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Abstract: In intensively cultivated landscapes, many archaeological remains are buried under
the ploughed soil, and detection depends on crop proxies that express subsurface features.
Traditionally these proxies have been documented in visible light as contrasting areas of crop
development commonly known as cropmarks. However, it is recognised that reliance on the visible
electromagnetic spectrum has inherent limitations on what can be documented, and multispectral
and thermal sensors offer the potential to greatly improve our ability to detect buried archaeological
features in agricultural fields. The need for this is pressing, as ongoing agricultural practices place
many subsurface archaeological features increasingly under threat of destruction. The effective
deployment of multispectral and thermal sensors, however, requires a better understanding of when
they may be most effective in documenting archaeologically induced responses. This paper presents
the first known use of the FLIR Vue Pro-R thermal imager and Red Edge-M for exploring crop
response to archaeological features from two UAV surveys flown in May and June 2019 over a
known archaeological site. These surveys provided multispectral imagery, which was used to create
vegetation index (VI) maps, and thermal maps to assess their effectiveness in detecting crop responses
in the temperate Scottish climate. These were visually and statistically analysed using a Mann Whitney
test to compare temperature and reflectance values. While the study was compromised by unusually
damp conditions which reduced the potential for cropmarking, the VIs (e.g., Normalised Difference
Vegetation Index, NDVI) did show potential to detect general crop stress across the study site when
they were statistically analysed. This demonstrates the need for further research using multitemporal
data collection across case study sites to better understand the interactions of crop responses and
sensors, and so define appropriate conditions for large-area data collection. Such a case study-led
multitemporal survey approach is an ideal application for UAV-based documentation, especially when
“perfect” conditions cannot be guaranteed.

Keywords: cropmarks; agriculture; archaeology; thermal remote sensing; multispectral remote
sensing; unmanned aerial vehicles (UAVs); vegetation indices; crop stress
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1. Introduction

Remote sensing is a long-established non-intrusive method of archaeological survey and
documentation, making significant contributions to site discovery and archaeological understanding [1,2].
In agricultural landscapes, this work relies heavily on observation of variegation and contrast in crops
to reveal otherwise buried archaeological sites. The relationship between subsurface archaeological
features and overlying vegetation has been recognised for many years and is seen in agricultural
fields. Here, differences in soil depth, caused by natural landforms as well as anthropogenic features
such as ditches, cause cropmarking, especially in dry conditions where moisture and nutrient supply
are reduced [3–7].

While most cropmarks have traditionally been observed in the visible electromagnetic spectrum,
there is increasing interest in new technologies that collect information outside the visible range,
such as multispectral and thermal imagers [8–10]. This is driven both by technological developments
and archaeological imperatives. Cheaper, more portable sensors undoubtedly encourage uptake,
while the proliferation of relatively affordable UAV platforms to take sensors aloft brings imaging
within the reach of more researchers [11]. In some areas, a pattern of diminishing returns has been
noted in the outputs from a traditional visible spectrum archaeological survey [12,13] encouraging
the exploration of other forms of imaging to extend opportunities for detection. Whilst multispectral
and hyperspectral imaging has been shown to have great advantages in crop stress detection [14,15],
there are mixed results using thermal imagery as a detection method. This highlights the need for
further exploration [10,16–18], especially to better understand when large area data collections are most
likely to produce good returns. For this type of experimentation, UAV-mounted sensors documenting
discrete case study areas are highly cost-effective. The study reported on here is based around an MSc
student dissertation that forms part of a research project, between Historic Environment Scotland (HES)
and the School of Geosciences, University of Edinburgh, to better understand the conditions under
which non-visible imaging can be most effective, and so guide the deployment of large area imaging.

The need for these developments is pressing, as buried archaeological sites in arable landscapes
are under active threat from deep ploughing, soil drainage, and subsoiling [16,19,20].

1.1. Detecting Crop Response beyond the Visible Electromagnetic Spectrum

The relationships between variable soil depth, sometimes a product of archaeological features,
soil characteristics, nutrient supply, weather conditions, and crop development are complex. However,
for archaeological purposes, this can be simplified to the potential for buried features to be expressed
through crop proxies in the right conditions, with, for example, luxuriant growth above buried ditches
and stunted stressed crops above compacted surfaces such as buried roads and walls. Traditional aerial
methods of cropmark detection have relied on an observer to identify the contrast between regions
of crops that are and are not affected by archaeology, either from the air during reconnaissance or in
optical imagery. Clearly, the direct transfer of this established methodology to the nonvisible, for the
purposes of this study multispectral and thermal imaging, requires different approaches.

