
Staff Paper P06-3 January 2006

Staff Paper Series

Accuracy of Numerical Solution to Dynamic Programming Models

by
Heman D. Lohano and Robert P. King

DEPARTMENT OF APPLIED ECONOMICS

COLLEGE OF AGRICULTURAL, FOOD, AND ENVIRONMENTAL SCIENCES
UNIVERSITY OF MINNESOTA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7079667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Staff Paper P06-3 January 2006

Accuracy of Numerical Solution to Dynamic Programming Models

Heman D. Lohano and Robert P. King

The analyses and views reported in this paper are those of the authors. They are not necessarily endorsed
by the Department of Applied Economics or by the University of Minnesota.

The University of Minnesota is committed to the policy that all persons shall have equal access to its
programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex,
age, marital status, disability, public assistance status, veteran status, or sexual orientation.

Copies of this publication are available at http://agecon.lib.umn.edu/. Information on other titles in this
series may be obtained from: Waite Library, University of Minnesota, Department of Applied Economics,
232 Classroom Office Building, 1994 Buford Avenue, St. Paul, MN 55108, U.S.A.

Copyright (c) (2006) by Heman D. Lohano and Robert P. King. All rights reserved. Readers may make
copies of this document for non-commercial purposes by any means, provided that this copyright notice
appears on all such copies.

 2

ACCURACY OF NUMERICAL SOLUTION TO DYNAMIC PROGRAMMING MODELS

Heman D. Lohano and Robert P. King1

Abstract

Dynamic programming models with continuous state and control variables are solved approximately using
numerical methods in most applications. We develop a method for measuring the accuracy of numerical
solution of stochastic dynamic programming models. Using this method, we compare the accuracy of
various interpolation schemes. As expected, the results show that the accuracy improves as number of
nodes is increased. Comparison of Chebyshev and linear spline indicates that the linear spline may give
higher maximum absolute error than Chebyshev, however, the overall performance of spline interpolation
is better than Chebyshev interpolation for non-smooth functions. Two-stage grid search method of
optimization is developed and examined with accuracy analysis. The results show that this method is more
efficient and accurate. Accuracy is also examined by allocating a different number of nodes for each
dimension. The results show that a change in node configuration may yield a more efficient and accurate
solution.

1. INTRODUCTION

A decision maker must consider future decisions and uncertainty when making current decisions, so most
empirical problems in economics are dynamic and stochastic in nature. Dynamic programming is an
approach for numerically solving dynamic models. This approach offers considerable flexibility for
incorporating real world situations such as nonlinearity and uncertainty in the dynamic economic models.

Economic models commonly have continuous variables such as prices, returns, wealth, assets, and
consumption. Dynamic programming problems with continuous state and control variables are solved
approximately using numerical methods in most applications, with the exception of some very simple
deterministic problems that have closed-form solution. One approach for numerically solving these
problems is the discretization method, in which continuous state and control variables are discretized in
finite sets, and the value function is approximated with a step function (Judd, 1996, p. 562). This method is
reliable if the discretization is made sufficiently fine. Despite advances in computer technology, however,
this method becomes impractical for large-scale problems due to limitations of computer storage capacity
and of execution time, referred to as the curse of dimensionality (Judd, 1998, pp. 430-33). An alternative,
numerically efficient approach is the parametric approach, such as interpolation with polynomials or spline
functions, for approximating the value function due to Bellman and Dreyfus and Bellman, Kalaba, and
Kotkin.

Implementation of the parametric approach requires choosing the number of nodes, type of nodes and basis
functions, optimization method, and integration method. A great challenge in implementation is to choose
an appropriate scheme that gives maximum accuracy given the limitations of computer storage capacity
and execution time. Johnson et al. and Santos (1999, 2000) have compared accuracy and reduction of
computational efforts under various numerical methods for solving dynamic programming models. For
multidimensional problems, there are several alternative ways of allocating number of nodes for each
dimension. Numerically solving a large-scale stochastic dynamic programming problem involves technical

1 Heman D. Lohano is an Assistant Professor of Agricultural Economics, Sindh Agriculture University, Tando Jam,
Pakistan. Robert P. King is Professor and head of the Department of Applied Economics, University of Minnesota, St.
Paul, Minnesota.

 3

challenges in the implementation due to stochastic nature of variables.2 In addition to comparing selected
numerical methods, our purpose here is to propose new techniques for improving accuracy and reducing
computational effort in solving large-scale stochastic dynamic programming model.

Measuring the accuracy of the solution of dynamic programming problem poses difficult challenges. One
method for checking accuracy is to compare the solution with an actual closed-form solution. However, this
method can only be applied when there is a closed-form solution. Another approach is to analyze the Euler
equation residuals (Judd, 1992; den Haan and Marcet). However, this approach is of limited value since the
problem may not be characterized by the required conditions such as the Euler equation. Another approach
to checking accuracy is to compare the solution from one method with the solution from a method assured
to be more reliable (Santos, 1999, 2000). However, this approach can be misleading since all numerical
methods have error. Measuring accuracy is important not only for choosing an appropriate numerical
method but also for knowing the validity and robustness of the solution of the problem. Thus, there is a
need for a flexible, reliable method for measuring the accuracy of the solution of a stochastic dynamic
programming problem.

This paper develops a method for measuring numerical solution accuracy of a stochastic dynamic
programming model. Using this method, which is based on Monte Carlo simulation, this paper evaluates
and compares accuracy of alternative numerical methods, and proposes techniques for improving accuracy
in solving a large-scale dynamic programming model. This paper also addresses some of the technical
challenges associated with representing stochastic variables in a large dynamic programming problem. The
accuracy issues considered in this paper are addressed and tested using a dynamic programming problem of
farmland investment and financial management. This problem has one control variable and four state
variables of which two state variables are stochastic.

The remainder of this paper is organized as follows. Section 2 presents a general overview of the theory of
dynamic programming and the parametric approach for solving continuous-state dynamic programming
problems. Section 3 specifies the investment decision problem used for accuracy analysis, and describes its
implementation for numerical solution. Section 4 develops the method for measuring the accuracy of
numerical solution of a stochastic dynamic programming model. Section 5 presents accuracy results.
Finally, Section 6 summarizes the results and draws conclusions.

2. DYNAMIC PROGRAMMING AND NUMERICAL METHODS

Dynamic programming is an approach that “takes a sequential or multistage decision process containing
many interdependent variables and converts it into a series of single-stage problems, each containing only a
few variables” (Nemhauser, p. 6). There is an extensive literature on dynamic programming and its
application to economic problems. Stokey and Lucas with Prescott present a rigorous overview of dynamic
programming and its properties with application to economic models. Rust surveys the literature on
numerical methods and their properties for solving dynamic programming models in economics. Santos
(1999) reviews some numerical techniques and their accuracy in solving economic models. Miranda and
Fackler apply dynamic programming and numerical methods, implemented in MATLAB, to solve a wide
range of dynamic decision problems. This section presents a brief overview of the dynamic programming
approach and numerical methods for solving sequential decision problems with discrete time, finite
horizon, stochastic states, and continuous state and control variables.

2 Stochastic dynamic programming models are also referred to as Markov decision processes or stochastic control
problems in the literature.

