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On the Robust Control and Optimization Strategies for Islanded Inverter-Based
Microgrids

by Milad GHOLAMI

In recent years, the concept of Microgrids (MGs) has become more popular due to
a significant integration of renewable energy sources (RESs) into electric power sys-
tems. Microgrids are small-scale power grids consisting of localized grouping of
heterogeneous Distributed Generators (DGs), storage systems, and loads. MGs may
operate either in autonomous islanded mode or connected to the main power sys-
tem. Despite the significant benefits of increasing RESs, many new challenges raise
in controlling MGs. Hence, a three layered hierarchical architecture consisting of
three control loops closed on the DGs dynamics has been introduced for MGs. The
inner loop is called Primary Control (PC), and it provides the references for the DG’s
DC-AC power converters. In general, the PC is implemented in a decentralized way
with the aim to establish, by means of a droop control term, the desired sharing of
power among DGs while preserving the MG stability. Then, because of inverter-
based DGs have no inertia, a Secondary Control (SC) layer is needed to compensate
the frequency and voltage deviations introduced by the PC’s droop control terms.
Finally, an operation control is designed to optimize the operation of the MGs by
providing power setpoints to the lower control layers.

This thesis is mainly devoted to the design of robust distributed secondary fre-
quency and voltage restoration control strategies for AC MGs to avoid central con-
trollers and complexity of communication networks. Different distributed strategies
are proposed in this work: (i) Robust Adaptive Distributed SC with Communica-
tion delays (ii) Robust Optimal Distributed Voltage SC with Communication De-
lays and (iii) Distributed Finite-Time SC by Coupled Sliding-Mode Technique. In all
three proposed approaches, the problem is addressed in a multi-agent fashion where
the generator plays the role of cooperative agents communicating over a network
and physically coupled through the power system. The first approach provides an
exponentially converging voltage and frequency restoration rate in the presence of
both, model uncertainties, and multiple time-varying delays in the DGs’s commu-
nications. This approach consist of two terms: 1) a decentralized Integral Sliding
Mode Control (ISMC) aimed to enforce each agent (DG) to behaves as reference
unperturbed dynamic; 2) an ad-hoc designed distributed protocol aimed to glob-
ally, exponentially, achieves the frequency and voltage restoration while fulfilling
the power-sharing constraints in spite of the communication delays. The second
approach extends the first one by including an optimization algorithm to find the
optimal control gains and estimate the corresponding maximum delay tolerated by
the controlled system. In the third approach, the problem of voltage and frequency
restoration as well as active power sharing are solved in finite-time by exploiting
delay-free communications among DGs and considering model uncertainties. In
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this approach, for DGs with no direct access to their reference values, a finite-time
distributed sliding mode estimator is implemented for both secondary frequency
and voltage schemes. The estimator determines local estimates of the global refer-
ence values of the voltage and frequency for DGs in a finite time and provides this
information for the distributed SC schemes.

This dissertation also proposes a novel certainty Model Predictive Control (MPC)
approach for the operation of islanded MG with very high share of renewable en-
ergy sources. To this aim, the conversion losses of storage units are formulated by
quadratic functions to reduce the error in storage units state of charge prediction.
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êi Frequency error of the i-th DG
s̃i(t) Desired sliding manifold of voltage SC
k̃ij(t) Adaptive gains of voltage SC
m̃i Local discontinuous voltage control gain
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ūi Active power SC
eω

i Frequency error of the i-th DG
eP

i Active power error of the i-th DG
kω

i ,ηω Constant voltage control gains
kP

i ,ηP Constant active power control gains
VT Set of conventional units
VS Set of storage units
VR Set of renewable energy storage units
VL Set of loads
x State vector
v Control input vector
w Uncertain external input
wd Load
wr Maximum possible renewable infeed under weather conditions
q̄ Vector of auxiliary variables
u Power setpoints of units
ut Power setpoints of storage units
us Power setpoints of storage units
ur Power setpoints, i.e., maximum power, of renewable units
p Power of units
pt Power of conventional generators
ps Power of storage units
pr Power of renewable units
Pe Power of transmission lines
x̃ Forecast of the sate of charge



xiii

Dedicated to my wife





1

Chapter 1

Introduction

1.1 Concept of Microgrids

1.1.1 Why microgrids?

Electric power systems have been playing a key role in technological advances, in-
frastructure development, and economic growth since their invention [1]. Conven-
tional power systems typically use fossil fuels (for example, coal, natural gas, or oil)
nuclear and hydro power plants [2]. Unfortunately, the performance of most of them
leads to a significant increase in greenhouse gas emissions. Hence in recent years,
researchers have been encouraged on how to reduce greenhouse gas emissions and
fossil fuel consumption in the area of power systems. One of the effective ways to
reduce greenhouse gas emissions is by replacing conventional generators with Re-
newable Energy Sources (RES) [3], for example Photo-Voltaic (PV) power plants or
Wind Turbines (WT). Most renewable energy sources are relatively small-sized in
terms of generation power and therefore often connected to the power system at the
medium and low voltage levels, and typically interfaced to the network via AC in-
verters. To facilitate the integration of a sizeable number of renewable Distributed
Generation (DG) units, the concept of Microgrids (MGs) has become increasingly
popular [4, 5, 6].

A microgrid is a small-scale power system, generally consisting of conventional
generators, RESs, Energy Storage Sources (ESSs) and loads interconnected by trans-
mission lines [7, 8, 9]. MGs can be typically operated in grid-connected or island
mode. In grid-connected mode, the MG is electrically coupled with a transmission
network via the Point of Common Coupling (PCC). In case of failures, it can be dis-
connected from the transmission network and operated as an islanded MGs. Small
power systems that do not have a connection to a transmission network due to their
geographical location, e.g., islands or rural areas, also fall into the class of islanded
MGs. In islanded operation, all fluctuations of renewable generation and load must
be covered locally by adapting the power of the remaining units. Maintaining this
local power equilibrium makes the islanded operation particularly challenging.

1.2 Hierarchical control of MGs

Designing a suitable microgrid control is of special significance for stable and eco-
nomically efficient performance. The microgrid control system adjusts voltage and
frequency for either operating modes, satisfactorily shares the load among DGs, con-
trols the power flow between the microgrids and the main grid, and optimizes the
microgrid operating cost. In grid-connected mode, frequency synchronization and
voltage support are provided by the main grid, which has synchronous generators
and large rotating inertia reserves. When disturbances and faults occur, a microgrid
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FIGURE 1.1: The hierarchical control system of MGs.

can switch to islanded operation. In this mode, the microgrid can supply power sup-
port for critical loads in the event of upstream network power outages. In islanded
mode, control systems must synchronize frequency and voltage to the setpoint val-
ues and restore pre-fault power conditions. Transients should be set when switching
between modes [10, 11, 5].

These operational needs are met in current microgrids through a hierarchical
control structure [12, 13, 14]. The hierarchical control system of MGs has been re-
cently standardized into three levels, namely, primary, secondary, and operation
controls (see Figure 1.1) that operate in different timescales.

1.3 Primary control (PC) of MGs

1.3.1 Why Primary Control?

As depicted in Figure 1.1, the lowest control layer is referred to as primary control.
This control layer typically operates on a fast time-scale (in the range of tens of mil-
liseconds to seconds). The task of PC layer is to enforces the MG’s stability while
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establishing the power sharing among DGs, as well as perform plug-and-play func-
tionalities [10, 15]. This control layer is often designed in a decentralized way by
means of a droop control term [5]. This control is an autonomous control that rely
on the physical coupling of the units via the electrical lines and do not require inter-
communication links between the DGs. Primary controls, however, may cause the
frequency and voltage amplitudes of MGs deviate from the setpoint values [14, 16].
Therefore, Secondary control can be used to compensate these deviations.

1.4 Secondary Control (SC) of MGs

1.4.1 Why Secondary Control?

The SC layer is located above the PC. This layer typically operates on a timescales
from seconds to minutes and compensates the unavoidable deviations of the DG’s
output voltages and frequencies from the expected set-points [10, 17]. Furthermore,
it can be used to achieve active power sharing [14]. However, optimizing the per-
formance of MGs using these control layers is very difficult. For operations that
are economically and environmentally significant, it is usually necessary to act on
changing states of charge of storage units as well as changing load and available
infeed from renewable sources. In addition, it is desired to include optional bounds
of the units in the MGs. Unfortunately, realizing these aims using primary and sec-
ondary control is difficult. Therefore, an operation control layer is often considered
on top of them.

1.5 Operation control of MGs

1.5.1 Why operation control?

The high level is usually called operation control or energy management, which in
many publications is also referred to as tertiary control (TC). This layer typically op-
erates on a timescale from minutes to fractions of hours. The goal of this control
is to optimize the operation of the MGs by providing power setpoints to the lower
control layers. The power setpoints of units are normally obtained by solving opti-
mization problems that contain a cost function along with a set of constraints that
represent the MG behavior [18]. As the share of RES increases, it becomes difficult
to predict the stored energy over an entire day. Since the dispatch of units extremely
rely on the stored energy and the forecast of the available renewable power, it is hard
to achieve a meaningful operation schedule for MGs with a high share of RES over
a prediction horizon of, for example, one day. Hence, [19, 20, 21] combined optimal
dispatch and schedule to form a single optimal operation control layer.

Various the operation control approaches are designed based on the Model Pre-
dictive Control (MPC). Indeed, MPC is employed in the operation control of MG to
predict the system behavior into the future using forecasts of renewable infeed and
load as well as the current measurement of the state of charge.

1.6 Literature Review

1.6.1 Secondary Control Strategies

The conventional SC to solve the restoration problem in MGs employs a centralized
control approach which gathers all the information of the individual DGs and then
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transmits the control command to each DG [22, 23, 24, 25, 26, 27]. However, the
current trend is to discourage centralized strategies [28] which bring disadvantages
such as latency and delays due to all-to-one communication; the need of costly cen-
tral computing and communication units; limited scalability and reliability of the
power system due to single-point failures.

In the literature also decentralized approaches have been proposed. Worth to
mention, for instance [26, 29], where second-order sliding-mode control strategies
are proposed, respectively, to regulate voltages while compensating the effects of
load variations, nonlinearities, and model uncertainties, and for the robust load fre-
quency control and economic dispatch of power in partitioned power networks. A
decentralized secondary frequency control is reported in [30], where the stability and
optimal frequency regulation is confirmed using an LQR optimal solution. Authors
in [31] also propose a switched secondary frequency restoration, in which the control
scheme switches between two configurations by a time-dependent protocol. More-
over, estimation-based decentralized secondary control approaches are introduced
in [32, 33, 34] to control voltage and frequency of microgrids.

On the other hand, although decentralized approach works satisfactorily in most
of today’s power systems, in accordance with [35], strategies that employ only lo-
cal information may become unfeasible in future power system developments, for
which, due to the large penetration of renewable power generation which increases
power fluctuations, more flexibility in the control system is needed.

To overcome these limitations, multi-agent consensus-based controllers have been
proposed to take advantage of their inherent scalability and flexibility features [36],
in order to address the frequency regulation while minimizing generation costs (eco-
nomic dispatch) [37, 17] or the SC restoration problems [38, 39, 40, 41, 42, 43, 13].
Additionally, multi-agent based distributed approaches can more easily deal with
packet loss and/or latency in communication as compared to the centralized solu-
tions [44].

In [38] the secondary distributed voltage and frequency restoration task is ad-
dressed. However, due to the requirement of all-to-all communication among DGs,
its communication overhead was significantly greater than that of the centralized
strategies [24]. Furthermore, no formal stability analysis was presented. Among the
existing investigations, references [39]-[13] appear to be the more closely related to
the present research. An overview of the main features of these existing proposals
as well as the main improvements provided by the results presented in this chapter
are explained hereinafter, separately for the frequency and the voltage restoration
problems.

Review of Frequency SCs

Based on a Distributed Averaging Proportional Integral (DA-PI) scheme, [39] first
proposed the use of the consensus paradigm to restore the frequencies in an islanded
MG modeled in terms of coupled Kuramoto oscillators. A consensus-based Dis-
tributed Tracking (DT) approach, is proposed in [40]. Both papers [39, 40] also imple-
ment active power sharing functionalities, but the corresponding approached only
possess local exponential stability properties. Additionally, in [39] the frequency set-
point must be constant and globally known to all DGs. The approach in [40] allows
to arbitrarily modify the steady-state frequency value of the MG by only acting on
a particular virtual DG, referred to as “leader", which directly communicates only
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with a small portion of DGs. This feature is particularly useful during islanded op-
eration when more active power is required [45], or to seamlessly transfer the MG
from islanded to grid-connected mode [46].

Review of voltage SCs

DA-PI and DT solutions have also been employed in the SC layer for voltage restora-
tion purposes. The DA-PI approach in [41] is only capable of providing a tuneable
compromise between the adverse tasks of voltage restoration and reactive power
sharing accuracy to arbitrarily affect the restoration voltages. Other solutions can be
found in [47, 48, 49]. DT schemes such as those in [40], [42]-[13] focus on the exact
voltage restoration problem only, disregarding the reactive power sharing issue.

A commonly used approach is to convert the voltage restoration problem into
a linear DT consensus problem by using feedback linearization techniques. Then,
after linearization, voltage restoration can be achieved by using different DT con-
sensus strategies, such as power fractional finite-time consensus control [40], linear
proportional-derivative based consensus [42], and sliding-mode (SM) based adap-
tive neural networks [43]. Worth also to mention [13], where the agent-based con-
cepts are combined with that of virtual impedance to perform the SC objectives. It
is worth remarking that all these works had the full information requirements on
the DGs models and parameters. However, MGs are complex systems subjected to
disturbances, uncertainties, and changes in the operating conditions. Thus [14] pro-
posed two continuous sliding-mode control (SMC) protocols, aimed to restore both
the DG’s frequencies and voltage, in the case of undirected communication among
agents, thus introducing the concept of robustness in the SC layer design.

Feedback linearization techniques yield the underlying requirement of a per-
fectly known MG mathematical model which is rather unrealistic in practical power
system scenarios, due to the presence of unmodelled dynamics, parameter uncer-
tainties, abrupt modifications of the power demand, and the presence of nonsmooth
nonlinearities introduced by the PWM-based power converters, thus making the
performance of the control system prone to these uncertainties. Furthermore feed-
back linearization may also yield numerical problems (e.g., due to the online com-
putation of nonlinear coordinate transformations or high-order Lie derivatives) that
can compromise the effectiveness of the whole control system. For these reasons,
in this work some robust distributed secondary control strategies whose design is
completely model-free and robust against system uncertainties.

1.6.2 Challenges in secondary control of islanded MGs

The challenges in secondary control of islanded MGs in this thesis are divided into
two parts.

Challenge in communication delays

Although all the mentioned strategies rely on communication networks, none of
them takes into account the presence of neither delays nor asynchronous commu-
nications that may, as discussed in [50] destabilize the power-system. Hence, more
recently the design of SCs subjected to communication delays attracted many re-
searchers. For instance, a local stability conditions based on a small-signal analysis
of the frequency SC, under a constant communication delay among agents, is dis-
cussed in [51]. On the other hand [52], through the stochastic differential equation
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theory, discussed the stability conditions of a stochastic distributed frequency SC un-
der a single, time-varying, communication delay. Lastly it is also worth mentioning
the voltage SCs proposed, resp, in [53, 54] under the assumption of a single constant
communication delay, and [55, 56] in the case of multiple constant delays. Finally,
note that all these strategies consider only constant single/multiple delays, or sin-
gle time-varying delays, and that none of them consider model uncertainties. Thus,
one of the core question of this thesis is “how to solve the problem of voltage and
frequency restoration in droop-controlled inverter-based islanded microgrids with
multiple time-varying delays and model uncertainties”?

Challenge in solving the problem of restoration in finite-time

It is worth noting that, most of the secondary control-related works studied the fre-
quency/voltage regulation and active power sharing with the asymptotically con-
vergence speed. To accelerate the convergence speed, a finite-time frequency syn-
chronization method and a finite-time approximate consensus strategy were, respec-
tively, proposed in [57] and [58], where the voltage and reactive power control are
not considered. Additionally, in [59] and [60], finite time frequency regulation strate-
gies with bounded control inputs are proposed in autonomous microgrids, however,
their voltage control algorithms are asymptotically convergent. A sliding mode con-
troller based on a distributed Radial Basis Function Neural Network (RBF-NN) is
suggested in [61] which only focuses on restoring the output voltage of all DGs to
a reference value. Moreover, secondary restoration schemes for voltage and fre-
quency control is proposed in [62] based on sliding mode controller. However, the
problem of establishing active power-sharing is not guaranteed. In [17], feedback
linearization techniques combined with a Lipschitz continuous distributed tracking
controller is proposed to achieve the SC aims in a finite time. It is worthwhile to
note that the underlying requirement of the exact knowledge of the MG mathemat-
ical model and parameters for feedback linearization purposes is rather unrealistic
in practical scenarios. Therefore, the second challenge in designing SCs is “how to
restore the DG’s voltages and frequencies to the desired values in a finite time under
parameters uncertainties and unexpected load variations”?

1.6.3 Operation Control Strategies

Several control schemes have been reported for the operation of islanded MGs.
These approaches according to the way they handle uncertainties can be categorised
as: (i) certainty equivalence, wherein a forecast in the form of the mean value is
fully reliable, (ii) worst-case, where no possibility information is presumed, (iii) risk-
neutral stochastic, where a forecast probability distribution is fully reliable, and (iv)
risk-averse, where uncertainties in the forecast probability distribution are consid-
ered. The last section of this work focuses on designing a novel certainty equivalence
model predictive.

In this context, a two-stage operation control algorithm is recorded in [63], that
includes a schedule and a dispatch layer. By using genetic algorithms, a day ahead
schedule for MGs is also designed in [64]. To dispatch generators of islanded MGs,
an energy management approach is proposed in [65] by adapting power setpoints
and droop gains of the units. Furthermore, a method is provided in [66] to sched-
ule islanded MGs. Additionally, [67] proposes an operation controller based on a
rolling horizon strategy. Another operation control is introduced in [68] to address
an energy management problem for deterministic forecasts of load and renewable
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generation. Furthermore, in [69, 70, 71, 72] MPC approaches for the operation of
islanded MGs are reported.

Although all the mentioned strategies are promising, most models are limited to
one of the following: (i) They do not consider a possible limitation of infeed from
RES [68, 65, 63, 66, 69, 70]. (ii) The dynamics of the storage units are not modeled
[65]. (iii) The formulations do not include storage dynamics with power conversion
losses [65, 68, 63, 66, 69, 70, 71, 72]. (iv) It is not assumed that conventional units
can be turned on and off [65, 63]. (v) They do not explicitly model the power flow
over a transmission network [68, 65, 63, 66, 69, 70]. Additionally, the authors in [65,
71, 72] only take into account power sharing of grid-forming units. Thus motivated,
we extend the works in [71, 72] by including the conversion losses model in the
proposed controller in order to reduce the prediction error in the storage units.

1.6.4 Challenge in operation control of islanded MGs

The challenge of designing operation control in this thesis is how to reduce the error
in storage units state of charge prediction by including the conversion losses model?

1.7 Thesis Contribution

To address the mentioned challenges in the previous subsection regarding secondary
control, this thesis proposes distributed secondary strategies for AC MGs. Three
different distributed strategies are studied and introduced in this work: (i) Robust
Adaptive Distributed SC with Communication delays (ii) Robust Optimal Distributed
Voltage SC with Communication Delays and (iii) Distributed Finite-Time SC by Cou-
pled Sliding-Mode Technique. As mentioned in Section 1.6.2, most of the existing
time-delay tolerant MG control protocols are linear. Thus, because of a MG is a
strongly nonlinear system, all those approaches can only provide stability feature
in the local sense under additional model approximation or linearization proce-
dures. Moreover, it is worth mention that, all these strategies consider only a single
constant/time-varying delay and multiple constant delays per link. Thus motivated,
we propose (i) Robust Adaptive Distributed SC and (ii) Robust Optimal Distributed
Voltage SC under multiple communication delays and nonlinear model uncertain-
ties. The first approach consist of two terms: 1) a discontinuous integral sliding
mode control term aimed to reject the local uncertain terms; 2) a linear distributed
consensus control term aimed to globally, exponentially, restores the DG’s frequen-
cies and voltages to the expected values while preserving the power sharing among
DGs despite the multiple communication delays. The second approach develops the
first one by introducing an optimization algorithm to find the optimal control gains
and estimate the allowable upper bound for communication delays. Apart from
these two approaches, this thesis proposes the third approach to solve the problem
of voltage and frequency restoration as well as active power sharing in finite-time
by exploiting delay-free communications among DGs and considering model un-
certainties. In this approach, for each DG with no access to the information about
the SC’s setpoints, the finite-time distributed estimators are employed to provide
an estimate of the SC’s setpoints for the distributed SC schemes. Lyapunov anal-
ysis is employed to verify the associated stability and fast convergence time of the
proposed controller.

In addition, to solve the operation control mentioned challenges in the previous
subsection, this thesis designs a certainty model predictive control (MPC) approach
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for the operation of islanded MG with very high share of renewable energy sources.
To this aim, the conversion losses of storage units are modelled by quadratic func-
tions to reduce the error in storage units state of charge prediction.

1.8 Publications

Many of the results presented in this work are based on existing publications. To all
of the them, the author of this thesis has made substantial contributions.

• A. Pilloni, M. Gholami, A. Pisano, and E. Usai, “Distributed optimal secondary
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Energies, 2021, 14(4), 1165.

• A. Pilloni, M. Gholami, A. Pisano, and E. Usai, “On the robust distributed sec-
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tems and Sliding-Mode Control. Springer, 2020, pp. 309–357.

• M. Gholami, A. Pisano, S. M. Hosseini, and E. Usai, “Distributed finitetime sec-
ondary control of islanded microgrids by coupled sliding-mode technique”, in 2020
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Automation (ETFA). IEEE, 2020, pp. 454– 461.
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PEL). IEEE, 2020, pp. 1-8.

• M. Gholami, M. Hajimani, Z. A. Z. Sanai Dashti, and A. Pisano, “Distributed
robust finite-time non-linear consensus protocol for highorder multi-agent systems via
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2018.

1.9 Thesis Outline

This dissertation is structured as six chapters with a common conclusion. The main
contents of each chapter are summarized in the following.
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Chapter 2: Preliminaries

In Chapter 2, preliminaries on notation and graph theory are provided. Then, some
useful properties from other authors are outlined for later use. Moreover, the model
of islanded MGs for designing SCs and operation control are introduced.

Chapter 3: Robust Adaptive Distributed SC

In Chapter 3, novel robust adaptive distributed frequency and voltage SCs in the
presence of both, model uncertainties, and multiple time-varying delays in the DGs’s
communications are proposed. There, the main theorems as well as the stability and
convergence features of the resulting closed-loop systems are investigated. Then
the performance and effectiveness of the proposed SCs are verified by simulating it
on a nonlinear inverter-based MG. Finally, a summary and concluding remarks are
provided.

Chapter 4: Robust Distributed Optimal Voltage SC

Chapter 4 outlines a novel distributed voltage SC scheme under communication de-
lays and model uncertainties with constant control gains. Furthermore, by develop-
ing an optimization algorithm, the net gains of the proposed control are tuned and
optimized. Then, the voltage secondary restoration features, and the closed loop
stability of the microgrid, in spite of the communication delays are demonstrated
through a Lyapunov-Krasovskii analysis and the use of Linear Matrix Inequalities.
An upper bound for the time-delay tolerated by the system is also provided by lin-
ear matrix inequalities. Finally, simulation results confirm the effectiveness of the
proposed control strategy.

Chapter 5: Distributed Finite-Time SC

This chapter proposes a novel distributed secondary control protocol based on the
sliding-mode approach, which not only guarantees the exact finite-time restoration
among voltages and frequencies of an inverter-based islanded microgrid, but also
preserves the active power sharing among distributed generations (DGs). Then, Lya-
punov analysis is used to verify the associated stability and fast convergence time
of the proposed SCs. Simulation results are also presented and analyzed to confirm
the effectiveness of the proposed approach. Finally, conclusions are collected at the
end of the chapter.

Chapter 6: Operation Control

In Chapter 6, a novel certainty equivalence MPC approach for the operation of is-
landed MG is proposed. The model of an islanded MG with uncertain renewable
generation and loads with very high share of RES is firstly derived. Then, the oper-
ating costs of the MG is quantified. Lastly, the properties of the resulting certainty
equivalence MPC in a numerical case study is illustrated.
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Chapter 2

Preliminaries

This chapter is structured as follows. In Section 2.1 some basics on notation are
given. After that, in Section 2.2 for later use we present some useful properties of
other literatures. Next, in Section 2.3 the preliminaries of graph theory is illustrated.
Furthermore, a nonlinear modeling of the inverter-based MG for SC purposes are in-
troduced. Finally, in Section 2.4 a model of an islanded MG for designing operation
control is discussed.

2.1 Mathematical Preliminaries and notations

The sets of complex, real, strictly positive and negative real numbers are denoted
by C, R, R<0 and R>0, respectively. Moreover, the set of nonpositive real numbers
is R≤0 and the set of positive real numbers including 0 is R≥0. The set of natural
number is N and the set of nonnegative integers is N0. Furthermore, the set of
Boolean numbers is B = {0, 1}. For d ∈ N and a column vector of x ∈ Rd, let x′ be
its transpose. Given a matrix A, its transpose is denoted by A′, while its hermitian
(complex conjugate) transpose is AH and let ‖A‖2 be Euclidean norm. The Matrix
A is also non-negative (psd), denoted by A � 0, if A is Hermitian and zH Az � 0 for
all z ∈ Cn. The trace of a matrix A is specified by tr(A). Given a complex number
z, its real part is denoted by Re(z) while the imaginary part of a complex number z
is denoted by Im(z). Additionally, given a scalar a, its absolute value is defined by
|a|. Finally, the sign operator sign(a) is understood in the Filippov sense [73], such
that, sign(a) = 1 if a > 0, −1 if a < 0, otherwise it is sign(a) ∈ [−1, 1]. In denotes
the n-dimensional identity matrix, and by 1n and 0n respectively the all 1, and all 0,
n-dimensional column vectors.

