9,186 research outputs found

    Study of active subscription control parameters in large-scale smart spaces

    Get PDF
    The development of smart spaces for Internet of Things (IoT) environments meets the scalability challenge since many participants are involved into the distributed computation. In particular, many sensors continuously provide data, many reasoners analyze the sensed data to construct services, and many mobile clients regularly join and leave the smart space to consume the services. The network interaction is information- driven, using a semantic information broker, which implements a passive strategy for subscription. The strategy leads to performance bottleneck. We continue our study of the active control strategy, when a part of subscription processing is delegated to the subscribers. The client multiplicatively decreases its check interval, if subscription notifications are lost, and additively increases the interval, otherwise. We study the role of strategy parameters: the client can select their values preliminary and keep fixed, or the client can change them dynamically depending on the recent situation. With the aim we provide mathematical model which represents important performance metrics as a function of strategy parameters. Analytical result are validated by experimental evaluation. Additionally, our simulation experiments evaluate the scalability in dependence on the number of participants

    SciTech News Volume 71, No. 3 (2017)

    Get PDF
    Columns and Reports From the Editor.........................3 Division News Science-Technology Division....5 Chemistry Division....................8 Conference Report, Marion E, Sparks Professional Development Award Recipient..9 Engineering Division................10 Engineering Division Award, Winners Reflect on their Conference Experience..15 Aerospace Section of the Engineering Division .....18 Architecture, Building Engineering, Construction, and Design Section of the Engineering Division................20 Reviews Sci-Tech Book News Reviews...22 Advertisements IEEE..........................................

    Discovery, monitoring and management in smart spaces composed of low capacity nodes

    Get PDF
    This paper introduces a lightweight architectural solution for discovery, monitoring and management of nodes, services and resources in smart spaces composed of low capacity nodes. A wireless sensor network software architecture is used as the baseline and is extended to a scalable smart space architecture. Discovery, monitoring and management tasks are realized by means of a Resource Manager that acts as just another node. The proposed architecture is deployed on physical wireless sensor nodes. Experimental results show that the proposed smart space architecture is indeed lightweight and suitable for very low capacity nodes. Keywords: Lightweight smart space architecture, low capacity node, service discovery, resource discovery

    Discovery, monitoring and management in smart spaces composed of low capacity nodes

    Get PDF
    This paper introduces a lightweight architectural solution for discovery, monitoring and management of nodes, services and resources in smart spaces composed of low capacity nodes. A wireless sensor network software architecture is used as the baseline and is extended to a scalable smart space architecture. Discovery, monitoring and management tasks are realized by means of a Resource Manager that acts as just another node. The proposed architecture is deployed on physical wireless sensor nodes. Experimental results show that the proposed smart space architecture is indeed lightweight and suitable for very low capacity nodes. Keywords: Lightweight smart space architecture, low capacity node, service discovery, resource discovery

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    It's about THYME: On the design and implementation of a time-aware reactive storage system for pervasive edge computing environments

    Get PDF
    This work was partially supported by Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) through project DeDuCe (PTDC/CCI-COM/32166/2017), NOVA LINCS UIDB/04516/2020, and grant SFRH/BD/99486/2014; and by the European Union through project LightKone (grant agreement n. 732505).Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. In this article, we address the challenge of supporting reliable and efficient data storage and dissemination among co-located wireless mobile devices without resorting to centralized services or network infrastructures. We propose THYME, a novel time-aware reactive data storage system for pervasive edge computing environments, that exploits synergies between the storage substrate and the publish/subscribe paradigm. We present the design of THYME and elaborate a three-fold evaluation, through an analytical study, and both simulation and real world experimentations, characterizing the scenarios best suited for its use. The evaluation shows that THYME allows the notification and retrieval of relevant data with low overhead and latency, and also with low energy consumption, proving to be a practical solution in a variety of situations.publishersversionpublishe
    • …
    corecore