The use of multispectral imagery for mapping buried archaeological remains is well established [21],
exploiting reflected spectral regions such as near-infrared (NIR ~700 to 1100 nm) and red-edge (~700 nm)
for detection of features [7,9,22–24]. While multispectral imagery can show crop responses as a true
colour (TC) image, false colour composites (FCC) and vegetation indices (VIs) are widely used as an
effective way of showing contrasts in vegetation health. They are, however, often criticised for being
applied without proper consideration of the properties on which they are formulated [6,17].

The success of VIs to visualise crop responses has depended on the climatic conditions at the time
surveys were undertaken [17,25–27]. Studies have shown that the simple ratio (SR) VI is one of the most
effective VIs whereas the normalised difference vegetation index (NDVI) is not particularly effective in
visualising crop responses for archaeological purposes [17,25]. Indeed, while VIs have been shown
to be effective in specially designed test sites in a study from Cyprus, which has an arid climate [6],
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it is less clear how applicable they are to real-world arable fields or in other climatic conditions [17].
Therefore, it is important to assess their effectiveness in the temperate and wet climate of Scotland.

The impacts of subsurface archaeological features on soil and crops can also include variation
in surface temperature, which can be detected and recorded using thermal imagers [9,10,16,28–30]
or even visually in differential frost and snowmelt. The recognition that archaeological features can
retain and re-emit thermal infrared radiation (TIR) at a different rate to their surroundings under
certain conditions has prompted the use of thermal imagers in archaeological prospection since the
1970s, though high-cost and low-resolution has been a problem until relatively recently [10,30,31].
Prior studies have utilised thermal data collected via satellite and aerial platforms with varying
degrees of success [16,18,32,33], though most of these studies have been performed over bare ground
because vegetation cover masks the effects that underlying archaeological features may have on surface
temperature [9]. However, one sign of stress in crops is increased surface temperature, which shows
the potential for a temperature-related crop proxy for an underlying feature inducing stress [31].

1.2. A Case Study in South-East Scotland

Within the framework of the HES/Geosciences research project to better understand the conditions
under which non-visible imaging can be most effective, a case study area was selected to explore the
utility of the thermal data from an FLIR Vue Pro-R, set alongside multispectral data from the MicaSense
RedEdge-M sensor and a Parrot Sequoia, to detect crop stress due to buried archaeological features
over the early growing season.

The study site (HES 2020; latitude: 55◦52′58.52” N, longitude: 2◦50′47.52” W) is an archaeological
monument first recorded in the mid-19th century as an earthwork, in a region where most sites are
now known as cropmarking discovered during aerial reconnaissance [34,35]. During the 20th century,
the northern and eastern part of the site was partially afforested, while the southern and western
portions, which form the focus of this study, were largely levelled by ploughing and were under a
spring barley (Hordeum vulgare) crop at the time of the investigation. This portion of the site has been
recorded as archaeological cropmarking on 18 July 1994 and 22 August 1996, which revealed ditches
and other negative features. Combining the evidence indicates that the site comprises a complex
of Iron Age settlement, with at least three distinct phases of occupation. A roughly oval settlement
bounded by a bank and external ditch is probably of mid-1st millennium BC date (Figure 1A), while a
rectilinear enclosure which impinges on part of the earlier enclosure (Figure 1B) most likely dates to
later in the 1st millennium BC, with occupation extending to the early centuries AD [12]. The scatter of
possible roundhouses (Figure 1C) may date to the early centuries AD and appear to have been built
over the earlier enclosure.
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Figure 1. (A) The location of the case study site in eastern Scotland. (B) Composite image comprising 
airborne laser scanning data-derived hillshade visualisation showing the surviving earthworks in the 
Figure 1. (A) The location of the case study site in eastern Scotland. (B) Composite image comprising
airborne laser scanning data-derived hillshade visualisation showing the surviving earthworks in the
afforested ground (top) and the cropmarks recorded on 18 July 1994 (bottom) with the area imaged by the
present study outlined in green. Note that the cropmarking is most effective in documenting the ditches
and other negative features. (C). Interpretative mapping of the main visible archaeological features.
Airborne laser scanning data = Scottish Public Sector LiDAR: contains public sector information
licensed under the Open Government Licence version 3.0. Aerial photograph = C28264: ©Historic
Environment Scotland.