2.2 Useful Properties

For later use, the following useful properties are exploited:

Theorem 2.2.1 (Lyapunov-Krasovskii Stability Theorem [44]). Consider the retarded func-
tional differential equation:

ẋ = f (t, xt), t ≥ 0
x(t0 + s) = φ(s), s ∈ [−h, 0]

(2.1)

where h > 0 is the delay, φ ∈ C([−h, 0], Rn) is the functional initial condition, and
xt ∈ C([−h, 0], Rn) is the system’ state, with xt(s) = x(t + s). Suppose that f : R≥0 ×
C([−h, 0], Rn) 7→ Rn in (2.1) maps R≥0× (bounded sets of C([−h, 0], Rn) into a bounded
sets of Rn, and that u, v, w : R≥0 7→ R≥0 are are strictly positive functions, where addi-
tionally u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. Assume further that
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there exists a continuous differentiable functional V : R× C([−h, 0], Rn) 7→ R>0 such
that:

u (‖φ(0)‖2) ≤ V(t, φ) ≤ v (‖φ‖2) , V̇(t, φ) ≤ −w(‖φ(0)‖2), (2.2)

then the trivial solution of (2.1) is uniformly stable. If w(s) > 0 for s > 0, then it is
uniformly asymptotically stable. In addition, if lims→∞ u(s) = +∞ then it is globally
uniformly asymptotically stable. �

Lemma 2.2.1
(
[74]

)
Let a(t), b(t) ∈ Rn and ψ ∈ Rn×n

>0 the following inequalities are in
force:

|2a(t)′b(t)| ≤ a(t)′ψa(t) + b(t)′ψ−1b(t). (2.3)

Moreover, let h ∈ R and h̄ be maximum value assumed by a time delay, then:

−2a(t)′
∫ t

t−h(t)
ḃ(s)ds ≤ h̄a(t)′ψ−1a(t) +

∫ t

t−h(t)
ḃ(s)ψḃ(s)ds. (2.4)

�

Lemma 2.2.2
(
[75, Lemma 2.1]

)
Let x ∈ Rn, B be any positive definite symmetric matrix,

i.e. B = B′ � 0, and h > 0, the Jensen inequality for the integral terms is:

−
∫ h

0
x(s)′Bx(s)ds ≤ −1

h

(∫ h

0
x(s)ds

)′
B
(∫ h

0
x(s)ds

)
(2.5)

�

Lemma 2.2.3
(
[76]

)
The Schur complement lemma converts a class of convex nonlinear

inequalities that appears regularly in control problems to an LMI. The convex nonlinear
inequalities are:

R(x) < 0, Q(x)− S(x)R(x)−1S(x)′ < 0, (2.6)

where Q(x) = Q(x)′, R(x) = R(x)′, and S(x) depend affinely on x. The Schur comple-
ment lemma converts this set of convex nonlinear inequalities into the equivalent LMI:[

Q(x) S(x)
S(x)′ R(x)

]
< 0. (2.7)

�

Theorem 2.2.2 Let M1 ∈ Rn×n be a negative symmetric matrix and M2 ∈ Rn×n be a
positive symmetric definite matrix, and then let τ ∈ R>0 be a positive constant. If the
following relation is satisfied:

M1 + τM2 < 0

then it yields:
M1 + ξM2 < 0 ∀ ξ (0, ξm],

where

ξm =
‖M1‖2

‖M2‖2
.

�
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Proof of Theorem 2.2.1 Let X ∈ Rn and let M ∈ Rn×n , then:

M < 0 ⇔ X′MX < 0 ∀X 6= 0 (2.8)

According to (2.8), we can write:

X′(M1 + ξM2)X = X′M1X + ξX′M2X < 0 (2.9)

By denoting λmax
M1 < 0 and λmax

M2 > 0 be the maximum eigenvalues of M1 and M2,
(2.9) can be recast as follows:

X′M1X + ξX′M2X ≤ (λmax
M1 + ξλmax

M2)‖X‖2
2 (2.10)

it follows that:

λmax
M1 + ξλmax

M2 < 0 ⇒ ξλmax
M2 < −λmax

M1

ξ < −λmax
M1

λmax
M2

=
|λmax

M1 |
|λmax

M2 |
(2.11)

Since M1 and M2 are negative and positive symmetric matrices, respectively and ‖M‖ =
λmax

M, we can thus rewrite (2.11) as follows:

ξ <
‖M1‖2

‖M2‖2
. (2.12)

This concludes the proof. �

Lemma 2.2.4
(
[77, 78, 79]

)
If there exists a positive definite continuous function V(x(t)) :

U → R>0, such that V̇(x(t)) + ρ(V(x(t)))δ ≤ 0, where ρ > 0 and δ ∈ (0, 1), for the
following system:

ẋ(t) = f (x(t)), f (0) = 0, x(t) ∈ Rn (2.13)

where f (·) : Rn → Rn is a continuous function, then V(x) converges to zero in a finite
time. The finite convergence time T̄ satisfies T̄ ≤ (V(x(0))1−δ/ρ(1− δ)). �

2.3 MG Modeling for SC Design

A MG is a geographically distributed power system consisting of DGs and loads
physically connected by power lines. The DG control units exchange information
for monitoring and control purposes over a communication infrastructure, as shown
for instance in Figure 2.1.

2.3.1 Distributed generator model

An inverter-based DG includes a 3-ph power converter which DC side is connected
to a dc power source (e.g., photovoltaic panels [80], fuel cell system [81] or a wind
turbine [40]), while the AC side is connected to the 3-phase power grid by the se-
ries of the coupling and the output filters, see Figure 2.2. A more detailed DG’s
modelization can be found in [14]. Here, as done in [40, 82], we refer to the next
simplified representation:

δ̇i(t) =ωi(t) = ωni(t)− kPi · P
m
i (t) (2.14)

kvi · v̇i(t) =− vi(t) + vni(t)− kQi ·Q
m
i (t), i = 1, . . . , N. (2.15)
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FIGURE 2.1: An islanded MG with four DGs and four loads equipped
with a leader-follower SC architecture.
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FIGURE 2.2: Primary control block diagram of an inverter-based DG.

where δi(t), and ωi(t) represent the voltage phase angle, and the angular frequency
expressed in rad/sec of the i-th DG, and vi(t) is its voltage magnitude expressed in
VRMS (per phase rms). N denotes the number of DGs. Then, kvi ∈ R>0 is the voltage
control gain, and kPi ∈ R>0 and kQi ∈ R>0 are the droop PC’s coefficients, selected to
meet the power sharing specifications among DGs. ωni(t) and vni(t) ∈ R are, respec-
tively, the frequency and the voltage SC action which play the role of references for
the PC layer. If the SC is inactive, their values correspond to the nominal set-points
ωni(t) = ω0 = 2π · 50Hz and vni(t) = v0 = 220VRMS(per phase rms) ≡ 310Vph−0.
Let τPi and τQi ∈ R>0 be the time-constants of two low-pass filters, Pm

i (t) and Qm
i (t)

denote the filtered measurements of the instantaneous active and reactive power
flows Pi(t) and Qi(t) such that:

τPi · Ṗ
m
i (t) = −Pm

i (t) + Pi(t) (2.16)
τQi · Q̇

m
i (t) = −Qm

i (t) + Qi(t) (2.17)
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2.3.2 MG’s Network Models

Since graphs enable the description of both the electrical couplings among DGs
through the transmission lines, and the interaction among the DGs’ local controllers
over a communication infrastructure, preliminary definitions on graph theory are
now introduced.

Graph theory

A directed graph (or digraph) GN (V , E ,A) is a mathematical tool to describe pairwise
mutual interactions between objects, usually referred to as agents. V = {1, . . . , N}
denotes the agent’s set. E ⊆ {V × V} is the edges’s set. A = [aij] ∈ CN×N is the
adjacency matrix of GN , with weight aij = 1 if agent i communicates with agent j
(i, j) ⊆ E , aij = 0 otherwise. Ni = {j ∈ V : (i, j) ∈ E} is the neighbor’s set of agent i.
Information on GN is also encoded by the following matrix which is called Laplacian
matrix:

L = B −A : L · 1N = 0N .

where B = diag {b1, . . . , bn}, with bi = ∑N
j=1 αij, ∀ i = 1, 2, . . . , N. Ni = {j ∈ V :

(i, j) ∈ E} denotes the set of neighbors of agent “i”. We define a “directed path” in
GN , a possible alternating sequence of agents and edges over GN with both endpoints
of an edge appearing adjacent to it in the sequence. A di-graph is weakly connected
if, by replacing all directed edges with undirected edges, the resulting graph has not
disconnected nodes. A di-graph is strongly connected if it is possible to reach any
node starting from any other node by traversing edges in the direction(s) in which
they point.

If G is weakly connected, then rank{L} = N − 1. Moreover, L has a simple
zero eigenvalue. In addition, let λ2(L) be the smallest nonzero eigenvalue of the
symmetric-part of L, namely of 1

2 (L+ Lᵀ), and let ε ∈ RN be any vector such that
1ᵀNε = 0 then, if GN is strongly connected, the next property holds:

− λ2(L) · ‖ε‖2
2 ≤ −ε′Lε. (2.18)

An agent i is a root node for GN , namely it is “globally reachable”, if it can be
reached from any other agent by traversing a directed path. If GN admit a root node,
then it is also weakly connected.

In our modelization the agent set V will denote the set of DGs operating over the
MG, which cardinality, without loss of generality, is equal to N, namely card{V} =
N. Now, we are going to distinguish between the graph Ge

N representing the inter-
actions among DGs at the electrical level, and Gc

N which describes the interactions at
the communication level among the DGs’ SCs.

Electrical network model

To derive the MG’s electrical model, let us first notice that the MG’s nodes coincides
with the DGs connection ports, see e.g. Figure 2.1, and that, the DGs are electrically
coupled through the transmission lines. Thus, the electric power network can be
described by a di-graph Ge

N(V , E e,Ae) which vertex set consists of the set of DGs,
namely V = {1, 2, . . . , N}. Let ı =

√
−1 be the imaginary unit, and let Yij = Gij +

ı · Bij be the line admittance between node “i” and “j”, where the terms Gij and
Bij denote, resp., the line conductance and susceptance, the couplings among DGs
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consists of complex weights Yij ∈ C, such that Ae = [Yij] ∈ CN×N . Clearly, if node
“i” and “j” are not connected Yij = 0 and thus (i, j) /∈ E . Let us further note that
Bij > 0 implies that its inductive component is dominant.

By means of the power flows equations, and under the common assumption that
the inverters’ output admittances are purely inductive and dominates any resistive
effect [47]-[82], namely, Yik ≈ ı · Bik ∀ i, k ∈ V , it results that the active and reactive
powers at node “i” due to the coupling lines among generators are:

P̂i(t) = ∑
k∈N e

i

vi(t)vk(t)Bik sin(δi(t)− δk(t)) (2.19)

Q̂i(t) =v2
i Bii + ∑

k∈N e
i

vi(t)vk(t)Bik cos(δi(t)− δk(t)) (2.20)

Furthermore, in order to consider also the presence of local loads (PLi(t), QLi)(t)
connected at the DG’s output port, we further define (Pi(t), Qi(t)) as:

Pi(t) =PLi(t) + P̂i(t) (2.21)

Qi(t) =QLi(t) + Q̂i(t) (2.22)

where PLi(t) = P1ivi(t)2 + P2ivi(t) + P3i, and QLi = Q1ivi(t)2 + Q2ivi(t) + Q3i shows
the power-flows load behavior under varying voltage conditions in accordance with
the ZIP load power-flow modelization. There, the pairs of parameters (Pki, Qki),
with k = 1, 2, 3, describe the active and reactive power flows absorbed by the i-th
load at, resp., constant impedance (Z) that are (P1i, Q1i), constant current (I) that are
(P2i, Q2i), and constant power (P) that are (P3i, Q3i). Worth also to remark that the
ZIP load modelization is widely accepted in power generation, see for instance [40,
83, 84]. That’s because it completely describes the power flows absorbed by an elec-
trical load throughout its operation by means of only 6 parameters, while meeting
the constraints of the power system load flow analysis paradigm [85]. Worth also
to mention that in the literature there exists simple automated measurement-based
identification procedures for the identification of the ZIP load parameters, see [86,
87]. Combining (2.14) to (2.22), the overall dynamical MG model is obtained.

Communication network model

Since we assume each DG provided with communication facilities for SC purposes,
the communication network is assumed to be modelled by a directed, weakly con-
nected di-graph Gc

N = (V , E c,Ac), which vertex set V = {1, ..., N} is the same used to
model the electrical network, but now the nodes play the role of agents. The edge set
E c collects instead all the available links among the local communication interfaces
embedded within each local controller. It further results that N c

i = {j|(i, j) ∈ E c}
and Ac = [αij] ∈ RN×N is real and non-negative, where αij = 1 if (i, j) ∈ E c, namely
if DG i can receive data delivered by DG j, otherwise αij = 0.

Let “0” be an additional virtual node/agent in the augmented communication
graph Gc

N+1, in the remainder node “0” is considered as the “virtual leader” which
provides the frequency and voltage set-points ω0 and v0 ∈ R to the SC layer. Sim-
ilarly with the related literature [14, 88, 17, 82, 89, 90, 91], node 0 is assumed to be
globally reachable on Gc

N+1, namely 0 is a root node for Gc
N+1. Let Lc and Lc

N+1 be the
Laplacian matrices associated with, resp., Gc

N and Gc
N+1. Because of Gc

N is assumed
connected, and 0 is a root node for Gc

N+1, then rank(Lc) = N − 1, rank(Lc
N+1) = N.

Moreover, both Lc and Lc
N+1 have a simple zero eigenvalue.
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Before presenting our final compact model let us made the next reasonable as-
sumption.

Assumption 2.3.1 Consider a MG described by (2.14)-(2.22). We assume the active and
reactive powers (2.21), (2.22) to be bounded-in-magnitude according to |Pi(t)| ≤ ΠP,
|Qi(t)| ≤ ΠQ, ∀ i ∈ V , ΠP, ΠQ ∈ R>0. Due to (2.16), (2.17), it follows that the time
derivatives of the measured powers are uniformly bounded as well. �

Remark 2.3.1 Assumption 2.3.1 is justified because the power flowing in the lines and/or
absorbed by the load is bounded everywhere due to: a) the passive behaviour of loads and
lines; b) the bounded operating range of the DC-AC power-converters due to their physical
limits; c) the presence of protection apparatus and the inner voltage and current PC. This,
keeps the power flows within pre-specified ranges as discussed for instance in [14, 82, 92].�

For designing SCs, we now express the MG model in terms of the next augmented
state form, obtained by time-differentiating (2.14) and (2.15) as follows:

ω̇i(t) =ω̇ni(t) + ˙̂wi(t) (2.23)

[
v̇i(t)
v̈i(t)

]
= Āi ·

[
vi(t)
v̇i(t)

]
+ B̄i · v̇ni(t) +

[
0

˙̃wi(t)

]
, (2.24)

with

Āi =

[
0 1
0 − 1

kvi

]
, B̄i =

[
0
1

kvi

]
, ∀ i ∈ V .

where

ŵi(t) = −kPi · Pm
i (t) , w̃i(t) = −

kQi

kvi

·Qm
i (t) (2.25)

play as physical unknown perturbations accounting parameter uncertainties, un-
modelled dynamics, chances in the MG working-point, etc. In the remainder of the
thesis, and according to the input dynamic extension principle, ω̇ni(t) in (2.23), and
v̇ni(t) in (2.24) will be used as the control signals. By doing this, we shall be able to
define such signals in a discontinuous manner while having ωni(t) and vni(t) con-
tinuous, thus well-suited to safely fed the DGs’ inner control loops. Finally, ωi(t) in
(2.23), and vi(t) and v̇i(t) in (2.24) express the state signals and need to be controlled
by the SC control signals.

Let us further note that from Assumption 2.3.1, and due to the uniform bound-
edness of the stable first-order filters (2.16)-(2.17), it results that the time derivatives
of the measured powers are uniformly bounded as well in accordance with the next
relations:

|Ṗm
i (t)| ≤

2ΠP
i

τPi

, |Q̇m
i (t)| ≤

2ΠQ
i

τQi

, ∀ i ∈ V . (2.26)

From (2.26), and thanks to (2.14)-(2.15), also ˙̂wi(t) and ˙̃wi(t) meet boundedness
restrictions. In particular, after straightforward computations, on the basis of the
physical limits of the generators, it results that:

∃ ΓP
i =

2kPi Π
P
i

τPi

∈ R>0 : | ˙̂wi(t)| ≤ ΓP
i , (2.27)

∃ ΓQ
i =

2kQi Π
Q
i

kvi τQi

∈ R>0 : | ˙̃wi(t)| ≤ ΓQ
i . (2.28)
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2.4 MG Modeling for Operation Control Design

The microgrid model that is extracted in this thesis for designing an operation con-
trol includes a grouping of conventional generator, storage renewable energy storage
units, and loads connected to each other by transmission lines. Figure 2.3 depicts
a basic MG, consisting of all these components. The electrical connection among
units and loads due to power lines can be modelled by a di-graph Ge

N(V , E e), where
V = {1, . . . , N} represents the set of agents and E e ⊆ {V × V} is the set of edges
(transmission lines) between two distinct agents. In this manuscript, we consider
that the set of agents includes four subsets VT, VS, VR and VL, wherein these let-
ters denote, respectively, the sets of conventional, energy storage, renewable units,
and loads. We also denote by Yij = Gik + ı · Bij ∈ C the admittance line between i-th
agent and j-th agent, wherein Gij and Bij show the line conductance and susceptance
between i-th agent and j-th agent. If no connection between i-th agent and j-th agent
exists, Gij = Bij = 0. Given the linear constraint functions on the units and the loads

FIGURE 2.3: MG used for operation control as a running example.

in Chapter 6, th dynamic model of the MG can be described by:

x(k) + Bq̄(k)− x(k + 1) = 0, (2.29a)
H1 · x(k + 1) ≤ h1, (2.29b)

H2 ·
[
v(k)′ q̄(k)′ w(k)′

]′ ≤ h2, (2.29c)

G ·
[
v(k)′ q̄(k)′ w(k)′

]′
= g, (2.29d)

where k ∈ N0 is time index, x(k) ∈ RS
≥0 with S ∈ N is the state vector with ini-

tial value x0 ∈ RS
≥0. In fact, this vector is included of entries xi(k) that represent

the stored energy of unit i ∈ N[1,S]. q̄(k) ∈ RQ is referred to as a vector of Q ∈ N

auxiliary variables. And also, v(k) = [u(k)′ δt(k)′]′ states the vector of control in-
puts, wherein u(k) ∈ RU is denoted as the vector of real-valued control inputs of all
U ∈ N units and δt(k) ∈ {0, 1}T is defined to be the vector of T ∈ N Boolean in-
puts. We have also collected the uncertain external inputs of the model in the vector
w(k) ∈ RW , W ∈ N. Let B ∈ RS×Q in (2.29a) and H1, h1 in (2.29b) be appropriate
dimensions. Furthermore, we consider in (2.29c), H2 and h2, respectively, as a matrix
and a vector of appropriate dimensions that reflect inequality constraints. Likewise,
in (2.29d) G is a matrix and g a vector of appropriate dimensions that reflect equality
constraints. In more detail, the real-valued control inputs are the power setpoints of
the units u(k) = [ut(k)′ us(k)′ ur(k)′]′ where ut(k)′ ∈ RT

≥0 is related with the conven-
tional units, us(k)′ ∈ RS with the storage units and ur(k) ∈ RR

≥0 with the renewable
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units such as wind turbines and PV power plants. Regarding to the storage and con-
ventional generators, us(k) and ut(k) represent desired power values. For RES, ur(k)
represents an upper limit on the weather dependent power infeed. Hence, ur(k) is
their maximum admissible.

Furthermore, for each conventional generator will be considered a Boolean con-
trol input δt,i(k) ∈ {0, 1}. This input shows whether generator i ∈ N[1,T] is active
(δt,i(k) = 1) or Inactive (δt,i(k) = 0). The Boolean variables of all conventional gen-
erators are gathered in the vector δt. The uncertain external input is also collected
in the vector w(k) = [wr(k)′ wt(k)′]′, where wr(k) is the maximum infeed under
weather conditions of all renewable units and wt(k) includes all loads.

In Chapter 6, we will extract a control-oriented MG model of the form (2.29).



19

Chapter 3

Robust Adaptive Distributed
SC under Delayed communications
and Model Uncertainties

3.1 Introduction

In the previous chapter (see Section 2.3), the model of an islanded MG for design
SC was derived. Based on this model, an adaptive SC strategy for the asymptotic
restoration of the frequencies and the voltages of the AC islanded microgrid is pre-
sented in this chapter. The problem is addressed in a multi-agent fashion where the
distributed generators play the role of agents subject to model uncertainties and un-
known load variation. Moreover, multiple time-varying delays affects the commu-
nication links. Robustness against a class of agent’s uncertainties and load variations
is obtained by means of an integral sliding mode term in the control protocol.

The chapter is organized as follows: Section 3.2 presents the contributions of
this chapter as well as the problem statement. A novel adaptive distributed fre-
quency SC is designed in Section 3.3. Then, the secondary restoration features, and
the closed loop stability of the microgrid, in spite of the communication delays are
demonstrated through a Lyapunov-Krasovskii analysis and the use of LMIs. After
that, a novel adaptive distributed voltage SC is proposed in Section 3.4 where the
performance of the proposed control system is analyzed by Lyapunov tools. Then,
in Section 3.5 the effectiveness of the proposed SCs is verified by computer simula-
tions. Finally, in Section 3.6 some concluding remarks are outlined.

3.2 Main Contributions and Problem Statement

The main contribution of this chapter consists of two novel multi-agent robust con-
sensus SCs, one for the frequency, and one for the voltage, capable to satisfy, globally,
and asymptotically, the SC objectives in the presence of both, model uncertainties,
and multiple time-varying delays in the DGs’s communications. Each SC consists
of two terms. The first is a local Integral Sliding Mode Control (ISMC) such that
each DG tracks a given reference unperturbed dynamic. Then, taking inspiration
by [93], [94] where the adaptive synchronization of high-order linear systems with
time-varying multiple delays is studied, an ad-hoc adaptive time-delay consensus
protocol is designed to guarantee both the frequency and voltage SC restoration,
while preserving the expected sharing of power among DGs. A delay-dependent
stability criterion is also provided by combining the Lyapunov –Krasovskii method
with the Linear Matrix Inequality (LMI) approach. Lastly, it is worth noting that, al-
though SMCs have discontinuous control actions, thus suffering from the so-called
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chattering effect, our SCs yield only discontinuous time derivatives. Thus, the actual
control can safely be used to fed the inner PC layer.

In the absence of a SC layer, all the DG’s frequencies and output voltages devi-
ate from their reference values. Following [39, 40], it is known that relation (2.14)
along with the constraints kPi P

m
i = kPk Pm

k ∀ i, k ∈ V , enforces a steady-state (“ss”)
frequency synchronization condition depending on the active power flowing in the
MG and on the droop coefficients, such that,

lim
t→∞

ωi(t) = ωi,ss = ω0 −
∑n

k=1 Pm
k

∑n
k=1

1
kPk

∀ i = 1, . . . , N (3.1)

Similarly, due to (2.15), the steady-stage voltages deviate from v0. It follows that
the two main tasks of the SC layer are:

1. Restore the frequencies and voltages of each DG to their reference values, i.e.,

ωi,ss = ω0 ∀ i ∈ V (3.2)
vi,ss = v0 ∀ i ∈ V (3.3)

2. Guarantee the active power sharing ratio, i.e.,

Pm
i,ss

Pm
k,ss

=
kPk

kPi

∀ i, k ∈ V (3.4)

3.3 Frequency secondary controller design

Strategies ranging from centralized to completely decentralized have been suggested
to achieve the aforementioned SC purpose. However, centralized approaches con-
flict with the MG paradigm of autonomous management [41]. On the other hand,
decentralized strategies appear to be unfeasible by using only local information [95].
As such, the communication between DGs has been identified as the key ingredient
in achieving these goals while avoiding a centralized architecture. In accordance
with the DT paradigm, and similarly to [40], [42], [43] and [13], we assume that at
least one DG may receive the information on the SC set-points (ω0, v0) dispatched
by the virtual leader (referred to as node “0”). Thus, node zero is globally reachable
on Gc

N+1. Furthermore, we assume Gc
N to be a directed connected graph.

Notice that consider oriented communications is an important difference with
respect to the know robust SC strategies such as [14, 41] where they were instead
simply undirected. Moreover, in contrast with [88, 14, 17, 89, 90, 91] and [39, 40,
41, 42, 13], but similarly to [51, 53, 54, 55, 52, 56], communications are assumed
potentially affected by delays due to packet losses and/or communication latency.
However, with respect to the above mentioned works, here the communications are
subjected to multiple time-varying delays. We also assume that the DGs may only
communicate according to the communication topological graph Gc

N described in
Chapter 2.

Thanks to the droop characteristic (2.14), and according to (3.1), the condition
to achieve the frequency restoration (3.2) while preserving desired power sharing
capability (3.4) is:

lim
t→∞

ωni(t) = lim
t→∞

ωnk(t) ∀ i, k ∈ V . (3.5)
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In fact, except from special cases, see for instance [95], achieving the frequency
synchronization without guaranteeing (3.5) destroys the power sharing property es-
tablished by the PC [40, 41, 95]. Achieving condition (3.2) subject to (3.5) is a more
involved problem that cannot be solved by using standard consensus-based syn-
chronization algorithms. Thus motivated, we propose the following adaptive fre-
quency SC strategy by taking into account delayed communications among DGs:

ω̇ni(t) = ˙̂ui(t)− m̂i · sign(ŝi(t)) (3.6)

where ŝi(t) is the desired sliding manifold designed as follows:

ŝi(t) = ωi(t) + ẑi(t) (3.7)
˙̂zi(t) = − ˙̂ui(t), ẑi(0) = −ωi(0), (3.8)

and

˙̂ui(t) =−
N

∑
j=0

αij k̂ij,1(t)
[
ωi(t− τij(t))−ωj(t− τij(t))

]
−

N

∑
j=1

αij k̂ij,2(t)
[
ûi(t− τij(t))− ûj(t− τij(t))

]
, (3.9)

where αij models the presence/absence of a communication link between the i-th
and j-th DG over Gc

N+1, whereas τij(t) shows the time-varying communication delay
associated with that communication, assumed to be measurable. Moreover, m̂i is the
local discontinuous control gain. Finally k̂ij,1(t), k̂i0(t) and k̂ij,2(t) ∈ R>0 denote
adaptive gains whose update rules are:

˙̂kij,1(t) =ζ̂ij,1 · |ωi(t− τij(t))−ωj(t− τij(t))|2 (3.10)
˙̂ki0,1(t) =ζ̂i0,1 · |ωi(t− τi0(t))−ω0(t− τi0(t))|2 (3.11)
˙̂kij,2(t) =ζ̂ij,2 · |ûi(t− τij(t))− ûj(t− τij(t))|2. (3.12)

with ζ̂ij,1, ζ̂i0,1 and ζ̂ij,2 ∈ R>0 and k̂ij,1(0) > 0, k̂i0,1(0) > 0 and k̂ij,2(0) > 0.

Remark 3.3.1 Since DGs share information through a communication infrastructure, due
to communication noise, packet collisions, communication errors and others, it may happen
the receiver has to wait another beacon interval before receiving the next update. The above
consideration leads to the need of running the controller based on outdated information and
that τij is measurable to correctly correlate the available data for feedback purposes. Thus
following [93, 94], we consider that τij(t) is measurable. Note that adding the time-stamp
within packets is inexpensive because of most of the standard communication protocols al-
ready includes, at least at the MAC ISO/OSI layer this information [96]. On the other hand,
communication protocols used to include the data-packet timestamp, thus the requirement of
measurable delays is costless [96]. Once the delay is measured by means of local buffers each
controller is enabled to retrieve its own state at that time, and performs (3.9).

Remark 3.3.2 The design of (3.6)-(3.12) follows from [73, Algorithm 1]. In particular, the
term ûi(t) in (3.9) is designed ad-hoc to solve the SC objectives (3.2), (3.4) in a distributed
way, in the case the agents (DGs) were simply modeled by ideal integrator-type, thus by
assuming ŵi(t) ≡ 0. Then, the discontinuous term in (3.6) is designed to account the pres-
ence of the electrical, and possibly uncertain, couplings among the DGs due to the presence
of the transmission lines and the local loads in (2.16)-(2.22), and thus in the case of non-zero
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ŵi(t) terms in (2.25). Differently from [73, Algorithm 1], here the term ûi(t) accounts also
the presence of communication delays, that is a step beyond the design of ISMC-based dis-
tributed controllers. No te that the design is based on a distributed implementation of the
Integral Sliding Mode Control (ISMC) paradigm [97].

