101 research outputs found

    Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy

    Get PDF
    GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process. The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform. This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx and their interaction with SiOx, and confirms theoretical predictions about the so-called nucleation antibunching, the temporal anti-correlation of consecutive nucleation events. In the second part of this thesis, an alternative method called droplet-confined alternate-pulsed epitaxy (DCAPE) for the self-catalyzed growth of GaAs nanowires and GaAs/AlxGa1-xAs axial nanowire heterostructures has been developed. DCAPE enables nanowire growth at unconventional, low temperatures in the range of 450-550 °C and is compatible with the standard Si-CMOS platform. The novel growth approach allows one to precisely control the crystal structure of the nanowires and, thus, to produce defect-free pure zinc blende GaAs-based nanowires. The strength of DCAPE is further highlighted by the controlled growth of GaAs/AlxGa1-xAs axial quantum well nanowires with abrupt interfaces and tunable thickness and Al-content of the AlxGa1-xAs sections. The GaAs/AlxGa1-xAs axial nanowire heterostructures are interesting for applications as single photon emitters with tunable emission wavelength, when they are overgrown with thick lattice-mismatched InxAl1-xAs layers in a core-shell fashion. All results presented in this thesis contribute to paving the way for a successful monolithic integration of highly uniform GaAs-based nanowires with controlled number density, dimensions and crystal structure on the mature Si platform.GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse. Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen

    Calculation of strain and piezoelectric effects in nanostructures.

    Get PDF
    This is a theoretical and computational study of strain and internal (spontaneous and piezoelectric) electrostatic fields in quantum wells and dots. The uncertainties in the values of elastic stiffness and piezoelectric properties of GaN and InN are discussed and the preferable route for estimating the piezoelectric tensor elements of an alloy is described. Fully electromechanically-coupled expressions for strain and internal field in single or multiple quantum wells are presented, and it is demonstrated that electromechanical coupling is a small effect in InGaN/GaN quantum wells. In simulations of various InGaN/GaN quantum well devices in the literature, the PZ tensor values of Shimada et al provide the best fit to experiment. A smooth In gradient in the growth direction of an InGaN/GaN quantum well is shown to have no appreciable effect on the emission energy. The usefulness of three recent numerical Green's function methods for calculating strain and internal field in Ill-nitride quantum dots is assessed, including that of Pan and Tonon; spontaneous polarisation is found to be more important than electromechanical coupling in these systems, so the Pan method is of limited use. Finally, to try to explain the fast rate of diffusion of C in Si, the method of Faux and Pearson is used to estimate the strain interaction energy between point defects in Si. Such energy is seen to be negligible compared to thermal energy. The energies conform with those from an atomistic simulation, and the sign of the energy depends on the orientation of the pair of defects

    Development and analyses of innovative thin films for photovoltaic applications

    Get PDF
    In solar cell current research, innovative solutions and materials are continuously requested for efficiency improvements. Si-based technology rules over 95% of the market, with silicon heterojunction (SHJ) solar cell reaching 26.7% record efficiency. Nonetheless, hydrogenated amorphous silicon (a-Si:H) layers employed in the structure still have challenges, resolvable with oxygen/nitrogen inclusion. In parallel, new technologies based on different materials still lack in the market due to stability issues or low efficiencies. However, a preliminary study of their properties creates a deeper knowledge exploitable in photovoltaic application. In this perspective, we investigated both innovative Si-based materials (nanocrystalline and amorphous silicon oxy-nitride and oxide thin films, nc-SiOxNy, a-SiOxNy and a-SiOx, respectively) and innovative materials (perovskite lanthanum-vanadium oxide LaVO3 thin films, indium gallium nitride InxGa1-xN and aluminium indium gallium nitride AlxInyGa1-x-yN layers) for solar cell concepts. Different deposition conditions have been employed to extract their influence on compositional, optical, and electrical properties. The study on nc-SiOxNy layers by conductive atomic force microscopy (c-AFM) and surface photovoltage (SPV) has allowed to clarify O, N, and B content, and annealing treatment role on microscopic transport properties. On a-SiOx and a-SiOxNy layers, by spectral ellipsometry, Fourier transform infrared spectroscopy, photoconductance decay and SPV, we can conclude that moderate insertions of O/N in a-Si:H lead to a decrease of optical parasitic absorption, preserving the passivation quality of the layers. The measurements by AFM and Kelvin probe force microscopy on LaVO3 have clearly shown that it is a poor charge-transport medium, thus not suitable for photovoltaic applications. The analysis on InGaN and AlGaInN by SPV measurements has shown how low In content, Si doping and no misfit dislocations in InGaN/GaN structure cause less recombination processes at the interface, whereas, the strain relaxation (tensile and compressive) with the formation of pinholes produces better interfaces in the AlGaInN/GaN samples