 4

2.1 Sequential Decision Problem

Consider a general problem with J continuous state variables and K continuous control variables. Let Sj be
a set of all levels of state variable j for j  1,2, . . . ,J . The state space S is defined as
S  S1  S2 . . .SJ , which is the Cartesian product of all Sj ’s. An arbitrary element of S is denoted

by s . Let Xk be the nonempty set of all levels of control variable k for k  1,2, . . . ,K . The control

space X is the Cartesian product of all Xk ’s. An arbitrary element of X is denoted by x . For each state

variable j , a random shock j is distributed with a density function f jj  . Let Ej be a set of all levels of

random shocks. E is the Cartesian product of all Ej ’s. An arbitrary element of E is denoted by  . This
specification also characterizes deterministic state variables. The random shocks and the density function
can accordingly be defined to represent a deterministic state variable.3 Let  be a function from S  X

into R , and let G be a function4 from S  X  E into S . We assume that the spaces S , X , E , and the

functions  , G , f j , are for all t , that is, they are invariant to time.5

Decisions are made at the beginning of each period, t  0,1, . . . ,T , where T is a finite positive integer.

If st  S is the state at the beginning of period t and x t  X is chosen in this state, then st,x t is

the one-period reward, and the state in the next period is given by st1  Gst,x t,t1  , where
t1  E is a random shock realized in the next period. Let usT1 be the terminal reward function for

time T  1 , and   0,1 be the one-period discount factor. The decision maker’s objective is to
maximize expected sum of rewards:

xtt0
T

max E
T

t0

  tst,x t   T1usT1 

subject to:

st1  Gst,x t,t1 , x t  X, for t  0,1,2, . . . ,T,

s0  S given.

 (1)

3For example, when the random shock is additive, for a state variable i , we can define i  0 to be the only element

in Ei , and f ii   1 to represent the deterministic variable.

4The control space, X , may be defined as
X  x : s  S,   E, and Gs,x,  S

. However,

especially with stochastic state variables, the condition of Gs,x,  S with multiple state variables may yield

stringent restrictions on the control space, or the condition may not satisfy for some state variables.
5While the dynamic programming approach does not require this assumption, it is common in most applications.

 5

In the case of all deterministic state variables, the decision maker chooses a sequence of controls x t
 t0

T

in period 0 . In the case with at least one stochastic state variable, the decision maker chooses x 0


 and

makes contingency plans of x t
 for periods t  1,2, . . . ,T . These contingency plans depend on st ,

which will be known after the realization of the shocks in period t , t .

2.2 Bellman’s Equation

In this section, problem (1) is converted into Bellman’s Equation. As the optimal policy for problem (1) is

sought for each period t  1,2, . . . ,T , this problem can be viewed as solving the following sequence of

problems for each t  0,1, . . . ,T :

xt
T

max E
T

t

 ts,x    T1tusT1 

subject to:

s1  Gs,x ,1 , x   X, for   t, t  1, . . . ,T,

st  S given.

(2)

Note that st can take any value from S , so we seek the solution of the above problem for all st  S . The
formulation (2) is the basis for solving this problem by converting it into Bellman’s Equation, and is
explained by Bellman (p. 83) as the Principle of Optimality:

An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision.

Define the value function for each t  0,1, . . . ,T , for all s  S :

Vts 
xt

T
max E

T

t

 ts,x    T1tusT1   st  s

(3)

Note that we have omitted subscript t for the state s in the value function because the value function is

defined for all s , not just the realized state in period t . From the above definition, it follows that the value
function satisfies Bellman’s equation:

Vts 
x

max s,x  E Vt1st1  st  s, x t  x

(4)
with the terminal (boundary) condition:

 6

VT1s  us

(5)
For finite horizon problems, the value function Vts and optimal solution x t

s can be found by

backward induction using (4) and (5). Given VT1s for all s  S , as defined by (5), we find x T
s for

all s  S by using (4) for t  T and get VTs for all s  S . Using VTs for all s  S , we find
x T1
 s for all s  S by using (4) for t  T  1 and get VT1s for all s  S . This way we find

x t
s and Vts for all s  S for each t  0,1, . . . ,T . The result of the dynamic programming

approach is that the optimal solution of (1) can be obtained by solving Bellman’s equation (4).

2.3 Terminal Optimization

A special case of sequence problem (1) is terminal optimization, where the objective function is the utility
of state in the end of the planning horizon. Let .   0 for t  0,1,2, . . . ,T , and   1 , then
problem (1) is terminal optimization:

xtt0
T

max EusT1 

subject to:

st1  Gst,x t,t1 , x t  X, for t  0,1,2, . . . ,T,

s0  S given.

(6)

The corresponding Bellman’s equation can be written as:

Vts 
x

max E Vt1st1  st  s, x t  x

(7)
with the terminal (boundary) condition:

VT1s  us,

(8)
where the value function for each t  0,1, . . . ,T , for all s  S , is defined as:

Vts 
xt

T
max EusT1   st  s

(9)

2.4 Numerical Solution Methods

Continuous-state dynamic programming problems lack closed-form solutions in most applications, with the
exception of some very simple deterministic dynamic programming models. Thus, model solutions must be
approximated by numerical methods. A variety of computational methods are available for numerically

 7

solving a dynamic programming model with continuous state and control variables. The choice of method
depends on the assumptions for a given model. One special case of the dynamic programming model is the
linear-quadratic problem, in which the state equations are assumed to be linear and the reward function to
be quadratic. Optimal value and policy functions can be derived analytically in this case. The method for
solving such problems, the linear-quadratic approach, is of limited value, however, since the necessary
assumptions do not hold for many problems. Methods that do not make these assumptions include: (1) the
discretization method and (2) the parametric approach. Under the discretization method, continuous state
and control variables are discretized in finite sets, and the value function is solved and stored for the
selected elements in the state space. When solving the problem requires the value function at points other
than selected state set, its approximation is used. As mentioned in the introduction, discretization method
becomes impractical for large-scale problems (Judd, 1998, pp. 430-33).

To overcome these limitations, Bellman and Dreyfus (p. 17) suggest using affine (linear) functions or a
high degree polynomial to approximate the value function. This approach was developed as interpolation
by piecewise polynomial splines. Bellman and Dreyfus (p. 323) also introduced polynomial approximation
for the whole domain of the state variables, formally presented in Bellman, Kalaba, and Kotkin.
Interpolation by polynomials or piecewise polynomials is an efficient and common parametric approach
used in dynamic programming models. This parametric approach yields a value function defined over all
values in the range of the state space. “The basic idea is that it should be better to approximate the
continuous-value function with continuous functions and put no restrictions on the states and controls other
than those mandated by the problem” (Judd, 1998, p. 433). Like the discretization method, the parametric
approach requires solving the value function for a prespecified finite state set. Instead of storing the value
function for each element in the state set, this approach fits a functional form. Miranda and Fackler refer to
the interpolation approach in dynamic programming as the collocation method, and this term is also used in
this study.

2.4.1 Collocation Method

The collocation method approximates a functional equation in such a way that the approximated function
fits exactly at the prespecified points of the domain (Judd, 1998, p. 384). The collocation method is
flexible, accurate, and numerically efficient for most applications in economics and finance (Miranda and
Fackler).

The collocation method approximates a function with a linear combination of N basis functions using N

prescribed points of the domain, called the collocation nodes, where N is a finite positive integer. For

approximating the value functions V1s,V2s, . . . ,VTs , the domain is the state space. We define

a series of N basis functions  is i1
N

 for s  S.