Before presenting the operating assumptions on the delays, let us first introduce
the following compact notation, used also in [93, 94]. We indicate with T (t) =
{τ1(t), τ2(t), . . . , τq(t)} the set of delays affecting the communication of between
each DG and the leader (node 0), and such that

τl(t) = τi0(t), ∀ i : (i, 0) ∈ E c
N+1, l = 1, 2, . . . , q. (3.13)

Analogously, we indicate with S(t) = {σ1(t), σ2(t), . . . , σm(t)} the collection of
delays affecting the communication between each of the N DGs to another DG where

σg(t) = τij(t), ∀ (i, j) ∈ Gc
N , ∀ g = 1, 2, . . . , m. (3.14)

Note that the indexes m ≤ N(N − 1) and q ≤ N equal their maximum values only
if Gc

N+1 is a complete graph, and all the delays, for a given time t, are different. The
common assumption of slowly-varying, bounded delays, is now made [98], [99].

Assumption 3.3.1 Let a-priori known bounds τ?
l , σ?

g , dl , dg ∈ R>0 exist such that the
communication delays τl ∈ T (t) and σg ∈ S(t) over the communication topology Gc

N+1
satisfies:

τi0(t) ∈
[
0, τ?

l

)
, |τ̇i0(t)| ≤ dl < 1, ∀ t ≥ 0, ∀ τi0 ∈ τl , l = 1, 2, . . . , q

τij(t) ∈
[
0, σ?

g
)
, |τ̇ij(t)| ≤ dg < 1, ∀ t ≥ 0, ∀ τij ∈ σg, g = 1, 2, . . . , m. (3.15)

Before presenting the first main result of this chapter the following Lemma is
provided.

Lemma 3.3.1 Let Âi0 = −αi0k̂i0,1(t), Âij(t) = −αij k̂ij,1(t), Âij(t) = −αij k̂ij,2(t) ∈ R,
and let

Al(t) =


Al(1,1) 0 . . . 0

0 Al(2,2) . . .
...

...
...

. . .
...

0 . . . . . . Al(N,N)

 ∈ RN×N , (3.16)

with diagonal blocks such that (i = 1, . . . , N; l = 1, . . . , q)

Al(i,i)(t) :
{

Âi0(t) if l = i τl = τil ,
0 otherwise,

(3.17)

Then, let define Matrices Âg(t) ∈ RN×N and Âg(t) ∈ RN×N with entries, resp.,

Âg(r,y)(t) :


Âij(t) if σg = τij, i 6= j, r = y = i
−Âij(t) if σg = τij, i 6= j, r = i, y = j

0 otherwise
(3.18)

Âg(r,y)(t) :


Âij(t) if σg = τij, i 6= j, r = y = i
−Âij(t) if σg = τij, i 6= j, r = i, y = j

0 otherwise
(3.19)
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with r, y = 1, 2, . . . , N. Assume Gc
N connected and undirected, and node 0 in Gc

N+1 globally
reachable. Then Φ̂(t) = ∑

q
l=1 Al(t) + ∑m

g=1 Âg(t), as in (3.28), is Hurwitz, ∀ t ≥ 0.
Moreover, let ξ ∈ Rn be any vector such that 1′ξ = 0, and let Φ̂2(t) = ∑m

g=1 Âg(t) � 0,
then it results that ξ ′

(
Φ̂2(t)′ + Φ̂2(t)

)
ξ ≤ λ2‖ξ‖2

2 < 0, where λ2 < 0 is the second
greater non-zero eigenvalue of the symmetric part of Φ̂2(t).

Proof of Lemma 3.3.1 Let Φ̂(r,y)(t) be the (r, y) entry of matrix Φ̂(t). Because of (3.17),
(3.18) and (3.19), we can observe that −Φ̂(t) is weakly diagonally dominant, namely
|Φ̂(r,r)(t)| ≥ ∑y 6=r |Φ̂(r,y)(t)|, ∀ r = 1, 2, . . . , N, t ≥ 0. Thus, the eigenvalues of −Φ̂(t),
have non-negative real part ∀ t ≥ 0. Now, to prove that Φ̂(t) is Hurwitz we are going to sim-
ply show that its inverse exists. Let us first define the vector b = −(Â10, Â20, . . . , ÂN0)

′ ∈
RN and the matrices

B = −
q

∑
l=1

Al(t) = −


Â10(t) 0 . . . 0

0 Â20(t) . . .
...

...
...

. . .
...

0 . . . . . . ÂN0(t)



Lc ≡ −
q

∑
g=1
Âg(t) , Lc

N+1 =

(
0 0′N
b Lc

)
.

It can be easily shown that Lc and Lc
N+1 are the Laplacian matrices, resp., of Gc

N and of
Gc

N+1, with non-negative weights −Aij. Moreover, because of Gc
N is connected and because

of node 0 is a root node on Gc
N+1 it results that rank {Lc} = N − 1, rank

{
Lc

N+1

}
=

rank {[b, Lc
N ]} = N. Now, let us define x = 1N · x0, with x0 ∈ R. Because of Lc1N = 0N ,

the following continued equality holds

Lcx = 0N =⇒ Lcx + B1n · x0 = Bc1N · x0 =⇒ (Lc + B) x = −Φ̂(t)x = B1n · x0.

Thus, according to −Φ̂(t) = B+Lc, it yields there exists Φ̂(t)−1 with rank{Φ̂(t)} = N,
and lastly the eigenvalues of Φ̂(t) have negative real part for all t ≥ 0.

By similar consideration, it results that the matrix −Φ̂2(t) = Lc corresponds to the
Laplacian matrix of the graph which topology is encoded by Gc

N and with non-negative
weights −Âij. Thus because of Gc

N is assumed connected and undirected, then by means
of property (2.18), we can straightforwardly derive that ξ ′Φ̂2(t)ξ ≤ λ2(Φ̂2(t))‖ξ‖2

2 < 0
holds. This conclude the proof.

Theorem 3.3.1 Consider a microgrid of N DGs, which frequency dynamics (2.23) are under
the adaptive frequency SC (3.6)-(3.12). Let Assumption 2.3.1 and Assumption 3.3.1 be
satisfied. Let the communication topology among DGs be described by a connected, and
undirected graph Gc

N(V , E c), with weight αij = 1, if (i, j) ∈ E c, 0 otherwise. Let node 0 be
globally reachable on Gc

N+1. Let Ω be the so-called average disagreement matrix

Ω = IN −
1
N

1N1′N � 0 (3.20)

where by Lemma 3.3.1, results that:

λ2(t) = max
eig 6=0

{
m

∑
g=1

Âg(t)′ +
m

∑
g=1
Âg(t)

}
< 0, Φ̂(t) =

q

∑
l=1

Al(t)+
m

∑
g=1

Âg(t) ≺ 0 ∀t ≥ 0.

(3.21)
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Let there exist m̂i > ΓP
i = 2kPi Π

P
i /τPi , and positive definite matrices P̂, Q̂l , Q̂g, Q̂g,

R̂g, R̂g, Ŵl , Ŵg, Ŵg ∈ RN×N such that the following LMIs holds:

P̂Φ̂(t)′ + P̂Φ̂(t) ≺
q

∑
l=1

Q̂l +
m

∑
g=1

Q̂g +
m

∑
g=1

σ?
g R̂g (3.22)

λ2(t)IN ≺ η̂
m

∑
g=1
Q̂g +

m

∑
g=1

σ?
g R̂g (3.23)

−(1− dl)Q̂l ≺ η̂
(

Al(t)′Ĥ1Al(t) + Ω′Al(t)′M̂1ΩAl(t)
)

(3.24)

−(1− dg)Q̂g ≺ η̂
(

Âg(t)′Ĥ1Âg(t) + Ω′ Âg(t)′M̂1ΩÂg(t)
)

(3.25)

−(1− dg)Q̂g ≺ η̂
(
Âg(t)′Ĥ1(t)Âg(t) + Âg(t)′M̂1(t)Âg(t)

)
(3.26)

where η̂ > 0, and

Ĥ1 =
m

∑
g=1

σ?
g Ŵg +

q

∑
l=1

τ?
l Ŵl � 0 , M̂1 =

m

∑
g=1

σ?
gŴg � 0, (3.27)

and by Lemma 3.3.1, results that:

λ2(t) = max
eig 6=0

{
m

∑
g=1

Âg(t)′ +
m

∑
g=1
Âg(t)

}
< 0, Φ̂(t) =

q

∑
l=1

Al(t) +
m

∑
g=1

Âg(t) ≺ 0 ∀t ≥ 0.

(3.28)
Then, the frequency SC objectives (3.2) and (3.5) are verified, and the adaptive gains

k̂ij,1,k̂i0,1, and k̂ij,2 asymptotically converge to some positive constants k̂?ij,1, k̂?i0,1 and k̂?ij,2, for
all i and j ∈ V .

Proof of Theorem 3.3.1 Let us substitute Equations (3.6) into Equation (2.23) as

ω̇i(t) = ˙̂ui(t)− m̂i · sign(ŝi(t)) + ˙̂wi(t) = ˙̂ui(t) + ˙̂si(t), (3.29)
˙̂si(t) = ˙̂wi(t)− m̂i · sign(ŝi(t)). (3.30)

For a differential equation with discontinuous right-hand side as (3.30), in the
remainder, the resulting solution ŝi(t) will be understood in the so-called Filippov
sense. Namely, as the solution of an appropriate differential inclusion, the existence
of which is guaranteed (owing on certain properties of the associated set-valued
map) and for its absolute continuity is satisfied. The reader is referred to [73] for a
comprehensive account of the necessary notions of non-smooth analysis.

Given that, and because of Assumption 2.3.1, and (2.27), ‖ ˙̂w(t)‖ ≤ ΓP
i , and

m̂i > ΓP
i , and ẑi(0) = −ωi(0), by differentiating the following candidate Lyapunov

functional:

V̂(t) =
1
2

N

∑
i=1

ŝi(t)2, (3.31)

along the trajectories of (3.30), after straightforwards computations, it results that:

˙̂V(t) =
N

∑
i=1

ŝi(t) · ˙̂si(t) ≤
N

∑
i=1

∣∣ŝi(t) · ˙̂wi(t)
∣∣− m̂i |ŝi(t)|

≤ −
N

∑
i=1

(
m̂i − ΓP

i

)
· |ŝi(t)| ≺ 0 ∀ t ≥ 0. (3.32)
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From this, one concludes that, except for points of Lebesgue measure zero (that
can be disregarded in accordance with the Filippov Theory [73]), the condition ŝi(t) =
˙̂si(t) = 0 is time-invariant for all t ≥ 0. Now, by letting si = ṡi = 0 into (3.29), and
by substituting (3.9), the following closed-loop dynamic takes place:

ω̇i(t) = −∑N
j=0 αij · k̂ij,1(t)(ωi(t− τij(t))−ωj(t− τij(t)))

−∑N
j=1 αij · k̂ij,2(t)(ûi(t− τij(t))− ûj(t− τij(t))).

(3.33)

The point now is to find which conditions (3.33) have to met in order to achieve
the control objectives (3.2) and (3.1). Up to now, we found that (2.23) is degenerated
into ω̇i(t) = ˙̂ui(t) for all t ≥ 0. Thus, it follows that the achievement (3.2) and (3.1)
along the trajectories of (2.23), is equivalent to force to zero, along the trajectories of
(3.33), the following frequency error vector:

ê(t) =
(
ê1(t), ê2(t), . . . , êN(t)

)′ with êi = ωi(t)−ω0 (3.34)

subject to the achievement of the next additional consensus condition:

lim
t→∞

ûi(t) = lim
t→∞

ûj(t) ∀ i, j ∈ V , (3.35)

that is equivalent to force to zero the so-called average disagreement vector

(
ε1(t), ε2(t), . . . , εN(t)

)′︸ ︷︷ ︸
ε(t)

=

(
IN×N −

1N1′N
N

)
︸ ︷︷ ︸

Ω

·
(
û1(t), û2(t), . . . , ûN(t)

)′︸ ︷︷ ︸
û(t)

,

(3.36)
where

ε i(t) = ûi(t)−
1
N

N

∑
k=1

ûk(t) = 0 ∀ i ∈ V ⇐⇒ ûi(t) = ûj(t) ∀ i, j ∈ V .

Given that, let us now differentiate ei(t) = ωi(t) − ω0, then by letting Âi0(t) =
−αi0k̂i0,1(t), Âij(t) = −αij k̂ij,1(t), Âij(t) = −αij k̂ij,2(t), after some algebraic manipu-
lations, one derives:

˙̂ei(t) =− αi0k̂i0,1(t) · êi(t− τi0(t))−
N

∑
j=1

αij k̂ij,1(t) ·
[
êi(t− τij(t))− êj(t− τij(t))

]
−

N

∑
j=1

αij k̂ij,2(t) ·
[
ûi(t− τij(t))− ûj(t− τij(t))

]
=Âi0(t) · êi(t− τi0(t))) +

N

∑
j=1

Âij(t) ·
[
êi(t− τij(t))− êj(t− τij(t))

]
+

N

∑
j=1
Âij(t) ·

[
ûi(t− τij(t))− ûj(t− τij(t)))

]
. (3.37)

Now, in order to provide a compact state-space representation of the networked
error dynamics associated with the vectors (3.34) and (3.36), and accordingly with
the notation introduced for the delays in (3.13) and (3.14), where q = card{T (t)}
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and m = card{S(t)}, it results

˙̂e(t) =
q

∑
l=1

Al(t)ê(t− τl(t)) +
m

∑
g=1

Âg(t)ê(t− σg(t)) +
m

∑
g=1
Âg(t)ε(t− σg(t)) (3.38)

ε̇(t) =
q

∑
l=1

ΩAl(t)ê(t− τl(t)) +
m

∑
g=1

ΩÂg(t)ê(t− σg(t)) +
m

∑
g=1

ΩÂg(t)ε(t− σg(t)). (3.39)

where the elements of the matrices Al(t), Âg and Âg(t) are defined in (3.17), (3.18)
and (3.19). Let us further note that, due the structure of Âg(t) and Âg(t), it results
that Âg1N = 0N , Âg1N = 0N , thus it follows that in both (3.38) and (3.39), one has
Âgε(t− σg) = ÂgΩû(t− σg) = Âgû(t− σg).

For stability analysis purposes, and on the basis of the so-called Leibniz-Newton
formula we introduce the following transformations:

ê(t− τ(t)) = ê(t)−
∫ t

t−τ(t)
˙̂e(s)ds , ε(t− τ(t)) = ε(t)−

∫ t

t−τ(t)
ε̇(s)ds. (3.40)

Hence, from (3.40), the networked closed-loop dynamics in (3.38)-(3.39) can be recast
as:

˙̂e(t) =Φ̂(t)ê(t)−
q

∑
l=1

Al(t)
∫ t

t−τl(t)
˙̂e(s)ds−

m

∑
g=1

Âg(t)
∫ t

t−σg(t)
˙̂e(s)ds

+
m

∑
g=1
Âg(t)ε(t)−

m

∑
g=1
Âg(t)

∫ t

t−σg(t)
ε̇(s)ds, (3.41)

ε̇(t) =ΩΦ̂(t)ê(t)−
q

∑
l=1

ΩAl(t)
∫ t

t−τl(t)
˙̂e(s)ds−

m

∑
g=1

ΩÂg(t)
∫ t

t−σg(t)
˙̂e(s)ds

+ Ω
m

∑
g=1
Âg(t)ε(t)−

m

∑
g=1

ΩÂg(t)
∫ t

t−σg(t)
ε̇(s)ds. (3.42)

where Φ̂(t) = ∑
q
l=1 Al(t) + ∑m

g=1 Âg(t), as in (3.28). Synchronization in the presence
of multiple time-varying delays is proved here under the common Assumption 3.3.1,
which requires that delays are bounded and slowly time varying signals [44, 94,
98, 99]. Inspired by [44], let us now construct the following Lyapunov-Krasovskii
functional:

V(t) =ê(t)′P̂ê(t) +
q

∑
l=1

∫ t

t−τl(t)
ê(s)′Q̂l ê(s)ds +

m

∑
g=1

∫ t

t−σg(t)
ê(s)′Q̂g ê(s)ds

+ η̂
q

∑
l=1

∫ 0

−τ?
l

∫ t

t+θ

˙̂e(s)′Ŵl ˙̂e(s)dsdθ + η̂
m

∑
g=1

∫ 0

−σ?
g

∫ t

t+θ

˙̂e(s)′Ŵg ˙̂e(s)dsdθ

+ ε(t)′ε(t) + η̂
m

∑
g=1

∫ t

t−σg(t)
ε(s)′Q̂gε(s)ds + η̂

m

∑
g=1

∫ 0

−σ?
g

∫ t

t+θ
ε̇(s)′Ŵg ε̇(s)dsdθ

+
N

∑
i=1

N

∑
j=0

1
2

(
k̂?ij,1 − k̂ij,1(t)

)2
+

N

∑
i=1

N

∑
j=1

1
2

(
k̂?ij,2 − k̂ij,2(t)

)2
, (3.43)

where P̂, Q̂l , Q̂g, Ŵl , Ŵg, Q̂g, Ŵg ∈ RN×B are constant, symmetric, and positive defi-
nite matrices to be determined and η̂ is a positive scalar. Following the requirements
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of Theorem 2.2.1, let us note that the following relation is satisfied:

α̂(ê(t), ε(t)) ≤ V(t) ≤ β̂(ê(t− τ̂), ε(t− τ̂)). (3.44)

where α̂(e(t), ε(t)) and β̂(ê(t), ε(t)) are continuous non-decreasing positive functions
defined as follows:

α̂(e(t), ε(t)) =ê(t)′P̂e(t) + ε(t)′ε(t). (3.45)

β̂(ê(t), ε(t)) =ê(t)′P̂ê(t) +
q

∑
l=1

∫ t

t−τ̂
ê(s)′Q̂l ê(s)ds +

m

∑
g=1

∫ t

t−τ̂
ê(s)′Q̂ge(s)ds

+ η̂
q

∑
l=1

∫ 0

−τ̂

∫ t

t+θ

˙̂e(s)′Ŵl ˙̂e(s)dsdθ + η̂
m

∑
g=1

∫ 0

−τ̂

∫ t

t+θ

˙̂e(s)′Ŵg ˙̂e(s)dsdθ

+ ε(t)′ε(t) + η̂
m

∑
g=1

∫ t

t−τ̂
ε(s)′Q̂gε(s)ds + η̂

m

∑
g=1

∫ 0

−τ̂

∫ t

t+θ
ε̇(s)′Ŵg ε̇(s)dsdθ

+
N

∑
i=1

N

∑
j=0

1
2

(
k̂?ij,1 − k̂ij,1(t)

)2
+

N

∑
i=1

N

∑
j=1

1
2

(
k̂?ij,2 − k̂ij,2(t)

)2
, (3.46)

where τ̂ = maxl,g{τ?
l , σ?

g}. Now, differentiating (3.31) along the trajectories of
(3.41) and (3.42), and because of 1′Nε = 0 which implies that ε′Ω = ε′, it follows that:

V̇(t) =ê(t)′
(
Φ̂(t)′ P̂ + P̂Φ̂(t)

)
ê(t)− 2ê(t)′ P̂

q

∑
l=1

Al(t)
∫ t

t−τl(t)
˙̂e(s)ds

− 2ê(t)′ P̂
m

∑
g=1

Âg(t)
∫ t

t−σg(t)
˙̂e(s)ds + 2ê(t)′ P̂

m

∑
g=1
Âg(t)ε(t)− 2ê(t)′ P̂

m

∑
g=1
Âg(t)

∫ t

t−σg(t)
ε̇(s)ds

+ ê(t)′
q

∑
l=1

Q̂l ê(t)−
q

∑
l=1

ê(t− τl(t))′Q̂l ê(t− τl(t))(1− τ̇l(t))

+ ê(t)′
m

∑
g=1

Q̂g ê(t)−
m

∑
g=1

e(t− σg(t))′Q̂g ê(t− σg(t))(1− σ̇g(t))

+ η̂ ˙̂e(t)′
q

∑
l=1

τ?
l Ŵl ˙̂e(t)− η̂

q

∑
l=1

∫ t

t−τ?l

˙̂e(s)′Ŵl ˙̂e(s)ds

+
m

∑
g=1

σ?
g Ŵg ˙̂e(t)− η̂

m

∑
g=1

∫ t

t−σ?
g

˙̂e(s)′Ŵg ė(s)ds

+ 2ε(t)′Φ̂(t)ê(t)− 2ε(t)′
q

∑
l=1

Al(t)
∫ t

t−τl(t)
˙̂e(s)ds− 2ε(t)′

m

∑
g=1

Âg(t)
∫ t

t−σg(t)
˙̂e(s)ds

+ ε(t)′
(

m

∑
g=1
Âg(t)′ +

m

∑
g=1
Âg(t)

)
ε(t)− 2ε(t)′

m

∑
g=1
Âg(t)

∫ t

t−σg(t)
ε̇(s)ds

+ η̂ε(t)′
m

∑
g=1
Q̂gε(t)− η̂

m

∑
g=1

ε(t− σg(t))′Q̂gε(t− σg(t))(1− σ̇g(t))

+ η̂ε̇(t)′
m

∑
g=1

σ?
gŴg ε̇(t)− η̂

m

∑
g=1

∫ t

t−σ?
g

ε̇(s)′Ŵg ε̇(s)ds

−
N

∑
i=1

N

∑
j=1

(
k̂?ij,1 − k̂ij,1(t)

)
˙̂kij,1(t)−

N

∑
i=1

N

∑
j=0

(
k̂?ij,2 − k̂ij,2(t)

)
˙̂kij,2(t) (3.47)
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Now, by adding to the right-hand side of (3.47) the next two identically zero
quantities:

m

∑
g=1

σ?
g ê(t)′R̂g ê(t)−

m

∑
g=1

σ?
g ê(t)′R̂g ê(t) = 0,

η
m

∑
g=1

σ?
g ε(t)′R̂gε(t)− η

m

∑
g=1

σ?
g ε(t)′R̂gε(t) = 0,

where R̂g � 0 and R̂g � 0, and by exploiting the delays’ bounds provided by As-
sumption 3.3.1, namely, τl ∈ [0, τ?), σg ∈ [0, σ?

g ), and τ̇l ≤ dl , σ̇g ≤ dg, and because
of, due to Lemma 3.3.1, it results that:

ε(t)′
(

m

∑
g=1
Âg(t)′ +

m

∑
g=1
Âg(t)

)
ε(t) ≤ λ2(t)ε′ε < 0,

where λ2(t) < 0 is the greatest non-zero eigenvalue of the symmetric part of Âg(t) �
0, then after some algebraic manipulation, (3.47) can be upper-estimated as follows:

V̇(t) ≤ê(t)′
(

Φ̂(t)′ P̂ + P̂Φ̂(t) +
q

∑
l=1

Q̂l +
m

∑
g=1

Q̂g +
m

∑
g=1

σ?
g R̂g

)
ê(t)− 2ê(t)′ P̂

q

∑
l=1

Al(t)
∫ t

t−τl(t)
˙̂e(s)ds

− 2ê(t)′ P̂
m

∑
g=1

Âg(t)
∫ t

t−σg(t)
˙̂e(s)ds + 2ê(t)′ P̂

m

∑
g=1
Âg(t)ε(t)− 2ê(t)′ P̂

m

∑
g=1
Âg(t)

∫ t

t−σg(t)
ε̇(s)ds

−
q

∑
l=1

ê(t− τl(t))′Q̂l ê(t− τl(t))(1− dl)−
m

∑
g=1

ê(t− σg(t))′Q̂g ê(t− σg(t))(1− dg)

+ η̂ ˙̂e(t)′
(

q

∑
l=1

τ?
l Ŵl +

m

∑
g=1

σ?
g Ŵg

)
˙̂e(t)− η̂

q

∑
l=1

∫ t

t−τ?l

˙̂e(s)′Ŵl ˙̂e(s)ds− η̂
m

∑
g=1

∫ t

t−σ?
g

˙̂e(s)′Ŵg ˙̂e(s)ds

+ 2ε(t)′Φ̂(t)ê(t)− 2ε(t)′
q

∑
l=1

Al(t)
∫ t

t−τl(t)
˙̂e(s)ds− 2ε(t)′

m

∑
g=1

Âg(t)
∫ t

t−σg(t)
˙̂e(s)ds

+ ε(t)′
(

λ2(t)IN + η̂
m

∑
g=1
Q̂g + η

m

∑
g=1

σ?
g R̂g

)
ε(t)− 2ε(t)′

m

∑
g=1
Âg(t)

∫ t

t−σg(t)
ε̇(s)ds

− η̂
m

∑
g=1

ε(t− σg(t))′Q̂gε(t− σg(t))(1− dg) + ηε̇(t)′
m

∑
g=1

σ?
gŴg ε̇(t)

− η̂
m

∑
g=1

∫ t

t−σ?
g

ε̇(s)′Ŵg ε̇(s)ds−
m

∑
g=1

σ?
g ê(t)′R̂g ê(t)− η̂

m

∑
g=1

σ?
g ε(t)′R̂gε(t)

−
N

∑
i=1

N

∑
j=1

(
k̂?ij,1 − k̂ij,1(t)

)
˙̂kij,1(t)−

N

∑
i=1

N

∑
j=0

(
k̂?ij,2 − k̂ij,2(t)

)
˙̂kij,2(t) (3.48)

Let us now introduce the following matrices:

Ĥ1 = ∑m
g=1 σ?

g Ŵg + ∑
q
l=1 τ?

l Ŵl , Ĥ2(t) = Φ̂(t)′P̂ + P̂Φ̂(t) + ∑
q
l=1 Q̂l + ∑m

g=l

(
Q̂g + σ?

g R̂g

)
,

M̂1 = ∑m
g=1 σ?

gŴg, M̂2(t) = λ2(t)IN + η̂ ∑m
g=1

(
Q̂g + σ?

g R̂g

)
.

