basic Set of
Applications, that aggregates most of the most relevant ITS applications deployed or
to be deployed on vehicles. This set list was created by ETSI with help from a wide
variety of users and stakeholders of the automotive industry, taking into account
different criteria. In Figure 11 it is possible to see a table of different use cases
grouped in various Application group and classes.

A detailed description of all these requirements, different use cases and assess-
ments done to define this Basic Set of Applications, can be found on the annexes of
[5]. This document will be, once again, referred later in this thesis when different
ITS scenarios are mentioned.

CAM Messages According to ETSI, Cooperative Awareness Messages (CAMs)
are sent periodically between ITS stations to all the neighbours stations within com-
munication range(Single-hop and Broadcast).
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Figure 11: Basic Set of Applications definitions [5]

This type of messages as their name states, is used by ITS-hosts to improve
and update its sensing (e.g to evaluate the distance between two vehicles), adding
a redundancy layer for ITS vehicles that should feature other ways of sensing their
own surroundings (e.g sensors, cameras). Data sent through CAMs is usually about
current position and status of it’s source ITS host, this Data will be detailed later
in this section.

As CAMs are set to be sent periodically, the timing of sending is very important
quality requirements for the Applications that might use this type of messages. The
CAM generation service should follow some generation rules, in order to fulfill the
requirements set by ETSI for the generality of ITS scenarios in its Basic Service
Profile (BSP), these rules are: [12]

• maximum time interval between CAM generations: 1 s;

• minimum time interval between CAM generations is 0,1 s.

• generate CAM when absolute difference between current heading (towards
North) and last CAM heading >4◦;

• generate CAM when distance between current position and last CAM position
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>5 m;

• generate CAM when absolute difference between current speed and last CAM
speed >1 m/s;

• These rules are checked latest every 100 ms;

These rules’ thresholds are very important in this thesis context, since they are
tested out on COPADRIVe simulations at chapter 5.

The timing existent during CAMs generation and processing, follow a time line
with a set of a couple of requirements defined, at figure 12, this time line can be
seen, as well as, their requirements.

Figure 12: Time requirements for CAM generation and CAM processing [5]

Some different use case Applications were already taken into account for these
requirements, as an example, at Table 3.1 some use cases are specified with regards
to their corresponding minimum sending frequency whenever a ITS station takes
part in their relative scenarios.

Table 3.1: Overview Use Cases based on CAM [5]

In terms of Data sent by CAMs, all the data sent in a message of this type is
encoded using the ASN.1 notation, so, obviously every ITS station should have a
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encoding/decoding service dedicated to this. ETSI previews a set of four different
ITS station profiles:

• basicVehicle The profile "basicVehicle" is mainly used for private vehicles. This
profile serves as basis for further profiles,e.g. emergencyVehicle.

• basicIRS The basicIRS is an ITS Roadside Station which can offer all func-
tionality of the infrastructure. It serves as basis for more specialized profiles.
The station is installed in a way it is not physically relevant and therefore no
danger for the traffic.

• emergencyVehicle

• publicTransportVehicle

All the data (optional or obligatory) exchanged between ITS stations through
CAMs is presented and referenced at Annex A and B, at the ETSI document: [13].

DENM Messages Decentralized Environmental Notification Messages (DENMs)
are mainly used by the Cooperative Road Hazard Warning (RHW) application in
order to alert road users of the detected events. The RHW application is an event-
based application composed of multiple use cases. The general processing procedure
of a RHW use case is as follows:

• Upon detection of an event that corresponds to a RHW use case, the ITS
station immediately broadcasts a DENM to other ITS stations located inside
a geographical area and which are concerned by the event.

• The transmission of a DENM is repeated with a certain frequency.

• This DENM broadcasting persists as long as the event is present.

• The termination of the DENM broadcasting is either automatically achieved
once the event disappears after a predefined expiry time, or by an ITS station
that generates a special DENM to inform that the event has disappeared.

• ITS stations, which receive the DENMs, process the information and decide to
present appropriate warnings or information to users, as long as the information
in the DENM is relevant for the ITS station.

At Figure 13, examples of triggering and termination conditions of DENM send-
ing are presented.
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Figure 13: Triggering and termination conditions of DENM sending [5]

All the data gathered by DENM messages, similarly to what happens with CAM
messages, is used for the ITS station Facilities to update its LDM. DENM messages
format follows, as well, the ASN.1 representation, they can be seen at section 6.2.4
from [14].

Management

The management layer, as it self-explanatory name specifies, has as its main object-
ive the ability to manage and make sure all the other layers are working as intended
and cooperating normally, as intended. Belongs to the group of the only two lay-
ers(Security and Management) that have inter-connections with all the other ITS-G5
layers (Figure 14).

Security

Automotive scenarios and the industry itself are very dependent on security critical
applications. The following, are the most relevant security functionalities implemen-
ted on the ITS-G5 standard:

• Firewall and intrusion management.
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Figure 14: ETSI ITS-G5 Management Layer connections [8]
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• Authentication, authorisation and profile management.

• Identity, crypto key and certificate management.

• A common security information base (SIB).

• Hardware security modules (HSM).

• Interface and security support for all the other ITS-G5 layers.

Facilities

The Facilities layer [8] being the most relevant layer in this thesis context will have
a more in-depth focus when comparing to the other described layers in this chapter.
Since this layer is the one that manages all the high-level information exchanged
in between vehicles and other ITS stations. In this layer functionality from differ-
ent OSI layers is present, since the session layer, going through the presentation
layer(e.g ASN.1 encoding and decoding) until the application layer, these are the
main supports provided by this layer:

• application support.

• information support.

• communication support.

• session support.

• Interfaces with all the other ITS-G5 layers.

With this in mind, as it’s name states, this layer provides different types of
facilities in order to achieve the previously stated goals:

• Generic HMI support:

This facility presents information to the user of the system, e.g. to the car
driver, via the HMI hardware and firmware.

• Support for data presentation:

Data presentation is a basic functionality of the OSI presentation layer. Its
function is to code and decode messages according to formal language being
used (e.g. ASN.1).
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• Position and time support:

This facility provides information on the geographical position (longitude, lat-
itude, altitude) of the ITS station, and the actual time.

• Support for maintenance of ITS-S applications:

This facility supports the download and activation of new application software
and the update of already installed software.

• Local dynamic map (LDM) support:

A cooperative system for road safety critical applications benefits from using
digital maps. Such maps used in ITS may include lane-specific information
including curbs, pedestrian walking, bicycle paths and road furniture such as
traffic signs and traffic lights. Furthermore, all dynamic objects that are dir-
ectly sensed or indicated by other road users by means of cooperative awareness
messages may be referenced in such a digital map, referred to as local dynamic
map (LDM).

• Support for common message management for data exchange between ITS-S
applications:

Event triggered messages: Decentralized Environmental Notification Messages
(DENMs).

Periodic messages: Co-operative Awareness Messages (CAMs).

• Support of repetitive transmission of messages:

This facility is in charge to repetitively request transmission of messages ac-
cording to the requirements set up by the ITS-S application.

From the following facilities, the last two, that refer to message and data exchange
between ITS stations will be focused on the next sub-subsections, mainly CAMs
which are the type of message more in-depth analyzed on the tools developed.

Network and Transport layer

The networking and transport layer contains functionality from the OSI network
layer and the OSI transport layer with some amendments dedicated to Intelligent
Transport System Communications (ITSC):

• Networking protocols (examples shown later).

• Transport protocols (examples shown later).
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• Network and transport layer management.

• Interface to all the other ITSC layers.

Within the different Network protocols, these are the ones that are currently
supported by ITS-G5:

• GeoNetworking protocol as to be specified next.

• IPv6 networking[15] with IP mobility support specified in RFC 6275 [16] and
optionally support for network mobility (NEMO) as defined in RFC 3963 [17]
or other approaches depending on the deployment scenario.

• IPv4 support for transition into IPv6 [18].

In the case of Transport protocols that ITS-G5 supports:

• Basic Transport Protocol (BTP)[19].

• User Datagram Protocol UDP as defined in RFC 768[20].

• Transmission Control Protocols TCP as specified in RFC 793[21].

The widely used UDP/TCP protocols are a frequent choice. However, ETSI
ITS-G5 mainly uses BTP as its preferred transport protocol, it was the one used
on this thesis latterly referred implementations. As instance, BTP is used over the
GeoNetworking protocol, both UDP and TCP are planned to be integrated as well,
on top of this protocol. Figure 15 presents an overview of GeoNetworking and IPv6
integrated in an ITS station.

GeoNetworking The ETSI GeoNetworking protocol, controls the transport of
data packets from a source node to the destination, which can be either an individual
node (GeoUnicast), all nodes/any node inside a geo-area (GeoBroadcast/GeoAnycast),
or all nodes in a one-hop/n-hop neighborhood (single-hop/topologically-scoped broad-
cast). Every ad hoc router has a location table that maintains the position of its
known neighbors and is used to make forwarding decisions; it also has packet buffers
for location service, store-carry-and-forward and forwarding algorithms.

For safety and traffic efficiency use cases, two packet transport types are relev-
ant: first, single-hop broadcast for the transmission of periodic CAMs, and second,
Geo-Broadcast for the multi-hop distribution of event- driven messages within a
geo-area, DENMs. The ETSI GeoNetworking protocol specifies three main for-
warding algorithms to distribute messages in a geo-area: Simple Geo-Broadcast and
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Figure 15: Combined GeoNetworking and IPv6 stack in an ITS station [22]

contention-based forwarding as base schemes, and advanced forwarding, which com-
bines both base schemes and comprises a set of protocol mechanisms to improve their
performance.

Geo-Broadcast and the remaining forwarding algorithms detailed description can
be seen at [23].

Access layer

The access layer, provides the means to access the medium. This layer incorporates
both the PHY and Data link layer(DLL).

The first one responsible for physically connecting to the communication medium.
The DLL can be sub-divided in two sub-layers, MAC and LLC, the MAC layer

being responsible for the management of access to the medium, while the LLC work-
ing to provide logical link control.

This layer is defined by IEEE 802.11p [24], this standard was created based on
IEEE 802.11a, however, to focus and serve, vehicular scenarios, with some objectives
in mind:

- Increase the maximum distance of operation (around 1 km);
- High mobility and speed of the network nodes.
- A way to control and attenuate the Multipath effect - existence of multiple

signal echos received.
-Try to guarantee the best QoS, regarding the amount of different ad-hoc networks

existing in these environments.
These goals are achieved by different characteristics imposed by this technology,

as an example this is the channel(10MHz channel spacing) distribution allocated
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within the 5.9GHz band for the ITS-G5 standard (Table 3.2). Some relevant channel
characteristics are present, as well. It is important to notice that CAM messages,
which are the main application focus of these implementations, are sent under the
G5-CCH channel.