The value function Vts is approximated by:

Vts 
N

i1

 cit is

where the basis coefficients cit i1
N

 are to be determined. Value functions are approximated following
backward induction using Bellman’s equation. Now Bellman’s equation (4) can be written as:

 8

N

i1

 cit is 
x

max us,x  E
N

i1

 ci,t1 ist1  st  s, x t  x

(10)

where st1  Gst,x t,t1  . Note that the value function VT1 is given in (5) and is used for

approximating VT . For all other t , we use the approximated Vt1 , that is,

N

i1

 ci,t1 is
. By the

collocation method, (10) is solved for each of N nodes. Let sn n1
N

 be a series of N nodes selected

from the state space such that sn  S .6 Let v nt be the maximum value in the above problem for each

node. Then we have for each node n  1,2, . . . ,N :

N

i1

 cit isn   v nt

(11)

This gives a system of N equations with the N unknown coefficients ci
t i1

N
. The N equations in (11)

may be expressed as:

  ct  v t

where  is an N  N matrix in which the nth row and ith column is  itsn  , ct is a column vector

denoting the coefficients cit i1
N

, and v t is a column vector of v ntn1
N

 for all nodes. Then we can

find ct by:

ct  1Vt

Note that we have N nodes as well as basis functions for all state variables, N  N1  N2 . . .NJ ,

where Nj is number of nodes and basis functions for each state variable j  1,2, . . . ,J . In this case, s

and  are tensor products for all state variables. Miranda and Fackler show that matrix 1 can be
formed efficiently by inverting it for each state variable and then making the tensor product. This method
saves storage and computational effort especially when the problem is large.

2.4.2 Implementation of the Collocation Method

Implementing the collocation method to solve a dynamic programming problem requires specifications of:
(i) the type of collocation basis functions and nodes, and the number of nodes, (ii) an optimization method
for finding the maximum value, and (iii) a method for finding expected value, which are described here. In
Section 5 we compare the performance of alternative schemes for these specifications.

6Note that we are using subscript n for the nodal index for explaining the collocation method.

 9

2.4.2.1 Basis Functions and Nodes

In implementing the collocation method, there are a number of choices available for collocation basis
functions and nodes. Besides choosing the type of basis functions and nodes, the number of nodes must
also be chosen. The Weierstrass Approximation Theorem asserts that every continuous function on a closed
interval can be approximated uniformly to any prescribed accuracy by a polynomial (Schumaker, p. 91).
However, Schumaker emphasizes that this theorem does not provide any guidance on the order of
polynomials. Polynomial basis functions have long been used in approximating functions due to their
properties of smoothness, differentiability, and efficiency in numerically implementation. Bellman and
Dreyfus and Bellman, Kalaba, and Kotkin suggest using polynomial basis functions with orthogonality
properties, such as Chebyshev and Legendre polynomials. Though polynomials have attractive properties,
they may not perform well due to their oscillating behavior. In general the accuracy of polynomials
increases as the order of polynomials is increased, but this does not hold for every function to be

approximated. For example, when Runge’s function,
1

1s2 , is approximated with Chebyshev polynomials
and uniform nodes, the error grows as the order of polynomials is increased.7 However, when Chebyshev
nodes are used, instead of uniform nodes, the error decreases as the order of polynomials is increased.

The choice of basis functions and nodes depends on the characteristics of the function to be approximated.
Approximation theory suggests that use of Chebyshev polynomial basis functions coupled with Chebyshev
nodes may be a superior choice for smooth functions. However, if the approximated function is not smooth,
use of spline basis functions coupled with uniform nodes may be a better choice (Miranda and Fackler).
Approximation with spline basis functions is made piecewise and has narrow supports. Thus, it avoids the
oscillating behavior that is common with polynomial interpolation (Santos, 1999, p. 338).

We explain here interpolation with Chebyshev basis functions and nodes and with spline basis functions
and uniform nodes. These basis functions and nodes are also explained by Miranda and Fackler, by Gerald
and Wheatly (Chapters 3 and 10), and by Santos (1999, p. 333). We illustrate these basis functions and

nodes by using a type of Runge’s function,
Fs  1

17s0.1 2 , where s  1,1 . Figure 1(a) plots
the original function. In Figure 1(b), this function is approximated by Chebyshev polynomial basis
functions coupled with Chebyshev nodes. In Figure 1(c), this function is approximated by linear spline
basis functions coupled with uniform nodes. In both cases, the number of nodes is 5 . In Figures 2(a) and
(b), we use 9 nodes for approximation. For 9 nodes, Figure 2(c) shows locations of nodes for Chebyshev
and uniform (i.e. equally spaced) nodes. Chebyshev nodes are more concentrated at the corners. Chebyshev
nodes are appropriately located to avoid oscillation since Chebyshev interpolation is for the whole domain
of the interval. However, in the spline interpolation, the function is approximated by dividing the domain in
smaller intervals.

For both cases, the figures show that the accuracy of approximation improves as the number of nodes is
increased from 5 to 9. When we compare Figures 2(a) and 2(b), we observe larger maximum absolute error
in the spline interpolation than in the Chebyshev interpolation. This can be seen on these graphs at values
of s around 0.1. However, the spline interpolation performs better than Chebyshev interpolation at other
values in the domain. In Section 5, we examine accuracy of numerical solution of dynamic programming
model. We compare the accuracy with different number of nodes, and between spline interpolation and
Chebyshev interpolation.

7The reader is referred to Schumaker (p. 101), Santos (1999, p. 335), and Miranda and Fackler for examples and their

discussion.

 10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

(a) Original function: 2)1.0(71
1)(
−+

=
s

sF

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

(b) Fitted with Chebyshev basis and nodes using 5 nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

(c) Fitted with Linear spline basis and uniform nodes using 5 nodes

Figure 1: Approximation with 5 nodes

 11

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

(a) Fitted with Chebyshev basis and nodes using 9 nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

(b) Fitted with Linear spline basis and uniform nodes using 9 nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Chebyshev nodes
Uniform nodes

s

(c) Nodes

Figure 2: Approximation with 9 nodes

 12

2.4.2.2 Optimization

When using collocation methods to approximate the value function, the optimal value function must be
determined for each node using Bellman’s equation. Miranda and Fackler and Judd (1998, p. 93) describe a
variety of methods for numerical optimization. The golden-section search and Nelder-Mead methods are
derivative-free methods for finding a local optimum. These methods work for any continuous, bounded
function defined on a finite interval. The Newton-Raphson method is faster for finding a local optimum.
However, this method requires a twice differentiable function. Furthermore, this method only identifies a
critical point in the function and requires second derivative information to determine whether the critical
point is a local maximum or a local minimum. Therefore, this method requires more search if we find, for
example, a local minimum when we are searching a local maximum. Another problem with Newton-
Raphson method is that it may not converge (Judd, 1998, p. 96). It is important to note that the above
methods provide a local optimum, instead of the global optimum required for most problems.

The grid search method specifies a grid of points over an interval and finds the optimum from those points
(Judd, 1998, p. 100). Though this method is slow, it is likely to give a near global optimum, since the grid
is specified for the entire range of the interval. Use of the grid search method with the collocation method is
referred to as hybrid method by Fackler and Miranda, because this method discretizes the control space
while using continuous method for approximating the value function. The hybrid method is suitable for
implementation in a matrix processing environment such as MATLAB or GAUSS (Fackler and Miranda).
Discretization of the control space makes it possible to perform the optimization step for all elements of
state set in a matrix. In the present study, we use this method for maximization in the dynamic
programming model. We also introduce a two-stage grid search method, and compare accuracy of
numerical solution of dynamic programming model between one-stage and two-stage grid search method in
Section 5.

2.4.2.3 Integration

In Bellman’s equation (10), the value function depends on the next period state, st1 . For each stochastic
variable, the next period state is a function of a random shock, which generally has a continuous density
function. In models with at least one stochastic state variable, the expected value function must be
evaluated as part of dynamic programming procedure. Numerical integration is a practical approach for
evaluating the expected value function.

Miranda and Fackler and Judd (1998, p. 251) describe a variety of methods available for numerical
integration. The Gaussian quadrature method discretizes the continuous random variable to approximate the
integral of a continuous density function. This method efficiently chooses these discrete points and their
weights for approximating the integral (Judd, 1998, p. 257). A version of this method for normal random
variables is called Gauss-Hermite quadrature, which is explained in Miranda and Fackler and Judd (1998,
p. 261).

