695 research outputs found

    Performance evaluation of secondary control policies with respect to digital communications properties in inverter-based islanded microgrids

    Get PDF
    A key challenge for inverted-based microgrids working in islanded mode is to maintain their own frequency and voltage to a certain reference values while regulating the active and reactive power among distributed generators and loads. The implementation of frequency and voltage restoration control policies often requires the use of a digital communication network for real-time data exchange (tertiary control covers the coordi- nated operation of the microgrid and the host grid). Whenever a digital network is placed within the loop, the operation of the secondary control may be affected by the inherent properties of the communication technology. This paper analyses the effect that properties like transmission intervals and message dropouts have for four existing representative approaches to secondary control in a scalable islanded microgrid. The simulated results reveals pros and cons for each approach, and identifies threats that properly avoided or handled in advance can prevent failures that otherwise would occur. Selected experimental results on a low- scale laboratory microgrid corroborate the conclusions extracted from the simulation study.Peer ReviewedPostprint (author's final draft

    Non-Pilot Protection of the Inverter-Dominated AC Microgrid

    Get PDF
    The main objective of this research is to develop reliable non-pilot protection and control strategies for the inverter-dominated microgrid. First, an improved Proportional-Derivative (PD) droop control strategy is proposed for enhanced disturbance response of the inverter-dominated AC microgrid. The proposed strategy significantly improves microgrid dynamic response and stability without requiring communication between distributed energy resources. Moreover, the impacts of large startup currents of induction motors on the stability and power quality of the inverter-dominated microgrid are investigates and recommendations for minimizing the associated adverse effects are made. Subsequently, a fast, selective, and reliable protection strategy for the inverter-dominated microgrid is introduced. The proposed protection strategy utilizes phase- and sequence-domain protective elements for reliable detection of symmetrical and asymmetrical faults without the need for communication signals or adaptive relays settings. The protection strategy is robust against the grid-connection mode of the microgrid and enables fuse protection of laterals. It can also be implemented on the existing commercially available relays. The acceptable performance of the proposed protection and control strategies is verified through numerous fault studies conducted on a realistic study system in the PSCAD/EMTDC software environment. Additionally, the proposed protection strategy is implemented in a SEL-351 relay and evaluated using the SEL-AMS industrial relay testing platform

    Secondary Control Strategies for Frequency Restoration in Islanded Microgrids with Consideration of Communication Delays

    Get PDF
    One of the well-known methods to share active and reactive power in microgrids (MGs) is droop control. A disadvantage of this method is that in steady state the frequency of the MG deviates from the nominal value and has to be restored using a secondary control system (SCS). The signal obtained at the output of the SCS is transmitted using a communication channel to the generation sources in the MG, correcting the frequency. However, communication channels are prone to time delays, which should be considered in the design of the SCS; otherwise, the operation of the MG could be compromised. In this paper, two new SCSs control schemes are discussed to deal with this issue: 1) a model predictive controller (MPC); and 2) a Smith predictor-based controller. The performance of both control methodologies are compared with that obtained using a conventional proportional integral-based SCS using simulation work. Stability analysis based on small signal models and participation factors is also realized. It is concluded that in terms of robustness, the MPC has better performance.FONDECYT 1140775 Advanced Center for Electrical and Electronic Engineering Basal Project FB0008 Fondequip EQM13005

    On the Robust Control and Optimization Strategies for Islanded Inverter-Based Microgrids

    Get PDF
    In recent years, the concept of Microgrids (MGs) has become more popular due to a significant integration of renewable energy sources (RESs) into electric power systems. Microgrids are small-scale power grids consisting of localized grouping of heterogeneous Distributed Generators (DGs), storage systems, and loads. MGs may operate either in autonomous islanded mode or connected to the main power system. Despite the significant benefits of increasing RESs, many new challenges raise in controlling MGs. Hence, a three layered hierarchical architecture consisting of three control loops closed on the DGs dynamics has been introduced for MGs. The inner loop is called Primary Control (PC), and it provides the references for the DG’s DC-AC power converters. In general, the PC is implemented in a decentralized way with the aim to establish, by means of a droop control term, the desired sharing of power among DGs while preserving the MG stability. Then, because of inverterbased DGs have no inertia, a Secondary Control (SC) layer is needed to compensate the frequency and voltage deviations introduced by the PC’s droop control terms. Finally, an operation control is designed to optimize the operation of the MGs by providing power setpoints to the lower control layers. This thesis is mainly devoted to the design of robust distributed secondary frequency and voltage restoration control strategies for AC MGs to avoid central controllers and complexity of communication networks. Different distributed strategies are proposed in this work: (i) Robust Adaptive Distributed SC with Communication delays (ii) Robust Optimal Distributed Voltage SC with Communication Delays and (iii) Distributed Finite-Time SC by Coupled Sliding-Mode Technique. In all three proposed approaches, the problem is addressed in a multi-agent fashion where the generator plays the role of cooperative agents communicating over a network and physically coupled through the power system. The first approach provides an exponentially converging voltage and frequency restoration rate in the presence of both, model uncertainties, and multiple time-varying delays in the DGs’s communications. This approach consist of two terms: 1) a decentralized Integral Sliding Mode Control (ISMC) aimed to enforce each agent (DG) to behaves as reference unperturbed dynamic; 2) an ad-hoc designed distributed protocol aimed to globally, exponentially, achieves the frequency and voltage restoration while fulfilling the power-sharing constraints in spite of the communication delays. The second approach extends the first one by including an optimization algorithm to find the optimal control gains and estimate the corresponding maximum delay tolerated by the controlled system. In the third approach, the problem of voltage and frequency restoration as well as active power sharing are solved in finite-time by exploiting delay-free communications among DGs and considering model uncertainties. In this approach, for DGs with no direct access to their reference values, a finite-time distributed sliding mode estimator is implemented for both secondary frequency and voltage schemes. The estimator determines local estimates of the global reference values of the voltage and frequency for DGs in a finite time and provides this information for the distributed SC schemes. This dissertation also proposes a novel certainty Model Predictive Control (MPC) approach for the operation of islanded MG with very high share of renewable energy sources. To this aim, the conversion losses of storage units are formulated by quadratic functions to reduce the error in storage units state of charge prediction