Table 3.2: ETSI ITS-G5 Channel allocation [25]

Due to the MAC protocol of IEEE 802.11-2012 [24], and the limited bandwidth
of ITS-G5, the data load on the wireless channels can exceed the available capacity
in some situations. Therefore, Decentralized Congestion Control (DCC) methods as
specified in TS 102 687[26] are required in ITS-G5 stations in order to control the
channel load and avoid unstable behaviour of the system.

Decentralized Congestion Control This DCC mechanism [26] is a crucial part
of this access layer, DCCs main goal of implementation and usage is to maintain
network stability, throughput efficiency and fair resource allocation to ITS-G5 sta-
tions. DCC requires components on several layers of the protocol stack and these
components jointly work together to fulfil all the mandatory requirements. Import-
ant to notice that DCC doesn’t have any control over frequency channel selection
on DENM or CAM Messages, the only implementation goal of DCC on this kind of
applications is to control Message delivering and guarantee a good QoS only limiting
message providing within certain time constraints. A more in-depth look at how this
mechanism behaves can be done at [26], Lyamin et al.[27] do a great at synthesizing
this.

Medium Access Control(MAC) The MAC algorithm decides when in time a
node is allowed to transmit based on the current channel status and the MAC sched-
ules transmission with the goal to minimize the interference in the system to increase
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the packet reception probability. The MAC algorithm deployed by 802.11p is found
in the IEEE 802.11-2012 [24] and it is called enhanced distributed coordination ac-
cess (EDCA). It is based on the basic distributed coordination function (DCF) but
adds QoS attributes. DCF is a carrier sense multiple access with collision avoidance
(CSMA/CA) algorithm.

In CSMA/CA a node starts to listen to the channel before transmission and if the
channel is perceived as idle for a predetermined listening period the node can start
to transmit directly. If the channel becomes occupied during the listening period
the node will perform a backoff procedure, i.e. the node has to defer its access
according to a randomized time period. The predetermined listening period is called
either arbitration interframe space (AIFS) or distributed interframe space (DIFS)
depending upon the mode of operation (EDCA or DCF).

Figure 16 shows a drawing of how this channel access mechanism works in both
broadcast and unicast modes.

Physical Layer (PHY) The PHY in 802.11p is OFDM detailed in clause 18 of
802.11. The basic idea is to divide the available frequency spectrum into narrower
subchannels (subcarriers). The high-rate data stream is split into a number of lower-
rate data streams transmitted simultaneously over a number of subcarriers, where
each subcarrier is narrow banded. There are 52 subcarriers, where 48 are used for
data and 4 are pilot carriers. The OFDM PHY layer has support for eight different
transfer rates, which are achieved by using different modulation schemes and coding
rates. In Table B.1 the different transfer rates together with the coding schemes used
in 802.11p are tabulated for 10 MHz frequency channels. Support of three transfer
rates are mandatory; 3 Mbit/s, 6 Mbit/s, and 12 Mbit/s, the last two are the ones
used on the channels described at Table 3.2.

The resulting PHY packet, ready for transmission, the physical layer convergence
procedure (PLCP) protocol data unit (PPDU), is composed as presented at figure
17

A description overview of the different fields present at the PPDU can be seen
at figure 18.
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Figure 16: Channel Access procedure in broadcast and unicast mode [28]

Figure 17: PHY packet, i.e. PPDU, ready for transmission [28]
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Figure 18: Explanation of the different fields of the PPDU [28]

3.3 Vehicular Communication Platforms

Cohda’s MK5 On-Board Unit (Figure 19) is one of the two products available by
Cohda Wireless for C-ITS and Smart Cities implementations that rely on V2X com-
munication, the other one being a Road-side unit, very similar in terms of technical
hardware characteristics. This OBU was the platform used in the HIL simulator
described at Chapter 6.

Figure 19: Cohda’s MK5 On Board Unit

Cohda’s fifth-generation On-Board Unit (MK5) is a small module that can be
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retrofitted to vehicles for aftermarket deployment or field trials in a off-the-shelf
deployment manner. It is based on the automotive-grade RoadLINK chipset de-
veloped by Cohda and NXP Semiconductors. These are the key features chosen by
the company[29]:

• Dual IEEE 802.11p radio;

• Powerful processor running Cohda software applications;

• Global Navigation Satellite System (GNSS) that delivers lane-level accuracy;

• Integrated security;

• Hardware acceleration;

• Tamper-proof key storage;

• NXP chips with Cohda firmware;

• Supports DSRC (IEEE 802.11p), Ethernet 100 Base-T

Apart from the IEEE 802.11p support, these OBUs have, as well, ETSI ITS-G5
compatibility by providing a proprietary licensed software suite that enables this[30].

At figure 20, some detailed specifications about this product can be found. The
most relevant characteristics are: the running Operating System based on Linux,
which enables a great platform for software development and integration, its small
dimensions are, as well, a great feature since their main focus is to get implemented in
a retrofitting manner on existing vehicles and the GNSS Accuracy is very important,
since most of the running applications rely on this to be implemented (e.g CLW).

3.4 Conclusions

As previously referred, ETSI ITS-G5 is, currently, the most widely accepted standard
for vehicular communications by the majority of European entities that affect the
automotive industry. Knowing this, over viewing this standard is thus mandatory to
fulfill the objective of this thesis.
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Figure 20: Cohda’s MK5 OBU specifications
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4
Simulation technologies

In this chapter, different simulator tools and frameworks will be presented. Robotic
and Network simulators are the simulation tools that are relevant in the scope of this
thesis, since the main goal was to develop such a co-simulation framework.

Hence, Robotic simulators will be over viewed and, in particular, the two most
relevant candidates to be part of COPADRIVe, Webots and Gazebo. Later a compar-
ison between them and the reasoning behind the choice of Gazebo will be presented.

In addition, general Network simulators will be shown and discussed with a fo-
cus on ns-3 and OMNeT++. These two are, arguably the most used open-source
and community supported that exist in the area, with already some work done in
vehicular communications scenarios.

Following, a section about Artery [31] a simulation tool that joins a traffic sim-
ulator (SUMO) and OMNeT++ with the ETSI ITS-G5 stack. This is the project
where most of the OMNeT++ model of COPADRIVe was based on.

Then the Robotic Operating System (ROS) framework will be over viewed, with
some of its more interesting features, as the enabling technology for this integration.

Importantly, a relevant criteria for the simulation framework is that it should
rely on open-source technologies and have a good community support, as much as
possible.
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4.1 Generic Network Simulators

4.1.1 ns-3

ns-3 is a discrete-event network simulator, targeted primarily for research and edu-
cational use. ns-3 is free software, licensed under the GNU GPLv2 license, and is
publicly available for research, development, and use. With a high focus on com-
munity development and support.

Furthermore, the ns-3 software infrastructure encourages the development of sim-
ulation models which are sufficiently realistic to allow ns-3 to be used as a real time
network simulator, interconnected with the real world and which allows many exist-
ing real-world protocol implementations to be reused within ns-3.

The ns-3 simulation core supports research on both IP and non-IP based net-
works. However, the large majority of its users focuses on wireless/IP simulations
which involve models for Wi-Fi, WiMAX, or LTE for layers 1 and 2 and a vari-
ety of static or dynamic routing protocols such as OLSR and AODV for IP-based
applications.

ns-3 is based on C++ applications usage for its simulations set up and runs,
however, it presents a framework allowing python bindings to call C++ code in order
to be able to script properly simulation models directly using Python applications.

For vehicular scenarios, ns-3 has simulation models already developed and ready
to use, however resembling the North American ITS communications standard,
WAVE, which uses some PHY and MAC layer particularities from IEEE 802.11p
like ETSI ITS-G5, however, apart from these two layers there are a lot of differences
between these standards higher layer. This was the main reason on why ns-3 was
not the choice for deployment within COPADRIVe (section 5).

4.1.2 OMNet++

OMNeT++ is a C++-based discrete event simulator for modeling communication
networks, multiprocessors and other distributed or parallel systems. OMNeT++ is
open-source, and can be used under the Academic Public License that makes the
software free for non-profit use.

These were the main design requirements set for OMNeT++ initial development:
[32]

• To enable large-scale simulation, simulation models need to be hierarchical,
and built from reusable components as much as possible.
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Figure 21: ns-3 vehicular network model

• The simulation software should facilitate visualizing and debugging of simula-
tion models in order to reduce debugging time, which traditionally takes up a
large percentage of simulation projects.

• The simulation software itself should be modular, customizable and should
allow embedding simulations into larger applications such as network planning
software.

• Data interfaces should be open: it should be possible to generate and process
input and output files with commonly available software tools.

• Should provide an Integrated Development Environment that largely facilitates
model development and analyzing results.

Of course, most of these requirements are similar to the majority of the simulat-
ors in existance, however, for example the first requirement, being able to provide
hierarchically simulation models, is something that sets OMNeT++ apart from other
simulators.

An OMNeT++model consists of modules that communicate with message passing.
The active modules are termed simple modules; they are written in C++, using the
simulation class library. Simple modules can be grouped into compound modules
and so forth; the number of hierarchy levels is not limited. Messages can be sent
either via connections that span between modules or directly to their destination
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modules. Figure 22 represents the model structure in OMNeT++, boxes repres-
ent simple modules (thick border), and compound modules (thin border), arrows
connecting small boxes represent connections and gates.

Figure 22: OMNeT++ model

The structure of the model is defined in OMNeT++’s topology description lan-
guage, NED. Typical members of a NED description are simple module declarations,
compound module definitions and network definitions. Simple module declarations
describe the interface of the module: gates and parameters. Compound module
definitions consist of the declaration of the module’s external interface (gates and
parameters), and the definition of submodules and their interconnection. Network
definitions are compound modules that qualify as self-contained simulation models.

Model behavior is captured in C++ files as code applications, while model to-
pology and some of the parameters defining this topology are defined by the NED
files. With this in mind, is normal to see OMNeT++ model’s modules having three
types of files defining it, one c++ code application file, a c++ header and a .ned file
describing the module.

In a generic simulation scenario, one usually wants to know how the simulation
behaves with different inputs. These variables neither belong to the behavior (C++
code) or the topology (NED files) as they can change from run to run. INI files are
used to store these values.

OMNeT++ features three types of user interfaces available to run simulations
on:

• Qtenv: Qt-based graphical user interface, available since OMNeT++ 5.0.23

• Tkenv: the traditional, Tcl/Tk-based graphical user interface.

• Cmdenv: command-line user interface for batch execution.
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COPADRIVe uses Qtenv as its default user interface for simulation running, since
it requires the "Fast" running mode for it to be perfectly synchronized with Gazebo,
this will be detailed later at 5.

All these features adding to the fact that Artery [33] already implemented C-ITS
scenarios following the ETSI ITS-G5 standard were the reasons behind the choice of
OMNeT++ for this project.

Figure 23: OMNeT++ qtenv UI

4.2 Vehicular Network Simulation tools - Artery Project

Artery[31], was the project where the development of COPADRIVe was based on.
It is the first and unique project that integrates a Traffic simulator (SUMO) with
a Network Simulator (OMNeT++) by using Veins [34] and adding the compliance
with the ETSI ITS-G5 standard by integrating the Vanetza project, which is the
"only open-source implementation of the ETSI C-ITS protocol suite".