2. Materials and Methods

Within the broad framework outlined above, the detailed objectives of this study are to assess the
utility of the FLIR Vue Pro-R for detecting crop responses to underlying features, and how the thermal
data compares with VIs generated from multispectral data. The workflow is presented below and
depicted in Figure 2.
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2.1. Data Collection: Thermal and Multispectral Data

Surveys were conducted on 24 May 2019 and 26 June 2019. On both dates, the FLIR Vue Pro-R was
deployed for thermal acquisition, and while a MicaSense RedEdge-M multispectral sensor was used on
24 May. Equipment failure meant that the June survey utilised a Parrot Sequoia multispectral sensor.
The Sequoia was selected as it was the most spectrally similar to the RedEdge-M. The platform for the
May survey was a custom-built Vulcan Octocopter UAV, whilst the June survey used a DJI Matrice 100.

The Pro-R thermal imager detects the amount of TIR being emitted by objects with images stored
as a radiometric JPEG with calibrated temperature data embedded in each pixel [10]. The RedEdge-M
is a five-band multispectral sensor [36], while the Sequoia has four multispectral bands and an RGB
camera, which was not utilised in this study [37]. A sunlight sensor and downwelling light sensor
(DLS) were used in conjunction with the Sequoia and RedEdge-M, respectively to measure ambient
light for radiometric calibration.

For the May survey, Mission Planner autopilot software [38] in conjunction with the Pixhawk 2.1
autopilot hardware and Arducopter Firmware was used (version 3.5.5). The June survey, undertaken
in two missions, utilised DJI Ground Station Pro mission planning software. Flight altitude and speed
for both surveys were designed to provide a good overlap and resolution (Table 1). Multispectral
images of calibrated reflectance panels were taken prior to each flight for use in radiometric calibration
during processing.

Table 1. Information on flight altitude, speed, overlap, and resolution for the three sensors used in the
two surveys. The May survey was undertaken at 13:27 and June survey at 14:37.

Sensor Altitude of
Flight (m)

Speed
(ms−1)

Side
Overlap (%)

Front
Overlap (%)

Pixel Resolution
(cm)

MicaSense RedEdge-M 60 5 75 75 4.1
FLIR Vue Pro-R (flight 1) 60 5 72 72 7.8

Parrot Sequoia 60 5 70 70 6.0
FLIR Vue Pro-R (flight 2) 60 5 80 60 8.0

2.2. Image Processing

Images of calibration panels taken at the start and end of each flight were used in conjunction with
a downwelling sunshine sensor, providing measured reflectance factors and irradiance. These were
used in Pix4D to radiometrically calibrate the multispectral images. Within Pix4D, the calibration panels
were manually identified, and the reflectance value was calculated. The radiometrically calibrated
images were then used to create an orthomosiac of the study area. The thermal images were processed
using the Ag Multispectral standard template. As with the multispectral data the thermal images
collected were processed using Pix4D. The Therma Camera advanced processing template was utilised
to create thermal orthomosaic temperature maps of the study site for each flight date.

2.3. Vegetation Index Mapping

A suite of vegetation indices was explored, based on previous archaeological work [17,26] and
created in Pix4D to assess the presence of crop stress (Table 2). The availability of wavelengths from the
RedEdge-M and Sequoia were considered. Due to the relatively narrow bandwidths of both sensors
(10 to 40 nm), both narrowband and broadband indices were applicable.

