1,147 research outputs found

    Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model: Conventional Observation

    Full text link
    This paper presents an approach for employing artificial neural networks (NN) to emulate an ensemble Kalman filter (EnKF) as a method of data assimilation. The assimilation methods are tested in the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localization of balloon soundings. For the data assimilation scheme, the supervised NN, the multilayer perceptrons (MLP-NN), is applied. The MLP-NN are able to emulate the analysis from the local ensemble transform Kalman filter (LETKF). After the training process, the method using the MLP-NN is seen as a function of data assimilation. The NN were trained with data from first three months of 1982, 1983, and 1984. A hind-casting experiment for the 1985 data assimilation cycle using MLP-NN were performed with synthetic observations for January 1985. The numerical results demonstrate the effectiveness of the NN technique for atmospheric data assimilation. The results of the NN analyses are very close to the results from the LETKF analyses, the differences of the monthly average of absolute temperature analyses is of order 0.02. The simulations show that the major advantage of using the MLP-NN is better computational performance, since the analyses have similar quality. The CPU-time cycle assimilation with MLP-NN is 90 times faster than cycle assimilation with LETKF for the numerical experiment.Comment: 17 pages, 16 figures, monthly weather revie

    Accuracy of Numerical Solution to Dynamic Programming Models

    Get PDF
    Dynamic programming models with continuous state and control variables are solved approximately using numerical methods in most applications. We develop a method for measuring the accuracy of numerical solution of stochastic dynamic programming models. Using this method, we compare the accuracy of various interpolation schemes. As expected, the results show that the accuracy improves as number of nodes is increased. Comparison of Chebyshev and linear spline indicates that the linear spline may give higher maximum absolute error than Chebyshev, however, the overall performance of spline interpolation is better than Chebyshev interpolation for non-smooth functions. Two-stage grid search method of optimization is developed and examined with accuracy analysis. The results show that this method is more efficient and accurate. Accuracy is also examined by allocating a different number of nodes for each dimension. The results show that a change in node configuration may yield a more efficient and accurate solution.Research Methods/ Statistical Methods,

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Efficient intrusion detection scheme based on SVM

    Get PDF
    The network intrusion detection problem is the focus of current academic research. In this paper, we propose to use Support Vector Machine (SVM) model to identify and detect the network intrusion problem, and simultaneously introduce a new optimization search method, referred to as Improved Harmony Search (IHS) algorithm, to determine the parameters of the SVM model for better classification accuracy. Taking the general mechanism network system of a growing city in China between 2006 and 2012 as the sample, this study divides the mechanism into normal network system and crisis network system according to the harm extent of network intrusion. We consider a crisis network system coupled with two to three normal network systems as paired samples. Experimental results show that SVMs based on IHS have a high prediction accuracy which can perform prediction and classification of network intrusion detection and assist in guarding against network intrusion

    Reinforcing POD-based model reduction techniques in reaction-diffusion complex networks using stochastic filtering and pattern recognition

    Full text link
    Complex networks are used to model many real-world systems. However, the dimensionality of these systems can make them challenging to analyze. Dimensionality reduction techniques like POD can be used in such cases. However, these models are susceptible to perturbations in the input data. We propose an algorithmic framework that combines techniques from pattern recognition (PR) and stochastic filtering theory to enhance the output of such models. The results of our study show that our method can improve the accuracy of the surrogate model under perturbed inputs. Deep Neural Networks (DNNs) are susceptible to adversarial attacks. However, recent research has revealed that Neural Ordinary Differential Equations (neural ODEs) exhibit robustness in specific applications. We benchmark our algorithmic framework with the neural ODE-based approach as a reference.Comment: 19 pages, 6 figure

    Uncertainty quantification for wind energy applications

    Get PDF
    Uncertainties are omni-present in wind energy applications, both in external conditions (such as wind and waves) as well as in the models that are used to predict key quantities such as costs, energy yield, and fatigue loads. This report summarizes and reviews the application of uncertainty quantification techniques to wind energy problems. In th
    • 

    corecore