Figure 24 presents an overview of the Artery software architecture. Referencing
back to chapter 3, Artery’s stack contribution on top of Veins and Vanetza, can
be translated as the Facilities and Applications layer of the ETSI ITS-G5 protocol.
"ITS-G5 Middleware" is the key component in this tool, since it provides the neces-
sary interfaces between the SUMO application and its required running service(s),
i.e CAM sending between OMNet++ nodes translating into communication between
vehicles in the traffic scenario on SUMO.
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Figure 24: Artery Architecture[31]

The three concepts presented between the ITS-G5 Middleware and the Services
deployed are specified to be three main methods for message sending/receiving by the
Services provided. The "trigger" method works as the way for the facility existent
to be able to update the vehicle current status(i.e speed, heading) so the Service can
be updated through the time in order to decide whether or not he should decide to
send a message.

This message providing is done by the "request" method that works as the way
for the running service to notify the lower layers that it has intent of sending a
message into its surroundings (i.e CAM broadcasting). Obviously this message will
be queued, and transmitted into the physical channel whenever the Access layer
allows it.

The "indicate" method between the Middleware and an existing running service,
is the, as it name states, indication from the lower layers into the Service that a
message from other C-ITS member was received and lets it access to its contents.
Translating into a easier explanation, is the way a Vehicle can have access to data
coming from another vehicle in the case of a CAM service running.

Different kinds of services, can be implemented using this topology, however,
both Artery and COPADRIVe only have fully compliancy with the CAM service,
from now on mentioned as CAService (Cooperative Awareness Service). Mostly,
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because different kind of messaging services are still under development for ETSI
ITS-G5, even DENM messages are still, not fully defined, since they can fit a wide
variety of possible scenarios, and development is still ongoing.

4.3 Robotic Simulators

4.3.1 Webots

Webots [35] is a open-source (since 2019) Robotic simulator developed by the EPFL
since 1996. It claims itself as a a complete development environment to model,
program and simulate robots. Different members of both Industry and Academia
are users of this software for robotic simulation and modelling, the company behind
Webots development offers, as well, consulting to develop and provide simulation
models off-the-shelf.

Different multi-agent robotic scenarios have been the focus of most of the work
and models done under Webots, however, lately, autonomous cars and different
vehicular scenarios involving autonomous vehicles have been a big target of the tool
development.

Webots has a lot of great features for this kind of simulation scenarios, accurate
physical properties representation is their great advantage for the robotics com-
munity. Multiple plugins and APIs are already available, the simulation control
models can be written as C, C++, Python and Java applications, plugins to integ-
rate Webots with Matlab and even ROS are as well, developed. Webots has, as
well, several import features, such as, import 3D models from major modeling soft-
ware (SolidWorks, AutoCAD, Blender, etc.) and import maps from OpenStreetMap,
GoogleMaps... Which makes it a great.

The webots GUI is shown at figure 25. At figure 26 a screen shot from a Webots
simulation modelling a famous NASA robot is presented.

4.3.2 Gazebo

Gazebo[36] started to get developed in 2002 at the University of Southern Califor-
nia, it is a ROS-based robotic simulator, which means it isn’t possible to decouple
it from ROS, Gazebo uses ROS features in many ways to achieve proper simulation
synchronization and communication between different software modules present on
simulation scenarios. Gazebo classifies itself as a simulator with "a robust physics en-
gine, high-quality graphics, and convenient programmatic and graphical interfaces".

Gazebo software versions are released once a year by January, currently it is at
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Figure 25: Webots GUI

Figure 26: Webots simulation
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its version number 10, version 11 is expected to be released by January/2020. It is
compatible with different ROS distributions, trying to stay up-to-date with the most
recent ones for each Gazebo superior version. Gazebo versions are compatible only
with Ubuntu versions, for instance, Gazebo 8, the version used for the platooning
model implemented for both projects developed in this thesis, is only compatible
with Ubuntu’s Xenial(16.04) and Yakkety(16.10) versions.

The following are the most relevant features present in this tool:

• Dynamics Simulation - Access to multiple high-performance physics engines

• Advanced 3D Graphics

• Sensors and Noise - Generate sensor data, optionally with noise, from laser
range finders, 2D/3D cameras, contact sensors, force-torque, and more...

• Plugins for robots/environment control, developed with Gazebo’s extensive
API

• Robot Models already developed for off-the-shelf usage

• TCP/IP Transport for simulation running on remote servers

• Cloud Simulation on Amazon AWS and GzWeb for browser-based interaction

• Command Line Tools - most gazebo simulations are set up and run by command
line tools (all of them under ROS)

Adding to this, not being a feature, Gazebo being open-source and ROS integ-
rated brings to the table the argument of having excellent community support both
for help and development of newly created scenarios openly-shared within the com-
munity. Which is very good in areas like robotics where there are a lot of similarities
between environments and robotic systems/models within different scenarios. This
community help and ROS integration, made Gazebo the best contender in compar-
ison to Webots as the candidate to feature as the Robotic simulator for this thesis
projects.

Figure 27, it’s possible to see a mobile Robot model in a simulation scenario
featuring the traces of different distance sensors(both Sonars and LRFs). While in
figure 28, we can see a Toyota Prius resembled model with a wide variety of sensors
deployed, this model is very similar to the one used in our project, with only some
changes to the sensors present and the plugins deployed within itself.
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Figure 27: Gazebo simulation

Figure 28: Gazebo Prius model
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4.4 ROS - Robotic Operating System

ROS (Robot Operating System) is a robotic development framework that provides
libraries and tools to help developers create robot applications being them using
real hardware and interconnecting different components or in simulation where all
the hardware is abstracted in realistic way. It provides device drivers, libraries,
visualizers, message-passing, package management, and more. ROS is licensed under
an open source, BSD license.

The message-passing and visualizers, as well as the great community support
and usage of this framework were the main reasons why COPADRIVe and the HIL
simulation framework were built on top of ROS and used its main features as a way
to integrate the co-simulation environment.

The following are the most relevant concepts used in ROS, and that are crucial
to enable COPADRIVe and the HIL simulation framework software components:

• Nodes - Nodes are processes that perform computation. A ROS-based sys-
tem usually comprises many nodes, each and every one controlling the way a
computation module works.

• Messages - Nodes communicate with each other by passing messages. A mes-
sage is simply a data structure, comprising typed fields.

• Topics - Topics’ data is defined by Messages, they are routed via a transport
system with publish / subscribe topology. Each node can publish and/or sub-
scribe to any topic and exchange information with other nodes like this.

• Bags - Bags are a format for saving and replaying ROS message data. These
are very important in simulation to "replay" scenarios.

Figure 29: ROS concepts

In terms of application development, ROS supports code-writing in C++ and
Python, some experiments were already done with Lisp and Java libraries. However,
C++ and Python remain as the most used languages for ROS development.
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Adding to this, the different tools provided by ROS, both command-line tools
and graphical ones(rqt), as an example, rqt_graph displays an interactive graph of
ROS nodes and topics(Figure 30) are a great feature for development analysis and
testing.

Figure 30: rqt_graph example

This subsection, is present in this thesis as a way to define and explain ROS con-
cepts, as needed, for comprehension of the next chapters, since both implementations
are done on top of this Operating System.

4.5 Conclusions

As already mentioned on the specific subsections, both projects that will follow in
this thesis were developed on top of the ROS(4.4) framework with a Gazebo(4.3.2)
based simulation platooning scenario, and in the case of the COPADRIVe(5) tool,
OMNeT++(4.1.2) was the chosen Network simulator for the V2V communications
to be deployed following the ETSI ITS-G5 standard.
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5
COPADRIVe - A Realistic Simulation

Framework for Cooperative Autonomous
Driving Applications

This chapter presents the COPADRIVe - "A Realistic Simulation Framework for
Cooperative Autonomous Driving Applications" - simulation tool.

It starts by overviewing the implementation of the platooning control model in
the robotic simulation. Then, it presents the OMNeT++ network model and reports
on the effort carried out.

Before this chapter’s conclusions, there’s still a section showcasing some Experi-
mental results and posterior analysis regarding simulation runs done on COPADRIVe
and the impacts of some parameters tweaking on the Communication stack.

5.1 General System Architecture

Figure 31 shows an overview on COPADRIVe’s architecture and most important
modules, as well as, two screenshots of both simulators GUI’s running on a co-
simulation.

Starting by having a glance how this architecture compares to the Artery one
(Figure 24), it’s clear to see that the whole "Artery" part was replaced by a new
one represented now, by the 3 most relevant modules in this integration: CaService,
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Figure 31: COPADRIVe architecture

Robot Middleware and Vehicle Data Provider.

CaService, is the application providing the CAM service which gives vehicles
the ability send CAMs whenever it is required (following the ITS-G5 standard).
Robot Middleware, works as a double-sided bridge between ROS/Gazebo nodes and
OMNeT++ modules, it’s where cars(robots) in ROS receive a new message from
their surroundings, as well as, where all the initialization necessary for the remaining
OMNeT++ modules is taken care of. The Vehicle Data Provider module, is the
module representing the interface between the vehicles sensors, ECUs and all data
gathering components with the Networking modules, it allows OMNeT++ nodes to
be aware of how their relative Gazebo car is behaving. These 3 modules will be
explained in more detail on the next subsection.

The ROS/OMNet++ integration part showcased at figure 31 represents all the
ROS-based applications and messages exchanged for the well-being of the COPADRIVe
implementation. At section 5.4, the way OMNeT++ is integrated with Gazebo on
top of the ROS framework is shown and detailed.

5.2 Gazebo Platooning Model

The Gazebo Platooning model developed, as previously stated, is based on the only-
V2V reliant platooning algorithm mentioned at 2.2, featuring a platoon of 3 vehicles
inside a scenario resembling a motor sports track.

Since data exchange between leader and follower of a platoon pair is the only
information gathered by the follower to apply it’s control algorithms, the way in-
formation is generated and exchanged on a "simple" Gazebo simulation, should be
explained and mentioned into detail, in order to understand how these data work
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flows are comparable and reproduced on the full COPADRIVe implementation model.
A rqt_graph showing all these communication links are organized is shown at Figure
32.

Analyzing Figure 32, the biggest boxes named "carX" represent the namespace
for every vehicle, inside them smaller boxes represent topics published by those
vehicles plugins and ellipses represent ROS nodes that might be publishing or sub-
scribing, accordingly to the direction of their connections, to different topics.

Each vehicle has two important applications running in their node, one plugin
responsible for the topics publishing, like "/carX/carINFO" that is a topic providing
data regarding the current status of the vehicle like, steering angle, speed, GPS
coordinates, Heading... This topic is published in a 20Hz frequency. In the instance
of this model running solely with gazebo and ROS topics as the only communication
mechanisms available, the topics "/carX/RXNetwork" are the ones that simulate a
OBU in the vehicle that work as the way for vehicles to provide and receive data from
the other vehicles, important to note that this topic is published by the plugin in a
10Hz frequency, meaning that a V2V message would be exchanged each 0.1 seconds
between leader and follower in a platoon pairing.