3. TEST PROBLEM AND IMPLEMENTATION

In order to improve accuracy and to minimize computational efforts for numerical solution, a dynamic
programming problem should be specified so that it has the smallest possible number of state and control
variables. Burt and Taylor provide a statistical procedure to reduce a state variable for use in a dynamic
programming problem. Santos (1999, p. 350) uses solution of one-period optimization problem to reduce a
control variable of dynamic programming problem. Also, normalization is a common procedure in
economics to reduce the number of variables in the model. Using these techniques, this section specifies an
investment decision problem and describes its implementation for numerical solution. This problem is used
for measuring the accuracy and testing the alternative numerical methods.

 13

3.1 Test Problem

3.1.1 Problem Specification

The investment decision problem has one control variable and four state variables, two of which are
stochastic. In this problem, a farm manager’s objective is to maximize the expected utility of net terminal
wealth through implementation of an optimal policy for investment in risky farmland and a riskless
nonfarm asset or debt financing on farmland in the presence of transaction costs, credit constraints,
stochastic farmland prices and farm returns. This problem is specified as follows:

xtt0
T

max E0uWT1 

subject to :

lnRt1  0  1 lnRt  1,t1 ,

lnPt1  a0  a1 lnPt  a2 lnRt  2,t1 ,

Lt1  Lt  x t,

Wt1  1  rWt  Pt    tcs  Lt  Pt    tc  x t  c  Lt1

 Rt1  Lt1  Pt1    tcs  Lt1 ,

x t  Xt,

for t  0,1,2, . . . ,T, and R0 ,P0 ,L0 ,W0  are given,

(12)

where

r 
rb if Wt  Pt    tcs  Lt  Pt    tc  x t  c  Lt1   0

rl otherwise,

tc 
tcp if x t  0

tcs otherwise,

 0    1 , and E0 is expectation operator over the random shocks 1,t1 ,2,t1 .

The above problem is an extension of models developed by Larson, Stauber, and Burt, and by Schnitkey,

Taylor, and Barry. The utility function in problem (12) is specified as uW  W , for all W , which

represents risk neutral preferences.8 We assume a 20 -year planning horizon, where decisions are made at

the beginning of each year t  0,1, . . . , 19 . The four state variables include: gross return per acre, Rt ,

farmland price per acre Pt , farmland acreage, Lt , and net wealth, Wt . The control variable is number of

8This utility function's strategically equivalent form is

uW  W11
1 when   0 .

 14

acres of farmland to purchase or sell, x t . Given in constraints 1 and 2 in problem (12), the gross return and

farmland price per acre are stochastic state variables and are unaffected by the control variable x t because
this is a firm level decision model where returns and prices cannot be affected by an individual firm’s

action. At the beginning of each year t , the farm manager can purchase or sell farmland. The state equation
of farmland is given in constraint 3 in problem (12).

The state equation of net wealth, Wt , is given in constraint 4 in problem (12). Net wealth is defined as the
sum of liquid assets and the net sale-value of farm assets, which include farmland and the associated farm
machinery and equipment. The price of machinery and equipment required per acre for farming land is

denoted by  . There is a transaction cost per acre of tcp on purchasing land, and no transaction cost on
purchasing machinery and equipment. There is a transaction cost on selling land and machinery and
equipment, and the sum of these transaction costs per acre is denoted by tcs . The purchase or sale decision

for farmland is made in the beginning of each year t , so total land available for farming is Lt1 . The costs

of production per acre are denoted by c , and the total costs of production are equal to c  Lt1 . From the

definition of net wealth, the term Wt  Pt    tcs  Lt in constraint 4 is liquid assets in the

beginning of year t . Investment expenses, Pt    tc  x t , and production costs, c  Lt1 , are

financed from liquid assets and determine net liquid assets. The interest rate is denoted by r. If net liquid

assets are negative, then r  rb (borrowing rate). If net liquid assets are positive, then these assets are

invested in a riskless investment, and r  rl (lending rate). Gross revenue is equal to Rt1  Lt1 , and is
added into liquid assets in the beginning of the next year. From the definition, net wealth in the beginning
of the next year is the sum of liquid assets in the next year and the net sale-value of farm assets in the next
year, which is last term in constraint 4.

There are four constraints on farmland purchase or sale decisions represented in constraint 5 in problem
(12). These include the feasibility constraint, bankruptcy condition, the choice of exiting farming, and

credit constraint. The feasibility constraint is L  Lt  L or Lt  0 , where L denotes minimum

acres required for farming and L denotes maximum feasible acres the manager can own in the location.9

Substituting Lt1  Lt  x t in the feasibility constraint for year t  1 yields the following constraint on
x t :

L  Lt  x t  L  Lt or x t  Lt.

(18)
Under the bankruptcy condition, the farm is liquidated if net wealth is negative at any time:

x t  Lt if Wt  0

(19)

9The bounds on state variables are also required for numerically solving a dynamic programming problem.

 15

Note that when Wt  0 , the manager can potentially choose to sell all land. We assume that once all land
is sold, however, the business cannot re-enter farming:

if x t  Lt, then x t1  x t2 . . . x T  0

(20)
Another constraint is on loans provided by the lender. This constraint allows purchase of land and the
associated machinery and equipment as long as the debt to asset ratio is less than or equal to  , where
0    1 . Farmland price is stochastic, so it is possible that the debt to asset ratio can be above  . We
assume that the lender does not require to sell land in order to maintain this ratio. Therefore, the credit
constraint on x t is:

x t  max 0, Wt  1    Pt    tcs  Lt

Pt    tcp     Pt    tcs

(21)

For notational convenience we denote Xt as the set of all levels of control variables that satisfy (18)-(20),

which are represented in constraint 5 in problem (12). Though the control variable x t is number of acres of
farmland purchased or sold, it implicitly also determines the amount of either debt financing or investment
in the riskless asset, as explained above.

3.1.2 Parameter Estimation

Numerically solving the above investment problem by dynamic programming requires estimates of
parameters of the stochastic state equations and other parameters of the model. Constraints 1 and 2 in
problem (12) are estimated using time series data for Southwestern Minnesota. Gross return per acre is
calculated for the 50-50 corn-soybean mix using data for farms that belong to the Southwestern Minnesota
Farm Business Management Association (SWMFBMA), as published in their Annual Reports for the years
1967-99 (Olson et al.). Time series data for the price of farmland are obtained for Southwestern Minnesota
for years 1966-1992 from the Minnesota Rural Real Estate Market (Schwab and Raup; Brekke, Tao, and
Raup), and for years 1990-1999 from Minnesota Land Economics (Taff). After adjusting data for inflation
using the Consumer Price Index, parameters for these equations are estimated by Ordinary Least Square
(OLS) method following the Box and Jenkins approach for forecasting. For this approach, the Ljung-Box
test is used for testing tat error term is a white noise process. In addition, we tested for the normality of
error term using the Bera-Jarque test.

Estimates for the gross return equation (constraint 1 in problem (12)) are 0  1.052028 ,
1  0.82197 , and error term 1  N0,0.033155 , denoting a normal distribution with its mean
and variance. Gross return equation is a first order autoregressive model, which has one lag and requires
one state variable for t. However, estimates of the farmland price equation turned out to have two lags of
farmland price and one lag of gross returns. Including two lags of farmland price requires an additional
state variable in the model. Using the Burt and Taylor approach, we reduce a state variable in the farmland
price equation and represent the process with one lag of farmland price and one lag of gross return as given
in (constraint 2 in problem (12)). Following this procedure, we have estimates of parameters as
a0  0.048655 , a1  0.884465 , a2  0.134044 , and error term 2  N0,0.014619 for
constraint 2 in problem (12).