The VIs and thermal maps were clipped in ArcMap (version 10.6.10) to remove areas of
woodland and grassland, and imported into ENVI (version 5.5). From an archaeological mapping
of cropmarking recorded on aerial photographs taken in 1994 (Figure 1), two classification regions
were created. Firstly, “features” for areas interpreted as ditches and roundhouses and, secondly,
“shoulder” for adjacent areas (Figure 3), taking a method successfully applied in a similar earlier
study [17]. In this case, the definition of feature areas is for ditches or otherwise deeper regions of soil,
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such as the interiors of possible roundhouses, which are the most frequent types of remains recorded
as cropmarking in Scotland. It is worth noting that such cropmarking generally reveals the larger
buried features and that excavation of the site would most likely reveal many more buried features.
This has a direct bearing on the selection of shoulder regions, which may well lie over buried, but
perhaps slight, features that are not visible in the cropmarking. Thus, the shoulder regions include
areas that lie within the interiors of roundhouses, along the lines of the likely lines of ploughed down
banks (e.g., top left, and within the square enclosure), as well as areas that are unlikely to have any
remains (bottom right). Thus, the shoulders are used to characterise those areas that have not formed
visible cropmarking, and so represent the most pronounced buried features—this seems unavoidable
in the absence of direct knowledge of what other features may be buried under the topsoil but are not
visible as a cropmarking. Regions of interest were created and used to export pixel information into
Microsoft Excel for each VI and thermal map to perform statistical analysis.Drones 2020, 4, x FOR PEER REVIEW 6 of 17 
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2.4. Statistical Analysis

All data analysed were first tested for normality using the Shapiro–Wilk test. The data were
found to be non-normal, and thus a Mann–Whitney U test was performed to test for significance
between the paired feature and shoulder regions on mean spectral reflectance, and mean temperatures
within these regions. The feature region was grouped and compared with its shoulder region as a
comparison group.
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Table 2. Vegetation indices created from multispectral data, including equations and details on each index (multiple sources: [6,7,17,26,27,39–41]).

Vegetation Index Abbr. Equation Application

Normalised Difference
Vegetation Index NDVI ρNIR−ρRED

ρNIR+ρRED

Normalised difference of green leaf scattering in the NIR
band and chlorophyll absorption in the Red band.
Measured through a normalised ratio ranging from −1 to 1.

Green Normalised
Difference Vegetation
Index

GNDVI ρNIR−ρGreen
ρNIR+ρGreen

Modification of the NDVI that is more sensitive to
chlorophyll concentration.

Red Edge Normalised
Difference Vegetation
Index

RENDVI ρNIR−ρRed Edge
ρNIR+ρRed Edge

Modification of the NDVI that uses reflectance
measurements in the Red Edge to look for changes in
vegetation health.

Normalised
Difference RedEdge/Red NDRER ρRed Edge− ρRed

ρRed Edge+ρRed

Modification to the NDVI that utilises the red edge
information instead of the NIR reflectance to look for
changes in vegetation health.

Simple Ratio SR ρNIR
ρRed

The ratio of green leaf scattering in the NIR band and
chlorophyll absorption in the red band.

Modified Simple
Ratio MSR

(
ρNIR
ρRed

)
−1(√

ρNIR
ρRed

)
+1

A combination of SR and renormalised NDVI, which
improves sensitivity to vegetation characteristics.

Green Ratio Vegetation
Index GRVI ρNIR

ρGreen
This is a modification to SR that is sensitive to the rate of
photosynthesis.

Red Green Ratio
Index GRVI ρRed

ρGreen

An indicator of leaf production and stress. Traditionally
uses the mean of all red bands divided by the mean of all
green bands, but in this instance modified to use the single
red and single green band.

Modified
Chlorophyll
Absorption Ratio
Index

MCARI (ρRed Edge− ρRed) − 0.2(ρRed Edge− ρGreen)ρRed Edge
ρRed

Indicates the relative abundance of chlorophyll present in
leaves, it is adjusted to minimise soil background effects.
The red edge, red and green reflectance values for the
Sequoia and RedEdge-M were substituted for the
traditional narrowband wavelengths.
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Table 2. Cont.

Vegetation Index Abbr. Equation Application

Modified
Chlorophyll
Absorption Ratio
Index

MCARI (ρRed Edge− ρRed) − 0.2(ρRed Edge− ρGreen)ρRed Edge
ρRed

Indicates the relative abundance of chlorophyll present in
leaves, it is adjusted to minimise soil background effects.
The red edge, red and green reflectance values for the
Sequoia and RedEdge-M were substituted for the
traditional narrowband wavelengths.