Apart from this plugin, all the vehicles feature a control application that uses data
from these topics in order to control the vehicle actuators to follow it’s trajectory
accordingly. In the case, of the leading vehicle (car1), it’s control application is
dependant on the scenario simulated, it can be autonomously controlled, manually
controlled(using keyboard inputs), or even controlled using ROS Bags to be able to
repeat the same trajectory as in previous simulation instances.
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Figure 32: rqt_graph Gazebo platoon simulation
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Figure 33: Gazebo platoon simulation

Figure 33, shows a screen shot of the three vehicles running the platoon model
during a simulation run done only using Gazebo for both physical and networking
simulation.

5.3 OMNeT++ Simulation Model

In this section, COPADRIVe’s OMNeT++Model will be overviewed trying, as much,
to compare it to its Artery’s counterparts as way to properly display the major
contributions of a project against each other.

In Figure 34, the source code files for the most relevant developed modules is
shown. The COPADRIVe tool was developed following the original artery projects
code organization, as it’s possible to see by the path used to search for these files.

Figure 34: COPADRIVe modules

The functionality of the modules mentioned next, will not be detailed in this
Thesis, even though their c++ code, headers and .ned files have been tweaked to
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be able to properly integrate within COPADRIVe’s scope, since most of them only
provide classes and methods for the remaining modules. Some more details on their
usefulness can be found in [31] and on Artery project documentation [33].

• ItsG5Service

• Facilities

• CaObject

• LocalDynamicMap

• Middleware

• ItsG5BaseService

• StationaryMiddleware

• StoryboardSignal

• Timer

The three modules that have the prefix/suffix "ROS" within their name, are all,
software modules focused on the allowance of the ROS and OMNeT++ integration
to be done properly:

• ROSOMNeT

• ROSSyncApplication

• MobilityROS

All of them will be showcased at next section 5.4, as well as, all the mechanisms
that made this integration possible.

Focusing now on the three main components, already previously mentioned:

• VehicleDataProvider

• RobotMiddleware

• CaService

The first one, the Vehicle Data Provider (VDP) module, as already said, is the
interface between the vehicle simulated on Gazebo and its respective OMNeT++
"car" node. Within these 3 this is the only software module that isn’t properly a
OMNeT++ module by definition, these VDP module is an entity that is used by the
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CaService, in order for this service to be able to properly fill CAM messages with
the necessary (and real) information.

The VDP, receives data from the vehicle within Gazebo, by subscribing to the
topic "/carX/carINFO" mentioned at section 5.2.

At Figure 35 it’s shown part of the method that is called whenever new data comes
from the Gazebo vehicle, only some relevant data is stored on this class variables.
As we can see, the car "name" (position in the platoon), its most recent heading and
speed, as well as, its current GPS coordinates are stored inside the VDP. A quick note
on the GPS coordinates, since the Gazebo simulation model only supports cartesian
coordinates, a "translation" was made, in order to fill the GPS fields defined on the
ETSI ITS-G5 CAM message that are mandatory to be filled using GNSS latitude and
longitude values, since the Gazebo model is small and neutral on the Z coordinate,
we assume the CAM altitude value is unavailable.

By using the MobilityROS module functionalities, VDP is responsible to update
the car’s OMNeT++ mobility module accordingly to data from Gazebo.

Figure 35: VDP topic callback

The Robot Middleware module, in this case, it is a OMNeT++ simple module by
definition extending Artery’s "Middleware" module is responsible to provide typical
ITS-G5 Facilities middleware capabilities.

In case of the COPADRIVe implementation, it is the module responsible to up-
date the car module position during simulation-time using the mobility module that
gets updated by the VDP.

Apart from this, it is responsible, as well, by receiving and storing data that
come from other vehicle’s CAM messages. Following this, this data is sent to ROS
by means of a topic publishing, that gets subscripted by its relative Gazebo vehicle.
In figure 36 a piece of code of the method that receives a signal, confirms it is a
message in CAM format and stores some of its data into local variables.

The CaService module, it states for "Cooperative Awareness Service. This ser-
vice, uses the VDP class as the it’s way of receiving the most recent status from the
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Figure 36: Robot Middleware code

vehicle data fields.

The two main features of this service are what data to send on CAM messages
and when to send them.

In order to fulfill the required data it uses the VDP gathered information, as
shown in figure 37

Figure 37: createCooperativeAwarenessMessage method

To be able to specify when a CAM message should be sent or not, the CaService
follows a specified profile to trigger this message sending. According to the ETSI
ITS-G5 the Basic Service Profile (BSP) provides some threshold limited rules in
order for this service to decide whether or not a CAM message shall be sent, these
limits for the BSP were specified at 3.2. Figure 38, shows the methods responsible
for this.
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Figure 38: CAM trigger profiling
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The thresholds present at the above methods, can be adjusted in a customized
way by the user, by editing the .ini file that launches this simulation. Figure 39
shows the parameters present at this file, that should be used to change the profile
set to use by the CaService. Already organized as different configured profiles set for
testing.

Figure 39: .ini file Profiling

On the next section, the interface/integration developed to properly implement
this project will be shown and detailed, together with a description of how the
previously defined modules interact with it.

5.4 ROS-OMNeT++ Interface

5.4.1 Synchronization Approach

For this Gazebo/ OMNeT++ integration to be done, the first crucial step that had
to be implemented was the synchronization between both simulators’ clocks, if this
wasn’t accomplished, the platoon control could be compromised, even though the
messages were being exchanged in OMNeT++.

OMNeT++ is a discrete-event simulator, which means that its internal clock
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only "advances" if any simulation event happens (i.e a message being sent), and
Gazebo has a clock based on time-steps, which means its clock "advances" in a fixed
frequency/period according to the defined time-step (1ms in COPADRIVe’s case).
Because of this difference on both clocks, a methodology to make them synchronized
had to be implemented.

The previously mentioned ROSSyncApplication module, was developed with this
in mind, it is a simple OMNeT++ module that runs on the same hierarchy simulation
level as the vehicular nodes.

Its functionality is quite simple, after initialization, it sends a internal message
"syncMsg", created only for this purpose, at clock time 00:00:00. Since it is the
only module receiving this message, it handles it, by locking a mutex, making all
the simulation stop, since it can only advance if any kind of event is scheduled. By
subscribing to the ROS "/Clock" topic, that gets published every 1ms, whenever it
gets to the callback method of this topic it unlocks the mutex, enabling the pre-
viously mentioned method to advance and schedule a new message to the current
Gazebo/ROS timestamp, repeating this cycle again. At figure 40, the code for the
methods that guarantee this synchronization loop gets going, is shown.

Figure 40: Clock syncronization approach between OMNeT++ and Gazebo

5.4.2 Interface Architecture

Apart from the time synchronization between simulators, ROS is the framework base
on how both simulators can exchange data. Already some examples on how ROS
enables this were done on the modules description done on the previous section.
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Starting by mentioning the remaining software modules still not defined: ROSOM-
NeT and MobilityROS.

The first one, is a class only providing some ROS functionalities for module
development that might need to use ROS integration for their usefulness to be fulfilled
(i.e CaService), within the methods provided by this module is worth to mention,
the rosMain and runROSNode methods that are used by all the OMNeT++ modules
that require ROS integration. rosMain is used as the ROS spin loop that is usually
used on ROS applications, runROSNode is used by these modules to initialize, handle
and create a rosNode whenever a module requires it.

MobilityROS, is the software module that guarantees that any OMNeT++ mod-
ule that is able to access GPS coordinates from gazebo vehicles (subscribing to
"/carX/carINFO") can set the OMNeT++ representative module to be positioned
correctly on the simulation UI.

In terms of how and when data moves around this tool software stack, figure
41 has a good over view on it. Data flows from carX’s sensors into carY’s control
application, working its way through Gazebo into OMNeT++ and then into other
Gazebo’s car following a CAM transmission between different nodes in OMNeT++.
To note that nodeX and nodeY represent the network interface of both carX and
carY, respectively.

Figure 41: Data Workflow

To evaluate the framework’s stability and limits, an analysis was done on its
inherent latency and/or computing delays. Figure 42 presents the delay between an
OMNeT++ node reception of a CAM (from a network transmission) and its reception
by the Gazebo’s vehicle model, after receiving it via ROS Pub/Sub mechanisms.
Following Figure 41 time line, the time stamps recorded were taken at CAM reception
at the node’s Middleware and upon Gazebo’s car application callback on this referred
ROS topic, at different CAM sending frequencies (10, 5, 3.3 and 2.5 Hz). From what
we can extract from the recorded data, this delay mostly coming from the ROS
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underlying Pub/Sub mechanisms, doesn’t seem to be severely affected by the CAM
sending frequency. Despite the maximum obtained delay slightly increased with
traffic, the observed latency close to 0.25 milliseconds, is not sufficient to impact or
compromise the application under test.

Figure 42: Implementation delay impact on CAM exchanging

5.5 Conclusions

The COPADRIVe project development was challenging in many different ways, but,
apart from software development, many different concepts, tools and standards had
to be well understood, in order to be able to produce this simulation tool. As already
stated, this is a kind of co-simulation tool that didn’t exist till this date, and that
provides capabilities to support C-ITS systems. This tool has an immense potential
for analyzing different Network and Control models pending forward research in
C-ITS scenarios. At section 7.1 some results will be shown using this tool, while
analyzing, different Network settings.
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6
Hardware-in-the-Loop simulation framework
for Cooperative Platooning safety assurance

6.1 Scope

In this chapter, a hardware-in-the-loop simulation architecture for C-ITS scenarios
with real On-board-unit hardware will be presented. Since COPADRIVe can fully
simulate both the communications between different C-ITS nodes and join it with
microscopic level analysis of control scenarios, slowly transitioning into real-life im-
plementations is the next step towards complete validation of these use-cases.

One of the challenges of SAFECOP was to improve the safety of cooperative
platooning. If on the one hand COPADRIVe allowed us to measure and evaluate
the performance of a network and control strategy, on the other hand, to address
the safety issue, it was crucial to implement reactive services that could monitor the
integrity of the platooning. To do this, GMV Skysoft, S.A. proposed a CLW (6.2), a
piece of monitoring software that overviews the safety of the cooperative platooning
system and triggers an emergency state upon detecting an error. This mechanism
was tested and continuously developed with support from COPADRIVe.

To achieve this, a hardware-in-the-loop simulation framework was developed as
a way to simulate a Platooning scenario under the Gazebo simulator and integrating
it with Cohda’s MK5 On-board-units in order to get the communications between
vehicles to be done, by relying on real OBUs and compliant with the ITS-G5 stand-
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ard.
Regarding the CLW some of the software used within this project context is

proprietary by GMV Skysoft S.A. and will not be fully disclosed. However, the
primarily tested out software components on this tool will be presented at section
6.2, together with the Runtime monitor software framework developed by CISTER.