 16

Estimates of other parameters are also represented in constant dollars. The interest rate on borrowing is
assumed to be rb  0.06 , which is based on reviewing last five-year interest rate on long-term loans in
farm credit system after adjusting it for inflation (USDA). On lending (riskless investment), the interest rate

is assumed to be rl  0.03 . Based on farm data for Southwestern Minnesota (Olson et al.) and an

interview with Dale Nordquist10, we have following estimates:   $300 , tcp  0.01  Pt ,
tcs  0.06  Pt  0.07   ,   0.7 , and c  $247 .

3.1.3 Dynamic Programming Formulation

Bellman’s equation for solving the above investment problem can be written as:

VtR,P,L,W 
x

max EVt1Rt1 ,Pt1 ,Lt1 ,Wt1  Rt  R,Pt  P,

Lt  L,Wt  W, x t  x

(22)

subject to constraints 1-5 in problem (12) with the boundary condition:

VT1R,P,L,W  uW

(23)

where VtR,P,L,W is the value function defined for each t  0,1, . . . ,T , as:

VtR,P,L,W 
xt

T
max EuWT1   Rt  R,Pt  P,Lt  L,Wt  W

(24)

3.2 Model Implementation

Implementation of the dynamic programming approach to solve the above problem requires specification
state space. The value function for this problem is solved for the following ranges of the states:
220  Rt  620 , 950  Pt  2,215 , 400  Lt  2,000 , and 0  Wt  6,000,000 . The

ranges for Rt and Pt are based on a 90 percent region for their distributions, estimated with their
equations. The range for farmland is chosen for fully owned farms. The lower bound of net wealth is due to

the bankruptcy condition (Wt  0), thus Wt  0 is the condition for staying in farming. The upper
bound of net wealth is arbitrarily chosen to allow no debt at the upper bounds of farmland acreage and its
price.

Given the current state from the above state space, the next period state may go out of bounds. In backward
recursion, we have the value function for the above state space, however, it needs to be computed when the

state in period t  1 is not in the above the ranges.

10Department of Applied Economics, University of Minnesota, St. Paul, Minnesota.

 17

The control variable, x t , is restricted so that Lt1 satisfies the feasibility constraint:
400  Lt1  2,000 or Lt1  0 . Given the range of farmland, the value function needs to be

computed for Lt1  0 , when all farmland is sold. As assumed in the problem, once all farmland is sold,
the business cannot re-enter farming. When there is no farmland, there would be no debt financing, since it
is based on farmland as collateral. Thus, Wt1 is all invested in liquid assets. First, WT1 is computed by

compounding Wt1 at the liquid asset return rate, and then the utility function is evaluated as uWT1  .

Since the liquid asset is a riskless investment, uWT1  is the value function for Lt1  0 , as defined in
(24).

Wt1 can go out of the bounds from the above range due to the stochastic state variables. Unlike the state

variable Lt1 , it is generally not possible to use restrictions on the control variable to ensure that Wt1

will be in the allowable range.11 When Wt1  0 , the value function is computed for the bankruptcy

condition. Under this condition, the farm is liquidated if net wealth is negative Wt1  0 at any time,

which makes Lt1  0 . Thus, the value function can be computed for Lt1  0 as described in the

above paragraph. However, the compounding is done at the debt rate because Wt1  0 . When Wt1 is
greater than the upper bound, the extra amount above the upper bound earns the liquid asset return rate and
is compounded for period T  1 to compute the value function. Note that compounding of net wealth for
Wt  0 yields WT1  0 . In order to maintain continuity of the value function, the value function for

zero current net wealth, Wt  0 , is set as uWT1   u0 .

For the return from crops, to assure that the state in period t  1 is within the bounds, we assume
Rt1  maxR,mingRt,1,t1, R , where R is the lower bound, R is the upper bound, and
gRt,1,t1  denotes the right hand side in the state equation of gross return per acre. This assumption
assigns to the bounds the probability mass for the states beyond the bounds. Similarly, we make this
assumption for the farmland price state variable to assure that Pt1 is within its bounds.12

4. ACCURACY MEASUREMENT

In this section, we develop a method for measuring accuracy of collocation methods for numerically
solving a dynamic programming model. This method is illustrated by using the investment problem
described in the preceding section, but it can be used for any finite planning horizon continuous-state
dynamic programming model. Though this method is developed for checking accuracy of the collocation

11For example, Wt  6000000 , Pt  1000, Lt  1000 , and x t  Lt . If in the next period,

Pt1  1500 and Rt1  250 with some probability, the net wealth will be above 6000000 , and cannot be

put into the bounds with the control variable.
12Another way to solve this problem, as proposed by Miranda and Fackler, is to widen the ranges of the states for given
minimum and maximum error term from numerical integration. However, applying this method for these equations
gives very wide bounds, which are well outside the range of value found in the data.

 18

method, the approach can also be applied for checking the accuracy of other numerical methods such as
discretization.

Suppose we have chosen the type of collocation basis functions and nodes, and the number of nodes, an
optimization method for finding the maximum value, and a method for finding expected value, as described

in Section 3. In the investment problem, there are four state variables, and let N  j1
4 Nj be the total

nodes where Nj are nodes for state j  1,2,3,4 . Following the dynamic programming procedure, we

approximate the value function by
VtR,P,L,W 

N

i1

 cit iR,P,L,W
 for each t  0,1, . . . , 19 ,

as we have assumed a 20-year planning horizon. Having approximated the value function, the optimal
policy x t

 for any state, R,P,L,W , can be found by solving:

x
max E

N

i1

 ci,t1 iRt1 ,Pt1 ,Lt1 ,Wt1  Rt  R,Pt  P,Lt  L,Wt  W

(25)

subject to the constraints 1-5 in the investment problem (12). Suppose we have a initial state
R0 ,P0 ,L0 ,W0 . For this initial state at t  0 we solve the above problem (25) using the approximated

value function. Solving this problem gives the optimal policy x 0


 and the maximum value of the objective

function at that policy, V , for this initial state. We refer to V as the estimated value function, since it is
based on estimation by the collocation method.

The dynamic programming approach ensures that the optimal policy and its objective function take future

decisions into account. By definition of the value function of this problem, V is the expected utility of net
terminal wealth for this initial state. To test the accuracy of the solution, we simulate the objective function

by the Monte Carlo method. For this initial state in t  0 , we apply the optimal policy x 0


 derived using
(25). Given this optimal policy, the state in next period depends on the random shocks. In the model we
have error terms in each of two stochastic state variable equations: gross return per acre, Rt , and farmland

price per acre, Pt . These error terms have normal density functions and their parameters are estimated in
Section 3.1.2. We draw a 20-year set of the error terms from these density functions. The optimal policy
x 0


 and the error term in the next period determine the state in period t = 1. Then we apply the optimal
policy for period t = 1, realize shocks in that period, and move on to period t = 2. Following this procedure
to the end of the planning horizon gives a path of states from the initial state to the end of planning horizon

state. Of particular interest is the state in period T+1, RT1 ,PT1 ,LT1 ,WT1 , which is the basis for

computing UWT1  .

To compute EUWT1  , we draw 500 trails of error terms, and follow the above procedure for each of
500 trials. Since there are 20 years, these will be 500  20  10,000 sets of error terms for each

stochastic variable: Rt and Pt . From the above procedure, now we have 500 paths of states and 500

values of UWT1  . The average of these values is the expected utility of net terminal wealth,

EUWT1  . We refer to this as the expected simulated value function, denoted by E Vsim .

 19

For the accuracy analysis here, we choose 81 different initial state levels in period t  0 from the state

space. Given the ranges of the state variables in the problem, we choose R0  320,420,520 ,
P0  1265,1580,1900 , L0  800,1200,1600 , W0  1500000,3000000,4500000 ,

from which we make a grid of 81 states by their Cartesian product. For each of the 81 initial state levels,

we follow the above procedure and compute the expected simulated value function, E Vsim , and the

estimated value function, V , which are used for accuracy analysis.