Transformed Chlorophyll
Absorption Reflectance
Index

TCARI 3
[
(ρRed Edge− ρRed) − 0.2(ρRed Edge− ρGreen)

(
ρRed Edge

ρRed

)] Indicates the relative abundance of Chlorphyll, however, it
is affected by the reflectance of the underlying soil. The red
edge, red and green reflectance values for the Sequoia and
RedEdge-M were substituted for the traditional
narrowband wavelengths.

Nonlinear Vegetation Index NLI ρNIR2
−ρRed

ρNIR2+ρRed
A modification to NDVI that emphasises the linear
relationships with vegetation parameters.

Plant Senescence
Reflectance Index PSRI ρRed−ρGreen

ρNIR

Used to look at the ratio of bulk carotenoids to chlorophyll
to study vegetation stress (. The red and green reflectance
values for the Sequoia and RedEdge-M were substituted for
the traditional narrowband wavelengths.

Optimised Soil
Adjusted
Vegetation Index

OSAVI 1.5(ρNIR−ρRed
ρNIR+ρRed+0.16

A variation of the NDVI that reduces the effect of soil
reflectance in areas of patchy vegetation cover using
standardised values.

Anthocyanin Reflectance
Index 1 ARI1 1

ρGreen −
1

ρRed Edge

Measures stress in vegetation through sensitivity to
anthocyanin content. The green and red edge reflectance
values for the RedEdge-M and the Sequoia were substituted
for traditional narrowband wavelengths.

Anthocyanin Reflectance
Index 2 ARI2 ρNIR

[
1

ρGreen −
1

ρRed Edge

] A modification to the ARI1, with an increase in sensitivity
to anthocyanin content. The green and red edge reflectance
values for the Sequoia and RedEdge-M were substituted for
traditional narrowband wavelengths.
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3. Results

The results are discussed in turn, beginning with the multispectral data and continuing to
the thermal.

3.1. Multispectral Results: Vegetation Index Maps

All VI maps for the 24 May survey (Figure 4) and that undertaken on 26 June (Figure 5) were
visually analysed for evidence indicative of buried archaeological features. While there were no
visible archaeological features in either survey, a change in VIs between the two surveys can be seen.
ARI1 reduces and OSAVI increases from May to June, due to the crops being in a later stage of their
phenological cycle. This can also be seen by a change in mean reflectance in the feature region across
the two surveys, e.g., NDVI increases from 0.573 to 0.742 in the feature region (Table 3), showing that
the vegetation has improved in vigour by 26 June. However, some VIs (e.g., GRVI) do not show much
of a change between the surveys. Comparing the two thermal maps (Figure 6), it is possible to see
fluctuations in temperature across the field on both survey dates. Due to these initial visualisations
being inconclusive in archaeological feature detection, a Mann Whitney test was performed on all maps.

Table 3. The Mann–Whitney results for the single-band VIs created from multispectral imagery the
from first survey (24 May 2019) and the second survey (26 June 2019).

Vegetation Index
Mean Difference in

Mean Values p-Value
Feature Shoulder

Anthocyanin Reflectance Index 1 10.956 9.635 1.321 <0.01
NDVI 0.742 0.698 0.044 <0.001

Optimised Soil Adjusted Vegetation 1.449 1.402 0.047 <0.001
Transformed Chlorophyll Absorption

Reflectance Index 0.254 0.211 0.043 <0.001

3.2. Multispectral Results: Statistical Analysis

Differences in mean reflectance between the feature and shoulder regions within and between
both surveys were present for all VIs (Table 3). For May, there is very little difference in NDVI values
whilst the NDVI values increase for June to 0.742 for the feature and 0.698 for the shoulder.

The SR did not successfully identify any differences in crop stress across the image set with very
similar values for the feature and shoulder regions (e.g., 25.793 and 25.635, respectively for May and
22.522 and 22.387 for feature and shoulder, respectively, in June).