6.2 Control Loss Warning / Runtime Monitor

The Control Loss Warning (CLW)(figure 43) and Runtime Monitor (RTM) systems
are designed to detect and alert about control loss situations. A CLW/RTM sys-
tem has the ability to monitor system’s status, and trigger alerts if a control loss
situation is detected. CLW/RTM mechanisms are particularly useful to monitor
individual nodes that work together to create a complex autonomous system. The
main difference between these systems is on which part of this project component
these mechanisms are running.

The RTM works on the computer running the Gazebo simulation, since it tracks
and monitors the data being published on ROS topics published by each vehicles
nodes, the RTM can be running, as well, on a different computer that has access to
the computer running the ROS system, however this can bring some excessive delays
on the alerting system.

The CLW is a software module running on the OBU, that receives data from
the ETSI module that come either from its dedicated vehicle or from other OBUs
ackowledging the position and physical properties of the other platoon members.
The CLW module uses and compares this data to be able to properly detect (or even
predict) a failure (e.g loss of brakes).

As these system are appropriate to monitor the status of individual nodes, they
can be applied to a platoon of vehicles travelling along a motorway.

Figure 43: Control Loss Warning
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6.3 Testbed Architecture

The presented system (figure 44) architecture refers to the fully implemented cooper-
ative tool, where the robots running at Gazebo, plan and run a platoon, following
the platoon model defined at 2.2 with V2V communications being accomplished by
the OBUs where the "CLW" and "ETSI" software modules guarantee safety and
security compliancy with the ITS-G5 standard.

The OBUs connect to the vehicles ROS-based control systems, via the MK5-ROS
bridge, using TCP sockets, this sockets were tested using IPv4 on top of CISTER’s
internal network access, different connection tests were made, like connecting directly
the PC running the ROS-based simulation through Ethernet to the OBU.

On the OBU side, the received messages are processed by the message broker and
used by the above modules. On the vehicles’ side, the ROS-based control system,
uses the information received through the bridge to get a good awareness of its
surrounding environment and cars involved in the platoon. Here, the ROS system
serve as the framework that support the different control algorithms to enable the
platooning functionality, connecting sensors and actuators, the platooning module,
and the Runtime Monitor that is used to ensure the overall safety of the system.

Figure 44: HIL Testbed Architecture

The ROS_MK5_bridge provides a bi-directional bridge between ROS systems
implementing a platoon simulation model running on Gazebo, and the MK5 OBUs
from Cohda Wireless. This allows a ROS environment to connect and communicate
with other ROS environments through MK5 802.11p platforms. An overview on the
ROS_MK5_bridge’s main interfaces is presented at figure 45.

In the previous diagram, ROS/CARVEL represent the vehicle platooning envir-
onment, simulated on Gazebo, this Bridge end-side subscribes to topics coming from
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Figure 45: Bridge Architecture

the simulator, in order to provide their information through the bridge to feed the
OBUs. In the opposite direction, it also, advertises a topic filled with information
coming from the Bridge, so the simulator can properly acknowledge this.

On the OBUs end-side of the Bridge, all the information coming from it is fed into
the MessageBroker module, which segregates and processes this data, in order to,
feed it into the remaining OBU modules. NMEA messages sent through the Bridge
are used to provide GPS coordinates, speed and heading of the correspondent vehicle
that is feeding the Bridge, the NMEA Server running in the OBUs computes them,
so their information can be used by the remaining MK5 ran applications, this module
replaces the existent NMEA server present on the MK5 by default, simulating the
positioning of the OBUs on the simulator "world". If this wasn’t done, OBUs, since
they’re indoor would not be able to get access to their GPS positioning and so, most
of their software modules wouldn’t be able to properly work.

The module represented by the question mark "?", represents all the software
module present at this system that can use information received by the MessageBroker
modules, in the case of this simulation tool, the CLW and the ETSI module previ-
ously stated are obvious examples of this.

Figures 46 and 47 show screen captures of a HIL simulation running with some
ssh connections required done into two OBUs that are connected through the bridge
into the computer running the gazebo simulation and communicating between them
with data coming from the vehicles on the simulator. Figure 48 shows, the hardware
setup of OBUs with a simulation run being streamed.

The CLW module will be explained on the next section, the ETSI module is
responsible for gathering data coming from, either the ROS_MK5_Bridge associated
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Figure 46: HiL simulation w/ ROS_MK5_bridge

Figure 47: SSH connections into 2 OBUs
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Figure 48: HiL simulation setup

with its OBU, or data coming from other OBUs that broadcast messages, in the same
way CAMs are sent, but in a fixed transmission frequency.

6.4 Conclusions

Preliminary results showed to be very close in terms of platoon control to what this
model achieved with communications being carried out via internal ROS topics.

As presented in this section , the implementation of both the CLW and RTM
software modules within this tool was done with success and some evaluation could
be done on top of the results gathered via 30 simulation runs on different scenarios,
assuring the good performance of both the simulation tool, as well as, the safety
assurance of these modules for these platoon-specific deployments.
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Experimental results

7.1 COPADRIVe results

In this section, experimental results of different simulation scenarios ran using CO-
PADRIVe will be displayed and analyzed:

We consider the simulation model defined at section 5.2, with a safe distance
setpoint set to 8 meters (GPS values, not physical distance between car’s chassis).
The simulation results were extracted from 45-seconds long runs, in four different
scenarios where the platoon safety was assessed, on different CAService profiles:

• scenario A - fixed Cooperative Awareness Messages (CAM) exchanging fre-
quencies were set.

• scenario B - using the standard Basic Service Profile (BSP) from ETSI following
[12].

• scenario C - using the BSP with platooning-defined specifications [5] C.2.11 .

• scenario D - customized settings were defined and evaluated for a profile that
tweaks the BSP one.

The simulation environment and simulated platooning trajectory in the 45-second
run is represented in Figure 49. The yellow line represents the initial acceleration
path, where the follower car is still accelerating to reach the setpoint distance (8
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Figure 49: Platoon Path
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meters) between itself and its leader. In orange, it’s represented the path in which
the platooning is stable, and in red, a hard turn in which platooning behaviour is
greatly dependant on the number of CAMs exchanged. The presented experimental
charts also contain this color reference to help relating them with the relevant portion
on the track.

7.1.1 Scenario A - Fixed CAM frequencies

Figure 50: Vehicle inter-distances - Scenario A

Four CAM sending frequencies were evaluated (i.e. 10, 5, 3.3 and 2.5 Hz), guar-
anteeing that at the highest CAM frequency, CAM messages will always be provided
with new data, since the "/carX/carINFO" topic is published in a 20Hz frequency.
Figure 50 shows the vehicle inter distance in each test and Figure 51 presents the
steering angles. The impact of different CAM exchanging frequencies on the behavior
of the second car was analyzed, regarding the forward distance and steering angles
to analyze how different CAM exchanging frequencies affected the Platoon control.
The Platoon starts from stopped position, and the follower only engages platooning
after the leader starts moving forward, thus the follower needs to accelerate to catch
up to its leader. It is also clearly noticeable that, for a CAM inter arrival time of 0.4
s, while approaching the left hard turn (in red), the follower lost track of the leader
vehicle, making a full-stop. At higher CAM sending frequencies, it is possible to ob-
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Figure 51: Steering Angles - Scenario A

serve that the Platoon PID controller shows better stability, and the inter-distance
stability improves. These issues are also particularly visible regarding the steering
behavior. For the first three CAM inter arrival times, the steering angles follow the
leader’s with a slight delay, which increases with frequency. For an inter arrival time
of 0.4 s, the steering angles of the follower are no longer inline with the leader’s
(Figure 51). CAM sending frequency is too low to keep the follower updated with
leader’s steering corrections, resulting in minimal or nearly non-existent steering in-
puts. Upon entering the left U turn, the follower’s controller struggles to keep up
with the steering of the leader, while it completely fails to do so for inter arrival times
of 0.4 s. Among the several runs, at different frequencies, it is noticeable a consistent
behaviour, in such way that the higher the CAM sending frequency, the stable the
PID steering control. However, fixing a CAM frequency represents a sub-optimal
approach for Platooning scenarios, considering that excessive CAM traffic will often
be generated, which can negatively impact the throughput of the network. With
this in mind, ITS-G5 proposed BSP to dynamically trigger CAMs. In the following
scenarios its performance in the same context will be evaluated.

7.1.2 Scenario B - standard Basic Service Profile (BSP)

For this Scenario the BSP, as standardized in ITS-G5 [12] and already referenced at
3.2, will be analyzed.

CAM reception intervals are presented in Figure 52. CAM sending frequencies
approach 2.0 Hz, mostly due to the second triggering condition, since the Platoon
speed during the orange straight part of the track is constant around 8 m/s. However,
there are some high frequency triggers in the early iterations, resulting from the quick
acceleration at the initial portion of the track, while trying to close the distance gap
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Figure 52: Period CAM BSP

Figure 53: Steering Analysis for different scenarios
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Figure 54: Longitudinal distances analysis in different scenarios

to the leader. It is also possible to observe that BSP triggers higher frequencies
in response to the hard left turn (red portion of the track), that quickly shifts the
leader’s heading. Still, as observed in Figures 53 and 54 this increase in frequency
was insufficient to maintain a stable Platooning control using this control model,
and fails to follow leader’s steering control. Therefore, we conclude that BSP is
not well-tuned for more demanding Platoon scenarios, in which the control models
exclusively rely upon cooperative support. While still trying to minimize network
usage, and maintaining stable platooning control, an analysis on this will be done
for the next scenarios’ implemented profiles.

7.1.3 Scenario C - Basic service profile for platoon scenarios

In this scenario, we analyze an extension to the ITS-G5’s BSP specified in [5] C.2.11,
which recommends improved BSP settings for platooning scenarios. One of its most
significant changes, was to limit the minimum frequency between CAM transmission
to 2 Hz, double of the one defined for the original BSP. Test results are quite similar
to the usage of the original BSP settings, as triggering conditions remain the same.
As shown in Figure 55 and similarly to scenario B, CAM inter arrival times remain
around 2Hz(0.5s period), in this case as a result of the minimum frequency limit set.
Concerning the Platoon behaviour, Figures 53 and 54 present a similar behaviour to
scenario B, which results in a failure to execute the U turn. This is a consequence
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Figure 55: Period CAM BSP for Platoon

of platoon instability. Concerning distance error in regards to the set point, for
instance, both scenarios B and C, present similar and significant errors, resulting
from low CAM update frequency.

