19 research outputs found

    D5.1 Leaflets

    Get PDF
    The specific deliverable is a collection of the special leaflets that were designed to inform stakeholders and other possible interested parties regarding the activities of the Remote Sensing lab within the framework of ATHENA project. For this purpose, 14 special leaflets were designed and uploaded on the project’s website. Additional information will be provided to all interested parties via the WP6 deliverables of the project

    Integrated use of multi-temporal multi-sensor and multiscale Remote Sensing data for the understanding of archaeological contexts: the case study of Metaponto, Basilicata

    Get PDF
    This paper is focused on the archaeological area of Metaponto (Μεταπόντιον) and its territory, located in southern Italy. The area played an important role for the agricultural economy and the traffic of goods and people, from the south of Italy towards the central regions, starting from the Neolithic period, and reaching the zenith with the Greek polis of Metaponto and its hinterland. The site is herein analyzed through an integrated use of several Earth observation and remote sensing technologies and ancillary data produced over the years by archaeologists and scholars. The aim was to identify new buried elements of archaeological interest, for the reconstruction of the historical-archaeological landscape. Through the combined use of optical and radar satellite images, high-resolution images obtained by Unmanned Aerial System (visible, multispectral, and thermal infrared), geophysical data, and archival data, it was possible to deepen the knowledge of the area, in particular the “Castrum” area, identifying new buried evidence (structures, roads, and elements of the ancient landscape)

    SAR Sentinel 1 imaging and detection of palaeo-landscape features in the mediterranean area

    Get PDF
    The use of satellite radar in landscape archaeology offers great potential for manifold applications, such as the detection of ancient landscape features and anthropogenic transformations. Compared to optical data, the use and interpretation of radar imaging for archaeological investigations is more complex, due to many reasons including that: (i) ancient landscape features and anthropogenic transformations provide subtle signals, which are (ii) often covered by noise; and, (iii) only detectable in specific soil characteristics, moisture content, vegetation phenomenology, and meteorological parameters. In this paper, we assessed the capability of SAR Sentinel 1 in the imaging and detection of palaeo-landscape features in the Mediterranean area of Tavoliere delle Puglie. For the purpose of our investigations, a significant test site (larger than 200 km2) was selected in the Foggia Province (South of Italy) as this area has been characterized for millennia by human frequentation starting from (at least) the Neolithic. The results from the Sentinel 1 (S-1) data were successfully compared with independent data sets, and the comparison clearly showed an excellent match between the S-1 based outputs and ancient anthropogenic transformations and landscape features

    Archaeological site identification from open access multispectral imagery: Cloud computing applications in Northern Kurdistan (Iraq)

    Get PDF
    This paper presents the results of an archaeological survey carried out in the Navkur Plain, Iraqi Kurdistan, as part of the ‘Asingeran Archaeological Project’. The survey was prepared using remote sensing products accessed via Google Earth Engineⓒ, a large-scale cloud computing service freely available to the scientific community that allows processing remote sensing big data. Outputs generated with a multitemporal approach are particularly successful for archaeological research, because it is possible to maximize the visibility of archaeological sites, improving their detection. Multispectral imagery from Landsat 5, Landsat 7 and Sentinel-2 collections were used and processed, testing their utility for finding unknown ancient settlements in the densely studied area of Northern Mesopotamia. Seventeen new sites were discovered in an already surveyed area of limited size (<100 km2), showing the potentialities of this method. The advantages of cloud computing for Near Eastern Archaeology and the results of the survey are also presented and discussed

    GIS and remote sensing for post-dictive analysis of archaeological features. A case study from the Etnean region (Sicily)

    Get PDF
    This article illustrates the potential of multispectral satellite data for archaeological scope in the volcanic area of Mount Etna (Sicily, Italy). In particular, by adopting a post-dictive approach, GIS and FOSS technology was used to analyse different indices derived from World-View-2 multispectral data. The selected examples (two circular buildings and a wall-structure) illustrate successes and challenges of our method. The results indicate that NIR-1 and RED-EDGE are undoubtedly the most useful, while NDVI and SRI are the best performing indices