The Mann–Whitney test was performed to determine if there were any significant differences in
the mean temperatures and reflectances. However, no VI successfully detected a significant difference
in the image set across both surveys, with only ARI1 in May and NDVI, OSAVI, and TCARI in June
having successfully detected significant differences in crop stress between the shoulder and feature
regions (Table 3). Overall, the results for crop stress detection for the VI maps were inconclusive,
showing no concrete evidence of crop response to the buried archaeological features.
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3.3. Thermal Results

There is a clear temperature change across the site within and between surveys, with the north side
of the field having a generally higher temperature than the south (Figure 6). The highest temperature
was 29 ◦C and the lowest 3.1 ◦C in the initial survey. The average temperature increases in the
second survey with the highest temperature rising to 30 ◦C and the lowest temperature rising to
7.8 ◦C. However, whilst there is no visible direct response to the buried archaeological features in
either thermal map (Figure 6), there is a relatively small difference in mean temperature between the
feature and shoulder regions (Table 4). The difference is only 0.270 ◦C and 0.380 ◦C for May and June,
respectively. There is also a temperature difference between surveys with the feature region rising
from 15.360 ◦C to 16.992 ◦C.

Overall, no temperature change that can be attributed to archaeologically induced crop stress
was found. It should be noted that the timings of the thermal surveys were not optimal, and this
will have affected the results. The wind and air temperature on the day of capture could also have
impacted the results of the scan, and the temperature fluctuations in Figure 6 could be due to wind at
the time of flight. Across the results presented, there was no statistically significant difference in mean
surface temperature between the feature and shoulder regions in the image sets. However, there is
clear temperature variation across the imaged area, and these may relate to differences in underlying
soil depth, as well as the influence of the stand of trees that fringe the north side of the study area.

Table 4. Statistical results for the thermal imaging data.

Survey
Mean Temperature (◦C) Difference in Mean

p-Value
Feature Shoulder Temperature (◦C)

24 May 15.360 15.630 0.270 0.528
26 June 16.992 17.372 0.380 0.266

4. Discussion

The direct relevance of this study to the assessment of the effectiveness of the sensors used
for detecting archaeologically induced crop responses proved limited. Largely, this is attributed to
the damp and relatively cool conditions that characterised 2019 [42], opposite to the dry and warm
conditions more likely to produce crop stress [3]. For May, the mean temperature was below the
long-term average, and it was wet, with above-average rainfall and below average sunshine [43].
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June was also wet in south-east Scotland where the study area is located [44]. These climatic factors
likely combined to minimise crop stress throughout the season.

Time of day can also affect archaeologically induced crop responses with the pre-dawn and
post-sunset times being the most effective [18]. Both thermal surveys were conducted in the
early afternoon, which could have affected the results as the stable weather conditions during
the morning may have allowed enough time for the crop across the site to equalise in temperature [29].
This possible equalisation of temperature is seen when comparing temperature differences, with the
mean temperature difference between regions only being 0.270 ◦C and 0.380 ◦C for 24 May and 26 June
respectively. The results of this study highlight slight differences in temperature between the feature
and shoulder regions during both surveys. However, there was not a large enough difference to
determine if the subsurface features had an impact on crop surface temperature.

Whilst the Vue Pro-R captures calibrated temperature data in the imagery pixels [45], the limitation
of the use of thermal cameras such as the Vue Pro-R is that they are highly sensitive to changes in
their internal temperature. These can be greater than the thermal energy given off by the object
being monitored, thus causing a skew in results [46]. Previous studies on an FLIR Vue Pro 640
found that the cameras automated non-uniformity correction could not correct for these internal
effects [46]. Further studies should investigate how these issues can be counteracted, such as the use
of an external cooling system to keep the camera a uniform temperature during the flight period.
Furthermore, environmental factors such as ambient humidity and temperature of the surrounding
environment can affect the temperature measurements. These factors may be addressed by the
algorithms in radiometric cameras and associated software, though it is not guaranteed that they are
fully accounted for, so may impact the final output [46].

Another factor that affects archaeologically induced crop responses detection is crop type. It has
been shown previously that thermal imagery may be able to detect cropmarking better in crops
that give poor returns in the reflected region of the electromagnetic spectrum, such as potatoes [16].
The same study also showed that the identification of cropmarks in wheat was more successful than
barley [16]. At the time of the survey, the field contained barley, which could have affected formations
within the crop. To further assess the Vue Pro-R’s ability to detect cropmarks, it should be utilised in a
study that compares cropmark formation in multiple crop types during the same growing season.