7.1.4 Scenario D - Custom Service Profile

Figure 56: Period CAM Custom SP

For this scenario a Custom Service Profile was setup aiming at balancing the net-
work load originated by CAM exchanging, while guaranteeing stability. With this in
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Table 7.1: Comparison between Scenarios - Number of messages and Safety Guarantee

Scenario Fixed Frequencies (Hz) BSP
BSP
Plat. CSP

10 5 3.3 2.5
Number of messages 441 227 151 113 101 101 181

Safety assurance OK OK OK NOK NOK NOK OK

mind, the approach was to adapt the second CAM triggering condition mentioned at
scenario B, by changing it to 2 meters instead of 4 meters. This change impacted the
CoVP behaviour considerably, both in the number of CAMs sent and its frequency,
as it’s possible to check at Figure 56. As shown in Figures 52 and 55, the CSP
conditions caused CAM triggering to happen much more frequently than in previous
cases, resulting on a more stable Platoon control when compared to scenarios B and
C (Figures 53 and 54). This also translates into a significant decrease of distance
errors to the leader, leading to a smoother control. In facto, only this change enabled
the Platoon to successfully complete the hard left turn (Figure 49).

Table 7.1 presents the number of CAM messages sent during simulation for each
scenario. As shown, a fixed frequency between 3.3 Hz and 2.5 Hz should be at
the threshold borderline balance to maintain CoVP control. However, fixing this
frequency is not the most reasonable approach since it can cause unnecessary CAM
message transmissions. With this in mind, a Service profile approach as defined in
ITS-G5 should be the optimal way to handle this, however, as we are able to confirm
with scenarios B,C and D this kind of profiling should be adapted to the use-case
and particularly to the control model. For this particular control model under test,
CAM information availability is crucial to maintain a stable behaviour. This kind of
profiling can be easily carried out using this tool, by fully-specifying the simulation
environment and Platoon control model over ROS/Gazebo, while using OMNeT++’s
capabilities to analyze the network performance and to provide new extensions to
the ITS-G5 communications stack, carrying out an integrated in depth analysis of
different C-ITS behaviours.

7.2 Hardware-in-the-loop results

In this section, some experimental results, gathered from a variety of simulations
ran, will be presented.

The simulations ran in these results context were based on the HiL simulation
integration already descripted, with a platoon simulation model running on Gazebo
with the vehicle’s V2V communications being done through real OBUs that are
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connected through the ROS_MK5_bridge into their correspondent vehicle node.

For the shown results, 30 simulations were run. 15 with only the CLW module
running on the OBUs as the alert system providing the vehicle’s control a reliant
safety layer. For the remaining 15 runs, the RT Monitor was added as an addition for
the alert system redundancy by working in parallel with the CLW module, however,
obviously running in different platforms.

These 15 (+15) simulations were split in between 3 different scenarios, all of them
simulating a different type of failure on the follower vehicle control:

• Loss of Acceleration (LOA) - In this scenario, the leader, on a straight path,
accelerates and its follower is not able to respond to this because of a failure
in its acceleration system. The CLW/RT monitor detect the failure and alert
its control application.

• Loss of Brakes (LOB) - In this scenario, the leader, on a straight path, brakes
and its follower is not able to respond to this because of a failure in its braking
system. The CLW/RT monitor detect the failure and alert its control applic-
ation.

• Loss of Direction (LOD) - In this scenario, the leader takes a turn and its
follower is not able to respond to this because of a failure in its steering system.
The CLW/RT monitor detect the failure and alert its control application.

All these failure scenarios were implemented as a trigger ROS application for
their occurrence on the 2nd platoon member (3 vehicles platoon). A LOD scenario
run can be seen at figure 57 after the failure trigger happening. In all simulation
scenarios, the vehicle’s control response to the alert reception from the CLW/RTM
was always to emergency break. In the case of the Loss of brakes, the failure detected
was a missing braking input (e.g the pedal not working), not a real mechanical brake
problem.

At table 7.2 some results gathered from, the 30 simulation runs done to test out
the CLW/RTM modules within the previously stated scenarios, are shown. These
tests have been ran under the SafeCOP project in order to evaluate and guarantee
some safety assurance metrics. These results, apart from guaranteeing the well-
functioning of these modules also assure the correct functioning of this tool as a
testing tool for C-ITS scenarios where the Cohda MK5 OBU is used.
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Figure 57: Loss of Direction scenario

Table 7.2: HiL simulations - Analysis of CLW/RTM alert systems

Metrics Results without RT Monitor Results w/ RT Monitor Units
Percentage of test runs where a crash between two or more platooning nodes occurred 13,3333 0 %
Average number of communication failures detected per test run 0,2353 0,1176 Avg
Average number of corrupted messages detected per test run 47 47 Avg
Average number of delivery delays detected per test run 0,2674 0,1429 Avg
Percentage of test time where communications were performed under an acceptable level of latency 98,8889 91,9012 %
Percentage of successful full stops after a catastrophic failure 86,6667 100 %
Downtime percentage of any SW component 1,2069 1,9023 %
Average response time for warnings 30,004 4,78 ms
Average response time for non warnings 35,302 14,79 ms

7.3 Conclusions

Regarding the results gathered in this section, both in the case of COPADRIVe,
as well as, in the HiL simulation case, these results prove the usefulness of these
tools in enabling testing and analyzing C-ITS scenarios in regards to the impact of
communications in their behaviour, as well as, in supporting the test of several safety
mechanisms within them.

COPADRIVe results, clearly depicted the impact of the CaService settings on the
behaviour of the platooning control model. Adding to this, some baseline values for
CAM exchanging frequency were gathered for us to be able to properly design future
cooperative platooning implementations. Regarding ETSI ITS-G5, these results can
be, as well, helpful for properly adjust CaService settings for platooning scenarios,
or other safety critical scenarios.

About the HiL simulation results, these provided a good insight on how to prop-
erly test out monitoring software like CLW and Runtime Monitoring in specific scen-
arios, as platooning, where they proved their usefulness in guaranteeing safety to the
vehicles involved.
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Conclusions and Future Work

C-ITSs still remain, in their most complex automated scenarios, a distant reality.
Mainly for political and ethical uncertainties, the intents of advancing for deploy-
ments of these kind of systems remain delayed. Obviously, some of these pending
decisions, remain not clarified and waiting for technological advances on a wide vari-
ety of areas.

In the case of vehicular cooperative scenarios (e.g platooning), research and de-
velopment regarding communications, decentralized decision making and control of
vehicles, will probably become hot areas of interest in the automotive industry for the
next few years. Since these kind of testing during development are very cost-heavy
for deployment, implementation using simulation tools is, and will keep on being the
easiest and cheapest approach on this.

In this thesis, an overview, regarding the most impactful ITS scenarios that can
rely on V2X communications, was done with a focus on the platooning scenario that
was used as a baseline for the 2 co-simulation tools developed. This overview and
analysis relying on the ETSI ITS-G5 standard, which is, today, the most widely
accepted V2X standard for communications.

About the developed tools, COPADRIVe presents itself as a unique approach as a
co-simulation tool joining together a robotic simulator and a network one, with a ITS-
G5 stack implemented, which is a very useful contribution for the analysis of different
vehicular scenarios that might use V2V communications. The HIL tool provides a
lower level of abstraction in what regards simulation, since it uses real hardware and
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real physical communications in order to provide data into the simulated vehicles.
This tool, was fundamental to analyse and demonstrate the monitoring software that
ensured platooning safety.

COPADRIVe is the most flexible of both projects in terms of future work and
developments. There are many paths possible to follow on this. Focusing on V2V
communications, the development and integration of different scenarios, like cross-
road management is a strong option, since Gazebo is a simulation that guarantees
easily development of different models. Exploring the communications stack should
be a focus as well, extending CAM message usage to different scenarios or even im-
plementing DENM messages to provide inputs necessary in some C-ITS scenarios,
can be viable options. Of course, continuous work on network analysis and tool
reliability are the obvious developments for close future.

Regarding the HIL simulation tool, the extension of the tool to other ITS scen-
arios can be quite interesting. Also, studying the impact of noise and other radio
physical layer issues can be carried out in the future with realistic communication
platforms.
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Abstract— Cooperative vehicle platooning applications in-
creasingly demand realistic simulation tools to ease their
validation, and to bridge the gap between development and
real-word deployment. However, their complexity and cost,
often hinders its validation in the real-world. In this paper we
propose a realistic simulation framework for vehicular platoons
that integrates Gazebo with OMNeT++ over Robot Operating
System (ROS) to support the simulation of realistic scenarios of
autonomous vehicular platoons and their cooperative control.

I. INTRODUCTION

Vehicular Platooning (VP) is an emerging application
of the new generation of safety-critical Cooperating Cyber
Physical Systems. Although VP can increase fuel efficiency
and road capacity, by having vehicle groups traveling close
together, VP presents several safety challenges, considering
it heavily relies on wireless communications, and upon a
set of sensors that can be affected by noise. The ETSI
ITS-G5[10] is considered as the enabler ready-to-go com-
munications technology for such applications, and although
there has been extensive analysis of its performance [8],
[9], [11], the understanding of its impact upon the safety
of these Systems of Systems (SoS) is rather immature.
Hence, extensive testing and validation must be carried out
to understand the safety limits of such SoS by encompassing
communications. However, the expensive equipment and
safety risks involved in testing, demands for comprehensive
simulation tools that can as accurate as possible mimic the
real-life scenarios, from the autonomous driving perspective
as well as from the communications perspective. The Robotic
Operating System (ROS) framework is already widely used
to design robotics applications, and aims at easing the
development process by providing multiple libraries, tools
and algorithms, and a publish/subscribe transport mecha-
nism. On the other hand, several network simulators are
available and capable of carrying out network simulation
of vehicular networks. Nonetheless, these remain mostly
separated from the autonomous driving reality offering none
or very limited capabilities in terms of evaluating cooperative
autonomous driving systems. In this work, we carried out the
integration of a well-known ROS-based robotics simulator
(Gazebo) with a network simulator (OMNeT++), enabling
a powerful framework to test and validate cooperative au-
tonomous driving applications. Currently, most relevant sim-
ulation frameworks focus on enabling an integration between

traffic and network simulators, supporting the evaluation of
Inteligent Traffic Systems (ITS), e.g., VSimRTI [1], Artery
[3]. Some support vehicular platooning applications, such
as Webots[4], VISSIM[6], CORSIM[7]. However, all these
come short in comparison with the advanced simulation
and capabilities of a robotics simulation framework such as
Gazebo, which is developed from scratch to enable a realistic
simulation environment for autonomous systems via accurate
physical modelling of sensors, actuators and vehicles, while
harnessing the power of the ROS development environment.
Plexe [2], extension of Veins, aims at enabling platooning
simulation, by integrating OMNeT++, SUMO [5] together
with a few control and engine models. However, similarly
to previous examples, it lacks the power of ROS and only
enables the test of longitudinal platooning i.e., no lateral
control, and lacks support of a ITS-G5 communication stack,
the standard for C-ITS applications in Europe. Hence, this
work, is the first to integrate ROS and a network simulator
supporting a full stack of the ETSI ITS-G5.