    An Adaptive Protection for Radial AC Microgrid Using IEC 61850 Communication Standard : Algorithm Proposal Using Offline Simulations

    Get PDF
    The IEC 61850 communication standard is getting popular for application in electric power substation automation. This paper focuses on the potential application of the IEC 61850 generic object-oriented substation event (GOOSE) protocol in the AC microgrid for adaptive protection. The focus of the paper is to utilize the existing low-voltage ride through characteristic of distributed generators (DGs) with a reactive power supply during faults and communication between intelligent electronic devices (IEDs) at different locations for adaptive overcurrent protection. The adaptive overcurrent IEDs detect the faults with two different preplanned settings groups: lower settings for the islanded mode and higher settings for the grid-connected mode considering limited fault contributions from the converter-based DGs. Setting groups are changed to lower values quickly using the circuit breaker status signal (XCBR) after loss-of-mains, loss-of-DG or islanding is detected. The methods of fault detection and isolation for two different kinds of communication-based IEDs (adaptive/nonadaptive) are explained for three-phase faults at two different locations. The communication-based IEDs take decisions in a decentralized manner, using information about the circuit breaker status, fault detection and current magnitude comparison signals obtained from other IEDs. However, the developed algorithm can also be implemented with the centralized system. An adaptive overcurrent protection algorithm was evaluated with PSCAD (Power Systems Computer Aided Design) simulations, and results were found to be effective for the considered fault cases.© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Frequency and Voltage Control of Islanded Microgrids

    Get PDF
    Islanded microgrids (MGs), characterized by distributed generators, power consumers, and energy storage systems (ESSs), are designed to signi cantly enhance self-sustainability of future distribution networks and to provide energy for remote communities. In order to have a stable system, both primary and secondary frequency and voltage control of the MG are critical. From a primary control perspective, it is essential to maintain frequency and voltage in acceptable ranges. Conventional controllers are designed to regulate system frequency and voltage solely based on droop control theory, and this is mainly provided by fast-response generation units such as ESSs. Therefore, an intelligent power sharing (IPS) control is necessary to maintain frequency and voltage within acceptable ranges, and to share power not only based on generation units' droop values, but also their operating power capabilities. A mathematical model of small-perturbation stability is presented along with performance analysis. Based on analysis and simulation results, the IPS controller offers advantages such as robust performance under load and renewable energy variations, a dynamic compromise between voltage regulation and accurate reactive power sharing among generators, and enhancement of voltage regulation by an adaptive virtual impedance. From a secondary control perspective, scheduling of generation units based on conventional unit commitment (UC) remains fi xed for the duration between two dispatch intervals; however, demand or renewable generation can continuously change. This stair-pattern scheduling of generation units creates large frequency and voltage excursions at the edge of each dispatch interval. Different from the existing UC mechanisms, a hybrid mid-level the controller is proposed based on communications with a distributed primary controller. It determines optimal power of generation units between two dispatch intervals for the secondary controller while regulating frequency and voltage within desirable ranges. Through several tested scenarios on a CIGRE test system, numerical results show that the mid-level controller can regulate frequency and voltage of the islanded MG. It covers time intervals between those of primary and secondary controllers and avoids the stair-pattern generation scheduling in conventional UCs. Additionally, it reduces both operating cost of MG and degradation of fast-acting generation units' life-cycle. Subsequently, impact of communication delay on islanded MGs is studied. The delay causes local controllers to use outdated power dispatches at the proposed mid-level controller. The outdated reference power deviates frequency and voltage from their nominal values in primary control. Existing primary and secondary controllers use a communication network assuming no time delay or considering a constant time delay. A mathematical model of constant and time-varying delay in islanded MGs is tegrated into the proposed mid-level controller. This formulation addresses the impact of time delay on transient performance of these controllers. A delay-based controller is designed to mitigate frequency oscillation of islanded MGs in the presence of either small or large perturbations. Numerical results are performed on small and large perturbations to evaluate the impact of time delay on realistic 14-bus CIGRE test system

    Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

    Get PDF
    • …
    corecore