(3.49)
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Then, according to [94, 75], by defining the following vector:

ρ̂(t) =

(
ê(t)′, ε(t)′,

∫ t

t−τ?
l

˙̂e(s)′ds,
∫ t

t−σ?
g

˙̂e(s)′ds,
∫ t

t−σ?
g

ε̇(s)′ds

)′
∈ R5N , (3.50)

and by invoking the Jensen inequality (2.5) on the following integral terms:

−η̂
q

∑
l=1

∫ t

t−τ?
l

˙̂e(s)′Ŵl ˙̂e(s)ds ≤ − η̂

τ?
l

(∫ t

t−τ?
l

˙̂e(s)ds
)′

Ŵl

(∫ t

t−τ?
l

˙̂e(s)ds
)

,

−η̂
m

∑
g=1

∫ t

t−σ?
g

˙̂e(s)′Ŵg ˙̂e(s)ds ≤ − η̂

σ?
g

(∫ t

t−σ?
g

˙̂e(s)ds

)′
Ŵg

(∫ t

t−σ?
g

˙̂e(s)ds

)
, (3.51)

−η̂
m

∑
g=1

∫ t

t−σ?
g

ε̇(s)′Ŵg ε̇(s)ds ≤ − η̂

σ?
g

(∫ t

t−σ?
g

ε̇(s)ds

)′
Ŵg

(∫ t

t−σ?
g

ε̇(s)ds

)
,

after substituting (3.49), and (3.51), the inequality (3.48) is further upper-estimated
as follows:

V̇(t) ≤ρ(t)′Σ̂(t)ρ̂(t) + η̂ ˙̂e(t)′Ĥ1 ˙̂e(t) + η̂ε̇(t)′M̂1 ε̇(t)−
q

∑
l=1

ê(t− τl(t))′Q̂l ê(t− τl(t))(1− dl)

−
m

∑
g=1

ê(t− σg(t))′Q̂g ê(t− σg(t))(1− dg)− η̂
m

∑
g=1

ε(t− σg(t))′Q̂gε(t− σg(t))(1− dg)

−
m

∑
g=1

σ?
g ê(t)′R̂ge(t)− η̂

m

∑
g=1

σ?
g ε(t)′R̂gε(t)

−
N

∑
i=1

N

∑
j=1

(
k̂?ij,1 − k̂ij,1(t)

)
˙̂kij,1(t)−

N

∑
i=1

N

∑
j=0

(
k̂?ij,2 − k̂ij,2(t)

)
˙̂kij,2(t) (3.52)

where

Σ̂(t) =



Ĥ2(t) 2P̂ ∑m
g=1 Âg(t) + 2Φ̂(t) −2 ∑

q
l=1 P̂Al(t) −2 ∑m

g=1 P̂Âg(t) −2 ∑m
g=1 P̂Âg(t)

M̂2(t) −2 ∑
q
l=1 Al(t) −2 ∑m

g=1 Âg(t) −2 ∑m
g=1 Âg(t)

− η̂
τ?l

∑
q
l=1 Ŵl 0N×N 0N×N

0 − η
σ?

g
∑m

g=1 Ŵg 0N×N

− η̂
σ?

g
∑m

g=1 Ŵg


.

(3.53)

Define now the following augmented state vector:

ξ̂(t) =
[
ê(t)′, ε(t)′, ê(t− τ1(t))′, . . . , ê(t− τq(t))′, ê(t− σ1(t))′, . . .

. . . , ê(t− σm(t))′, ε(t− σ1(t))′, . . . , ε(t− σm(t))′
]′ ∈ R2N+qN+2Nm,

(3.54)

then, by substituting (3.38) and (3.39) into the second and third term of (3.52), and
after lengthy manipulations, (3.52) can finally be recast as next:

V̇(t) ≤ ρ̂(t)′Σ̂(t)ρ̂(t) + η̂ξ̂(t)′Θ̂(t)ξ̂(t)

−
N

∑
i=1

N

∑
j=0

(k̂?ij,1 − k̂ij,1(t))′
˙̂kij,1(t)−

N

∑
i=1

N

∑
j=1

(k̂?ij,2 − k̂ij,2(t))′
˙̂kij,2(t), (3.55)
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where Θ̂(t) is an upper triangular block matrix in the from:

Θ̂(t) =


− 1

η̂ ∑m
g=1 σ?

g R̂g 0N×N Θ̂(1,2+i) . . .

− 1
η̂ ∑m

g=1 σ?
g R̂w

...

0 Θ̂(2+i,2+i)
. . .

 , i = 1, 2, . . . , q+ 2m,

(3.56)
where Θ̂(1,1) and Θ̂(2,2) ≺ 0, whereas the other diagonal blocks take the following

form:

Θ̂(2+l,2+l) = −
(1− dl)

η̂
Q̂l +

(
Al(t)′Ĥ1Al(t) + Al(t)′Ω′M̂1ΩAl(t)

)
,

Θ̂(2+q+g,2+q+g) = −
(1− dg)

η̂
Q̂l +

(
Âg(t)′Ĥ1Âg(t) + Âg(t)′Ω′M̂1ΩÂg(t)

)
,

Θ̂(2+q+m+g,2+q+m+g) = −
(1− dg)

η̂
Q̂g +

(
Âg(t)′Ĥ1(t)Âg(t) + Âg(t)′M̂1(t)Âg(t)

)
.

(3.57)

for l = 1, 2, . . . , q and g = 1, 2, . . . , m. Now for the sake of compactness, let us
rewrite (3.55) as:

V̇(t) ≤ Λ̂1(ρ̂(t), k̂ij,k(t)) + Λ̂2(ξ(t), k̂ij,k(t)) + Λ̂3(k̂ij,k(t)) (3.58)

being

Λ̂1(ρ̂(t), k̂ij,k(t)) = ρ̂(t)′Σ̂(t)ρ̂(t) , Λ̂2(ξ̂(t), k̂ij,k(t)) = η̂ξ̂(t)′Θ̂(t)ξ̂(t) (3.59)

Λ̂3(k̂ij,k(t)) = −
N

∑
i=1

N

∑
j=0

(k̂?ij,1 − k̂ij,1(t))′
˙̂kij,1(t)−

N

∑
i=1

N

∑
j=1

(k̂?ij,2 − k̂ij,2(t))′
˙̂kij,2(t).

Hence, if the LMIs (3.22)–(3.26) are satisfied, then the first two terms of (3.58), and
thus the matrices Σ̂(t) in (3.53) and Θ̂(t) in (3.56) are negative definite. Therefore,
to have V̇(t) < 0 we need to show that Λ̂3(ê(t − τij), ε(t − τij), k̂ij,k) is simply non
positive. This fact will be proved by contradiction.

Indeed, given that by construction ˙̂kij,k(t) ≥ 0, obviously if each k̂ij,k(t) is up-
per bounded, there will exist a constant k̂?ij,k that guarantee the asymptotic stability

of the closed-loop system. Otherwise, if we assumed that k̂ij,k(t) were unbounded,
we would get a contradiction. Indeed,both Λ̂1(ρ̂(t), k̂ij,k(t)) and Λ̂2(ξ(t), k̂ij,k(t)) in
(3.59) are quadratic functions of the error vectors e(t) and ε(t), while Λ̂2(ξ(t), k̂ij,k(t))
is a quadratic function also of the various k̂ij,k(t), whereas Λ̂3(k̂ij,k) is simply a lin-
ear function of these various adaptive gains. Hence, if k̂ij,k were unbounded, both
Λ̂2(ξ̂(t), k̂ij,k(t)) and Λ̂3(k̂ij,k) would diverge as well with k̂ij,k(t), thus producing a
contradiction. In fact, in that case, it would be possible to find a suitable value for η̂
in (3.59) so that |Λ̂2(ξ̂(t), k̂ij,k(t))| ≥ |Λ̂3(k̂ij,k(t))|, ∀ ξ(t) and k̂ij,k(t). However, since
Λ̂2(ξ̂(t), k̂ij,k(t)) is negative definite from the hypothesis, we have that V̇(t) < 0 ∀
ê(t− τij), ε(t− τij) and k̂ij,k(t) against the assumption that k̂ij,k diverged.
Finally, being k̂ij,k(t) upper bounded and monotone increasing, then limt→∞ k̂ij,k(t) =
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cij,k < +∞. Thus, by choosing k̂?ij,k = cij,k, we have that V̇(t) < 0 and thus also condi-
tion (2.2) of Theorem 2.2.1 is satisfied. Moreover, by choosing α̂(s) as in (3.45), it fol-
lows that lims→∞ α̂(s) = +∞, and hence the errors ê(t) and ε(t) globally uniformly
converges to zero, and the frequency SC objectives result asymptotically achieved as
well. This concludes the proof. �

3.4 Voltage Secondary Controller Design

In the Chapter 2 (see Section 2.3), the model of an islanded MG was derived. In this
section, based on this model and in order to solve the voltage SC problem (3.3) in the
presence of communication delays among DGs we propose the following strategy:

v̇ni(t) = ˙̃uni(t)− m̃i · sign(s̃i(t)), (3.60)

˙̃uni(t) =−
N

∑
j=0

αij k̃ij(t)
[

vi(t− τij(t))− vj(t− τij(t))
v̇i(t− τij(t))− v̇j(t− τij(t))

]
, (3.61)

where k̃ij(t) = [k̃ij,1(t), k̃ij,2(t)] ∈ R1×2 is a vector of adaptive gains whose entries are
updated according to:

˙̃kij,1(t) = ζ̃ij,1 · |vi(t− τij(t))− vj(t− τij(t))|2
˙̃kij,2(t) = ζ̃ij,2 · |v̇i(t− τij(t))− v̇j(t− τij(t))|2

(3.62)

with ζ̃ij,1 and ζ̃ij,2 ∈ R>0 and k̃ij,1(0) and k̃ij,2(0) > 0 and the switching function s̃i(t)
in Equation (3.60) set as follows:

s̃i = v̇i(t) + z̃i(t) (3.63)

˙̃zi(t) =
v̇i(t)
kvi

− 1
kvi

˙̃uni(t) , z̃i(0) = −vi(0)− v̇i(0) (3.64)

Similar to previous subsection, the delays τij(t) satisfy Assumption 3.3.1.

Remark 3.4.1 Notice that the derivative of the DG’s voltages v̇i(t) in the voltage SC (3.61)
are unknown and are not available from measurements. However, following [100], if the
relative degree of the plant is known and constant, then robust exact differentiators with
finite-time convergence properties can be employed to provide the full output-feedback control
of any output variable of an uncertain dynamic system. Since the voltage dynamic (2.24) met
this condition, and thanks to the finite-time convergence properties of standard high-order
sliding mode differentiator [101, 102, 103, 104], in the remainder of the chapter we will refer
to the quantities v̇i as they were known, although they are estimated in practice by means of
Levant differentiators. The Levant differentiation scheme is given below

˙̂vi(t) = −c1 · |êv,i(t)|
1
2 · sign(êv,i(t)) + z̄i(t)

˙̄zi(t) = −c2 · sign(êv,i(t))
(3.65)

where ˙̂vi(t) ≡ v̇i(t), êv,i = v̂i − vi(t) is the sliding manifold of the differentiator and c1 >

1.5C̄
1
2 , c2 > 1.1C̄, and C̄ are the constant gains of the differentiator with C̄ to be chosen

large enough [103]. �

Hereinafter the second main result of this chapter is outlined.
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Theorem 3.4.1 Consider the voltage dynamics Equation (2.24) under the voltage restora-
tion SC Equations (3.60)-(3.64). Let Assumption 2.3.1 and Assumption 3.3.1 satisfied and
let the communication topology Gc

N be described by a strongly connected graph Gc
N(V , E c),

with weight αij, if (i, j) ∈ E c, 0 otherwise. Let node 0 be globally reachable on Gc
N+1. Let

Ãi0(t) = −B̄iαi0k̃i0(t), Ãij(t) = −B̄iαij k̃ij(t) ∈ R2×2, and let

A0 = [A0(r,y)] ∈ R2N×2N with A0(r,y) :
{

Āi if r = y = i
02×2 otherwise , (3.66)

Āl(t) = [Al(r,y)(t)] ∈ R2N×2N with Al(r,r)(t) :
{

Ãi0(t) if τl = τil , r = l = i
02×2 otherwise ,

(3.67)

Ãg(t) = [Ãg(r,y)(t)] ∈ R2N×2N with Ãg(r,y)(t) :


Ãij(t) if σg = τij, i 6= j, r = y = i
−Ãij(t) if σg = τij, i 6= j, r = i, y = j

02×2 otherwise
(3.68)

with r, y = 1, 2, . . . , N, where by Lemma 3.3.1, results that

Φ̃(t) = A0 +
q

∑
l=1
Āl(t) +

m

∑
g=1

Ãg(t) ≺ 0 ∀ t ≥ 0. (3.69)

Let there exist m̃i > kvi Γ
Q = 2kQi Π

Q
i /τQi , and positive definite matrices P̃, Q̃l , Q̃g,

R̃g, W̃l , W̃g ∈ RN×N such that the following LMIs holds

P̃Φ̃′(t) + P̃Φ̃(t) ≺ −
(

q

∑
l=1

Q̃l +
m

∑
g=1

Q̃g +
m

∑
g=1

σ?
g R̃g

)
(3.70)

−
m

∑
g=1

σ?
g R̃g ≺ −η

(
A′0H̃1A0

)
(3.71)

−(1− dl)Q̃l ≺ −η
(
Ā′l(t)H̃1Āl(t)

)
(3.72)

−(1− dg)Q̃g ≺ −η
(

Ã′g(t)H̃1Ãg(t)
)

(3.73)

where η̃ > 0, and

H̃1 =
m

∑
g=1

σ?
g W̃g +

q

∑
l=1

τ?
l W̃l � 0 , M̃1 =

m

∑
g=1

σ?
gW̃g � 0, (3.74)

Then, condition (3.3) is verified, and the adaptive gains in (3.62) asymptotically converge
to positive constants k̃?ij,1 and k̃?ij,2.

Lemma 3.4.1 Let matrices A0, Āl(t), and Ãg(t) be defined as in (3.66), (3.67), (3.68).
Assume Gc

N strongly connected, and node 0 in Gc
N+1 globally reachable. Then Φ̃(t) =

A0 + ∑
q
l=1 Āl(t) + ∑m

g=1 Ãg(t), as in (3.69), is Hurwitz, ∀ t ≥ 0.

Proof of Lemma 3.4.1 It is worth mentioning that Φ̃(t) in (3.69) is a strictly diagonally
dominant block matrix, whose generic block element Φ̃(i,i) ∈ R2×2 on the main diagonal is
defined as:

Φ̃(i,i)(t) = Āi + Ãi0(t) +
N

∑
j=1,i 6=j

Ãij(t) (3.75)
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To show that Φ̃(t) is negative definite, it suffices to prove that Φ̃(i,i)(t), for i = 1, . . . , N, is

a negative definite matrix. By construction ˙̃kij(t) ≥ 0 and k̃ij(0) > 0 (see Eq. (3.62)); then,
according to the definition of Ãij(t) = B̄iαij k̃ij(t), the term ∑N

j=1 Ãij(t) is negative semi-
definite. It follows that blocks Φ̃(i,i)(t) in Eq. (3.75) are negative definite if the following
matrices are negative definite:

Ψi(t) = Ai + Ãi0(t) =

[
0 1

− 1
kvi

αij k̃i0,1(t) − 1
kvi
− 1

kvi
αij k̃i0,2(t)

]
(3.76)

According to the construction k̃i0(t) in (3.62), it results that matrix Ψ(t) is a negative
definite. Consequently, it follows that the eigenvalues of Φ̃(t) have negative real part for all
t ≥ 0.

Proof of Theorem 3.4.1
(
[105] and [106]

)
By substituting (3.60)-(3.64) into (2.24), it

yields: [
v̇i(t)
v̈i(t)

]
=Āi

[
vi(t)
v̇i(t)

]
+

[
0

˙̃ui(t)
kvi

]
+

[
0

˙̃si(t)

]
, (3.77)

˙̃si =−
m̃i

kvi

sign(s̃i(t)) + ˙̃wi(t). (3.78)

For a differential equations with discontinuous right-hand side as (3.77) and (3.78), in
the remainder, the resulting solutions vi(t), and s̃i(t) will be understood in the so-called
Filippov sense. Namely, as the solution of an appropriate differential inclusion, the existence
of which is guaranteed (owing on certain properties of the associated set-valued map) and for
its absolute continuity is satisfied. The reader is referred to [73] for a comprehensive account
of the necessary notions of non-smooth analysis.

Given that, and because of Assumption 2.3.1, and (2.28), ‖ ˙̃wi(t)‖ ≤ ΓQ
i , and m̃i >

kvi Γ
Q
i , and z̃i(0) = −vi(0) − v̇i(0), by differentiating the following candidate Lyapunov

functional:

Ṽ(t) =
1
2

N

∑
i=1

s̃i(t)2, (3.79)

along the trajectories of (3.78), after straightforwards computations, it results that:

˙̃V(t) =
N

∑
i=1

s̃i(t) · ˙̃si(t) ≤
N

∑
i=1
|ŝi(t) · ˙̃wi(t)| −

m̃i
kvi

|s̃i(t)| ≤ −
N

∑
i=1

(
m̃i
kvi

− ΓQ
i

)
· |si(t)| < 0.

(3.80)

From this, one concludes that, except for points of Lebesgue measure zero (that can be
disregarded in accordance with the Filippov Theory [73]), the condition ŝi(t) = ˙̂si(t) = 0 is
time-invariant for all t ≥ 0. Now, by letting ŝi = ˙̂si = 0 into (3.77), and by substituting
(3.61), the following closed-loop dynamic takes place:[

v̇i
v̈i

]
= Āi ·

[
vi
v̇i

]
− B̄i

N

∑
j=0

αij k̃ij

[
vi(t− τij(t))− vj(t− τij(t))
v̇i(t− τij(t))− v̇j(t− τij(t))

]
. (3.81)

The point now is to find which conditions (3.81) have to met to asymptotically achieve
the control objective (3.3). Now, given equation (3.81), defining the following voltage error
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vector:

ẽ(t) =
(
ẽ1(t), ẽ2(t), . . . , ẽN(t)

)′ with ẽi(t) =
[

vi(t)− v0
v̇i(t)− v̇0

]
(3.82)

and by letting Ãi0(t) = −B̄iαi0k̃i0(t), Ãij(t) = −B̃iαij k̃ij(t) ∈ R2×2, and by differ-
entiating ẽi(t) and by considering v0 is constant, after some algebraic manipulations, one
derives:

˙̃ei(t) =Āi · ẽ(t) + Ãi0(t) · ẽi(t− τi0(t)) +
N

∑
j=1

Ãij(t) ·
[
ẽi(t− τij(t))− ẽj(t− τij(t))

]
. (3.83)

Now, in order to provide a compact state-space representation of the networked error
dynamics associated with the vectors (3.82), and accordingly with the notation introduced
for the delays in (3.13) and (3.14), where q = card{T (t)} and m = card{S(t)}, it results:

˙̃e(t) =A0e(t) +
q

∑
l=1
Āl(t)ẽ(t− τl(t)) +

m

∑
g=1

Ãg(t)ẽ(t− σg(t)). (3.84)

where, in accordance to (3.66)-(3.68), it results that:

A0 = [A0(r,y)] ∈ R2N×2N with A0(r,y) :
{

Āi if r = y = i
02×2 otherwise ,

Āl(t) = [Āl(r,y)(t)] ∈ R2N×2N with Āl(r,r)(t) :
{

Ãi0(t) if τl = τil , r = l = i
02×2 otherwise ,

Ãg(t) = [Ãg(r,y)(t)] ∈ R2N×2N with Ãg(r,y)(t) :


Ãij(t) if σg = τij, i 6= j, r = y = i
−Ãij(t) if σg = τij, i 6= j, r = i, y = j

02×2 otherwise

and r, y = 1, 2, . . . , N. For stability analysis purposes, and on the basis of the so-called
Leibniz-Newton formula we introduce the following transformations:

ẽ(t− τ(t)) = ẽ(t)−
∫ t

t−τ(t)
˙̃e(s)ds. (3.85)

Hence, from (3.85), the networked closed-loop dynamic in (3.84) can be recast as next:

˙̃e(t) =Φ̃(t)ẽ(t)−
q

∑
l=1
Āl(t)

∫ t

t−τl(t)
˙̃e(s)ds−

m

∑
g=1

Ãg(t)
∫ t

t−σg(t)
˙̃e(s)ds, (3.86)

where Φ̃(t) = A0 + ∑
q
l=1 Āl(t) + ∑m

g=1 Ãg(t) ≺ 0 by Lemma 3.4.1. Synchronization
in the presence of multiple time-varying delays is proved here under the common Assump-
tion 3.3.1,which requires that delays are bounded and slowly time varying signals [44, 94, 98,
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99]. Inspired by [44], let us now construct the following Lyapunov-Krasovskii functional:

V(t) =ẽ(t)′P̃ẽ(t) +
q

∑
l=1

∫ t

t−τl(t)
ẽ(s)′Q̃l ẽ(s)ds +

m

∑
g=1

∫ t

t−σg(t)
ẽ(s)′Q̃g ẽ(s)ds

+ η̃
q

∑
l=1

∫ 0

−τ?
l

∫ t

t+θ

˙̃e(s)′W̃l ˙̃e(s)dsdθ + η̃
m

∑
g=1

∫ 0

−σ?
g

∫ t

t+θ

˙̃e(s)′W̃g ˙̃e(s)dsdθ

+
N

∑
i=1

N

∑
j=1

1
2

(
k̃?ij − k̃ij(t)

)′ (
k̃?ij − k̃ij(t)

)
, (3.87)

where P̃, Q̃l , Q̃g, W̃l , W̃g ∈ R2N×2N are constant, symmetric, and positive definite matrices
to be determined and η̃ is a positive scalar. Following the requirements of Theorem 3.4.1, let
us note that the following relation is satisfied:

α̃(ẽ(t)) ≤ V(t) ≤ β̃(ẽ(t− τ̂)). (3.88)

where α̃(ẽ(t) and β̃(ẽ(t)) are continuous non-decreasing positive functions defined as fol-
lows:

α̃(ẽ(t)) =ẽ(t)′P̃ẽ(t), (3.89)

β̃(ẽ(t)) =e(t)′P̃ẽ(t) +
q

∑
l=1

∫ t

t−τ̂
ẽ(s)′Q̃l ẽ(s)ds +

m

∑
g=1

∫ t

t−τ̂
ẽ(s)′Q̃ge(s)ds

+ η̃
q

∑
l=1

∫ 0

−τ̂

∫ t

t+θ

˙̃e(s)′W̃l ˙̃e(s)dsdθ + η̃
m

∑
g=1

∫ 0

−τ̂

∫ t

t+θ

˙̃e(s)′W̃g ˙̃e(s)dsdθ

+
N

∑
i=1

N

∑
j=1

1
2

(
k̃?ij − k̃ij(t)

)′ (
k̃?ij − k̃ij(t)

)
, (3.90)

where τ̂ = maxl,g{τ?
l , σ?

g}. Now, differentiating (3.79) along the trajectories of (3.86), it
follows that:

V̇(t) =ẽ(t)′
(
Φ̃(t)′ P̃ + P̃Φ̃(t)

)
ẽ(t)− 2ẽ(t)′ P̃

q

∑
l=1
Āl(t)

∫ t

t−τl(t)
˙̃e(s)ds

− 2ẽ(t)′ P̃
m

∑
g=1

Ãg(t)
∫ t

t−σg(t)
˙̃e(s)ds−

q

∑
l=1

ẽ(t− τl(t))′Q̃l ẽ(t− τl(t))(1− τ̇l(t))

+ ẽ(t)′
q

∑
l=1

Q̃l ẽ(t) + ẽ(t)′
m

∑
g=1

Q̃g ẽ(t)−
m

∑
g=1

ẽ(t− σg(t))′Q̃g ẽ(t− σg(t))(1− σ̇g(t))

+ η ˙̃e(t)′
q

∑
l=1

τ?
l W̃l ˙̃e(t)− η̃

q

∑
l=1

∫ t

t−τ?l

˙̃e(s)′W̃l ˙̃e(s)ds

+ η̃ ˙̃e(t)′
m

∑
g=1

σ?
g W̃g ˙̃e(t)− η̃

m

∑
g=1

∫ t

t−σ?
g

˙̃e(s)′W̃g ˙̃e(s)ds−
N

∑
i=1

N

∑
j=0

(
k̃?ij − k̃ij(t)

)′ ˙̃kij(t)

(3.91)

Now, by exploiting Assumption 3.3.1, which requires that delays are bounded, namely
τl ∈ [0, τ?), σg ∈ [0, σ?

g ), and slowly time varying, i.e. τ̇l ≤ dl < 1, σ̇g ≤ dg < 1 [44,
94, 99], and by adding to the right-hand side of (3.91) the next identically zero quadratic
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function:

m

∑
g=1

σ?
g ẽ(t)′R̃g ẽ(t)−

m

∑
g=1

σ?
g ẽ(t)′R̃g ẽ(t) = 0,

where Rg is a positive definite matrix to be determined, after some algebraic manipulation,
(3.91) can be upper-estimated as follows:

V̇(t) ≤ẽ(t)′
(

Φ̃(t)′ P̃ + P̃Φ̃(t) +
q

∑
l=1

Q̃l +
m

∑
g=1

Q̃g +
m

∑
g=1

σ?
g R̃g

)
ẽ(t)− 2ẽ(t)′ P̃

q

∑
l=1
Āl(t)

∫ t

t−τl(t)
˙̃e(s)ds

− 2ẽ(t)′ P̃
m

∑
g=1

Ãg(t)
∫ t

t−σg(t)
˙̃e(s)ds−

q

∑
l=1

ẽ(t− τl(t))′Q̃l ẽ(t− τl(t))(1− dl)

−
m

∑
g=1

ẽ(t− σg(t))′Q̃g ẽ(t− σg(t))(1− dg) + η̃ ˙̃e(t)′
(

q

∑
l=1

τ?
l ˜̃Wl +

m

∑
g=1

σ?
g W̃g

)
˙̃e(t)

− η̃
q

∑
l=1

∫ t

t−τ?l

˙̃e(s)′W̃l ˙̃e(s)ds− η̃
m

∑
g=1

∫ t

t−σ?
g

˙̃e(s)′W̃g ˙̃e(s)ds− ẽ(t)′
m

∑
g=1

σ?
g R̃g ẽ(t)

−
N

∑
i=1

N

∑
j=0

(
k̃?ij − k̃ij(t)

)′ ˙̃kij(t) (3.92)

Let us now introduce the following matrices:

H̃1 =
m

∑
g=1

σ?
g W̃g +

q

∑
l=1

τ?
l W̃l ,

H̃2(t) = Φ̃(t)′P̃ + P̃Φ̃(t) +
q

∑
l=1

Q̃l +
m

∑
g=1

(
Q̃g + σ?

g R̃g

)
. (3.93)

Then, according to [94, 75], by defining the following vector:

ρ̃(t) =

(
ẽ(t)′,

∫ t

t−τ?
l

˙̃e(s)′ds,
∫ t

t−σ?
g

˙̃e(s)′ds

)′
∈ R6N , (3.94)

and by invoking the Jensen inequality (2.5) on the following integral terms:

−η̃
q

∑
l=1

∫ t

t−τ?
l

˙̃e(s)′W̃l ˙̃e(s)ds ≤ − η̃

τ?
l

(∫ t

t−τ?
l

˙̃e(s)ds
)′ q

∑
l=1

W̃l

(∫ t

t−τ?
l

˙̃e(s)ds
)

,

−η̃
m

∑
g=1

∫ t

t−σ?
g

˙̃e(s)′W̃g ˙̃e(s)ds ≤ − η̃

σ?
g

(∫ t

t−σ?
g

˙̃e(s)ds

)′ m

∑
g=1

W̃g

(∫ t

t−σ?
g

˙̃e(s)ds

)
, (3.95)
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after substituting (3.93), and (3.95), the inequality (3.92) is further upper-estimated as fol-
lows:

V̇(t) ≤ρ̃(t)′Σ̃(t)ρ̃(t) + η ˙̃e(t)′H̃1 ˙̃e(t)−
q

∑
l=1

ẽ(t− τl(t))′Q̃le(t− τl(t))(1− dl)

− ẽ(t)′
m

∑
g=1

σ?
g R̃g ẽ(t)−

m

∑
g=1

ẽ(t− σg(t))′Q̃g ẽ(t− σg(t))(1− dg)

−
N

∑
i=1

N

∑
j=0

(
k̃?ij − k̃ij(t)

)′ ˙̃kij(t) (3.96)

where

Σ̃(t) =


H̃2(t) −2 ∑

q
l=1 P̃Āl(t) −2 ∑m

g=1 P̃Ãg(t)
02N×2N − η̃

τ?l
∑

q
l=1 W̃l 02N×2N

02N×2N 02N×2N − η̃
σ?

g
∑m

g=1 W̃g

. (3.97)

Define now the following augmented state vector:

ξ̃(t) =[ẽ(t)′, ẽ(t− τ1(t))′, . . . , ẽ(t− τq(t))′,

ẽ(t− σ1(t))′, . . . , ẽ(t− σm(t))′]′ ∈ R2N(1+q+m), (3.98)

then, by substituting (3.84) into the second term of (3.96), and after lengthy manipulations,
(3.96) can finally be recast as next:

V̇(t) ≤ ρ̃(t)′Σ̃(t)ρ̃(t) + η̃ξ̃(t)′Θ̃(t)ξ̃(t)−
N

∑
i=1

N

∑
j=0

(
k̃?ij − k̃ij(t)

)′ ˙̃kij(t), (3.99)

where Θ̃(t) ∈ R2N(1+q+m)×2N(1+q+m) is an upper triangular block matrix in the from:

Θ̃(t) =



Θ̃1,1 2A′0H̃1 A1 . . . . . . 2A′0H̃1 Aq 2A′0H̃1 Ã1 . . . 2A′0H̃1 Ãm
02N×2N Θ̃2,2 2A′1H̃1 A2 . . . 2A′1H̃1 Aq 2A′1H̃1 Ã1 . . . 2A′1H̃1 Ãm

... 02N×2N
. . . . . . . . . . . . . . .