II. FRAMEWORK ARCHITECTURE

Our simulation framework builds over the Veins simu-
lator and the Vanetza communications stack implementa-
tion, borrowing and extending much of the middle-ware
components from the Artery framework. It relies on ROS
publish/subscribe mechanisms to integrate OMNeT++ with
Gazebo, represented by blue arrows at Figure 1. Each OM-
NeT++ node represents a cars network interface and contain
a Vehicle Data Provider (VDP) and a Robot Middleware
(RM). VDP is the bridge that supplies RM data from
the Gazebo simulator. RM uses this data to fill ITS-G5
CAMs data fields (i.e Heading, Speed values) through the
CaService that proceeds to encode this data fields in order to
comply with ITS-G5 ASN-1 definitions. RM also provides
GPS positions to position the nodes in the INET mobility
module. Regarding synchronization, OMNeT++ is an event-
driven simulator and Gazebo is a time-driven simulator,
thus synchronizing both simulators represented a challenge.
A synchronization module was implemented in OMNeT++,
relying on ROS /Clock topic as clock reference, which sched-
ules a custom made OMNeT++ message for this purpose
(syncMsg) to an exact ROS time, forcing the OMNeT++
simulator engine to generate an event upon reaching that
timestamp.



Fig. 1. Framework Architecture

III. EXPERIMENTAL RESULTS

The simulation is composed of three vehicles modeled
from a Toyota Prius running a PID-based platooning control
model [9] that solely relies on Cooperative Awareness Mes-
sages (CAM) to maintain the platooning service, with a safe
distance set to 8 meters. Different CAM sending frequencies
were evaluated (10 Hz - 2.5 Hz). At the lower frequency
value, the second car fails to keep up with the leader vehicle.
Fig. 2 presents a quick overview on how data flows from
carXs sensors into carYs control application, following a
CAM transmission between different nodes in OMNeT++.
NodeX and nodeY represent the vehicles network interfaces.
We analyzed the impact of different CAM exchanging fre-
quencies (Fig.3) on the platoon-following behavior of the
second car, regarding the longitudinal distance and steering
angles. This provides us with a good perception on how the
different frequencies affect the PID longitudinal control of
the car. Earlier iteration values confirm that the platooning
starts from parked position, and the follower only starts
platooning after the leader starts moving, thus the follower
needs to accelerate to catch up to its leader. It is also clearly
noticeable, in the 0.4s period around iteration 700, the car
lost track of the leader vehicle, making a stop and the leader
kept going forward. At higher CAM sending frequencies, we
can observe that the PID controller shows better stability,
and the inter-distance stability improves. The same is visible
for the steering behavior. Again, like in the previous graph,
around the 700 iterations mark, we can notice the steering
angle of the car staying at zero, as it lost track of its
leader and stopped. Regarding the other runs on different
frequencies, we can get a similar comparison to the previous
one, where we can, notice that the PID steering control
becomes more stable the higher the CAM sending frequency.

IV. CONCLUSIONS AND FUTURE WORK

Initial validation confirms a positive feedback between
the network simulation parameters and its effect in the
platooning control model. Further validation is to be carried
out regarding the impact of the introduced simulator delay,
impact of different network parameters and the performance
of other platooning control models.

Fig. 2. Data workflow

Fig. 3. Vehicle inter-distances and steering angles
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Abstract—Safety-critical cooperative vehicle applications such
as platooning, require extensive testing, however, the complexity
and cost involved in this process, increasingly demands for
realistic simulation tools to ease the validation of such tech-
nologies, helping to bridge the gap between development and
real-word deployment. In this paper we propose a realistic co-
simulation framework for cooperative vehicles, that integrates
Gazebo, an advanced robotics simulator, with the OMNeT++
network simulator, over the Robot Operating System (ROS)
framework, supporting the simulation of advanced cooperative
applications such as platooning, in realistic scenarios.

Index Terms—C-ITS; Vehicular Platooning; ROS; OMNeT++

I. INTRODUCTION

Modern embedded systems, coupled with the advancements
of digital communication technologies, have been enabling
a new generation of systems, tightly interacting with the
physical environment via sensing and actuating actions: Cyber
Physical Systems (CPS) [1]. These systems, characterized by
an unprecedented levels of ubiquity, have been increasingly
relying upon wireless communication technologies to pro-
vide seamless services via flexible cooperation, enabling true
Systems-of-Systems (SoS).

Cooperative Vehicular Platooning (CoVP) is one of these
emerging applications among the new generation of safety-
critical Cooperating CPS. CoVP can potentiate several ben-
efits, such as increasing road capacity and fuel efficiency
and even reducing accidents [2], by having vehicle groups
traveling close together. However, CoVP presents several
safety challenges, considering it heavily relies on wireless
communications to exchange safety-critical information, and
upon a set of sensors that can be affected by noise. For
instance, quite often in CoVP, wireless exchanged messages
contribute to maintain the inter-vehicle safety distance, or to
relay safety alarms to the following vehicles. Message losses
or delays may lead to serious crashes among the vehicles in

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER
Research Unit (UID/CEC/04234); also by the Operational Competitiveness
Programme and Internationalization (COMPETE 2020) under the PT2020
Partnership Agreement, through the European Regional Development Fund
(ERDF), and by national funds through the FCT, within project POCI-01-
0145-FEDER-032218 (5GSDN).

the platoon with dramatic consequences to them and to the
remaining road members [3]. It is thus a truism, that timeliness
and reliability of the communications are critic aspects for
ensuring the safe operation of the platoon.

The ETSI ITS-G5 [4] is increasingly considered the enabler,
ready-to-go communications technology for such applications,
and although there has been extensive analysis of its per-
formance [5]–[7], the understanding of its impact upon the
safety of these SoS is rather immature. Hence, extensive
testing and validation must be carried out to understand the
safety limits of such SoS by encompassing communications.
However, the expensive equipment and safety risks involved
in testing, demands for comprehensive simulation tools that
can as accurate as possible mimic the real-life scenarios, from
the autonomous driving or control perspective, as well as
from the communications perspective. The Robotic Operating
System (ROS) framework is already widely used to design
robotics applications, and aims at easing the development
process by providing multiple libraries, tools and algorithms,
and a publish/subscribe transport mechanism. On top of it,
several simulation tools are capable to simulate the physics
and several of the sensor/actuator and control components of
these vehicles. On the other hand, several network simulators
are available and capable of carrying out network simulation
of vehicular networks. Nonetheless, these tools remain mostly
separated from the autonomous driving reality, offering none
or very limited capabilities in terms of evaluating cooperative
autonomous driving systems.

In this work, we carried out the integration of a well-
known ROS-based robotics simulator (Gazebo) with a network
simulator (OMNeT++), by extending Artery [8], enabling
a powerful framework to test and validate cooperative au-
tonomous driving applications. In the one hand, we leverage
upon Gazebo’s robotic simulation most prominent features,
such as its support for multiple physics engines, and its rich
library of components and vehicles in integration with ROS,
which enables us to build realistic vehicle control scenarios.
On the other hand, OMNet++ supports the underlying network
simulation relying on an ITS-G5 communications stack which
is, currently, the de-facto standard for C-ITS applications in
Europe. This integration provides the support for an accurate



Fig. 1: Framework Architecture

analysis of the communications impact upon the cooperative
application, and on the other hand, the tools to carry out a
thorough evaluation of the network performance using the
OMNet++/INET framework.

We present several contributions in this paper: (1) we imple-
ment a co-simulation framework for cooperative autonomous
driving applications, relying on ITS-G5 communications and
integrating other open-source tools with ROS support; (2)
as a prove-of-concept, we implement a platooning control
model, solely dependant on V2V communications, to assess
the simulation framework, and (3) we analyse the impact of
typical CAM settings, provided by the Basic System Profile
(BSP) as standardized in ITS-G5 [4], upon the platooning
behaviour, and evaluate its adequacy for a fully CoVP model.

In the remaining of this paper, in Section II we overview the
related work, in particular the current state-of-the-art regarding
connected vehicles simulation. In Section III, we describe the
framework architecture, focusing on several implementation
details. Finally, in Section IV we present different test sce-
narios and the experimental results, and conclude the paper in
Section V.

II. RELATED WORK

Currently, most relevant simulation frameworks focus on
enabling an integration between traffic and network simulators
to support the evaluation of Intelligent Traffic Systems (ITS).
Some examples include iTETRIS [9] which integrates SUMO
and ns-3, but it is pretty much stagnant, and unresponsive;
VSimRTI [10] using an ambassador concept to support inte-
gration of virtually any simulator. Different traffic simulators
and communication simulators have already been integrated,
such as, the traffic simulators SUMO and PHABMACS and the
network simulators ns-3 and OMNeT++; Artery [8], provides
an integration of Veins (integrating SUMO traffic simulator
and OMNet++) and the Vanetza ITS-G5 implementation. We
identified Artery as the most mature project, which supported

the best features to serve as guideline for our integration.
In general, although these simulators may suffice to ana-
lyze macroscopic/mesoscopic, or even microscopic vehicular
models, they are inadequate to support an evaluation of sub-
microscopic models, which focus on the physics and particular
characteristics of each vehicle. An exception is Plexe [11],
an extension of Veins, which aims at enabling platooning
simulation by integrating OMNeT++ and SUMO [12] together
with a few control and engine models. However, it only
enables the test of longitudinal platooning i.e., no lateral
control and lacks support of a ITS-G5 communication stack. It
is also limited in its capabilities to simulate a rich autonomous
driving environment, when compared to robotic simulators,
which primary objective is to mimic a realistic deployment
environment to validate autonomous control models, encom-
passing sensors and actuators, rich simulation environments,
as well as realistic physics models. There are other robotic
simulators available that can support this kind of simulation.
Perhaps the most prominent one, due its support of V2V
communication via ns-3 is Webots [13]. However, the tool
only very recently became open-source, and it does not support
ROS out-of-the-box. Also, the ns-3 plugin does not support
simulation of a ITS-G5 communications stack. Our proposed
framework provides a clear advantage regarding the analysis
of cooperative autonomous driving applications, in particular
CoVP. It relies on Gazebo to enable a realistic simulation
environment for autonomous systems via accurate modelling
of sensors, actuators and vehicles, while harnessing the power
of the ROS development environment, for developing new and
complex algorithms from scratch using its ROS C++/Python
framework.

III. FRAMEWORK ARCHITECTURE

A. OMNeT++’s Modules Overview
Our simulation framework was built over the Veins simu-

lator and the Vanetza communications’ stack implementation,



Fig. 2: Data workflow

borrowing and extending much of the middleware components
from the Artery framework. It relies on ROS publish/subscribe
mechanisms to integrate OMNeT++ with Gazebo, represented
at Fig. 1. Each OMNeT++ node represents a car’s network
interface and contains a Vehicle Data Provider (VDP) and a
Robot Middleware (RM). VDP is the bridge that supplies RM
data from the Gazebo simulator. RM uses this data to fill ITS-
G5 Cooperative Awareness Messages (CAM’s) data fields (i.e
Heading, Speed values) through the Cooperative Awareness
Service (CaService) that proceeds to encode this data fields
in order to comply with ITS-G5 ASN-1 definitions. RM also
provides GPS coordinates to define the position of the nodes
in the INET mobility module.