    Design, Growth, and Characterization of III-Sb and III-N Materials for Photovoltaic Applications

    Get PDF
    abstract: Photovoltaic (PV) energy has shown tremendous improvements in the past few decades showing great promises for future sustainable energy sources. Among all PV energy sources, III-V-based solar cells have demonstrated the highest efficiencies. This dissertation investigates the two different III-V solar cells with low (III-antimonide) and high (III-nitride) bandgaps. III-antimonide semiconductors, particularly aluminum (indium) gallium antimonide alloys, with relatively low bandgaps, are promising candidates for the absorption of long wavelength photons and thermophotovoltaic applications. GaSb and its alloys can be grown metamorphically on non-native substrates such as GaAs allowing for the understanding of different multijunction solar cell designs. The work in this dissertation presents the molecular beam epitaxy growth, crystal quality, and device performance of AlxGa1−xSb solar cells grown on GaAs substrates. The motivation is on the optimization of the growth of AlxGa1−xSb on GaAs (001) substrates to decrease the threading dislocation density resulting from the significant lattice mismatch between GaSb and GaAs. GaSb, Al0.15Ga0.85Sb, and Al0.5Ga0.5Sb cells grown on GaAs substrates demonstrate open-circuit voltages of 0.16, 0.17, and 0.35 V, respectively. In addition, a detailed study is presented to demonstrate the temperature dependence of (Al)GaSb PV cells. III-nitride semiconductors are promising candidates for high-efficiency solar cells due to their inherent properties and pre-existing infrastructures that can be used as a leverage to improve future nitride-based solar cells. However, to unleash the full potential of III-nitride alloys for PV and PV-thermal (PVT) applications, significant progress in growth, design, and device fabrication are required. In this dissertation, first, the performance of ii InGaN solar cells designed for high temperature application (such as PVT) are presented showing robust cell performance up to 600 ⁰C with no significant degradation. In the final section, extremely low-resistance GaN-based tunnel junctions with different structures are demonstrated showing highly efficient tunneling characteristics with negative differential resistance (NDR). To improve the efficiency of optoelectronic devices such as UV emitters the first AlGaN tunnel diode with Zener characteristic is presented. Finally, enabled by GaN tunnel junction, the first tunnel contacted InGaN solar cell with a high VOC value of 2.22 V is demonstrated.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Probing bistable Si dynamics and GaSb nanostructures in GaAs

    Get PDF

    Combinatorial Pulsed Laser Deposition Employing Radially-Segmented Targets: Exploring Orthorhombic (InxGa1−x)2O3 and (AlxGa1−x)2O3 Towards Superlattice Heterostructures