    Remote sensing archaeology knowledge transfer: Examples from the ATHENA twinning project

    Get PDF
    ATHENA is an on-going Horizon 2020 Twinning project aiming to promote remote sensing technologies for cultural heritage (CH) applications in Cyprus. ATHENA project brings together the Eratosthenes Research Center (ERC) of the Cyprus University of Technology (CUT) with two internationally leading institutions of Europe, namely the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). The project's scope is to position the ERC regionally and stimulate future cooperation through placements at partner institutions and enhance the research and academic profile of all participants. The scientific strengthening and networking achieved through the ATHENA project could be of great benefit not only for Cyprus but for the entire Eastern Mediterranean, bearing a plethora of archaeological sites and monuments urgently calling for monitoring and safeguarding. The preservation of CH and landscape comprises a strategic priority not only to guarantee cultural treasures and evidence of the human past to future generations, but also to exploit them as a strategic and valuable economic asset. The objective of this paper is to present knowledge transfer examples achieved from the ATHENA project through intense training activities. These activities were also designed to enhance the scientific profile of the research staff and to accelerate the development of research capabilities of the ERC. At the same time the results from the training activities were also exploited to promote earth observation knowledge and best practices intended for CH. The activities included active and passive remote sensing data used for archaeological applications, Synthetic Aperture Radar (SAR) image analysis for change and deformation detection, monitoring of risk factors related to cultural heritage sites including archaeological looting etc

    Big Earth Data for Cultural Heritage in the Copernicus Era

    Get PDF
    Digital data is stepping in its golden age characterized by an increasing growth of both classical and emerging big earth data along with trans- and multidisciplinary methodological approaches and services addressed to the study, preservation and sustainable exploitation of cultural heritage (CH). The availability of new digital technologies has opened new possibilities, unthinkable only a few years ago for cultural heritage. The currently available digital data, tools and services with particular reference to Copernicus initiatives make possible to characterize and understand the state of conservation of CH for preventive restoration and opened up a frontier of possibilities for the discovery of archaeological sites from above and also for supporting their excavation, monitoring and preservation. The different areas of intervention require the availability and integration of rigorous information from different sources for improving knowledge and interpretation, risk assessment and management in order to make more successful all the actions oriented to the preservation of cultural properties. One of the biggest challenges is to fully involve the citizen also from an emotional point of view connecting “pixels with people” and “bridging” remote sensing and social sensing

    Non-Invasive Survey Techniques to Study Nuragic Archaeological Sites: The Nanni Arrù Case Study (Sardinia, Italy)

    Get PDF
    The Italian territory of Sardinia Island has an enormous cultural and identity heritage from the Pre-Nuragic and Nuragic periods, with archaeological evidence of more than 7000 sites. However, many other undiscovered remnants of these ancient times are believed to be present. In this context, it can be helpful to analyze data from different types of sensors on a single information technology platform, to better identify and perimeter hidden archaeological structures. The main objective of the study is to define a methodology that through the processing, analysis, and comparison of data obtained using different non-invasive survey techniques could help to identify and document archaeological sites not yet or only partially investigated. The non-invasive techniques include satellite, unmanned aerial vehicle, and geophysical surveys that have been applied at the nuraghe Nanni Arrù, one of the most important finds in recent times. The complexity of this ancient megalithic edifice and its surroundings represents an ideal use case. The surveys showed some anomalies in the areas south–east and north–east of the excavated portion of the Nanni Arrù site. The comparison between data obtained with the different survey techniques used in the study suggests that in areas where anomalies have been confirmed by multiple data types, buried structures may be present. To confirm this hypothesis, further studies are believed necessary, for example, additional geophysical surveys in the excavated part of the site
    corecore