...
...

...
. . . . . . 2A′q H̃1 Ã1 . . . . . .

...
...

...
...

. . . Θ̃q+1,q+1 2Ã′1H̃1 Ã2
...

...
...

... . . .
. . . 02N×2N Θ̃q+2,q+2

. . .
...

...
... . . . . . . . . . 02N×2N

. . . 2Ã′m−1H̃1 Ãm
02N×2N . . . . . . . . . . . . . . . 02N×2N Θ̃q+m+1,q+m+1


(3.100)

where the diagonal blocks take the following form:

Θ̃(1,1)(t) = −
1
η̃

m

∑
g=1

σ?
g Rg +

(
A′0H̃1A0

)
,

Θ̃(1+l,1+l)(t) = −
(1− dl)

η̃
Q̃l +

(
Āl(t)′H̃1Āl(t)

)
, l = 1, 2, . . . , q,

Θ̃(1+q+g,1+q+g)(t) = −
(1− dg)

η̃
Q̃g +

(
Ãg(t)′H̃1Ãg(t)

)
, g = 1, 2, . . . , m. (3.101)
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Now for the sake of compactness, let us rewrite (3.99) as:

˙̄V(t) ≤ Λ̃1(ρ̃(t), k̃ij(t)) + Λ̃2(ξ(t), k̃ij(t)) + Λ̃3(k̃ij(t)) (3.102)

with

Λ̃1(ρ̃(t), k̃ij(t)) = ρ̃(t)′Σ̃(t)ρ̃(t) , Λ̃2(ξ̃(t), k̃ij(t)) = η̃ξ(t)′Θ̃(t)ξ(t)

Λ̃3(k̃ij(t)) = −
N

∑
i=1

N

∑
j=0

(
k̃?ij − k̃ij(t)

)′ ˙̃kij(t). (3.103)

Hence, if the LMIs (3.73)-(3.70) are satisfied, then according to the same explanations of
Proof of Theorem 3.3.1 we have that ˙̄V(t) < 0 and thus also condition (2.2) of Theorem 2.2.1
is satisfied. Moreover, by choosing α̃(s) as in (3.89), it follows that lims→∞ ᾱ(s) = +∞, and
hence the errors ẽ(t) globally uniformly converges to zero, and the voltage SC objective result
asymptotically achieved as well. Furthermore, it results that the adaptive gains of (3.61) also
converge to constant quantities according to:

limt→∞ k̃ij(t) = k̃?ij. (3.104)

This concludes the proof. �

3.5 Results and Discussion

3.5.1 Test Rig Design

The proposed SCs are tested on a 220VRMS (per phase rms), 50Hz, islanded MG
of four DGs as the one depicted in Figure 3.1. The MG parameters are listed on
Table 3.1. The electrical and communication network models are shown in Figure 3.1
with E c

N+1 = {(0, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}. The tuning parameters
of the SCs systems Equations (3.6)-(3.12) and Equations (3.60)-(3.62) are set as

k̃ij(0) = [10, 10], k̂ij,1(0) = 5, k̂ij,2(0) = 10,
ζ̂ij,1 = ζ̃ij,1 = ζ̂ij,2 = ζ̃ij,2 = 0.5, m̂i = 0.001, m̃i = 0.1,

∀ (i, j) ∈ E c
N+1. (3.105)

We assume that only DG 1 can directly access the reference voltage v0 and frequency
ω0. From Assumption 3.3.1, the time derivatives of the communication delays be-
tween agents, τ̇ij ∈ R>0, were modeled as random variables with a uniform dis-
tribution in the range |τ̇ij| ≤ dl = dg = 1, and conditions τij ∈ [0, 0.1]s are en-
forced by means of limiters [44, 94]. Moreover, according to the communication
network model, q = 1 in (3.14) and m = 6 in (3.13). Hence, from (3.14)-(3.13), it
results that T (t) = {τ1(t)} and S(t) = {σ1(t), σ2(t), . . . , σ6(t)} with τ1(t) = τ10(t),
σ1(t) = τ12(t), σ2(t) = τ21(t), σ3(t) = τ23(t), σ4(t) = τ32(t), σ5(t) = τ34(t) and
σ6(t) = τ43(t). Finally, matrices Al(t) ∈ R4×4, Āl(t) ∈ R8×8, Âg(t) ∈ R4×4,
Âg(t) ∈ R4×4 andÃg(t) ∈ R8×8 have the following structures (l = 1; g = 1, ..., 6)

A1(t) =

 Â10(t) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Â1(t) =

 Â12(t) −Â12(t) 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,
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Â2(t) =

 0 0 0 0
−Â21(t) Â21(t) 0 0

0 0 0 0
0 0 0 0

 , Â3(t) =

 0 0 0 0
0 Â23(t) −Â23(t) 0
0 0 0 0
0 0 0 0

,

Â4(t) =

 0 0 0 0
0 0 0 0
0 −Â23(t) Â32(t) 0
0 0 0 0

 , Â5(t) =

 0 0 0 0
0 0 0 0
0 0 Â34(t) −Â34(t)
0 0 0 0

,

Â6(t) =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 −Â43(t) Â43(t)

 , Â1(t) =

 Â12(t) −Â12(t) 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

Â2(t) =

 0 0 0 0
−Â21(t) Â21(t) 0 0

0 0 0 0
0 0 0 0

 , Â3(t) =

 0 0 0 0
0 Â23(t) −Â23(t) 0
0 0 0 0
0 0 0 0

,

Â4(t) =

 0 0 0 0
0 0 0 0
0 −Â32(t) Â32(t) 0
0 0 0 0

 , Â5(t) =

 0 0 0 0
0 0 0 0
0 0 Â34(t) −Â34(t)
0 0 0 0

,

Â6(t) =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 −Â43(t) Â43(t)

 , Ā1(t) =

 Ãi0(t) 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2

,

Ã1(t) =

 Ã12(t) −Ã12(t) 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2

 , Ã2(t) =

 02×2 02×2 02×2 02×2
−Ã21(t) Ã21(t) 02×2 02×2

02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2

,

Ã3(t) =

 02×2 02×2 02×2 02×2
02×2 Ã23(t) −Ã23(t) 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2

 , Ã4(t) =

 02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 −Ã32(t) Ã32(t) 02×2
02×2 02×2 02×2 02×2

,

Ã5(t) =

 02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 Ã34(t) −Ã34(t)
02×2 02×2 02×2 02×2

 , Ã6(t) =

 02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 02×2 02×2
02×2 02×2 −Ã43(t) Ã43(t)

.

3.5.2 Case Study

The system is tested for 45 seconds. The list of events scheduled throughout the test
is displayed as follows:

• Step 1 (t = 0− 5sec): Only the PC is used with ωni = 2π50Hz, υni = 220VRMS
(per phase rms);

• Step 2 (t = 5sec): The frequency SC Equations (3.6)-(3.12) is activated with
ω0 = 2π50Hz;

• Step 3 (t = 10sec): The voltage SC Equations (3.33)-(3.34) is activated with
v0 = 220VRMS

• Step 4 (t = 15− 20sec): The load (PL3, QL3) is added;
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FIGURE 3.1: MG communication and electrical network models.

TABLE 3.1: Parameters of the Microgrid Test System

DG1 DG2 DG3 DG4
Model τP1 0.016 τP2 0.016 τP3 0.016 τP4 0.016

τQ1 0.016 τQ2 0.016 τQ3 0.016 τQ4 0.016
kP1 ×10−5 kP2 3× 10−5 kP3 2× 10−5 kP4 1.5× 10−5

kQ1 4.2× 10−4 kQ2 4.2× 10−4 kQ3 4.2× 10−4 kQ4 4.2× 10−4

kv1 1e−2 kv2 0.01 kv3 0.01 kv4 0.01
Load P11 0.01 P12 0.01 P13 0.01 P14 0.01

P21 1 P22 2 P23 3 P24 4
P31 1× 104 P32 1× 104 P33 1× 104 P34 1× 104

Q11 0.01 Q12 0.01 Q13 0.01 Q14 0.01
Q21 1 Q22 2 Q23 3 Q24 4
Q31 1× 104 Q32 1× 104 Q33 1× 104 Q34 1× 104

Line B12 = 10Ω−1, B23 = 10.67Ω−1, B34 = 9.82Ω−1

• Step 5 (t = 25sec): The reference value for the frequency SC is changed to
ω0 = 2π50.1Hz;

• Step 6 (t = 35sec): The set-point for the voltage SC is changed to v0 = 225VRMS;

Let us now explain the obtained results shown from Figure 3.2-3.6. As can be ob-
served from Figure 3.2 and Figure 3.3, in the first five seconds, when the PC is only
switched on, all the corresponding voltages and frequencies are less than the refer-
ence values and the PC is not able to compensate for these deviations. At t = 5sec the
frequency restoration control Equations (3.6)-(3.12) is activated with ω0 = 2π50Hz
and the DG’s frequencies are restored to the expected value. At the same time, the
power sharing constraints Equation (3.4) are achieved (see Figure 3.4). It is clear
from Figure 3.3 that when the voltage SC is activated at t = 10sec, then also the
output voltages are restored to 220VRMS. We connect the sample load (PL3, QL3) at
t = 15s, and then disconnected it at t = 20s by a three-phase breaker. The results
show that the proposed SCs are robust against unexpected changes on demands.
Moreover, we modify the frequency and voltage SC setpoints at t = 25s and t = 35
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FIGURE 3.2: DG’s frequency ωi(t)
under adaptive distributed SC, i = 1, 2, 3, 4.
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FIGURE 3.3: DG’s voltage υi(t)
under adaptive distributed SC, i = 1, 2, 3, 4.

to ω0 = 2π50.1Hz and υ0 = 225VRMS respectively. Consequently, all DG’s frequen-
cies and voltages converge to the setpoint values very quickly. Finally, the time
evolutions of the proposed SCs are depicted in Figure 3.5 and Figure 3.6. The results
verify that the frequency and voltage SCs show a satisfactory performance and a
smooth control signals alleviating the chattering problem.
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FIGURE 3.4: Comparison between the expected (i.e., kPi /kPj ) and
actual (i.e., Pi/Pj) power sharing ratio under adaptive distributed SC,

i = 1, 2, 3, 4, j 6= i, j > i.

3.6 Conclusions

Here a novel robust distributed secondary restoration control protocol for inverter-
based islanded microgrids is proposed. The method improves the current state of
the art because it is fully distributed, model-free, and robust against delayed directed
communications and parameters uncertainties. Moreover, since the control actions
are continuous, they can be safely pulse width modulated by a fixed given frequency
to not hurt the switching power artifacts.
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FIGURE 3.5: Frequency secondary control ωni (t)
under adaptive distributed SC, i = 1, 2, 3, 4.
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FIGURE 3.6: Voltage secondary control υni (t)
under adaptive distributed SC, t ≥ 0, i = 1, 2, 3, 4.
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Chapter 4

Robust Distributed Optimal
Voltage SC with Time-Varying
Multiple Delays and Model
Uncertainties

4.1 Introduction

This chapter aims to solve the problem of voltage restoration in droop-controlled
inverter-based islanded microgrids under communication delays. To this aim, we
propose a novel robust distributed voltage SC which is a combination between an in-
tegral sliding mode controller and a linear consensus scheme with constant weights.
Lyapunov analysis and Linear Matrix Inequalities (LMI) are employed together to
demonstrate the associated stability and convergence features. The allowable up-
per bound for communication delays is also estimated by linear matrix inequalities.
Regulating the MG’s voltages to the associated reference values additionally is taken
into account by developing an optimization algorithm to find the optimal constant
control gains.

This chapter is structured as follows. The contributions of this chapter and prob-
lem statement are presented in Section 4.2. Section 4.3 outlines the proposed optimal
distributed voltage SC scheme under time-varying multiple delays. Moreover, the
performance of proposed voltage SC analysed by using the Lyapunov-Krasovskii
functional along with linear matrix inequalities. Section 4.4 is provided an optimiza-
tion algorithm to find the optimal constant control gains and the allowable upper
bound for communication delays. Finally, Section 4.5 and Section 4.6 are given the
simulation results and conclusions respectively.

4.2 Main Contributions and Problem Statement

The contributions of this chapter are as follows. We herein introduce a novel opti-
mal distributed voltage secondary control for an AC MG by involving an integral
sliding mode controller and a linear consensus scheme with constant weights under
communication delays between DGs and a class of parameter uncertainties and ex-
ogenous disturbances. In fact, the voltage SC presented in this chapter is a particular
case of the one introduced in Chapter 3 with constant gains. Hence, it is worth men-
tioning that, since control gains here are constant, the LMIs which will be obtained
later in the stability analysis, are based on constant control gains (not time-varying
gains) which can be easily solved to find the stabilizing parameters of the voltage
SC controller. Moreover, the most important idea of this chapter is that thanks to the



4.3. Voltage Secondary Controller Design 45

consideration of the gains as constant values, an optimization algorithm based on
LMI is proposed to find the maximum delays and the best tuning for the gains.

Our objective in this chapter is, to design a novel distributed voltage SC to com-
pensate for the unavoidable deviations of the DG’s output voltages caused by the
droop characteristics of the PCs from the expected set-points, ie.,

vi(∞) = v0, ∀i ∈ V . (4.1)

4.3 Voltage Secondary Controller Design

In order to solve the voltage SC problem (4.1) in the presence of communication
delays among DGs we propose the following voltage restoration SC strategy for the
voltage dynamic: (2.24)

v̇ni(t) =−
N

∑
j=0

αij k̃ij

[
vi(t− τij(t))− vj(t− τij(t))
v̇i(t− τij(t))− v̇j(t− τij(t))

]
− m̃i · sign(s̃i(t)) (4.2)

where vni(t) is a distributed input control to achieve synchronization with respect to
the DG’s states. k̃ij = [k̃ij,1, k̃ij,2] ∈ R1×2 and m̃i ∈ R are the constant tuning param-
eter vectors and scalars, respectively. τij(t) shows the time-varying delay between
DGs communications and the switching function s̃i(t) in (4.2) set as follows

s̃i(t) = v̇i(t) + zi(t), (4.3)

żi(t) =
v̇i(t)
kvi

− 1
kvi

N

∑
j=0

αij k̃ij

[
vi(t− τij(t))− vj(t− τij(t))
v̇i(t− τij(t))− v̇j(t− τij(t))

]
,

zi(0) = −vi(0)− v̇i(0). (4.4)

Similar to Chapter 3, the delays τij(t) satisfy Assumption 3.3.1. Hereinafter, the
main result of this chapter is outlined. It is worth to remark that the DG’s output
voltage derivatives are not available from measurements. However, they can easily
estimated and then used for output feedback purposes by means of differentiators
implemented within each local controller, see Remark 3.4.1.

Theorem 4.3.1 Consider the voltage dynamics Equation (2.24) under the voltage restora-
tion SC Equations (4.2)-(4.4). Let Assumption 2.3.1 and Assumption 3.3.1 be satisfied and
let there exist m̃i > kvi Γ

Q = 2kQi Π
Q
i /τQi . Given an upper bound of time-delay function

τ? = max
{

τ?
l , σ?

g

}
> 0. Moreover, if the local control gains k̃ij,1 and k̃ij,2 be greater than

zero and if there exist symmetric positive definite matrices P, Ql , Q̄g, Rl and R̄g ∈ R2N×2N ,
such that the following LMIs:M1 + 3τ?A′0HA0 ∑

q
l=1 τ?PÂl ∑m

g=1 τ?PÃg

∗ −∑
q
l=1 τ?Rl 02N×2N

∗ ∗ −∑m
g=1 τ?R̄g

 < 0 (4.5a)

3
q

∑
l=1

τ? Â′l H
q

∑
l=1

Âl + M̄1 < 0 (4.5b)

3
m

∑
g=1

τ? Ã′gH
m

∑
g=1

Ãg + M̄1 < 0 (4.5c)
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are feasible, where

H =
m

∑
g=1

R̄g +
q

∑
l=1

Rl , M1 = F′P + PF +
m

∑
g=1

Q̄g +
q

∑
l=1

Ql (4.6)

M̄1 =
q

∑
l=1
−Ql(1− dl), M̃1 =

m

∑
g=1
−Q̄g(1− dg) (4.7)

and
A0 = [A0(r,y)] ∈ R2N×2N with A0(r,y) :

{
Āi if r = y = i

02×2 otherwise , (4.8)

Âl = [Âl(r,y)] ∈ R2N×2N with Âl(r,r) :
{

Ai0 if τl = τil , r = l = i
02×2 otherwise , (4.9)

Ãg = [Ãg(r,y)] ∈ R2N×2N with Ãg(r,y) :


Aij if σg = τij, i 6= j, r = y = i
−Aij if σg = τij, i 6= j, r = i, y = j
02×2 otherwise

(4.10)

being
Ai0 = −αi0 · B̄i · k̃i0 ∈ R2×2 (4.11)

Aij = −αijB̄i · k̃ij ∈ R2×2 (4.12)

and r, y = {1, 2, . . . , N}, and

F = A0 +
q

∑
l=1

Âl +
m

∑
g=1

Ãg (4.13)

Then, condition (4.1) is verified.

Proof of Theorem 4.3.1
(
[107]

)
By substituting (4.2)-(4.4) into (2.24), it yields:[

v̇i(t)
v̈i(t)

]
= Āi

[
vi(t)
v̇i(t)

]
− B̄i

N

∑
j=0

αij k̃ij

[
vi(t− τij(t))− vj(t− τij(t))
v̇i(t− τij(t))− v̇j(t− τij(t))

]
+

[
0

˙̃si(t)

]
(4.14)

and then, by computing the time derivative of (4.3) along with the trajectories of (4.4), we
reach to:

˙̃si(t) =−
m̃i

kvi

sign(s̃i) + ˙̃wi(t) (4.15)

Let us now select the following Lyapunov function:

V̄(t) =
1
2

N

∑
i=1

s̃i(t)2 (4.16)

so that the time derivative of V̄(t) correspondingly takes the form:

˙̄V(t) =
N

∑
i=1

s̃i(t) · ˙̃si(t) =
N

∑
i=1

s̃i(t) · ˙̃wi(t)−
m̃i

kvi

|s̃i|). (4.17)
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Then by referring to Assumption 2.3.1, we manipulate (4.17) as:

˙̄V(t) ≤ −
N

∑
i=1

( m̃i

kvi

− ΓQ
i

)
· |s̃i(t)| < 0 ∀ m̃i > kvi Γ

Q. (4.18)

so that by reaching to (4.18), V̄(t) = 0 ∀ t ≥ 0 is concluded. Consequently, the condition
s̃i = ˙̃si = 0 is invariant since the initial instant of time t = 0. Hence, by letting ˙̃si = 0, the
following function is supported:

sign(s̃i) ≡
kvi

m̃i
˙̃wi(t). (4.19)

Therefore, by substituting (4.19) into equation (4.14), we get:[
v̇i(t)
v̈i(t)

]
= Āi

[
vi(t)
v̇i(t)

]
− B̃i

N

∑
j=0

αij k̃ij

[
vi(t− τij(t))− vj(t− τij(t))
v̇i(t− τij(t))− v̇j(t− τij(t))

]
(4.20)

Let’s define errors between the i-th DG and the voltage reference as:

e(t) =
(
e1(t), e2(t), . . . , eN(t)

)′ (4.21)

with

ei(t) =
[

vi(t)− v0
v̇i(t)− v̇0

]
(4.22)

and by letting Ai0 = −B̄iαi0k̃i0, Aij = −B̄iαij k̃ij ∈ R2×2, and by differentiating ei(t) and
by considering v0 is constant, after some algebraic manipulations, one derives:

ėi(t) = Āiei(t)− B̄iαi0 · ki0ei(t− τi0(t))

− B̄i

N

∑
j=1

αij · k̃ij
[
(ei(t− τij(t))− ej(t− τij(t))

]
(4.23)

Then, by substituting (4.11) and (4.12), it results:

ėi(t) = Āiei(t) + Ai0ei(t− τi0(t)) + ∑N
j=1 Aij

[
ei(t− τij(t))− ej(t− τij(t))

]
(4.24)

Moreover, regarding (4.8)-(4.12), the multi-agent closed loop dynamics can be written
as:

ė(t) = A0e(t) + ∑N
l=1 Âle(t− τl(t)) + ∑m

g=l Ãge(t− σg(t)) (4.25)

Then, according to equation (3.40) the multi-agent closed loop dynamics (4.25) can be recast
according to as:

ė(t) = Fe(t)−
N

∑
l=1

Âl

∫ t

t−τl(t)
ė(s)ds−

m

∑
g=1

Ãg

∫ t

t−σg(t)
ė(s)ds (4.26)

It is worth mentioning that F in (4.13) is a strictly diagonally dominant block matrix, whose
generic block element F(i,i) ∈ R2×2 on the main diagonal is defined as:

F(i,i) = Ā + Ai0 +
N

∑
j=1,i 6=j

Aij (4.27)

To show that F is negative definite, it suffices to prove that F(i,i), for i = 1, . . . , N, is a
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negative. If local control gains k̃ij,1 and k̃ij,2 for i, j = {1, . . . , N} are greater than zero
then, according to (4.12), the term ∑N

j=1 Aij is negative semi-definite. Moreover, if local
control gains k̃i0,1 and k̃i0,2 for i = {1, . . . , N} are greater than zero then the term Ā + Ai0
is negative semi-definite. Consequently, it follows that blocks F(i,i) in (4.27) are negative
definite.

Let us now construct the following Lyapunov Krasovskii functional:

V(e(t)) =
5

∑
i=1

Vi(e(t)) (4.28)

with

V1(e(t)) = e(t)′Pe(t) (4.29)

V2(e(t)) =
q

∑
l=1

∫ t

t−τl(t)
e(s)′Qle(s)ds (4.30)

V3(e(t)) =
m

∑
g=1

∫ t

t−σg(t)
e(s)′Q̄ge(s)ds (4.31)

V4(e(t)) =
q

∑
l=1

∫ 0

−τl(t)

∫ t

t+θ
ė(s)′Rl ė(s)dsdθ (4.32)

V5(e(t)) =
m

∑
g=1

∫ 0

−σg(t)

∫ t

t+θ
ė(s)′R̄g ė(s)dsdθ (4.33)

where, in accordance with the statement of Theorem 4.3.1, P, Ql , Q̄g, R̄g and Rl ∈ R2N×2N

are symmetric positive definite matrices. Now, the time derivative of V1(e(t)) in (4.29) along
the trajectories of the system in (4.26) are given by:

V̇1(e(t)) = e(t)′(F′P + PF)e(t)− 2e(t)′P
q

∑
l=1

Âl

∫ t

t−τl(t)
ė(s)ds

− 2e(t)′P
m

∑
g=1

Ãg

∫ t

t−σg(t)
ė(s)ds. (4.34)

According to (2.4) in Lemma 2.2.1, (4.34) can be rewritten as:

V̇1(e(t)) ≤ e(t)′
[
F′P + PF

]
e(t) + e(t)′

[
q

∑
l=1

τ?PÂl R−1
l Â′l P

]
e(t) +

q

∑
l=1

∫ t

t−τl(t)
ė(s)Rl ė(s)ds

+
q

∑
l=1

∫ t

t−τl(t)
ė(s)Rl ė(s)ds + e(t)′

[
m

∑
g=1

τ?PÃgR̄−1
g Ã′gP

]
e(t). (4.35)

From (4.30) and (4.31), by differentiating V2(e(t)) and V3(e(t)), we get:

V̇2(t)= e(t)′
q

∑
l=1

Qle(t)−
q

∑
l=1

e(t− τl(t))′Ql(1− τ̇l(t))e(t− τl(t)) (4.36)

V̇3(t)= e(t)′
m

∑
g=1

Q̄ge(t)−
m

∑
g=1

e(t− σg(t))′Q̄g(1− σ̇g(t))e(t− σg(t)) (4.37)
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Then, by exploiting the bound on delays according to Assumption 3.3.1, (4.36) and (4.37)
can be recast as follows:

V̇2(t)≤ e(t)′
q

∑
l=1

Qle(t)−
q

∑
l=1

e(t− τl(t))′Ql(1− dl)e(t− τl(t)) (4.38)

V̇3(t)≤ e(t)′
m

∑
g=1

Q̄ge(t)−
m

∑
g=1

e(t− σg(t))′Q̄g(1− d̄g)e(t− σg(t)) (4.39)

By taking the time derivative of the V4(e(t)) and V5(e(t)), it yields to:

V̇4(e(t)) =
q

∑
l=1

τl(t)ė(t)′Rl ė(t)−
q

∑
l=1

∫ t

t−τl(t)
ė(s)Rl ė(s)ds (4.40)

V̇5(e(t)) =
m

∑
g=1

σg(t)ė(t)′R̄g ė(t)−
m

∑
g=1

∫ t

t−σg(t)
ė(s)R̄g ė(s)ds (4.41)

Considering upper bound of time-delays τ?, we can write:

V̇4(e(t)) ≤
q

∑
l=1

τ? ė(t)′Rl ė(t)−
q

∑
l=1

∫ t

t−τl(t)
ė(s)Rl ė(s)ds (4.42)

V̇5(e(t)) ≤
m

∑
g=1

τ? ė(t)′R̄g ė(t)−
m

∑
g=1

∫ t

t−σg(t)
ė(s)R̄g ė(s)ds (4.43)

Now, by summing (4.34)-(4.43) and from (4.6)-(4.7), one derives:

V̇(e(t)) ≤ e(t)′
[

q

∑
l=1

τ?PÂl R−1
l Â′l P +

m

∑
g=1

τ?PÃgR̄−1
g Ã′gP + M1

]
e(t) + τ? ė(t)′Hė(t)

+ e(t− τl(t))′M̄1e(t− τl(t)) + e(t− σg(t))′M̃1e(t− σg(t)) (4.44)

Let us expand the term τ? ė(t)T Hė(t) according to (4.25) as follows:

τ? ė(t)′Hė(t) = τ?e(t)′
[

A′0HA0

]
e(t) + τ?e(t− τl(t))′

[ q

∑
l=1

Â′l H
q

∑
l=1

Âl

]
e(t− τl(t))

+ τ?e(t− σg(t))′
[ m

∑
g=1

Ã′gH
m

∑
g=1

Ãg

]
e(t− σg(t))

+ 2τ?e(t)′
[

A0H
q

∑
l=1

Âl

]
e(t− τl(t))

+ 2τ?e(t− τl(t))′
[ q

∑
l=1

Â′l H
m

∑
g=1

Ãg

]
e(t− σg(t))

+ 2τ?e(t)′
[

A0H
m

∑
g=1

Ãg

]
e(t− σg(t)) (4.45)
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From (2.3) (see Lemma 2.2.1), and assuming

a(t) = A0e(t), b(t) = H
q

∑
l=1

Âle(t− τl(t)), ψ = H

ā(t) = A0e(t) b̄(t) = H
m

∑
g=1

Ãge(t− τp(t))

â(t) =
q

∑
l=1

Âle(t− τl(t)), b̂(t) = H
m

∑
g=1

Ãge(t− τp(t)). (4.46)

the following results can then be obtained:

2a(t)′b(t) ≤ e(t)′AT
0 HA0e(t) + e(t− τl(t))′

[ q

∑
l=1

Â′l H
q

∑
l=1

Âl

]
e(t− τl(t)) (4.47)

2ā(t)′b̄(t) ≤ e(t)′A′0HA0e(t) + e(t− σg(t))′
[ m

∑
g=1

Ã′gH
m

∑
g=1

Ãg

]
e(t− σg(t)) (4.48)

2â(t)′b̂(t) ≤ e(t− τl(t))′
q

∑
l=1

Â′l H
q

∑
l=1

Ale(t− τl(t))

+ e(t− σg(t))′
[ m

∑
g=1

Ã′gH
m

∑
g=1

Ãg

]
e(t− σg(t)) (4.49)

Therefore, according to (4.47)-(4.49), (4.45) can be recast as:

τ? ė(t)′Hė(t) ≤ τ?e(t)′
[

3A′0HA0

]
e(t) + τ?e(t− τl(t))′

[
3

q

∑
l=1

Â′l H
q

∑
l=1

Âl

]
e(t− τl(t))

+ τ?e(t− σg(t))′
[

3
m

∑
g=1

Ã′gH
m

∑
g=1

Ãg

]
e(t− σg(t)) (4.50)

Now, by substituting (4.50) into (4.44), one derives:

V̇(e(t)) ≤ e(t)′H1e(t) + e(t− τl(t))′H2e(t− τl(t))
+ e(t− τp(t))′H3e(t− τp(t)) (4.51)

being

H1 = M1 + τ?M2, H2 =M̄1 + τ?M̄2, H3 = M̂1 + τ?M̂2 (4.52)

with

M2 = 3A′0HA0 +
q

∑
l=1

PÂl R−1
l Â′l P +

m

∑
g=1

PÃgR̄−1
g Ã′gP

M̄2 = 3
q

∑
l=1

Â′l H
q

∑
l=1

Âl , M̂2 = 3
m

∑
g=1

Ã′gH
m

∑
g=1

Ãg.