    Get PDF
    Die vorliegende Arbeit beschreibt den Verlauf der Forschung von der Entwicklung einer neuartigen Methode der gepulsten Laser-Plasmaabscheidung (PLD) über die Untersuchung der ternären In- und Al-Legierungssysteme von metastabilem orthorhombischen κ-Ga2O3 auf der Basis dieser Methode hin zu Multi-Quantengraben (QW) Supergitter (SL) Heterostrukturen für transparente Quantengrabeninfrarotphotodetektoren (QWIPs). Im ersten Teil wird die Methode, welche vertical continuous composition spread (VCCS) PLD genannt wird, eingeführt und am MgxZn1−xO Legierungssystem erprobt. Die Methode erlaubt die Kontrolle der Komposition von Dünnfilmen über die radiale Position des PLD Laserspots auf der Targetoberfläche. Das ist eine wichtige Voraussetzung für die Bestimmung der kompositionsabhängigen Eigenschaften der Legierungssysteme und für präzise Profile der physikalischen Eigenschaften in Wachstumsrichtung für das Design von Bauelementen. Die Dünnfilme mit 0 ≤ x ≤ 0.4 zeigen die gleichen Eigenschaften wie solche, die mit Standard-PLD abgeschieden wurden. Numerische Modelle werden präsentiert, welche die Dünnfilmkomposition exakt vorhersagen. Im zweiten Teil werden κ-Ga2O3 Dünnfilme durch die Beigabe von Zinn während des PLD Prozesses stabilisiert. Die Dünnfilme weisen hohe kristalline Qualität, glatte Oberflächen und große Bandlücken (Eg ≈ 4.9 eV) auf. Ein Wachstumsmodell wird präsentiert, welches Zinn als Oberflächenschicht beschreibt. Im dritten Teil werden die In- und Al-Legierungssysteme von κ-Ga2O3 mittels VCCS PLD untersucht. Die Löslichkeitsgrenzen xIn <~ 0.35 und xAl <~ 0.65 sind die höchsten bislang berichteten. In- und out-of-plane Gitterkonstanten wurden in Abhängigkeit der Zusammensetzung bestimmt und Eg konnte von 4.1 eV bis 6.4 eV variiert werden. Die Position des Valenzbandmaximums wird als unabhängig von der Komposition gezeigt, womit die Variation in Eg den Leitungsbandunterschieden gleicht und Detektionsbereiche vom fernen IR bis in das Sichtbare für QWIP-Anwendungen bedeutet. Berechnungen anhand dieser Ergebnisse ergeben Polarisationsladungsdichten an Grenzflächen von Heterostrukturen gleich oder höher derer im etablierten AlGaN/GaN System, welche wichtig zur Polarisationsdotierung zur Besetzung des Grundzustandes in QWIPs sind. Dies bestätigt das große Potential der κ-Phase. Im letzten Teil werden erste kohärent gewachsene κ-(AlxGa1−x)2O3/Ga2O3 SL Strukturen untersucht. Glatte Grenzflächen im Bereich weniger Monolagen werden gezeigt und es konnten kritische Dicken für die κ-Ga2O3 QW Schichten bestimmt werden, die für QWIP-Anwendungen genügen.The presented thesis describes the research path from the development of a novel pulsed laser deposition (PLD) technique over the exploration of the ternary In- and Al-alloy systems of metastable orthorhombic κ-Ga2O3 employing this technique towards multi-quantum well (QW) superlattice (SL) heterostructures for solar-blind quantum well infrared photodetector (QWIP) applications. In the first part, the PLD technique called vertical continuous composition spread (VCCS) PLD employing radially-segmented targets is established and tested on the well-known MgxZn1−xO alloy system. The technique enables direct control of the chemical composition of thin films by a variation of the radial position of the PLD laser spot on the target surface. This is a prerequisite for a discrete compositional screening of alloy properties and the exact tailoring of physical parameters in growth direction for heterostructure device design. The resulting thin films with 0 ≤ x ≤ 0.4 exhibit the same quality as thin films deposited by standard PLD and numerical models are presented that precisely predict the thin film composition. In the second part, κ-Ga2O3 thin films are stabilized by the addition of tin in the PLD process. The thin films show a high crystalline quality, smooth surfaces and large bandgaps (Eg ≈ 4.9 eV). A growth model is proposed based on tin acting as surfactant. In the third part, the In- and Al-alloy systems of κ-Ga2O3 are explored by VCCS PLD. Solubility limits of xIn <~ 0.35 and xAl <~ 0.65 are the highest reported to date. In- and out-of-plane lattice constants were determined as function of alloy composition and bandgap engineering from 4.1 eV to 6.4 eV is feasible within these limits. The energetic position of the valence band maximum was found independent on chemical composition such that the change in bandgap equals the conduction band offset rendering wavelength ranges from far IR to the visible spectral range in QWIP applications possible. Calculations based on these results found polarization charge densities at the interfaces of corresponding heterostructures on par or larger than for the established AlGaN/GaN system important for polarization doping to populate the ground state in QWIPs. This corroborates the high potential of the κ-phase. In the last part, first coherently grown κ-(AlxGa1−x)2O3/Ga2O3 SL heterostructures are presented. Smooth interfaces of the order of a few monolayers are confirmed and critical thicknesses for coherent growth of the Ga2O3 QW layer are found to be sufficient for QWIP applications