The performance of the chosen indices shows considerable variability, between May and June,
and this may be linked to the stages of crop development. Previous studies have shown that
the spectral reflectance characteristics of crops varies naturally throughout its phenological cycle
(Moriarty et al., 2018). These changes in reflectance depend on the structural properties of the crop
such as leaf area and biochemical properties like chlorophyll levels [47]. Since these changes across
the growing cycle could have had an impact on which VIs performed best during each survey,
further studies should use more than two survey dates in order to determine which VIs provide the
best cropmark detection properties across the growing season.

A secondary aim of this study to assess the effectiveness of VIs proved partially successful.
In the May survey data, ARI1 showed some success in identifying stress between the feature and
shoulder regions, while for June NDVI, OSAVI, and TCARI also proved useful in this regard.
However, unsurprisingly, given the wet and cool conditions that characterised 2019, the multispectral
data did not prove useful in detecting archaeologically induced cropmarking. This is a reminder
of the profound impact that year to year climatic variation has on the formation of archaeologically
induced crop responses [7–9,12,48]. The aim to compare the effectiveness of thermal imagery and
multispectral VIs in an archaeological context proved impossible due to the factors outlined above,
though the statistical testing on the VIs showed promise in detecting crop stress outside the range of
direct human observation.

At face value, these are perhaps disappointing results, but they highlight the difficulties of
developing and testing survey approaches in challenging environments. One of the great potential
benefits of small unmanned platforms is the ability to sense the same scene at a high temporal frequency,
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with turn-around times of only a few minutes achievable. This approach can be used to establish
diurnal or seasonal patterns, and potentially to derive additional information about the properties
of the surface, for example by mapping and quantifying the spatial variability of thermal inertia,
which may be indicative of variation in underlying drainage and soil composition which would be
highly relevant to studies in this field. This study was unfortunately unable to fully explore such
techniques due to a very limited number of flights, imposed by a combination of short-term availability
of the airborne system and highly variable weather conditions with only a short period of uniform
illumination over the target area. Future studies should certainly consider the deeper development
of such approaches, but the importance of uniform illumination in such cases is worthy of note, in
that this can occur infrequently in certain climatic zones, and experimental planning would need
to factor in sufficient flexibility and resources to allow a reasonable chance of obtaining a suitable
weather window.

Furthermore, while undertaking such testing in “ideal conditions” where variables can be tightly
controlled is, of course, desirable, that is not realistic in the “real world”. This is especially true in
Scotland where the year to year, and month to month or week to week, variability in climatic conditions
is significant. For example, over the period from 1976 to 2014, the average summer (June to August)
rainfall for eastern Scotland varied from about 100 mm to just over 400 mm, producing conditions
for archaeological cropmark formation that ranged from excellent to entirely unproductive [12,49].
This variability highlights the desirability to have the capacity for single-year rapid acquisitions
when planning multi-year programmes and how dependent these are on the vagaries of the weather.
In this respect, our study demonstrates the cost-effectiveness of a UAV-based survey approach to such
research, which would have been prohibitively expensive without such a platform. While the study
has demonstrated the utility of the FLIR Vue Pro-R on a UAV platform, it is recognised that further
work is warranted and the benefits to archaeological research should be explored.

5. Conclusions

In this study aiming to assess the effectiveness of thermal and multispectral VI imagery in the
detection of archaeologically induced crop stress a FLIR Vue Pro-R, MicaSense RedEdge-M and Parrot
Sequoia were utilised. This is the first known example of the Vue Pro-R and RedEdge-M being used for
such an application. While the wet and cool weather conditions which are less than ideal conditions for
crop stress to manifest prevailed during the study and compromised the archaeological outputs from
the project, the UAV-based methodology and sensors utilised proved fit for this experimental purpose.

The overall research question within which this study is situated, that of how to assess the
best conditions for the acquisition of large area multispectral and thermal data, remains a major
challenge. Clearly further studies are required, especially those that can marshal multiple sensors
and multi-temporal data collection (e.g., [50]). For Scotland, while prevailing climatic conditions
and extremely variable weather patterns will always be difficult to mitigate, further extension of
this study could include more surveys during the early growing season to take in more bare-earth
conditions, and surveys that span multiple years. A UAV-based exploration of the capabilities of the
broadening range of highly portable sensors to address these research questions is shown to be a highly
cost-effective approach, especially in dealing with the challenges of the real world, usually less than
ideal, deployments.
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