Two approaches are proposed here for accuracy analysis. In the first approach, we analyze E Vsim

computed for the 81 initial state levels. The average E Vsim is calculated as the mean for 81 initial
states. We compare alternative collocation schemes by determining which method gives a higher
E Vsim , since the objective function is to be maximized. This comparison provides the gain in the
objective function from one scheme to another. This first approach only compares alternative collocation
schemes of by measuring the gain in the objective function. It does not measure the error in the
approximated value function.

The second approach of accuracy analysis measures the absolute error in approximating the value function,
and is also useful for comparing the alternative collocation methods. For each initial state level, the
absolute error in the value function is calculated by dividing the difference between the expected simulated
value function and the estimated value function by the expected simulated value function, then taking the
absolute value:

Absolute Error 
E Vsim  V

E Vsim

The absolute error is calculated for each of 81 initial states. The maximum absolute error is calculated as

the maximum of the absolute error from these 81 initial states. The average absolute error is calculated as

the mean for 81 initial states. Computation of errors in this way provides information on the error in the
value function associated with a collocation method.
For comparing alternative collocation schemes, we can also compare the error associated with each
scheme. In our experiments, we will present results for both approaches. We expect that the smaller the

absolute error in the value function, the higher the value of E Vsim will be in the objective function.

5. ACCURACY RESULTS

Using the accuracy measurement methods developed in Section 4, we examine here the accuracy of
alternative schemes for implementing the collocation method for solving a dynamic programming model.
These experiments are conducted using the investment problem introduced in Section 3.

First we compare the accuracy for Chebyshev interpolation and spline interpolation, and we explore the
effect of increasing the number of nodes. Chebyshev nodes are not evenly spaced, and this scheme does not
assign the nodes in the corners of the range for interpolation. The function approximated by interpolation

 20

may give poor approximation for extrapolation. To avoid extrapolation, we increase the range of each state
variable for Chebyshev nodes, so that the first and the last nodes are the lower and upper bound of the state
range respectively. Uniform nodes are evenly spaced and include the corners of the range for interpolation.
Spline interpolation gives good approximation with an odd number of nodes (Schumaker). Thus, we choose
odd numbers, 3,5,7,9,..., for the number of nodes. The grid search method is used for maximization in the
dynamic programming model. We discretize the control space, X , in 81 levels to find the optimal policy.

Next we examine the efficiency of the grid search method. We introduce a two-stage grid search method
and compare accuracy of numerical solution of dynamic programming model between one-stage and two-
stage grid search method. Finally, we examine accuracy when the node configuration is allowed to differ
among state variables rather than keeping an equal number of nodes in each dimension.

In all cases, we use the Gaussian quadrature method of numerical integration for taking the expected value.
In the model, we have two stochastic state variables, Rt and Pt . For each state we use 5 nodes for the
numerical integration. This gives 25 combinations with their probabilities.

The dynamic programming model is programmed in MATLAB. For evaluating the basis functions and
nodes for the collocation methods, and for numerical integration, we use MATLAB code developed by
Miranda and Fackler. The model was run using MATLAB on a Dell PC with 512 MB RAM and an 800
MHz processor. The CPU time is measured in seconds.

5.1 Chebyshev and Linear Spline

In this section we compare accuracy for (i) Chebyshev basis function and nodes and (ii) linear spline basis
function and uniform nodes. Table 1 presents the CPU time and absolute error for the collocation with
Chebyshev and linear spline interpolation methods. There are four state variables in the model,
Rt,Pt,Lt,Wt , so the value function has four dimensions. The first column of Table 1 indicates the
number of nodes in each dimension. The results show that as the number of nodes increases, average and
maximum absolute errors decrease with linear spline collocation and Chebyshev collocation in almost all
cases. The only exception is a slightly higher average absolute error with 9 nodes as compared 7 nodes
under Chebyshev collocation. The marginal improvement in accuracy from increasing the number of nodes
declines as the number of nodes increases, as is shown in Figure 3(a). However, CPU time increases
exponentially with increases in the number of nodes, as shown in Figure 3(b). This is because the model is
multidimensional. For example, with 3 nodes in each dimension, the total number of nodes is 34 = 81, and
with 9 nodes in each dimension, the total number of nodes is 94 = 6561.

Table 1: CPU Time and Absolute Error in Value Function

 Chebyshev Linear Spline

Nodes CPU Average Maximum CPU Average Maximum

in each Time Absolute Absolute Time Absolute Absolute

Dim. Error Error Error Error

 (Seconds) (%) (%) (Seconds) (%) (%)

3 105 9.65 18.68 219 8.27 26.50

5 500 2.34 4.20 766 1.98 7.38

7 5,959 0.88 2.32 3,858 1.77 5.25

9 66,845 0.93 2.27 24,665 1.18 3.42

 21

3 5 7 9
0

2

4

6

8

10

Nodes in each Dim.

Av
era

ge
 Ab

s. E
rro

r (%
)

Chebyshev
Linear spline

(a)

3 5 7 9
0

10

20

30

40

50

60

70

Nodes in each Dim.

CP
U T

ime
 (1

00
0 s

ec.
)

Chebyshev
Linear spline

(b)

3 5 7 9
10

10.02

10.04

10.06

10.08

10.1

Nodes in each Dim.

Av
era

ge
 E[

Vs
im]

 ($
1,0

00
,00

0)

Chebyshev
Linear spline

(c)

Figure 3: (a) Average absolute error, (b) Computation time, (c) Average simulated value function

 22

Table 2 presents the average E Vsim for different numbers of nodes under the Chebyshev and linear

spline methods. As the number of nodes increases, the average E Vsim also increases. Again, the
marginal improvement from increasing the number of nodes declines as the number of nodes increases, as
shown in Figure 3(c). The maximum gain in the objective function due to increasing nodes is less than 0.5

percent on average. For the Chebyshev interpolation, the average E Vsim with 3 nodes is only 0.26150

percent less than the average E Vsim with 9 nodes. We also examine the probability distribution of

performance using 81 observations of E Vsim for 81 initial states. The frequency of lower E Vsim

with 3 nodes as compared to E Vsim with 9 nodes is 92.59 percent for Chebyshev interpolation. For the
linear spline approach, this frequency is 98.77. The frequency estimate indicates that the probability of
poorer performance with 3 nodes than with 9 nodes is very high.

Table 2: Expected Simulated Value Function

Chebyshev Linear Spline

Comparison with 9 Nodes Comparison with 9 Nodes

Nodes

in

each

Dim.

Average

E Vsim

($106)

% Decrease

in Average

E Vsim

%

Frequency

E Vsim

decreased

Average

E Vsim

($106)

% Decrease

in Average

E Vsim

%

Frequency

E Vsim

decreased

3 10.038 0.26150 92.59 10.026 0.3823 98.77

5 10.054 0.11240 90.12 10.048 0.1609 82.72

7 10.065 0.00004 38.27 10.064 0.0058 53.09

9 10.065 - - - - - - 10.064 - - - - - -

The results in Table 1 show that the linear spline collocation scheme has higher maximum absolute errors
than Chebyshev collocation with each number of nodes. However, the results for average absolute error are
mixed and values are quite similar for the two schemes. Table 3 provides a summary comparison of the
Chebyshev and linear spline collocation schemes. As noted above, with increase in the number of nodes,
the CPU time increases exponentially. However, linear spline collocation takes much less time than
Chebyshev collocation with 7 and 9 nodes.13 CPU time under Chebyshev collocation is 2.7 times the CPU
time under linear spline collocation for 9 nodes. For this additional cost of CPU time, the gain in
E Vsim under the Chebyshev method is only 0.005 percent. From Table 1, we observe that with 9

13Miranda and Fackler indicate that this is due to the use of sparse function in MATLAB.