Therefore, to have V̇(e(t)) ≤ 0, H1, H2 and H3 in (4.51) should be negative definite. It
should be noted that H1 is a non-linear inequality due to the presence of terms R−1

l and R̄−1
g .

Hence, performing Schur complement on H1 (see Lemma 2.2.3 ), (4.51) can be rewritten
as in (4.5), which consists on LMI whose solutions can be easily found by using standard
numerical solvers based on the the interior point method. Hence, if (4.5) are satisfied, then



4.4. Solving optimization over LMI 51

Run
algorithm

Solve LMI by
eq. (4.5)

Start
Maximum delay

according to eq. (4.53)

Solve objective function
subject eq. (4.55)

LMI feasible
 by eq. (4.5)

 Set eq. (4.54) as 
objective function

Stop
algorithm

  Apply optimal 
delay     

Apply optimal constant 
       gains              

Optimal constant 
gains       

Optimal delay 

No Yes

Initialize
constant gains

Initialize

Set

FIGURE 4.1: Process flow diagram of the developed optimization al-
gorithm.

V̇(e(t)) ≤ 0 in (4.51) and it results V(e(t)) converges to zero and thus condition (3.3) is in
force. This concludes the proof. �

Remark 4.3.1 In accordance with Theorem 4.3.1, it results that DG’s voltages (2.24) under
the control protocol (4.2) perform synchronization on the setpoint value in accordance with
(4.1). From (4.44)-(4.52) and regarding to Theorem 3.3.1 it further results that an estima-
tion of the maximum admissible delay tolerated by the voltage dynamics (2.24) can be lower
estimated as follows:

τ? = min
{
‖M1‖
‖M2‖

,
‖M̄1‖
‖M̄2‖

,
‖M̃1‖
‖M̃2‖

}
(4.53)

4.4 Solving optimization over LMI

In this section, we explain how to solve the LMIs feasibility problem (4.5) so that
we can find the robust values of the constant gains k̃ij that guarantee DG’s voltages
in (2.24) converge to the setpoint value. This problem can be converted into the
following LMI optimization:

max
k̃ij,1,k̃ij,2

min
{
‖M1‖
‖M2‖

,
‖M̄1‖
‖M̄2‖

,
‖M̃1‖
‖M̃2‖

}
(4.54)

Subject to

{
k̃ij,1 > 0 (i = 1, . . . , N. j = 0, . . . , N)

k̃ij,2 > 0
(4.55)

In the proposed optimization, we obtain the largest upper bound of the delay by
solving (4.54)-(4.55) within the variables k̃ij. The process of using the optimization
algorithm to solve the LMI is shown in Figure 4.1 and summarizes in Algorithm 1.

According to this optimization algorithm, we find the maximum delay among
DGs and the best tuning gains k̃ij such that DG’s voltages (2.24) converge the setpoint
value under the proposed protocol (4.2).
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Algorithm 1: Optimization algorithm

• Initialize constant gains k̃ij.
• Given upper bound of time delays as τ?

l and σ?
g .

• Consider τ? = max
{

τ?
l , σ?

g

}
.

repeat
• Solve the LMIs feasibility problem (4.5) with τ?.
• Estimation of the maximum admissible delays according to (4.53).
• Check the LMIs feasibility problem (4.5) according to the obtained
maximum delay.

if LMIs problem (4.5) are not feasible then
• Break.

else
• Solve objective function (4.54) subject to (4.55).
• Apply optimal constant gains k̃?ij and optimal delay τ? to LMI
problems.

end
• Return optimal constant gains k̃?ij.
• Return maximum delay τ?.

until LMIs problem (4.5) be feasible.;

4.5 Verification of Results

In this section, to test the performance of the proposed secondary controller, the
MATLABr/Simulinkr environment is used to build the simulation model of the
220VRMS (per phase rms), 2π50rad/s, islanded MG of four DGs depicted in Fig-
ure. 2.1. The detailed parameters of the MG are presented in Table 3.1. The com-
munication network model is considered to be the same topology as shown in Fig-
ure. 2.1. It is supposed that only DG 1 can directly access the reference voltage v0 and
frequency ω0. The tuning gains of the protocol according to the optimization algo-
rithm are obtained as k̃10 = [0.01, 0.011], k̃12 = [0.001, 0.822], k̃23 = [0.01, 0.01], k̃34 =
[0.01, 0.01], m̃i = 5. The time derivatives of the communication delays between DGs
have been emulated as random variables with an uniform discrete distribution in
the range |τ̇ij| ≤ dl = dg = 1 and conditions τij ∈ [0, τ?) are enforced. Notice that
the delay margin τ? = 0.8sec was obtained from Algorithm 1. Algorithm 1 has
been implemented in the MATLAB environment, and the LMI problem (4.5) built
by means of the lmiedit symbolic interface and YALMIP toolbox. To make a more
realistic scenario, the proposed frequency SC [40] is exploited as:

ωni = ω̂i −ωi (4.56)
˙̂ωi = βi · ∑

j∈Ni

(ωi −ωj) + gi(ωi −ω0) + γi · ∑
j∈Ni

(ω̂i − ω̂j) (4.57)

where βi = γi = −20, ω̂i(0) = 50 for all i = 1, 2, 3, 4. Moreover, g1 = 1 and gk = 0,
k = 2, 3, 4. Simulations were performed by using the Runge-Kutta fixed step solver
with sampling time Ts = 0.5× 10−3sec. The simulation model of the MG is tested
for 35 seconds.The list of events scheduled during the test is summed up as follows:

• At the startup (t = 0sec): Only the PC is operated with ωni = 2π50rad/s,
vni = 220VRMS (per phase rms);
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• At t = 5sec: The frequency SC (4.57) is activated with ω0 = 2π50rad/s;

• At t = 10sec: The voltage SC (4.2) is switched on with v0 = 220VRMS;

• At t = 15sec: The load (PL3, QL3) is added to the MG;

• At t = 20sec: The setpoint for the frequency SC is changed to ω0 = 2π50.1rad/s.

• At t = 25sec: The setpoint for the voltage SC is changed to v0 = 225VRMS.

• At t = 30sec: The load (PL3, QL3) is disconnected.

It is clear from Figures 4.2 and 4.3, during the first 5 seconds, when both SCs are
switched off, all the corresponding voltages and frequencies deviate from their de-
sired values and need to be adjusted. To restore the microgrid’s voltage and fre-
quency to the desired values the proposed frequency (4.57) and the proposed volt-
age SC (4.2) are enabled at t = 5sec and 10sec respectively with ω0 = 2π50rad/s
and v0 = 220VRMS.

As can be observed from Figure 4.3, the voltage SC protocol (4.2) guarantees the
achievement of the SC aims under communication delays between DGs. Further-
more, Figure 4.4 and Figure 4.5 demonstrate that the proposed voltage SC protocol
is robust against unexpected changes on demands. Moreover, we change the fre-
quency and voltage SC setpoints at t = 20sec and t = 25sec to ω0 = 2π50.1rad/s
and v0 = 225VRMS respectively. Consequently, all DG’s frequencies and voltages
converge to the setpoint values. It can be seen from Figure 4.5 that the voltage SC
shows a satisfactory performance and a smooth control signal alleviating the chat-
tering problem.

4.6 Conclusion

In this chapter, a novel optimal distributed secondary voltage restoration control for
MG systems by involving an integral sliding mode controller and a linear consensus
scheme with constant wights under multiple time-variant delays is proposed. The
performance of the proposed scheme is thoroughly analyzed by combining both
the Lyapunov-Krasovskii theorem and the linear matrix inequality. A linear matrix
inequality criterion is also employed to estimate the maximum delay for commu-
nications. Furthermore, an optimization algorithm is proposed to find the optimal
constant control gains. Further work will investigate the design of distributed sec-
ondary frequency controller within communication delays.
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FIGURE 4.2: DG’s frequency ωi(t) under the proposed frequency SC
[40], i = 1, 2, 3, 4.
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FIGURE 4.3: DG’s voltage υi(t) under distributed optimal voltage SC,
i = 1, 2, 3, 4.
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FIGURE 4.4: Frequency secondary control ωni (t) under the proposed
frequency SC [40], i = 1, 2, 3, 4.
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FIGURE 4.5: Voltage secondary control υni (t) under distributed opti-
mal voltage SC, i = 1, 2, 3, 4.
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Chapter 5

Distributed Finite-Time SC by
Coupled Sliding-Mode Technique

5.1 Introduction

In the Chapter 2, the model of an inverter-based microgrid has been presented. This
chapter presents a novel distributed SC protocol based on the coupled sliding-mode
approach, which not only guarantees the exact finite-time restoration among volt-
ages and frequencies of the inverter-based islanded microgrid, but also preserves
the active power sharing among DGs. For each distributed generator with no di-
rect access to reference values, a finite-time distributed estimator is locally designed
and implemented in each DG unit to provide the reference value of frequency and
voltage in a finite time.

This chapter is structured as follows. In Section 5.2, we present the main con-
tributions of this chapter as well as the problem statement. Section 5.3, outlines the
proposed distributed SCs scheme. Moreover, the stability and convergence features
of the resulting closed-loop system are investigated using the Lyapunov tools. In
Section 5.4, the performance and effectiveness of the proposed SCs are verified by
simulating it on a nonlinear inverter-based MG. Finally, Section 5.5 provides a sum-
mary and concluding remarks.

5.2 Statement of Contributions and Problem Formulation

Aiming at improving the current state of the art of SCs in microgrids, this chapter
proposes a robust SC control to restore the system frequency and terminal voltage to
the nominal values and guarantee the accurate active power sharing. In comparison
with the existing works, the main contributions of this paper can be summarized as
follows

1) A novel distributed SC based on SMC is proposed which is able to restore the
DG’s voltages to the desired value in a finite time under parameters uncertain-
ties and unexpected load variations.

2) A finite-time frequency strategy is designed which guarantees the frequency
regulation within a finite time under uncertainties.

3) A finite-time frequency and active power control strategy is designed which
guarantees the frequency regulation and active power sharing accuracy within
a finite time.
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4) For DGs with no direct access to their reference values, a finite-time distributed
sliding mode estimator is implemented for both secondary frequency and volt-
age schemes. The estimator determines local estimates of the global reference
values of the voltage and frequency for DGs in a finite time, and provides this
information for the distributed SC schemes.

5) The proposed SC schemes only use the local and neighbors information, so
they need cost-effective dispersed communication structures in a full distributed
fashion.

6) Lyapunov functions are employed to analyze the performance of the proposed
controllers and guarantee the accuracy of the finite-time frequency/voltage
restoration and active power sharing.

As mentioned in Chapter 1, the primary control causes the frequency and volt-
age amplitudes of MGs to deviate from the reference values. Therefore, Secondary
control can be employed to compensate these deviations. Hence, our objective in
this chapter is, to design distributed SCs for:

1. Restoring the frequency of each DG to the reference value in a finite time, that
is:

ωi,ss = ω0 ∀ i ∈ V . (5.1)

2. Preserving the real power sharing accuracy, as:

Pm
j

Pm
i

=
kPi

kPj

∀ i, j ∈ V . (5.2)

3. Restoring the DG’s voltages vi of the MG to the expected setpoint υ0 in a finite
time as:

υi,ss = υ0 ∀ i ∈ V . (5.3)

In the following, we design the robust finite-time secondary frequency and voltage
restoration controller. The design is based on a distributed implementation of the
terminal sliding mode control paradigm [108]. First, since in general kvi � τQi , it is
assumed kvi = 0 in (2.15) (see [109]), which it yields:

vi(t) = vni(t)− kQi ·Q
m
i (t). (5.4)

Let us define w̃i(t) = −kQi ·Qm
i (t). Taking the time derivative of w̃i(t) yields:

˙̃wi(t) = −kQi · Q̇
m
i (t) (5.5)

Regarding Assumption 2.3.1, ˙̃wi(t) meets the following restrictions:

| ˙̃wi(t)| ≤ ΓQ
i (5.6)

where ΓQ
i are positive known constants.

Then, taking the time derivative on both sides of equations (2.14) and (5.4) one
can conclude:

ω̇ni(t) = ω̇i(t) + kPi Ṗ
m
i (t) = ûi(t) + kPi ūi(t), (5.7)
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υ̇ni(t) = υ̇i(t)− ˙̃wi(t) = ũi(t), (5.8)

where ûi(t) = ω̇i(t), ūi(t) = Ṗm
i (t) and ũi(t) = υ̇i(t)− ˙̃wi(t) represent the frequency,

active power and voltage inputs respectively. Therefore, the set points can be ex-
pressed as:

ωni(t) =
∫
(ûi(t) + kPi ūi(t))dt, (5.9)

υni(t) =
∫

ũi(t)dt. (5.10)

Remark 5.2.1 Note that to realize the accurate frequency regulation and the accurate active
power sharing among DGs simultaneously, it is assumed that the active power is measurable.
Whereas, if restoring frequency of DGs is only important, the active power is considered as
the uncertain term, namely,

˙̂wi(t) = −kPi · Ṗ
m
i (t), (5.11)

and following Assumption 2.3.1, ˙̂wi(t) meets the following restriction:

| ˙̂wi(t)| ≤ ΓP
i (5.12)

where ΓP
i are positive known constants. �

5.3 Finite Time Frequency Regulation and Active Power Shar-
ing

The control law for the finite-time frequency restoration and the active power shar-
ing is proposed as follows in which the active power of each DG unit is known:
• Frequency controller

ûi(t) = ueq
ωi(t) + usw

ωi
(t), (5.13a)

ueq
ωi(t) = ˙̂ωi(t) + kω

i

(
ξ̇ω

i (t)− sω
i (t) + ∑

j∈N c
i

ėω
j (t)

)
, (5.13b)

u̇sw
ωi
(t) = −Tωusw

ωi
−Mωsign

(
sω

i (t)
)
. (5.13c)

• Active power controller

ūi(t) = ueq
Pi
(t) + usw

Pi
(t), (5.14a)

ueq
Pi
(t) = kP

i

(
ėP

i (t)− sP
i (t) + ∑

j∈N c
i

kPj Ṗj(t)
)

, (5.14b)

u̇sw
Pi
(t) = −TPusw

Pi
(t)−MPsign

(
sP

i (t)
)
. (5.14c)

where kω
i = 1

|N c
i |+αi0

, kP
i = 1

|N c
i |

, Mω and MP ∈ R≥0 are constant gains. The terms

eω
i (t) and eP

i (t) respectively represent the frequency and active power errors for i-th
DG, which can be expressed as:

eω
i (t) = ωi(t)− ω̂i(t), (5.15)

eP
i (t) = ∑

j∈N c
i

(
kPi · P

m
i (t)− kPj · P

m
j (t)

)
. (5.16)
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where ω̂i(t), represents the DGi’s estimate of ω0 which can be computed by:

˙̂ωi(t) = −γω
N

∑
j=0

aij[ω̂i(t)− ω̂j(t)]− βωsign
( N

∑
j=0

aij[ω̂i(t)− ω̂j(t)]
)

. (5.17)

where γω and βω are non-negative and positive constants respectively. The cor-
responding adjacent weight for the leader is ai0. Note that ω̂0 , ω0 and if ai0 6= 0,
then ω̂i(t) = ω0.

Furthermore, ξω
i (t) is defined as the coupled form of frequency error, which can

be calculated as:

ξω
i =

1
kω

i
eω

i (t)− ∑
j∈N c

i

eω
j (t). (5.18)

Let us consider Mω in (5.13) and MP in (5.14) as Mω = Kω
T + ηω and MP = KP

T + ηP,
respectively, so that these terms are chosen to satisfy the following conditions:

Kω
T ≥ Tω ·Mω, (5.19)

KP
T ≥ TP ·MP, (5.20)

with Tω and TP ∈ R≥0. Furthermore, the sliding variables sω
i (t) and sP

i (t) are calcu-
lated as:

sω
i (t) = ξ̇ω

i (t) + cωsign(ξω
i (t))|ξω

i (t)|α
ω

, (5.21)

sP
i (t) = ėP

i (t) + cPsign(eP
i (t))|eP

i (t)|α
P
. (5.22)

where αP, αω ∈ (0, 1) and cP, cω > 0. It is worth mentioning that the use of these non-
linear sliding variables not only keeps the advantages of rapid convergence but also
reduces the chattering phenomenon through the low-pass filters (5.13c) and (5.14c).

Once the sliding-mode variables sω
i (t) = 0 and sP

i (t) = 0 are established, (5.21)
and (5.22) can be recast as:

ξ̇ω
i (t) = −cωsign(ξω

i (t))|ξω
i (t)|α

ω
, (5.23)

ėP
i (t) = −cPsign(eP

i (t))|eP
i (t)|α

P
. (5.24)

We are now in a position to state the first main result of this chapter.

Theorem 5.3.1 Considering the distributed sliding-mode estimator in (5.17), we assume
that at least one path from the virtual leader to each DG exists at every instant. If the tuning
parameters satisfy βω > 0, then ω̂i(t) is equal to ω0 in a finite time Tω

f by:

Tω
f = max

i
{|ω̂i(0)−ω0|}/βω.

�

Proof of Theorem 5.3.1 We refer to Theorem 3.1 in [110] for details. �

Theorem 5.3.2 Consider the frequency dynamics (2.23) under the frequency restoration SC
(5.13) and the active power controller (5.14). Let inequalities (5.19) and (5.20) be in force.
If the local control gains satisfy ηω > 0 and ηP > 0, sliding variables sω

i (t) in (5.21) and
sP

i (t) in (5.22) converge to zero in the finite time T?
i = max(Tω

i , TP
i ) with Tω

i ≤
kω

i ·sω
i (0)

ηω
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and TP
i ≤

kP
i ·sP

i (0)
ηP respectively. Consequently, the errors of frequency and active power

converge to zero and the frequency restoration condition (5.1) and the active power-sharing
(5.2) can be obtained in the following finite time:

T̄?
i = max(T̄ω

i , T̄P
i )

subject to {
T̄ω

i ≤ T?
i + (V̄ω

i (T?
i ))

(1−αω)/2/cω(1− αω)2(α
ω−1)/2,

T̄P
i ≤ T?

i + (V̄P
i (T

?
i ))

(1−αP)/2/cP(1− αP)2(α
P−1)/2.

(5.25)

with

Vω
i (t) =

kω
i · (sω

i (t))
2

2
, VP

i (t) =
kP

i · (sP
i (t))

2

2
(5.26)

�

Proof of Theorem 5.3.2
(
[111],[112]

)
According to the time derivative of (5.15) and (5.18),

the sliding-mode manifold (5.21) can be rewritten as follows:

sω
i (t) =

1
kω

i

(
ω̇i(t)− ˙̂ωi(t)

)
+ cωsign(ξω

i (t))|ξω
i (t)|α

ω − ∑
j∈N c

i

ėω
j (t) (5.27)

and from (5.7), (5.27) can be expressed as:

sω
i (t) =

1
kω

i

(
ûi(t)− ˙̂ωi(t)

)
+ cωsign(ξω

i (t))|ξω
i |α

ω − ∑
j∈N c

i

ėω
j (t) (5.28)

Substituting the local control (5.13a) into (5.28) yields:

sω
i (t) =

1
kω

i

(
ueq

ωi(t) + usw
ωi
(t)− ˙̂ωi(t)

)
+ cωsign(ξω

i (t))|ξω
i (t)|α

ω − ∑
j∈N c

i

ėω
j (t) (5.29)

Additionally, substituting (5.13b) into (5.29) yields:

sω
i (t) =

usw
ωi
(t)

kω
i

(5.30)

From (5.19), the following constraint under the condition usw
ωi
(t0) = 0 can be held:

Kω
T ≥ Tω Mω ≥ Tω|usw

ωi
(t)|max ≥ Tω|usw

ωi
(t)| (5.31)

Thus, the following inequality is always met:

Tω|usw
ωi
(t)| ≤ Kω

T . (5.32)

Applying the same analysis on the sliding-mode manifold (5.22) yields:

sP
i (t) =

usw
Pi
(t)

kP
i

(5.33)

Regarding (5.20) and (5.14c), the following inequality under the condition of usw
Pi
(t0) =

0 can be obtained:

TP|usw
Pi
(t)| ≤ KP

T . (5.34)
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The Lyapunov function candidate of each DG can be defined as:

Ei(t) = Vω
i (t) + VP

i (t) (5.35)

where

Vω
i (t) =

kω
i · (sω

i (t))
2

2
, VP

i (t) =
kP

i · (sP
i (t))

2

2
(5.36)

By Taking the time-derivative of Vω
i (t) and using (5.30), we get that:

V̇ω
i (t) = kω

i sω
i (t)ṡ

ω
i (t) = sω

i (t)u̇
sw
ωi
(t) (5.37)

Moreover, from (5.13c) we can write:

V̇ω
i (t) = sω

i (t)
(
−Mωsign(sω

i (t))− Tωusw
ωi
(t)
)

= −
(
Kω

T + ηω
)
|sω

i (t)| − Tωusw
ωi
(t)sω

i (t)

=

(
− Tωusw

ωi
(t)sω

i − Kω
T |sω

i |(t)
)
− ηω|sω

i (t)| (5.38)

According to (5.19) and (5.32), (5.38) can be finally recast as:

V̇ω
i (t) ≤

(
Kω

T |sω
i (t)| − Kω

T |sω
i (t)|

)
− ηω|sω

i (t)|

= −ηω|sω
i (t)| = −ηω

√
2

kω
i
(Vω

i (t))0.5 < 0 (5.39)

Taking the time-derivative of VP
i (t) and using the similar analysis as above, it results that:

V̇P
i (t) ≤ −ηP

√
2
kP

i
(VP

i (t))
0.5 < 0 ∀ ηP > 0. (5.40)

Thus, by combining (5.39) and (5.40), one derives that:

Ėi(t) = V̇ω
i (t) + V̇P

i (t) < 0 ∀ ηP > 0, ηω > 0

The case of Ei(t) = 0 yields in sω
i (t) = ṡω

i (t) = 0 and sP
i (t) = ṡP

i (t) = 0 in the finite time
T?

i , which according to the Lemma 2.2.4 can be rewritten as:

T?
i = max(Tω

i , TP
i )

subject to: Tω
i ≤

√
2kω

i Vω
i (0)/(ηω)2

TP
i ≤

√
2kP

i VP
i (0)/(η

P)2

It can be proved that when the sliding variables sω
i (t) and sP

i (t) converge to zero, the errors
of the frequency and the active power goes to zero in the T̄?

i .