    Highly photoconductive oxide films functionalized with GeSi nanoparticles

    Get PDF
    Growth of self-assembled quantum dots is of great interest due to their potential quantum confinement effect and numerous applications in optoelectronics and nano-sized structures. Semiconducting Si, Ge and SiGe nanocrystals (NCs), embedded in a dielectric-oxide matrix have for instance been found to exhibit strong quantum confinement. For SiGe nano-based structures in addition to strong quantum confinement effect they offer the advantage of fine tuneability of energy-band structure via quantum confinement, strain engineering and varying the Si/Ge ratio. Among the most common methods to obtain NCs embedded in oxide systems is deposition with magnetron sputtering, followed by subsequent anneal treatments. However, the device performance obtained are lower in production line than obtained for research devices. This has mainly been attributed to the thermal treatment used, which causes strain accumulation within the structure, dislocations and dangling bonds, clustering and phase separation of Ge in Si1-xGex system, diffusion and formation of unwanted insulating oxide. All of these side-effects cause degradation of optical and electrical properties of the fabricated structures. In this study, structures comprising of SiO2/SiGe/SiO2 and TiO2/SiGe/TiO2 were fabricated by utilizing radio frequency (rfMS), direct current (dcMS) and/or high power impulse magnetron sputtering (HiPIMS). The structures were then subjected to thermal and/or hydrogen (H2) plasma treatment. Their photocurrent intensity was increased by up to several orders of magnitude along with wider spectral coverage into near infra-red regime by controlling the sputter discharge and anneal parameters. Moreover, as a proof of concept, a control over the HiPIMS discharge parameters have exhibited the possibility of obtaining as-grown crystalline structures, consisting of SiGe NCs without the need of annealing, along with a viable control over the size of NCs. The annealing of such structure prepared via HiPIMS method, have shown an interesting self-organization of periodically arranged columnar SiGe NCs. Exposure to hydrogen plasma of both as-grown samples and annealed samples ensued amplification in photoconductivity by neutralization of dangling bonds and passivation of non-radiative defects in the oxide matrix and/or at SiGe/matrix interfaces.Ræktun sjálfsamsettra skammtapunkta er mjög áhugavert rannsóknaverkefni vegna margvíslegra notkunarmöguleika í ljósnæmum rafeindatækjum og ýmsum örsmáum skynjurum. Hálfleiðandi Si, Ge og SiGe öragnir í þunnhúðum úr torleiðiefnum (einkum málmoxíðum) hafa til dæmis reynst hafa sterka skammtaeiginleika. Sökum skammtahrifa má fínstilla þá ljós-öldulengd sem þarf til að gera þá leiðandi með því að stýra stærð öragnanna, hlutfalli milli Si og Ge og álagi sem þeir verða fyrir í þunnhúðinni. Algengasta leiðin til að búa til ofangreind kerfi er þunnhúðun með segulspætun og hitameðhöndlun í kjölfarið. Hefðbundin hitameðferð veldur hinsvegar ákveðnum skemmdum í Si1-xGex kerfinu, s.s. lausum efnatengjum, efnis-aðskilnaði, myndun þyrpinga og útsveimi. Þessar aukaverkanir rýra ljós- og rafeiginleika efnisins. Framleiðslu aðferðir sem valda ekki slíkum skemmdum geta því haft mikla þýðingu. Í þessari rannsókn voru riðspennu (rfMS)-, jafnspennu (dcMS) - og háaflpúlsuð segulspætun (HiPIMS) aðferðir notaðar til að rækta lög af SiO2/SiGe/SiO2 og TiO2/SiGe/TiO2 kerfum. Í kjölfarið var mildum hita- og vetnis rafgasmeðferðum beitt til að framkalla SiGe og Ge öragnir í húðinni sem sýndu breytilega ljósnæmni. Með þessum hætti tókst að auka ljósnæmnina um nokkrar stærðargráður auk þess sem næmnisvið litrófsins var víkkað. Önnur megin niðurstaða er að með notkun HiPIMS aðferðarinnar tóks að útbúa sýni með háa ljósnæmni án þess að hitameðhöndla þau. Meðhöndlun með vetnis-rafgasi leiddi til mikillar (stærðargráðu) aukningar á ljósnæmni húðanna, bæði fyrir og eftir hitaneðhöndlun.Technology Development Fund of the Icelandic Center for Research (RANNIS) grant no. 159006-0611, through the M-ERA NET program

    Dislocations And Strength In Thin Films: Simulations And Modeling

    Full text link
    Single-crystal films were simulated using three-dimensional discrete dislocation dynamics simulations, where an initial distribution of dislocation loops was allowed to move naturally in response to successive applied strains. The types of interactions that stopped threading dislocations (threads) were identified and the relative fraction of threads stopped in each interaction was determined. An inhomogeneous stress field in the film evolved as the dislocation structure evolved. Threads were observed to interact primarily in regions of low stress. The simulations were used as a virtual test bed for understanding dislocation behavior in thin films. The intuition gained from the simulations led to the construction of three models, which are discussed in detail. First, a model was developed to determine the capture cross-section of a thread, such that if another thread was within its capture cross-section the two threads would interact. Second, a statistical model was constructed to evaluate the effect of stress inhomogeneity on the local concentration of threads. Finally, results from the simulations and analytical models were used to construct a model of strain hardening in thin films based on fundamental behavior of dislocations in thin films
    corecore