 23

nodes Chebyshev collocation has an average absolute error of 0.93 percent, while the average absolute
error is 1.18 percent under linear spline collocation. Taking into account both CPU time and average
absolute error, linear spline collocation may be a better choice than Chebyshev collocation for 9 nodes. The

fourth and fifth columns of Table 3 show the probability that E Vsim will be higher under Chebyshev
methods than under linear spline methods and vice versa. These results indicate no clear-cut superiority for
either Chebyshev or linear spline interpolation.

Table 3: Comparison of Chebyshev and Linear Spline

Comparison of % Frequency

E Vsim increased with

Nodes in

Each Dim.

Ratio of

CPU Time:

Chebyshev/Spline

Ratio of

Average

E Vsim :

Chebyshev/Spline

Chebyshev vs.

Spline

Spline vs.

Chebyshev

3 0.48 1.00126 62.96 37.04

5 0.65 1.00053 37.04 62.96

7 1.54 1.00011 43.21 56.79

9 2.71 1.00005 59.26 40.74

Finally, we examined the policy function for the investment problem approximated with Chebyshev
interpolation and linear spline interpolation. The solution of the model with Chebyshev collocation
indicates some unexpected behavior of the policy function. This indicates that the approximated function
for this problem may not be smooth, and thus, spline interpolation may be a better choice than Chebyshev
interpolation, as suggested by Miranda and Fackler. Further accuracy analysis is performed for the linear
spline interpolation.

The above accuracy results show that as the linear spline interpolation may indicate higher maximum
absolute error than Chebyshev interpolation. However, for non-smooth functions, spline interpolation
performs better than Chebyshev interpolation to represent the solution to the problem.

5.2 Optimization Procedure

For the accuracy analysis presented above, we discretized the control space, X , in 81 levels to find the
optimal policy. Here we introduce a two-stage grid search method. By this method, we first discretize the
control space, X , in 41 levels to find the optimal policy. For the interval 400,2000 of farmland

acreage state variable, Lt , this discretizes the farmland purchase/sale control variable, x t , with a 40 -acre
increment. Given the optimal policy from the first stage, we find a new control space for the second stage
optimization. For the second stage the lower bound is the optimal policy minus 40 acres, and the upper

bound is the optimal policy plus 40 acres. This new control space is determined such that it satisfies the

constraints of the model. This control space is again discretized into 21 levels to find the optimal policy.
Here we examine the accuracy of the two-stage grid search method as compared to one-stage grid search
method with linear spline basis functions and uniform nodes.

 24

Table 4 presents the CPU time, average absolute error, and the average E Vsim for the two-stage
optimization procedure with the linear spline interpolation. As before, the average and maximum absolute

errors decrease and E Vsim increases as the number of nodes increases. Comparison between the one-
stage and the two-stage optimization methods is presented in Table 5. The table shows that the CPU time
under the two-stage method is only about 77 percent of the CPU time under the one-stage method. The

average E Vsim for the two-stage method is slightly higher than that for the one-stage method, as their
ratio is greater than one, but the difference is very small. Furthermore, the frequency analysis indicates a
higher probability of better performance with the two-stage method than that with the one-stage method in
all cases. The average absolute error for both methods is identical, which can be noted by comparing Table
4 and Table 1 for the linear spline case. These results show that the two-stage method is more efficient, as it
takes less CPU time and performs slightly better than one-stage method.

Table 4: Two-stage Optimization with Linear Spline

Nodes

in each

Dim.

CPU

Time

Average

Absolute

Error

Maximum

Absolute

Error

Average

E Vsim

 (Seconds) (%) (%) ($106)

3 165 8.27 26.5 10.026

5 584 1.98 7.38 10.048

7 3,006 1.77 5.24 10.064

9 18,946 1.18 3.42 10.064

Table 5: Comparison of Two-stage and One-stage Optimization with Linear Spline

Comparison of % Frequency E [V sim]

increased

Nodes in

Each Dim.

Ratio of CPU

Time:

2-stage/1-stage

Ratio of Average

E Vsim

2-stage/1-stage 2-stage vs. 1-stage 1-stage vs. 2-stage

3 0.76 1.00001 70.07 29.93

5 0.76 1.00001 60.49 39.51

7 0.78 1.00001 71.60 28.40

9 0.77 1.00001 64.20 35.80

5.3 Node Configuration

The accuracy analysis presented here shows that accuracy increases with an increase in the number of
nodes, but this comes at a cost of increased CPU time. Despite advances in computer technology, solving a
large-scale multidimensional dynamic programming model can only be done by limiting the number of

 25

nodes. The investment problem used in this study has four state variables Rt,Pt,Lt,Wt requiring
specification of the number of nodes for each state variable. We note that CPU time increases exponentially
when we increase number of nodes in each dimension. Since this is a multidimensional approximation, it is
possible that some state variables may need more nodes while other state variables may need fewer nodes.
Here we perform an accuracy analysis for alternative node configurations using two-stage optimization
with linear spline collocation.

All of our results show that the model performs poorly with 3 nodes. Thus, for node configurations we
consider a minimum of 5 nodes for any dimension. For initial analysis, we first increase nodes from this
minimum level in one dimension at a time rather than increasing nodes in all dimensions. Table 6 shows
results with number of nodes for each state variable ordered by Rt,Pt,Lt,Wt in the first column.

Table 6: Increasing Nodes in One Dimension at a time

CPU

Time

Average

Abs. Error

Maximum

Abs. Error

Average

E Vsim

Nodes

in each

Dim.
(Seconds) (%) (%) ($106)

9,5,5,5 1,123 2.32 8.32 10.052

5,9,5,5 1,119 2.37 8.28 10.053

5,5,9,5 1,089 1.98 7.33 10.049

5,5,5,9 1,115 0.60 1.64 10.062

Average and maximum absolute errors are lowest with node configuration 5,5,5,9, indicating that accuracy
improves the most when we increase the number of nodes for the state variable net wealth, Wt . Also, the

average E Vsim is highest, that is 10.062  106 , in this case. Therefore, the marginal benefit of

increasing nodes is highest for Wt .

Given these results, we start with 9 nodes in Wt and 5 nodes in the other state variables (5,5,5,9), where

the average E Vsim is 10.062  106 . Now we experiment of increasing the number of nodes for

Rt,Pt,Lt . When we increase the nodes of Lt from 5 to 9, (5,5,9,9), the average E Vsim remains

unchanged, i.e. 10.062  106 . However, when we increase the nodes of each Rt , (9,5,5,9), and Pt ,

(5,9,5,9), the average E Vsim improves from 10.062  106 to 10.065  106 . Also, the average
E Vsim is 10.065  106 for (7,7,5,9). It is important to note that the total number of nodes is equal

to the product of number of nodes for each state variable N  N1  N2  N3  N4 . The CPU time

increases as N increases. For node configuration (7,7,5,9), N  2,205 . If we increase two nodes of Lt ,

(7,7,7,9), N  3,087 . If we increase two nodes of Wt , (7,7,5,11), N  2,695 , which is much less

 26

than 3,087 . Thus, increasing nodes of Wt would have a small marginal cost of CPU time and a greater
marginal benefit of accuracy performance.

Table 7 presents accuracy results on selected nodes configurations. The table presents the CPU time,

absolute error, and the average E Vsim with two stage optimization and the linear spline method for

different number of nodes for Wt . In this case also, as we increase the number of nodes, the average and

maximum absolute errors decrease and average E Vsim gets slightly higher. The results are also
compared with increasing number of nodes in every dimension in Figure 4. Figure 4(a) plots the average
absolute error as a function of time. The figure shows that changing the node configuration gives a smaller

average absolute error for a given CPU time. Similarly, Figure 4(b) shows a higher average E Vsim
with changed node configuration for a given CPU time.