Now, we select the Lyapunov function as Ēi = V̄ω
i + V̄P

i with:

V̄P
i (t) = (eP

i (t))
2/2 (5.41)

V̄ω
i (t) = (ξω

i (t))
2/2 (5.42)
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Such that the time derivative of the time derivative of V̄P
i (t) and V̄ω

i (t) can be derived as:

˙̄VP
i (t) = eP

i (t)ė
P
i (t) = −eP

i (t)c
Psign(eP

i (t))|eP
i (t)|α

P
= −cP|eP

i (t)|1+αP

= −cP2(1+αP)/2(V̄P
i (t))

(1+αP)/2 < 0 (5.43)
˙̄Vω
i (t) = ξω

i (t)ξ̇
ω
i (t) = −ξω

i (t)c
ωsign(ξω

i (t))|ξω
i (t)|α

ω
= −cP|ξω

i (t)|1+αω

= −cω2(1+αω)/2(V̄ω
i (t))(1+αω)/2 < 0 (5.44)

Hence, combining (5.43) and (5.44), concludes:

Ēi(t) = V̄P
i (t) + V̄ω

i (t) < 0

Considering Ēi(t) = 0, the errors of the frequency and the active power converge to zero
while the conditions (5.1)and (5.2) are preserved in the finite time T̄?

i = max(T̄ω
i , T̄P

i ).
Consequently, the theorem is proved. �

Remark 5.3.1 Note that if only achieving the accurate frequency restoration is considered,
we can only use eq. (5.13) and assume that the active power is not measurable and is consid-
ered as an uncertain term. In this condition, we have

ωni(t) =
∫

ûi(t)dt, (5.45)

5.3.1 Finite-time Voltage Regulation

In this subsection, we intend to propose a new voltage restoration SC strategy with
the purpose of voltage regulation. To this aim, we consider:

ũi(t) = ueq
υi (t) + usw

υi
(t), (5.46a)

ueq
υi (t) = − ˙̃wi(t) + ˙̂υi(t) + kυ

i

(
ξ̇υ

i (t)− sυ
i (t) + ∑

j∈N c
i

ėυ
j (t)

)
, (5.46b)

u̇sw
υi
(t) = −Tυusw

υi
(t)−Mυsign

(
sυ

i (t)
)
. (5.46c)

where kυ
i = 1

|N c
i |+αi0

, Tυ ≥ 0 and Mυ ∈ R≥0 are constant gains, while the terms eυ
i (t)

and ξυ
i (t) respectively denote the error and the coupled form of error for the i-th DG,

calculated as follows:

eυ
i (t) = υi(t)− υ̂i(t), (5.47)

ξυ
i (t) =

1
kυ

i
eυ

i (t)− ∑
j∈N c

i

eυ
j (t). (5.48)

where υ̂i(t) gives an estimate of υ0 for i-th DG as follows:

˙̂υi(t) = −γυ
N

∑
j=0

aij[υ̂i(t)− υ̂j(t)]− βυsign
( N

∑
j=0

aij[υ̂i(t)− υ̂j(t)]
)

. (5.49)

where the constants γυ and βυ are non-negative and positive respectively, and ai0 is
the corresponding adjacent weights for the leader. We define υ̂0 , υ0 so that ai0 6= 0
gives υ̂i = υ0. Note that the constant Mυ in (5.46) is chosen as Mυ = ΓQ

i + Kυ
T + ηυ to
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satisfy the following inequality:

Kυ
T ≥ Tυ ·Mυ (5.50)

The sliding variable of the voltage controller can be defined in the same way as the
frequency controller, as:

sυ
i (t) = ξ̇υ

i (t) + cυsign(ξυ
i (t))|ξυ

i (t)|α
υ

(5.51)

where αυ ∈ (0, 1) and cυ > 0.

Theorem 5.3.3 Considering the distributed sliding-mode estimator in (5.49), we assume
that at least one path from the virtual leader to each DG exists at every instant. Let the
tuning parameters satisfy βυ > 0. Then, υ̂i is equal to υ̂0 in a finite time

Tυ
f = max

i
{|υ̂i(0)− υ0|}/βυ, t ≥ Tυ

f .

�

Proof of Theorem 5.3.3 We refer to [110] for details. �

Theorem 5.3.4 Consider the voltage dynamics (5.4) under the voltage restoration SC (5.46).
Let Assumption 2.3.1 and (5.50) be satisfied. If the local control gains satisfy ηυ > 0 , sliding
variable sυ

i (t) in (5.51) converges to zero in the finite time Tυ
i ≤

kυ
i sυ

i (0)
ηυ . Hence, the errors

converge to zero, and accordingly, the voltage restoration condition (5.3) can be achieved in
the following finite time:

T̄υ
i ≤ Tυ

i +
(
V̄υ

i (T
υ
i )
)(1−αυ)/2/cυ(1− αυ)2(α

υ−1)/2. (5.52)

where

Vυ
i (t) =

kυ
i · (sυ

i (t))
2

2
(5.53)

Proof of Theorem 5.3.4 The proof is similar to analyse the stability of the frequency restora-
tion and is omitted here. �

5.4 Simulation Studies

In this section, to evaluate the performance of the proposed SC scheme, we use the
MATLABr/Simulinkr environment to build the simulation model of a 220VRMS
(per phase rms), 50Hz (314rad/s) islanded MG (see Figure. 2.1). The considered
sample microgrid consists of four DGs, four local loads and four transmission lines.
The detailed parameters of the microgird are summarized in Table 3.1. We con-
sider that the SC communication network GN c has the same topology as the power
network shown in Figure. 2.1. We assume that only DG 1 can directly access the
reference voltage υ0 and frequency ω0. As ηω and Tω should be greater than zero,
and in order to satisfy (5.19), we choose ηω = 0.5, Tω = 0.1 and kω

T = 0.5. Likewise,
we choose ηP = 0.5, TP = 0.1 and KP

T = 0.5 to hold (5.20). Similarly, to satisfy (5.50),
we set Kυ

T = ηυ = 5 and Tυ = 0.1.
Moreover, in accordance with Theorems 5.3.1 and 5.3.3, the tuning parameters

of the distributed estimators are selected as γω = γυ = 10, βω = βυ = 18. The
system is tested for 35 seconds. The list of events scheduled throughout the test is
summarized as follows:
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FIGURE 5.1: DG’s frequency ωi(t) under distributed finite-time SC,
i = 1, 2, 3, 4.
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FIGURE 5.2: DG’s voltage υi(t) under distributed finite-time SC, i =
1, 2, 3, 4.

• Step 1 (t = 0− 5s): Only the PC is used with ωni = 2π50rad/s, υni = 220VRMS
(per phase rms).

• Step 2 (t = 5s): The frequency SC (5.13) and the real power control (5.14) are
activated with ω0 = 2π50rad/s.

• Step 3 (t = 10s): The voltage SC (5.46) is activated with υ0 = 220VRMS.

• Step 4 (t = 15− 20s): The load (PL3, QL3) is added/removed by using a three-
phase breaker.
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• Step 5 (t = 20s): The frequency SC’s setpoint is changed to ω0 = 2π50.1rad/s.

• Step 6 (t = 25s): The setpoint for the voltage SC is changed to υ0 = 225VRMS.

As can be observed from Figures. 5.1 and 5.2, during Step 1, when both SCs are
switched off, all the corresponding voltages and frequencies are less than the refer-
ence values and the PC cannot prevent their deviations from the setpoints. To adjust
the microgrid’s voltage and frequency to the desired values and achieve an accurate
real power sharing, the proposed frequency and the real power control are activated
at t = 5s with ω0 = 2π50rad/s. Furthermore, the proposed voltage SC is enabled at
t = 10s with υ0 = 220VRMS.

Figures. 5.1 and 5.2 also demonstrate that the proposed distributed SC robustly
restores the DG’s frequencies and voltages to the expected values in the finite time.
It is clear from Figure. 5.3 that the proposed SC preserves the active power sharing.
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FIGURE 5.3: Comparison between the expected (i.e., kPi /kPj ) and ac-
tual (i.e., Pi/Pj) power sharing ratio under distributed finite-time SC,

i = 1, 2, 3, 4, j 6= i, j > i.

We add the sample load (PL3, QL3) at t = 15s, and then remove it at t = 20s by
a three-phase breaker. The results show that the proposed SCs are robust against
unexpected changes on demands.

Moreover, we modify the frequency and voltage SC setpoints at t = 20s and
t = 25 to ω0 = 2π50.1Hz and υ0 = 225VRMS respectively. Consequently, all DG’s
frequencies and voltages converge to the setpoint values very quickly. The time
evolutions of the proposed SCs are depicted in Figures. 5.4 and 5.5. The results
verify that the frequency and voltage SCs show a satisfactory performance and a
smooth control signals reducing the chattering problem.

5.5 Conclusion

In this chapter, the distributed SC protocols including the finite-time frequency restora-
tion, voltage restoration and active power sharing accuracy are proposed. For each
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FIGURE 5.4: Frequency secondary control ωni (t) under distributed
finite-time SC, i = 1, 2, 3, 4.
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FIGURE 5.5: Voltage secondary control υni (t) under distributed finite-
time SC, i = 1, 2, 3, 4.

DG with no access to the information about the SC’s setpoints, the finite-time dis-
tributed estimators are employed to provide an estimate of the SC’s setpoints. The
proposed distributed SCs use this provided information to regulate all the voltage
and frequency terms to their reference values in a finite time while preserving the
real active power sharing.



67

Chapter 6

Certainty Equivalence Model
Predictive Operation Control

In this chapter, a novel certainty equivalence MPC approach is formulated for the
operation of the mentioned islanded MG in Section 2.4, where the uncertain input is
assumed to be given by the nominal forecast values. The formulation is based on the
model from Section 2.4 and therefore intended for the control of islanded MGs with
high share of RES. This chapter is structured as follows. In Section 6.1, we describe
the concept of MPC. The main contributions of this chapter are provided in Section
6.2. After that, a control-oriented MG model is derived in Section 6.3. In Section 6.4
we quantify the operating costs of the MG. In Section 6.5, we illustrate the properties
of the resulting MPC in a numerical case study. Lastly, we provide a summary and
concluding remarks in Section 6.6.

6.1 Concept of Model Predictive Control

Model predictive control is an optimal control based approach that has been used
in many process industries [113, 114, 115, 116]. The purpose of MPC is to compute
a control input at an instant time by minimizing a cost function of a finite horizon
control problem [117, 118, 119, 120]. More specifically, MPC intends to achieve an
optimal input trajectory that minimizes a cost function J over a prediction horizon
N. Hence, the states and internal variables of the system are forecasted in the future.
Unfortunately, the states and internal variables are affected not only by the control
input but also by an uncertain input (see Figure 6.1). Note that because the uncertain
input is usually unknown, its forecast is often used in the optimal control problem.

6.2 Main Contributions

In this chapter, we will propose a certainty equivalence MPC approach for the op-
eration of islanded MG. This approach assumes that the uncertain input follows the
nominal forecast of load and available renewable infeed. The closed-loop setup of
the proposed certainty equivalence MPC scheme for operation of islanded MG is
shown in Figure 6.1.

The main contributions of this chapter are as:

i) We derive the model of an islanded MG with uncertain renewable generation
and loads with very high share of RES. This model, motivated by [121, 122,
72], considers a possible limitation of renewable infeed while limitations on
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Islanded MGCertainty Equivalence
MPC

Input     Uncertain RES   
&  load 

Measurement

      Uncertain RES
& load 

FIGURE 6.1: Certainty equivalence MPC scheme for operation of is-
landed MG at time instant k and ∀j = 0, ..., J − 1.

transmission lines are approximately accounted for using DC power flow ap-
proximations.

ii) We model storage devices as grid-forming units and consider the conversion
losses of storage units in the model by quadratic functions to reduce the error
in storage units state of charge prediction.

iii) we propose a certainty MPC problem for the optimal operation of an MG with
very high share of renewable energy sources.

In what follows, we will derive a control-oriented MG model of the form (2.29).
We start by posing some assumptions.

Assumption 6.2.1 (Lower control layers) The lower control layers, i.e., primary and sec-
ondary control are considered to compensate the frequency and voltage deviations by provid-
ing setpoints to the units as well as establishing the power sharing (see, e.g., [123, 124])
among the grid-forming units. Notice that the MG can run autonomously in these layers for
several minutes.

Assumption 6.2.2 (Conventional units) In terms of time, conventional units have a shorter
start-up and shutdown times than the sampling time of (MPC), meaning that switching ac-
tions are supposed to be instantaneous. Changes in power are instantaneous, i.e., no climb
rates need to be considered.

Assumption 6.2.3 (Storage units) The state of charge can be estimated sufficiently accu-
rately and is accessible to the operation control. The error introduced by neglecting self dis-
charge and conversion losses of storage units is small compared to the uncertainty introduced
by renewable infeed and loads.

Assumption 6.2.4 (RES units and loads) Assuming that the disturbance of the load and
the renewable power output are known in advance.

Assumption 6.2.5 (Transmission lines) It is assumed that the resistance of the electrical
coupling among units and loads of MG as well as reactive power flow is negligible. Since the
voltage amplitudes in the network are constant and the phase angle differences small, the DC
power flow approximations [48] can be employed.
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6.3 Certainty Model Predictive Control

6.3.1 Plant model interface

The power setpoints of the units u(k) = [ut(k)′ us(k)′ ur(k)′]′ ∈ RU , called the
real-valued manipulated variables containing ut(k)′ ∈ RT

≥0 as setpoints of the T
conventional units, us(k)′ ∈ RS the setpoints of the S storage units and ur(k) ∈
RR
≥0 the setpoints of the R (RES). To show that conventional units are enabled or

disabled, we will consider a Boolean input for each conventional units and we collect
all Boolean inputs in a vector δt(k) ∈ {0, 1}T. Moreover, the stored energies of the
storage units are gathered in the state vector x(k) ∈ RS

≥0. The uncertain external
inputs of the model is expressed by w(k) = [wr(k)′ wd(k)′]′, where wr(k) ∈ RR

≥0
shows the maximum available power of the renewable units under given weather
conditions and wd(k) ∈ RD

≥0 the load.

6.3.2 Power of units

We consider p(k) = [pt(k)′ ps(k)′ pr(k)′]′ as the vector of power values, which con-
sists of the power of conventional units, pt(k) ∈ RT

≥0, storage units, ps ∈ RS, and
RES, pr(k) ∈ RR

≥0. It is worth noting that in islanded mode, since production, con-
sumption and storage power must be balanced in presence of uncertain load and
renewable infeed, the power of the units p(k) ∈ RU is not necessarily equal to the
setpoints u(k).

Active power at RES units

Let the active power of renewable units, pr(k), as well as the corresponding set-
points, ur(k), be bounded by:

pmin
r ≤ pr(k) ≤ pmax

r , (6.1a)

pmin
r ≤ ur(k) ≤ pmax

r . (6.1b)

Furthermore, we consider that the power infeed pr,i(k) ∈ R≥0 of any renewable unit
i ∈ N[1,R] can be constrained by the power setpoint ur,i(k) ∈ R≥0. Notice that the
power tracks the setpoint when the maximum possible infeed under current weather
conditions wr,i(k) ∈ R≥0 be greater than or equal ur,i(k). This can be characterized
by using the element-wise min operator as follows:

pr(k) = min(ur(k), wr(k)). (6.2)

To solve the optimization problem, the authors in [125] reformulated (6.2) to a
set of linear inequalities including integer variables as following:

pr(k) ≤ ur(k), (6.3a)
pr(k) ≥ ur(k) + (diag (wr(k))−Mr IR)δr(k), (6.3b)
pr(k) ≤ wr(k), (6.3c)
pr(k) ≥ wr(k)− (diag (wr(k))−mr IR)(1R − δr(k)). (6.3d)

where δr(k) ∈ {0, 1}R represents the free variable and mr ∈ R, mr < min(pmin
r )

and Mr ∈ R≥0, Mr > max(pmax
r ) are the constant coefficients which are computed

offline.



70 Chapter 6. Certainty Equivalence Model Predictive Operation Control

TABLE 6.1: Model-specific variables

Symbol Explanation Unit Size

x Energy of storage units (state) pu h S

ut Setpoint inputs of conventional units pu T
us Setpoint inputs of storage units pu S
ur Setpoint inputs of renewable units pu R
u Setpoint inputs of all units pu U
δt Boolean inputs of conventional units — T
v Vector of all control inputs — Q

wr Uncertain available renewable power pu R
wd Uncertain load pu D
w Vector of all uncertain inputs pu W

pt Active power of conventional units pu T
ps Active power of storage units pu S
pr Active power of renewable units pu R
p Active power of all units pu U
pe Power over transmission lines pu E
δr Boolean auxiliary variables — R
ρ Real-valued auxiliary variable — 1
q̄ Vector of all auxiliary variables — Q

Active power at conventional units

We consider if the conventional unit i ∈ N[1,T] is enabled, i.e., if δt,i(k) = 1, then its
active power is bounded by pmin

t,i ∈ R≥0 and pmax
t,i ∈ R≥0. If the unit is disabled, i.e.,

δt,i(k) = 0, then naturally pt,i(k) = 0. The active power of conventional units with
pmin

t ∈ RT
≥0, pmax

t ∈ RT
≥0 can be written in vector form as:

diag
(

pmin
t
)

δt(k) ≤ pt(k) ≤ diag (pmax
t ) δt(k), (6.4a)

The same holds for the active power setpoints, i.e.,

diag
(

pmin
t
)

δt(k) ≤ ut(k) ≤ diag (pmax
t ) δt(k). (6.4b)

Active power at storage units

Since we assume all storage units are always enabled, all their active power set-
points, active power values are bounded as:

pmin
s ≤ ps(k) ≤ pmax

s , (6.5a)

pmin
s ≤ us(k) ≤ pmax

s . (6.5b)

where pmin
s ∈ RS

≤0 and pmax
s ∈ RS

≥0 represent the known lower and upper power
limits.

6.3.3 Power sharing of grid-forming units

Note that the power of all unites does not necessarily equal to the power setpoints
that are assigned to the system due to variations of load and renewable infeed. We
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assumed that all storage and conventional units are controlled by the lower control
layers so that they share the changes in load and renewable infeed in a desired pro-
portional manner. This so called proportional power sharing (see, e.g., [123, 124])
depends on the design parameter χi ∈ R>0 for all grid-forming units. A practical
choice for χi is, e.g., proportional to the nominal power of the corresponding units.

Power sharing can be formalised as follows. Two units i ∈ N[1,T+S] and j ∈
N[1,T+S], i 6= j are said to share their active power proportionally according to
χi ∈ R>0 and χj ∈ R>0, if the next relation holds:

pi(k)− ui(k)
χi

=
pj(k)− uj(k)

χj
(6.6)

By defining a new auxiliary free variable ρ(k) ∈ R and considering that only en-
abled units, namely units i with δt,i(k) = 1, can participate in power sharing, (6.6)
can be recast for all grid-forming units with Kt = diag

(
[ 1

χ1
· · · 1

χT
]′
)

and Ks =

diag
(
[ 1

χ(T+1)
· · · 1

χ(T+S)
]′
)

as [125]

Kt(pt(k)− ut(k)) = ρ(k)δt(k) and (6.7a)
Ks(ps(k)− us(k)) = ρ(k)1S. (6.7b)

For the formulation of the optimisation problem, [125] by using a similar strategy as
described in [126] transform (6.7a) into the following set of linear inequalities with
integer variables:

Kt(pt(k)− ut(k)) ≤ Mtδt(k), (6.8a)
Kt(pt(k)− ut(k)) ≥ mtδt(k), (6.8b)
Kt(pt(k)− ut(k)) ≤ 1Tρ(k)−mt(1T − δt(k)), (6.8c)
Kt(pt(k)− ut(k)) ≥ 1Tρ(k)−Mt(1T − δt(k)). (6.8d)

where Mt ∈ R can be calculated offline and its value should be greater than the
biggest possible value of ρ(k). Hence, with the biggest possible value for the stor-
age units, ρmax

s = max(Ks(pmax
s − pmin

s )), and for the conventional units, ρmax
t =

max(Kt(pmax
t − pmin

t )), Mt has to be chosen such that max
(
ρmax

s , ρmax
t
)
< Mt. More-

over, mt = −Mt.

6.3.4 Dynamics of storage units

The dynamics of all storage units can be formulated as:

x(k + 1) = x(k)− Ts ps(k)− TsF
(

ps(k)
)
, (6.9)

Let Ts ∈ R>0 be the sampling time. The stored energy is denoted by x(k) with
initial state x(0) = x0. The constraint of the stored energy is given by:

xmin ≤ x(k + 1) ≤ xmax, (6.10)

with xmin = 0S and xmax ∈ RS
≥0. In particular, F

(
ps(k)

)
= [ f1

(
ps,1(k)

)
, . . . , fS

(
ps,S(k)

)
]′

is a vector of S ∈ N where each of its element represents a model of conversion
losses of storage units, considered to be a convex quadratic function as follows:

fi
(

ps,i(k)
)
= aps,i(k)2 + bps,i(k) + c, a, b, c ∈ R (6.11)
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where ps,i(k) is assumed to be limited as:

ps,i(k) ∈ Di =
{

ps,i(k)|pmin
s,i ≤ ps,i(k) ≤ pmax

s,i
}

(6.12)

To solve the optimization problem, it is useful to reformulate the function f
(

ps,i(k)
)

as piecewise affine functions, i.e, (see, e.g., [126]):

fi
(

ps,i(k)
)
=


A1,i ps,i(k) + B1,i, ps,i(k) ∈ D1,i,
A2,i ps,i(k) + B2,i, ps,i(k) ∈ D2,i,

...
Ar,i ps,i(k) + Br,i, ps,i(k) ∈ Dr,i.

(6.13)

in which Ay,i, By,i ∈ R and the following holds:⋃
1≤y≤r

Dy,i = Di (6.14a)

⋂
1≤y≤r

Dy,i = 0 (6.14b)

and on the borders of sequential Dy, the linear segments are connected, which
means that fi

(
ps,i(k)

)
is continuous.

The condition ps,i(k) at each partition Dy,i can be associated to a binary variable
δy,i(k) ∈ {0, 1}, ∀y = 1, 2, . . . , r, satisfying the exclusive-or condition:

r⊕
y=1

[δy,i(k) = 1]. (6.15)

such that:
[δy,i(k) = 1]←→ ps,i(k) ∈ Dy,i (6.16)

From (6.15) there exists some δy,i(k) = 1, which implies ps,i(k) ∈ Dy,i, a contradiction
by (6.14b). (6.14)-(6.16) are therefore equivalent to:

JT
y,i ps,i(k)−HT

y,i ≤M?
i [1− δy,i(k)] (6.17a)

r

∑
y=1

δy,i(k) = 1 (6.17b)

with Jy,i =
[
1 −1

]
for y = {1, . . . , r} and i = {1, . . . , S} and Hy,i represents a vector

of 2, where the first row of Hy,i is equal to the lower bound of the Dy,i with a minus
sign while its second row is the upper bound. M?

i in (6.17a) can be computed as:

M?
i
∼= max

ps,i(k)∈Di

JT
y,i ps,i(k)−HT

y,i (6.18)

By using this binary variable, we can recast (6.13) as follows:

fi
(

ps,i(k)
)
=


A1,i ps,i(k) + B1,i, if δ1,i(k) = 1,
A2,i ps,i(k) + B2,i, if δ2,i(k) = 1,

...
Ar,i ps,i(k) + Br,i, if δr,i(k) = 1.

(6.19)
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Therefore, (6.19) can be rewritten as:

fi
(

ps,i(k)
)
=

r

∑
y=1

[Ay,i ps,i(k) + By,i]δy,i(k). (6.20)

Unfortunately, (6.20) is nonlinear, since it involves products between logical vari-
ables and inputs. Therefore, we transform it into equivalent mixed-integer linear
inequalities. This can be done using a similar strategy as proposed in [126]. To this
aim, we set:

fi
(

ps,i(k)
)
=

r

∑
y=1

zy,i(k) (6.21a)

zy,i(k) ∼= [Ay,i ps,i(k) + By,i]δy,i(k). (6.21b)

Then, (6.21b) is equivalent to:

zy,i(k) ≤ M̃iδy,i(k),

zy,i(k) ≥ m̃iδy,i(k),

zy,i(k) ≤ Ay,i ps,i(k) + By,i − m̃i(1− δy,i(k)), (6.22)

zy,i(k) ≥ Ay,i ps,i(k) + By,i − M̃i(1− δy,i(k)). (6.23)

being

M̃i
∼= max

y=1,...,r

{
max

ps,i(k)∈Di

Ai,y ps,i(k) + Bi,y

}
. (6.24a)

m̃i
∼= min

y=1,...,r

{
max

ps,i(k)∈Di

Ai,y ps,i(k) + Bi,y

}
. (6.24b)

Remark 6.3.1 Notice that in [125], the dynamics of all storage units are considered without
piecewise affine losses model, namely,

x(k + 1) = x(k)− Ts ps(k), (6.25)

with
xmin ≤ x(k + 1) ≤ xmax, (6.26)

6.3.5 Transmission network

Following [71, 127], the DC power flow approximations can be employed to extract
the power of transmission lines, pe(k) = [pe,1(k) . . . pe,E(k)]′. Hence, the power
on lines can be formulated from the power of units and load using the following
linear equation:

pe(k) =F · [p(k)′ wd(k)′]′, (6.27a)

where F ∈ RE×(U+D) represents a matrix that links the power flowing over the lines
with the power produced or consumed by the units and loads. More details about
the derivation of F described in [71, 128]. It is assumed that pe(k) be bounded by:

pmin
e ≤ pe(k) ≤ pmax

e (6.27b)

with pmin
e ∈ RE

≤0 and pmax
e ∈ RE

≥0. This assumption is reasonable due to the physical
limitation in transmission capability of the lines. Moreover, the produced power
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must be equal to the consumed power at all times, e.g.

1′T pt(k) + 1′S ps(k) + 1′R pr(k) = 1′Dwd(k). (6.27c)

6.3.6 Overall model

In accordance with equations considered for the different parts of an islanded MG,
the overall model can be formulated as follows. The constraints on power and set-
point originate from (6.4), (6.1) and (6.5), namely,diag (pmax

t ) δt(k)
pmax

s
pmax

r

 ≤ u(k) ≤

diag
(

pmin
t
)

δt(k)
pmin

s
pmin

r

 (6.28a)

and diag (pmax
t ) δt(k)

pmax
s

pmax
r

 ≤ p(k) ≤

diag
(

pmin
t
)

δt(k)
pmin

s
pmin

r

 (6.28b)

By referring to (6.9), the dynamics of the storage unit are described by

x(k + 1) = x(k)− Ts ps(k)− Ts[ f1
(

ps,1(k)
)
, . . . , fS

(
ps,S(k)

)
]′, (6.28c)

with constraint functions
xmin ≤ x(k + 1) ≤ xmax, (6.28d)

fi
(

ps,i(k)
)
=

r

∑
y=1

zy,i(k) (6.28e)

zy,i(k) ≤ M̃iδy,i(k),

zy,i(k) ≥ m̃iδy,i(k),

zy,i(k) ≤ Ay,i ps,i(k) + By,i − m̃i(1− δy,i(k)),

zy,i(k) ≥ Ay,i ps,i(k) + By,i − M̃i(1− δy,i(k)). (6.28f)

The renewable infeed which is a function of the setpoint and the available power
under weather conditions is given by (6.3) as

pr(k) ≤ ur(k), (6.28g)
pr(k) ≥ ur(k) + (diag (wr(k))−Mr IR)δr(k), (6.28h)
pr(k) ≤ wr(k), (6.28i)
pr(k) ≥ wr(k)− (diag (wr(k))−mr IR)(1R − δr(k)). (6.28j)
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Power sharing of the grid-forming units is described by (6.7) which, using (6.8), can
be recast into

Kt(pt(k)− ut(k)) ≤ Mtδt(k), (6.28k)
Kt(pt(k)− ut(k)) ≥ mtδt(k), (6.28l)
Kt(pt(k)− ut(k)) ≤ 1Tρ(k)−mt(1T − δt(k)), (6.28m)
Kt(pt(k)− ut(k)) ≥ 1Tρ(k)−Mt(1T − δt(k)). (6.28n)

Lastly, the power limit of the transmission lines is introduced by (6.27), i.e.,

pmin
e ≤ F · [pt(k)′ ′ps(k)′ ′pr(k)′ wd(k)′]′ ≤ pmax

e (6.28o)

1′T pt(k) + 1′S ps(k) + 1′R pr(k) = 1′Dwd(k). (6.28p)

Now, let us compute a compact form of (6.28). From (6.28c) and by denoting q̄(k) =
[p(k)′ δr(k)′ ρ(k)]′ and B = [0S×T − Ts(IS + F) 0S×2R+1], we can obtain Eq. (2.29a),
namely,

x(k) + Bq̄(k)− x(k + 1) = 0, (6.29a)

By following (6.28d), we have

H1 · x(k + 1) ≤ h1, (6.29b)

with H1 = diag([1′S − 1′S]
′) and h1 = [(xmax)′ (−xmin)′]′.