B. Synchronization Approach

OMNeT++ is an event-driven simulator and Gazebo a
time-driven simulator, therefore synchronizing both simulators
represented a key challenge. In order to accomplish this, a
synchronization module was implemented in OMNeT++, to
carry out this task, relying upon ROS ”/Clock” topic as clock
reference. The OMNeT++ synchronization module subscribes
to ROS’ ”/Clock” topic, published at every Gazebo simulation
step (i.e. every 1ms) and proceeds to schedule a custom made
OMNeT++ message for this purpose (”syncMsg”) to an exact
ROS time, which allows the OMNeT++ simulator engine to
generate an event upon reaching that timestamp and so to
be able to proceed with any other simulation process that
should be running at the same time (e.g. CAM generation
by CAService).

C. Data Workflow

Fig. 2 presents a quick overview on how data flows from
carX’s sensors into carY’s control application, working its way
through Gazebo into OMNeT++ and then into other Gazebo’s
car following a CAM transmission between different nodes
in OMNeT++. To note that nodeX and nodeY represent the
network interface of both carX and carY, respectively.

To evaluate the framework’s stability and limits, we anal-
ysed its inherent latency and/or computing delays. Fig. 4
presents the delay between an OMNeT++ node reception

Fig. 3: Platooning Trajectory

of a CAM (from a network transmission) and its reception
by the Gazebo’s vehicle model, after receiving it via ROS
Pub/Sub mechanisms. Following Fig. 2 timeline, the times-
tamps recorded were taken at CAM reception at the node’s
Middleware and upon Gazebo’s car application callback on
this referred ROS topic, at different CAM sending frequencies
(10, 5, 3.3 and 2.5 Hz). From what we can extract from
the recorded data, this delay mostly coming from the ROS
underlying Pub/Sub mechanisms, doesn’t seem to be severely
affected by the CAM sending frequency. Despite the maximum
obtained delay slightly increased with traffic, the observed
latency close to 0.25 milliseconds, is not sufficient to impact
or compromise the application under test.

IV. EXPERIMENTAL RESULTS

The simulation is composed of three vehicles, modeled
from a Toyota Prius, running a PID-based platooning control
model [6] that solely relies on CAM messages to maintain
the platooning service, with a safe distance set to 8 meters.
The simulation results were extracted from 45-seconds long



Fig. 4: CAM Exchanging Delay - Scenario A

Fig. 5: Period CAM BSP

runs, in four different scenarios where the platoon safety was
assessed: in scenario A, we setup fixed CAM frequencies,
in scenario B the standard Basic System Profile (BSP) from
ETSI [14] was used, in C we used the BSP with platooning-
defined specifications [4] and in D we defined and evaluated
customized settings for BSP. The simulation environment
and simulated platooning trajectory in the 45-second run is
represented in Fig. 3. The yellow line represents the initial
acceleration path, where the follower car is still accelerating
to reach the setpoint distance (8 meters) between itself and
its leader. In orange, we represented the path in which the
platooning is stable, and in red, a hard turn in which platooning
behaviour is greatly dependant on the number of CAMs
exchanged. The presented experimental results also contain
this color reference to help relating them with the relevant
portion on the track.

A. Scenario A: Fixed CAM frequencies

Four CAM sending frequencies were evaluated (i.e. 10,
5, 3.3 and 2.5 Hz), guaranteeing that at the highest CAM
frequency, CAM messages will always be provided with fresh
information. Fig. 8 shows the vehicle inter distance in each
test and Fig. 10 presents the steering angles. We analyzed
the impact of different CAM exchanging frequencies on the
behavior of the second car, regarding the forward distance
and steering angles to analyze how different CAM exchanging
frequencies affected the CoVP control. The CoVP starts from

Fig. 6: Period CAM BSP for Platoon

Fig. 7: Period CAM Custom SP

parked position, and the follower only engages platooning after
the leader starts moving forward, thus the follower needs to
accelerate to catch up to its leader. It is also clearly noticeable
that, for a CAM inter arrival time of 0.4 s, while approaching
the left hard turn (in red), the follower lost track of the leader
vehicle, making a full-stop. At higher CAM sending frequen-
cies, we can observe that the CoVP PID controller shows better
stability, and the inter-distance stability improves. These issues
are also particularly visible regarding the steering behavior.
For the first three CAM inter arrival times, the steering angles
follow the leader’s with a slight delay, which increases with
frequency. For an inter arrival time of 0.4 s, the steering angles
of the follower are no longer inline with the leader’s (Fig.
10). CAM sending frequency is too low to keep the follower
updated with leader’s steering corrections, resulting in minimal
or nearly non-existent steering inputs. Upon entering the left
U turn, the follower’s controller struggles to keep up with the
steering of the leader, while it completely fails to do so for
inter arrival times of 0.4 s. Among the several runs, at different
frequencies, we notice a consistent behaviour, in such way that
the higher the CAM sending frequency, the stable the PID
steering control. However, fixing a CAM frequency represents
a sub-optimal approach for CoVP, considering that excessive
CAM traffic will often be generated, which can negatively
impact the throughput of the network. With this in mind,
ITS-G5 proposed BSP to dynamically trigger CAMs. In the
following scenarios we evaluate its performance in the same
context.



Fig. 8: Vehicle inter-distances - Scenario A

Fig. 9: Longitudinal distances analysis in different scenarios

B. Scenario B: Basic System Profile

For this Scenario we analyzed the BSP as standardized
in ITS-G5 [14]. This profile defines the frequency at which
CAMs should be triggered, considering vehicles’ dynamics.
BSP defines an interval of 0.1 seconds to 1 second between
CAMs, except upon one of the following conditions, at which
a CAM message must be immediately triggered [14]:

• the absolute difference between the current heading of
the originating vehicle and the heading included in the
CAM previously transmitted by the originating vehicle
exceeds 4 degrees;

• the distance between the current position of the orig-
inating vehicle and the position included in the CAM
previously transmitted by the originating vehicle exceeds
4 m;

• the absolute difference between the current speed of the
originating vehicle and the speed included in the CAM
previously transmitted by the originating vehicle exceeds
0,5 m/s.

CAM reception intervals are presented in Fig. 5. CAM
sending frequencies approach 2.0 Hz, mostly due to the second
triggering condition, since the CoVP speed during the orange

Fig. 10: Steering Angles - Scenario A

Fig. 11: Steering Analysis for different scenarios

straight part of the track is constant around 8 m/s. However,
there are some high frequency triggers in the early iterations,
resulting from the quick acceleration at the initial portion of
the track, while trying to close the distance gap to the leader. It
is also possible to observe that BSP triggers higher frequencies
in response to the hard left turn (red portion of the track), that
quickly shifts the leader’s heading. Still, as observed in Figures
11 and 9 this increase in frequency was insufficient to maintain
a stable CoVP control using this control model, and fails to
follow leader’s steering control. Therefore, we conclude that
BSP is not well-tuned for more demanding CoVP scenarios,
in which the control models exclusively rely upon cooperative
support. While still trying to minimize network usage, and
maintaining stable platooning control, we analyze and improve
on the BSP settings in the following scenarios.

C. Scenario C: Basic System Profile for platooning

In this scenario, we analyze an extension to the ITS-
G5’s BSP specified in [4], which recommends improved BSP
settings for platooning scenarios. One of its most significant
changes, was to limit the minimum frequency between CAM
transmission to 2 Hz, double of the one defined for the original
BSP. Test results are quite similar to the usage of the original
BSP settings, as triggering conditions remain the same. As
depicted in Fig. 6 and similarly to scenario B, CAM inter
arrival times remain around 2Hz, in this case as a result of the
minimum frequency limit set. Concerning CoVP behaviour.
Figures 11 and 9 depict a similar behaviour to scenario B,
which results in a failure to execute the U turn. This is a
consequence of platoon instability. Concerning distance error
in regards to the set point, for instance, both scenarios B and



TABLE I: Comparison between Scenarios - Number of mes-
sages and Safety Guarantee

Scenario Fixed Frequencies BSP BSP
Plat. CSP10 5 3.3 2.5

Message 441 227 151 113 101 101 181
Safety OK OK OK NOK NOK NOK OK

C, present similar and significant errors, resulting from low
CAM update frequency.

D. Scenario D: Custom System Profile for
Platooning

For this scenario we setup a Custom System Profile aiming
at balancing the network load originated by CAM exchanging,
while guaranteeing stability. With this in mind, our approach
was to adapt the second CAM triggering condition mentioned
at scenario B, by changing it to 2 meters instead of 4 meters.
This change impacted the CoVP behaviour considerably, both
in the number of CAMs sent and its frequency, as it’s possible
to check at Fig. 7. As shown in Figures 5 and 6, the CSP
conditions caused CAM triggering to happen much more
frequently than in previous cases, resulting on a more stable
CoVP control when compared to scenarios B and C (Figures
11 and 9). This also translates into a significant decrease of
distance errors to the leader, leading to a smoother control.
In facto, only this changed enabled the CoVP to successfully
complete the hard left turn (Fig. 3).

Table I presents the number of CAM messages sent during
simulation for each scenario. As shown, a fixed frequency
between 3.3 Hz and 2.5 Hz should be at the threshold
borderline balance to maintain CoVP control. However, fixing
this frequency is not the most reasonable approach since it
can cause unnecessary CAM message transmissions. With this
in mind, a System profile approach as defined in ITS-G5
should be the optimal way to handle this, however, as we
were able to confirm with scenarios B,C and D this kind of
profiling should be adapted to the use-case and particularly to
the control model. For this particular control model under test,
CAM information availability is crucial to maintain a stable
behaviour. This kind of profiling can be easily carried out using
our framework, by fully-specifying the simulation environment
and CoVP control model over ROS/Gazebo, while using
OMNeT++’s capabilities to analyze the network performance
and to provide new extensions to the ITS-G5 communications
stack, carrying out an integrated in depth analysis of CoVP
behaviours.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a sub-microscopic framework for co-
operative driving simulation, integrating the Gazebo simulator
and ROS robotics framework, with the OMNeT++ network
simulator. Using this framework, as a preliminary proof-of-
concept, we implemented and validated different scenarios to
evaluate the behaviour of a CoVP control model, exclusively
dependant on CAM exchanging. We analyzed the impact
of different CAM exchanging frequencies and ITS-G5 BSP

recommendations to validate the correctness of the simulation
framework.

COPADRIVe successfully enabled this analysis, within a
rich and realistic simulation environment, both from the con-
trol and communications perspective. We plan to complement
these analysis with relevant network performance results and
to increase the complexity of the scenario and CoVP control
model. At the communications level we will be including
external traffic sources to evaluate this and other CoVP models
in congestion scenarios.

We firmly believe this tools has the potential to support
advanced realistic ITS cooperative autonomous driving sce-
narios, and to help reducing technology validation effort and
cost.
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