Finally, according to (6.28a)-(6.28b) and (6.28n)-(6.28p), the next equations can be
yield as

H2 ·
[
v(k)′ q̄(k)′ w(k)′

]′ ≤ h2, (6.29c)

G ·
[
v(k)′ q̄(k)′ w(k)′

]′
= g, (6.29d)

where H2 and h2 in (2.29c) are formed such that they reflect (6.1), (6.3)–(6.5), (6.8)
and (6.27b). Additionally, G and g in (2.29d) are formed such that they reflect (6.7b),
(6.27a) and (6.27).

6.4 Operating Costs

In this section, an operating cost function for an MG is extracted which reflects
the main objectives: (i) economic operation, (ii) low number of switching actions,
(iii) high use of RES and (iv) desired state of storage units. Let us employ cost func-
tions that are motivated by [129].

The cost function at each node i ∈ V consists of two parts. The first part is
specified by `o(v(k − 1), v(k), q̄(k + 1)) ∈ R≥0 that reflects items (i)–(iii) and the
second part is denoted by `s(q̄(k)) ∈ R≥0 that corresponds to (iv).

The economically motivated cost comprises (i) operating costs of conventional
units, `rt

t (v(k), q̄(k + 1)) ∈ R≥0, (ii) costs caused by switching conventional units
on or off, `sw

t (v(k − 1), v(k)) ∈ R≥0, and (iii) costs incurred by low utilisation of
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renewable sources, `r(q̄(k + 1)) ∈ R≥0, i.e.,

`o(v(k− 1), v(k), q̄(k + 1)) = `rt
t (v(k), q̄(k + 1)) + `sw

t (v(k− 1), v(k))
+ `r(q̄(k + 1)). (6.30)

By following [130], the operating cost of the conventional units can be formulated
as:

`rt
t (v(k), q̄(k + 1) = c′tδt(k) + c̃′t pt(k) + pt(k)′ diag (ĉt) pt(k), (6.31)

with weights ct ∈ RT
>0, c̃t ∈ RT

>0 and ĉt ∈ RT
>0.

The switching cost of a conventional generator can be modeled by considering
that it was disabled at time instant k − 1 and is enabled at time instant k, or was
enabled at time instant k− 1 and is disabled at time instant k, i.e,

`sw
t (v(k), v(k− 1)) = (δt(k− 1)− δt(k))′ diag (csw

t ) (δt(k− 1)− δt(k)) (6.32)

with weight csw
t ∈ RT

>0.
The renewable unit costs can be adjusted by considering a penalty for using less

than the maximal power pmax
r , i.e.,

`r(v(k), q̄(k + 1)) = (pmax
r − pr(k + 1))′ diag (ĉr) (pmax

r − pr(k + 1)) + c̃′rur(k) (6.33)

with weight c̃r ∈ RR
>0, ĉr ∈ RR

>0. Note that ur(k) is added to ensure that the setpoint
does not exceed the maximum available power wr(k + 1).

Finally, storing energy usually causes conversion losses. To represent the costs
associated with these losses, the term

`s(q̄(k)) = c̄s + ps(k)′ diag (c̃s) ps(k) (6.34)

with weight c̃s ∈ RS
>0, ĉs ∈ RS

>0 are included in the cost function.

6.5 Case study

In this section, we intend to verify the properties of the certainty equivalence model
predictive control strategy proposed in Section 6.3. The microgrid structure depicted
in Figure 2.3 is used for the simulations. It consists of a storage, a conventional
and a renewable unit. The detailed parameters of the microgird are summarized in
Table 6.2.

TABLE 6.2: Parameters of the Microgrid Test System

Parameter Value Weight Value[
pmin

t , pmin
r , pmin

s
] [

0.4, 0,−1
]

pu ct 0.1178[
pmax

t , pmax
r , pmax

s
] [

1, 2, 1
]

pu ĉt 0.0048 1/pu[
xmin, xmax] [

0, 7
]

pu h c̃t 0.751 1/pu[
x̃min, x̃max] [

0.5, 6.5
]

pu h c̃r 0.0001
x0 3 pu h ĉr 1 1/pu[
Kt, Ks

] [
1, 1
]

c̃s 0.09
M̃i 0.1 ĉs 0.01
m̃i -0.17 csw

t 0.1
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We considered the susceptance and conductance of the transmission lines be-
tween units and load equal to bij = −20pu and gij = 0pu, respectively. Thus, ac-
cording to equation (6.27a), the relation between the power of the units and the load
and the power of the transmission is obtained as follows:

pe,1(k)
pe,2(k)
pe,3(k)
pe,4(k)

 =


1 0 0 0
0 −1/3 1/3 0
0 2/3 1/3 0
0 1/3 2/3 0




pt,1(k)
ps,1(k)
pr,1(k)
wd,1(k)

 (6.35)

It is assumed that the transmission power of each line is between -1.3pu and 1.3pu.
Simulations were performed by using MATLAB 2018b with a sampling time of Ts =
30 min and a simulation horizon of 7 d, i.e., 336 data points. For MPC, a prediction
horizon of N = 12, a sampling time of Ts = 30 min were selected. Note that the
storage unit has a relatively high capacity compared to the rated power which shows
in xmax = 7pu. Also the model of conversion losses of storage unit is modeled by
a quadratic function as f1

(
ps,1(k)

)
= 0.09ps,1(k)2 + 0.01. Moreover, we reformulate

the function f1
(

ps,1(k)
)

as the following linear cases:

f1
(

ps,1(k)
)
=


−0.135ps,1(k)− 0.035, −1 ≤ ps,1(k) ≤ −0.5,
−0.045ps,1(k) + 0.01, −0.5 ≤ ps,1(k) ≤ 0,
0.045ps,1(k) + 0.01, 0 ≤ ps,1(k) ≤ 0.5,
0.135ps,1(k)− 0.035, 0.5 ≤ ps,1(k) ≤ 1.

(6.36)

In accordance with equations (6.24a), (6.24b) and (6.36), we chosen M̃i = 0.1 and
m̃i = −0.17. We formulate the MPC problems in MATLAB using the YALMIP
toolbox and solve numerically with Gurobi. Here, we first compare the predic-
tion error of the state of charge in the cases with considering the dynamic storage
with piecewise affine loss model (6.9)-(6.24) and the dynamic storage without piece-
wise affine loss model (6.25)-(6.28d) in the MPC problem. We formulated this error
as e(k) = x(k) − x̃(k), wherein x(k) is the actual state of charge of the nonlinear
loss model given the same power values whereas x̃(k) is the forecast of the state
of charge. To show the results of this comparison, for both cases an analysis was
carried out. In the analysis, closed-loop simulations were performed over 366 simu-
lation steps. For each simulation step, the state of charge prediction of the controllers
(over 12 prediction steps) were compared to a prediction performed with the non-
linear plant model for the same storage power values. Then, at each prediction step,
the probability distribution of the prediction errors was visualised in the form of box
plots(see Figure 6.2). The circle of each box marks the median value of prediction er-
rors of 336 data points in each prediction step. The box around the median values
contains all data from the 25th to the 75th percentile. The down dash of each box
represents the lowest occurring value of prediction errors in each step whereas the
up dash marks the highest occurring value.

It can be seen in Figure 6.2 that including the conversion losses in the proposed
model predictive controller, the prediction error is reduced. For example, at N =
1, when the conversion loss model is not employed in the controller, the median
value is 5× 10−3. By adding the conversion loss model in the controller, this value
is decreased 3 times to 1.5 × 10−3. It is worth noting that this ratio increases as
the prediction horizon raises. As can be observed from the last step of Figure 6.2,
the median value of the error equal to 9× 10−2 when the conversion loss model is
not included in the controller whereas this value is reduced to 2× 10−2 when the
conversion loss model is added to MPC problem formulation.
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FIGURE 6.2: The prediction error of the state of charge (Up) With the
dynamic storage without piecewise affine loss model (6.25)-(6.28d)
in the controller; (Down) With the dynamic storage with piecewise

affine loss model (6.9)-(6.24) in the controller.

The closed-loop simulation results of power of units and load as well as stored
energy and line power of the MG are depicted in Figure 6.3. It can be noted that at
the beginning of period, since the available power of renewable is low, the storage
unit is discharging. When the battery is empty, the conventional generator is en-
abled to provide power to the load. As soon as the available power of the renewable
unit is sufficient to provide power to the load, the conventional unit is disabled and
the storage unit is begin charged. When the stored energy reaches the upper end
of the desired state of charge, the setpoint of the wind turbine is set such that the
wind power only covers the load. Thus, the stored energy approximately remains
at xmax = 6.5 pu h. At some point, the available renewable unit power cannot en-
tirely cover the load and the storage is discharged. When the renewable unit reaches
the minimum value xmin = 0.5 pu h. and the storage unit is totally discharged, the
conventional unit is activated again to provide power to the load. In the end of the
simulation, the available power of the renewable unit increases again such that the
storage unit can be charged with the available renewable unit power. Note that the
line power in the lower plot was within the given bounds of ±1.3 pu at all times.

6.6 Conclusion

In this chapter, we presented a novel certainty model predictive control approach for
the operation of islanded MG with very high share of renewable energy sources. To
this aim, we modelled the conversion losses of storage units by quadratic functions
to reduce the error in storage units state of charge prediction.
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FIGURE 6.3: Power of units and load.

In the future, we would like to consider AC optimal power flow (OPF) problems
which are more realistic than the widely used linearised DC power flow approxima-
tions. To solve the AC OPF problems, we intend to employ a convex relaxation of
the original problem which led to a second-order cone program (SOCP) that can be
solved by available commercial software.
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Chapter 7

Conclusion

In what follows, a summary of this thesis is provided in Section 7.1. Moreover, future
research directions are highlighted in Section 7.2.

7.1 Summary

This thesis deals with the problem of voltage and frequency restoration and opti-
mization of AC MGs in some important challenges. To solve the problem, the con-
cept of MGs and hierarchical control of them were provided in Chapter 1. Further-
more, the important challenges in controlling AC MGs such as (i) challenge in solv-
ing the problem of restoration in the presence of multiple non-uniform time-varying
communication delays and nonlinear model uncertainties; (ii) challenge in solving
the problem of restoration in finite-time under parameters uncertainties and unex-
pected load variations and (iii) challenge in optimising the operation of MGs in the
presence of the power conversion losses terms have been reported in this chapter. A
nonlinear islanded MG model, consisting of a set of DGs and loads was presented
in Chapter 2 for designing SCs. Moreover, a mathematical model of an islanded MG
was derived for providing operation control. In this model, the following compo-
nents are considered: (a) energy storage units; (b) renewable energy sources, where
the power infeed can be bounded, namely, if storage units are fully charged; and (c)
conventional units that can be switched off, e.g., in times of high available renewable
infeed.

In Chapter 3, to address challenge (i), two novel nonlinear robust distributed
SC protocols were proposed, one for the frequency, and one for the voltage, capa-
ble of restoring, globally, and asymptotically, the DGs voltage and frequency to the
desired value, and robust against multiple time-varying delays in the DGs’s com-
munications a class of parameter uncertainties and exogenous disturbances. Each
SC consists of an integral sliding mode control term and a linear consensus scheme
with adaptive gains. Robustness against model nonlinearities and uncertainties was
achieved by means of the integral sliding mode control term embedded in both pro-
posed SC protocols. Then, the global frequency and voltage restoration stability de-
spite the communication delays were demonstrated through Lyapunov-Krasovskii
analysis. Using Lyapunov-Krasovskii analysis led to derive the set of linear matrix
inequalities that were a function of time-varying control gains. However, due to the
construction of the adaptive control gains, it has been proven that there exists a con-
stant control that ensures the asymptotic stability of the closed-loop system. Hence,
a novel optimal distributed secondary voltage control was proposed in Chapter 4 to
extend the proposed secondary voltage control in Chapter 3. Compared to the adap-
tive SC approach in Chapter 3, the local control gains Chapter in 4 were considered
as constant values. Note that by considering the control gains as constant values,
the LMIs obtained in the stability analysis, unlike Chapter 3, are not time-varying.
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Therefore, given the delay bounds, and because of the stability conditions results
that were a function of the controller gains, an optimization algorithm was proposed
in order to find the optimal controller gains and estimate the maximal delay margin
tolerated by the controlled system. Chapter 5 focussed on solving the frequency and
voltage restoration problem in finite-time under the model uncertainties and distur-
bances. In this way, two novel distributed SC protocols for frequency and voltage
were proposed based on the sliding-mode approach. Although this approach is not
more realistic than the proposed SCs in Chapters 3 and 4 due to the absence of com-
munication delays, it was proven that the DG’s frequencies and voltages converge
to the desired values in the finite time instead of asymptotic time under parameters
uncertainties and unexpected load variations.

Using the mathematical model of an islanded MG in Chapter 2 and based on the
generic MPC formulation and the nominal forecasts of load and available renewable
infeed, in Chapter 6 a novel certainty equivalence operation control scheme with
very high share of renewable energy sources was proposed to optimise the operation
of MG systems. To make the MG model more realistic, the power conversion losses
were considered by the quadratic functions in the dynamic of storage units. More-
over, to reduce the error in storage units state of charge prediction, the conversion
losses functions was reformulated by the piecewise affine functions and included in
the proposed controller.

7.2 Future research directions

The future research directions can be divided into two parts: (i) extension of sc ap-
proaches (ii) extension of operation schemes.

A possible extension for the current distributed SCs under commination delays is
to remove the assumption of slowly varying delay. Another exciting extension will
be targeted at relaxing the assumed restrictions on the communication topology by
covering possibly switching gossip-based asynchronous communications. The next
interesting extension would be to relax the non-convex optimization algorithm in
Chapter 4 to convex ones and use traditional methods to solve the (convex) relaxed
optimization problem. Another idea would be to design a distributed SC strategy
that deals with both delays and finite time convergence. Other interesting lines of in-
vestigation that represents a natural continuation of this research are, the possibility
to manage active loads, or exploit seamless distributed transfer strategies for the MG
to switch from islanded to the grid-connected mode by means of local interactions
among DGs.

One possible extension for the current operation control is to consider AC op-
timal power flow (OPF) problems which are more realistic than the widely used
linearised DC power flow approximations. To solve the AC OPF problems, we in-
tend to use a convex relaxation of the original problem which leads to a second-order
cone program (SOCP) that can be solved by available commercial software. Differ-
ent uncertainties could be included into the model. In the current operation control,
only uncertain forecasts of load and available renewable infeed were considered.
Hence, another possible step could be to extend the model by inducing uncertain
storage dynamic and availability of power lines. Experimental validations are also
one important future works, that will allow a performance assessment of the pro-
posed techniques in a real scenario.



82

Bibliography

[1] Paul M Anderson and AA Fouad. Power system control and stability. John Wi-
ley & Sons, 2003.

[2] Prabha Kundur, Neal J Balu, and Mark G Lauby. Power system stability and
control. Vol. 7. McGraw-hill New York, 1994.

[3] Martin Pehnt. “Dynamic life cycle assessment (LCA) of renewable energy
technologies”. In: Renewable energy 31.1 (2006), pp. 55–71.

[4] Robert H Lasseter. “Microgrids”. In: 2002 IEEE Power Engineering Society Win-
ter Meeting. Conference Proceedings (Cat. No. 02CH37309). Vol. 1. IEEE. 2002,
pp. 305–308.

[5] JA Peças Lopes, CL Moreira, and AG Madureira. “Defining control strategies
for microgrids islanded operation”. In: IEEE Transactions on power systems 21.2
(2006), pp. 916–924.

[6] N Hatziargyriou, H Asano, R Iravani, and C Marnay. Microgrids. IEEE Power
Energy Mag 5 (4): 78–94. 2007.

[7] Faridaddin Katiraei, Mohammad Reza Iravani, and Peter W Lehn. “Micro-
grid autonomous operation during and subsequent to islanding process”. In:
IEEE Transactions on power delivery 20.1 (2005), pp. 248–257.

[8] Josep M Guerrero, Juan C Vasquez, José Matas, Luis García De Vicuña, and
Miguel Castilla. “Hierarchical control of droop-controlled AC and DC micro-
grids—A general approach toward standardization”. In: IEEE Transactions on
industrial electronics 58.1 (2010), pp. 158–172.

[9] Josep M Guerrero, Mukul Chandorkar, Tzung-Lin Lee, and Poh Chiang Loh.
“Advanced control architectures for intelligent microgrids—Part I: Decen-
tralized and hierarchical control”. In: IEEE Transactions on Industrial Electron-
ics 60.4 (2012), pp. 1254–1262.

[10] Ali Bidram and Ali Davoudi. “Hierarchical structure of microgrids control
system”. In: IEEE Transactions on Smart Grid 3.4 (2012), pp. 1963–1976.

[11] Ali Mehrizi-Sani and Reza Iravani. “Potential-function based control of a
microgrid in islanded and grid-connected modes”. In: IEEE Transactions on
Power Systems 25.4 (2010), pp. 1883–1891.

[12] Tine L Vandoorn, Juan C Vasquez, Jeroen De Kooning, Josep M Guerrero,
and Lieven Vandevelde. “Microgrids: Hierarchical control and an overview
of the control and reserve management strategies”. In: IEEE industrial elec-
tronics magazine 7.4 (2013), pp. 42–55.

[13] Ali Bidram, Ali Davoudi, Frank L Lewis, and Shuzhi Sam Ge. “Distributed
adaptive voltage control of inverter-based microgrids”. In: IEEE Transactions
on Energy Conversion 29.4 (2014), pp. 862–872.



Bibliography 83

[14] Alessandro Pilloni, Alessandro Pisano, and Elio Usai. “Robust finite-time
frequency and voltage restoration of inverter-based microgrids via sliding-
mode cooperative control”. In: IEEE Transactions on Industrial Electronics 65.1
(2018), pp. 907–917.

[15] Joan Rocabert, Alvaro Luna, Frede Blaabjerg, and Pedro Rodriguez. “Control
of power converters in AC microgrids”. In: IEEE transactions on power elec-
tronics 27.11 (2012), pp. 4734–4749.

[16] Ajay Krishna, Christian A Hans, Johannes Schiffer, Jörg Raisch, and Thomas
Kral. “Steady state evaluation of distributed secondary frequency control
strategies for microgrids in the presence of clock drifts”. In: 2017 25th Mediter-
ranean Conference on Control and Automation (MED). IEEE. 2017, pp. 508–515.

[17] Fanghong Guo, Changyun Wen, Jianfeng Mao, and Yong-Duan Song. “Dis-
tributed economic dispatch for smart grids with random wind power”. In:
IEEE Transactions on Smart Grid 7.3 (2015), pp. 1572–1583.

[18] Farid Katiraei, Reza Iravani, Nikos Hatziargyriou, and Aris Dimeas. “Micro-
grids management”. In: IEEE power and energy magazine 6.3 (2008), pp. 54–65.

[19] Dirk Lehmkuhl, Kurt Rohrig, Céline Trousseau, and Michel Vandenbergh.
“Energy management system for Island grids”. In: (2004).

[20] Alessandra Parisio, Evangelos Rikos, and Luigi Glielmo. “A model predictive
control approach to microgrid operation optimization”. In: IEEE Transactions
on Control Systems Technology 22.5 (2014), pp. 1813–1827.

[21] Antonis G Tsikalakis and Nikos D Hatziargyriou. “Centralized control for
optimizing microgrids operation”. In: 2011 IEEE power and energy society gen-
eral meeting. IEEE. 2011, pp. 1–8.

[22] Ali Bidram and Ali Davoudi. “Hierarchical structure of microgrids control
system”. In: IEEE Transactions on Smart Grid 3.4 (2012), pp. 1963–1976.

[23] Josep M Guerrero, Mukul Chandorkar, Tzung-Lin Lee, and Poh Chiang Loh.
“Advanced control architectures for intelligent microgrids—Part I: Decen-
tralized and hierarchical control”. In: IEEE Transactions on Industrial Electron-
ics 60.4 (2012), pp. 1254–1262.

[24] JA Peças Lopes, CL Moreira, and AG Madureira. “Defining control strategies
for microgrids islanded operation”. In: IEEE Transactions on power systems 21.2
(2006), pp. 916–924.

[25] Gian Paolo Incremona, Michele Cucuzzella, Lalo Magni, and Antonella Fer-
rara. “MPC with sliding mode control for the energy management system of
microgrids”. In: IFAC-PapersOnLine 50.1 (2017), pp. 7397–7402.

[26] Michele Cucuzzella, Gian Paolo Incremona, and Antonella Ferrara. “Decen-
tralized sliding mode control of islanded ac microgrids with arbitrary topol-
ogy”. In: IEEE Transactions on Industrial Electronics 64.8 (2017), pp. 6706–6713.

[27] Gian Paolo Incremona, Michele Cucuzzella, and Antonella Ferrara. “Adap-
tive suboptimal second-order sliding mode control for microgrids”. In: Inter-
national Journal of Control 89.9 (2016), pp. 1849–1867.

[28] Florian Dörfler, John W Simpson-Porco, and Francesco Bullo. “Breaking the
hierarchy: Distributed control and economic optimality in microgrids”. In:
IEEE Transactions on Control of Network Systems 3.3 (2016), pp. 241–253.



84 Bibliography

[29] Sebastian Trip, Michele Cucuzzella, Claudio De Persis, Antonella Ferrara,
and Jacquelien MA Scherpen. “Robust load frequency control of nonlinear
power networks”. In: International Journal of Control 93.2 (2020), pp. 346–359.

[30] Yousef Khayat, Mobin Naderi, Qobad Shafiee, Yazdan Batmani, Mohammad
Fathi, Josep M Guerrero, and Hassan Bevrani. “Decentralized optimal fre-
quency control in autonomous microgrids”. In: IEEE Transactions on Power
Systems 34.3 (2018), pp. 2345–2353.

[31] Juan M Rey, Pau Martí, Manel Velasco, Jaume Miret, and Miguel Castilla.
“Secondary switched control with no communications for islanded micro-
grids”. In: IEEE Transactions on Industrial Electronics 64.11 (2017), pp. 8534–
8545.

[32] Yanbo Wang, Zhe Chen, Xiongfei Wang, Yanjun Tian, Yongdong Tan, and
Chao Yang. “An estimator-based distributed voltage-predictive control strat-
egy for AC islanded microgrids”. In: IEEE Transactions on Power Electronics
30.7 (2015), pp. 3934–3951.

[33] Guannan Lou, Wei Gu, Liufang Wang, Bin Xu, Ming Wu, and Wanxing Sheng.
“Decentralised secondary voltage and frequency control scheme for islanded
microgrid based on adaptive state estimator”. In: IET Generation, Transmission
& Distribution 11.15 (2017), pp. 3683–3693.

[34] Wei Gu, Guannan Lou, Wen Tan, and Xiaodong Yuan. “A nonlinear state
estimator-based decentralized secondary voltage control scheme for autonomous
microgrids”. In: IEEE Transactions on Power Systems 32.6 (2017), pp. 4794–4804.

[35] Martin Andreasson, Dimos V Dimarogonas, Henrik Sandberg, and Karl Hen-
rik Johansson. “Distributed control of networked dynamical systems: Static
feedback, integral action and consensus”. In: IEEE Transactions on Automatic
Control 59.7 (2014), pp. 1750–1764.

[36] Jiahu Qin, Qichao Ma, Yang Shi, and Long Wang. “Recent advances in con-
sensus of multi-agent systems: A brief survey”. In: IEEE Transactions on In-
dustrial Electronics 64.6 (2016), pp. 4972–4983.

[37] Sebastian Trip, Michele Cucuzzella, Claudio De Persis, Arjan van der Schaft,
and Antonella Ferrara. “Passivity-based design of sliding modes for optimal
load frequency control”. In: IEEE Transactions on control systems technology 27.5
(2018), pp. 1893–1906.

[38] Qobad Shafiee, Josep M Guerrero, and Juan C Vasquez. “Distributed sec-
ondary control for islanded microgrids—A novel approach”. In: IEEE Trans-
actions on power electronics 29.2 (2014), pp. 1018–1031.

[39] John W Simpson-Porco, Florian Dörfler, and Francesco Bullo. “Synchroniza-
tion and power sharing for droop-controlled inverters in islanded micro-
grids”. In: Automatica 49.9 (2013), pp. 2603–2611.

[40] Fanghong Guo, Changyun Wen, Jianfeng Mao, and Yong-Duan Song. “Dis-
tributed secondary voltage and frequency restoration control of droop-controlled
inverter-based microgrids”. In: IEEE Transactions on industrial Electronics 62.7
(2015), pp. 4355–4364.

[41] John W Simpson-Porco, Qobad Shafiee, Florian Dörfler, Juan C Vasquez, Josep
M Guerrero, and Francesco Bullo. “Secondary frequency and voltage control
of islanded microgrids via distributed averaging”. In: IEEE Transactions on
Industrial Electronics 62.11 (2015), pp. 7025–7038.



Bibliography 85

[42] Ali Bidram, Ali Davoudi, Frank L Lewis, and Zhihua Qu. “Secondary control
of microgrids based on distributed cooperative control of multi-agent sys-
tems”. In: IET Generation, Transmission & Distribution 7.8 (2013), pp. 822–831.

[43] Ali Bidram, Ali Davoudi, Frank L Lewis, and Josep M Guerrero. “Distributed
cooperative secondary control of microgrids using feedback linearization”.
In: IEEE Transactions on Power Systems 28.3 (2013), pp. 3462–3470.

[44] Alberto Petrillo, Alessandro Salvi, Stefania Santini, and Antonio Saverio Va-
lente. “Adaptive synchronization of linear multi-agent systems with time-
varying multiple delays”. In: Journal of the Franklin Institute 354.18 (2017),
pp. 8586–8605.

[45] Ali Jadbabaie, Jie Lin, and A Stephen Morse. “Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules”. In: IEEE Transactions
on automatic control 48.6 (2003), pp. 988–1001.

[46] Fen Tang, Josep M Guerrero, Juan C Vasquez, Dan Wu, and Lexuan Meng.
“Distributed active synchronization strategy for microgrid seamless recon-
nection to the grid under unbalance and harmonic distortion”. In: IEEE Trans-
actions on Smart Grid 6.6 (2015), pp. 2757–2769.

[47] John W Simpson-Porco, Florian Dörfler, and Francesco Bullo. “Voltage stabi-
lization in microgrids via quadratic droop control”. In: IEEE Transactions on
Automatic Control 62.3 (2017), pp. 1239–1253.

[48] Qing-Chang Zhong. “Robust droop controller for accurate proportional load
sharing among inverters operated in parallel”. In: IEEE Transactions on Indus-
trial Electronics 60.4 (2011), pp. 1281–1290.

[49] Johannes Schiffer, Thomas Seel, Jorg Raisch, and Tevfik Sezi. “Voltage stabil-
ity and reactive power sharing in inverter-based microgrids with consensus-
based distributed voltage control”. In: IEEE Transactions on Control Systems
Technology 24.1 (2016), pp. 96–109.

[50] Shichao Liu, Xiaoyu Wang, and Peter Xiaoping Liu. “Impact of communi-
cation delays on secondary frequency control in an islanded microgrid”. In:
IEEE Transactions on Industrial Electronics 62.4 (2015), pp. 2021–2031.

[51] Ernane Antonio Coelho, Dan Wu, Josep M Guerrero, Juan C Vasquez, Tomis-
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