From Table 7, we have results with nodes 5,9,5,17 , where average E Vsim is 10.067  106 ,
the maximum absolute error is 1.24 percent, and the average absolute error is 0.45 percent. Without

changing the node configuration, we have results for 9,9,9,9 in Table 4, where the average E Vsim

is 10.064  106 , the maximum absolute error is 3.42 percent, and the average absolute error is 1.18
percent. Thus, changing the node configuration yields a more accurate approximation by each criterion.
Furthermore, changing the node configuration improves computational efficiency, since the CPU time is
4,666 seconds with nodes 5,9,5,17 , which is much less than with nodes 9,9,9,9 , where CPU

time is 18,946 seconds. These results show that a change in node configuration can improve the
performance of approximation methods by reducing both the size of errors and CPU time. For this
multidimensional function, some state variables may require only few nodes while others may require more
nodes to yield a desired accuracy level.

Table 7: Nodes Configuration with Two-stage Linear Spline

CPU

Time

Average

Abs. Error

Maximum

Abs. Error

Average

E Vsim

Nodes

in each

Dim.
(Seconds) (%) (%) ($106)

7,7,5,9 2,435 1.10 3.28 10.065

7,7,5,13 3,877 0.73 2.28 10.067

7,7,5,17 5,568 0.63 1.84 10.067

7,7,5,21 7,899 0.60 1.70 10.067

5,9,5,9 2,251 0.73 2.45 10.065

5,9,5,13 3,355 0.47 1.45 10.066

5,9,5,17 4,666 0.45 1.24 10.067

5,9,5,21 6,655 0.46 1.48 10.067

 27

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

CPU Time (1000 sec.)

Av
er

ag
e

Ab
s.

Er
ro

r (
%

)

Equal nodes in each dimension
Nodes configuration changed

(a)

0 2 4 6 8 10 12 14 16 18 20
10

10.02

10.04

10.06

10.08

10.1

CPU Time (1000 sec.)

Av
er

ag
e

E[
Vs

im
]

($
1,

00
0,

00
0)

Equal nodes in each dimension
Nodes configuration changed

(b)

Figure 4: Accuracy and CPU time with different nodes configuration

 28

6. SUMMARY AND CONCLUSIONS

Dynamic programming problems with continuous state and control variables lack closed-form solution in
most applications. Therefore, they must be solved approximately using numerical methods. Since the
solution is approximated, it is useful to examine the accuracy of the numerical solution to the model. We
develop a method for measuring the accuracy of the numerical solution for a stochastic dynamic
programming model. Using this method, we compare the accuracy of various schemes of the collocation
method using an investment decision problem.

The results show that the accuracy improves as number of nodes increases, but the marginal advantage of
increasing the number of nodes declines as the number of nodes increases. Since this is a multidimensional
problem, CPU time increases exponentially with increases in the number of nodes. Accuracy results
indicate that the linear spline interpolation may have higher maximum absolute error than Chebyshev
interpolation. However, the overall performance of spline interpolation is better than Chebyshev
interpolation. Furthermore, linear spline collocation takes much less time than Chebyshev collocation with
a large number of nodes.

A two-stage grid search method of optimization is developed and examined with accuracy analysis. The
results show that this method is more efficient and accurate, as it saves CPU time and improves the
accuracy as compared to the one-stage grid search method. We also examine the accuracy effects of
allocating different number of nodes for each state variable. The results show that a change in node
configuration may result in a more efficient and accurate solution, as it can reduce both the CPU time and
the error in the solution to the problem.

REFERENCES

Bellman, Richard E. Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.

Bellman, Richard E., and Stuart E. Dreyfus. Applied Dynamic Programming. Princeton, NJ: Princeton
University Press, 1962.

Bellman, Richard E., R. Kalaba, and B. Kotkin. “Polynomial Approximation--A New Computational
Technique in Dynamic Programming: Allocation Processes.” Mathematics of Computation 17(1963):155-
161.

Bera, A., and C. Jarque. “Efficient Tests for Normality, Heteroscedastcity, and Serial Independence of
Regression Residuals: Monte Carlo Evidence.” Economics Letters 7(1981):313-318.

Box, George. E. P., and Gwilym. M. Jenkins. Time Series Analysis: Forecasting and Control. Rev. Ed. San
Francisco: Holden-Day, Inc., 1976.

Brekke, Jon, Hung-Lin Tao, and Philip M. Raup. “The Minnesota Rural Real Estate Market in 1992.”
University of Minnesota, Economic Report ER 93-5, July 1993.

Burt, Oscar R., and C. Robert Taylor. “Reduction of State Variable Dimension in Stochastic Dynamic
Optimization Models which Use Time-Series Data.” Western Journal of Agricultural Economics, 14-
2(December 1989):213-222.

den Haan, W. J. and Marcet, A. “Accuracy in Simulations.” Review of Economic Studies, 61:3-17.

 29

Fackler, Paul L., and Mario J. Miranda. “Hybrid Methods for Continuous State Dynamic Programming”
(Presented at Computing in Economics and Finance, Boston College, June 1999) [Online]. Available
HTTP: http://www4.ncsu.edu/unity/users/p/pfackler/www/ [March 1, 2002].

Gerald, Curtis F., and Patrick O. Wheatly. Applied Numerical Analysis. 5th ed. Reading, MA: Addison-
Wesley Publishing Company, 1994.

Johnson, Sharon A., Jery R. Stedinger, Christine A. Shoemaker, Ying Li, and Jose A. Tejada-Guibert.
“Numerical Solution of Continuous-State Dynamic Programs using Linear and Spline Interpolation.”
Operations Research 41-3(May-June 1993):484-500.

Judd Kenneth L. “Projection Methods for Solving Aggregate Growth Models.” Journal of Economic
Theory, 58:410-452.

Judd Kenneth L. “Approximation, Perturbation, and Projection Methods in Economic Analysis.” Handbook
of Computational Economics, Volume I. H.M. Amman, D.A. Kendrick and J. Rust, eds. Amsterdam:
Elsevier Science B.V., 1996, pp. 511-585.

Judd Kenneth L. Numerical Methods in Economics. Cambridge, MA: The MIT Press, 1998.

Larson, Donald K., Martin S. Stauber, and Oscar R. Burt. “Economic Analysis of Farm Firm Growth in
Northcentral Montana.” Montana Agricultural Experiment Station, Montana State University, Bozeman,
Research Report 62, August 1974.

Ljung, G., and G. Box. “On a Measure of Lack of Fit in Time Series Models.” Biometrika 66(1979):265-
270.

Miranda, Mario J., and Paul L. Fackler. Applied Computational Economics and Finance. The MIT Press,
2002.

Nemhauser, George, L. Introduction to Dynamic Programming. New York, NY: John Wiley & Sons, 1966.

Olson, Kent D., and Others. “Annual Report of the Southwestern Minnesota Farm Business Management
Association.” Staff Paper, Department of Applied Economics, University Of Minnesota, various issues,
1967-99.

Rust, John. “Numerical Dynamic Programming in Economics.” Handbook of Computational Economics,
Volume I. H.M. Amman, D.A. Kendrick and J. Rust, eds. Amsterdam: Elsevier Science B.V., 1996, pp.
619-729.

Santos, Manuel S. “Numerical Solution of Dynamic Economic Models.” Handbook of Macroeconomics. J.
B. Taylor and M. Woodford, eds. Amsterdam: Elsevier Science B.V., 1999, pp. 305-380.

Santos, Manuel S. “Accuracy of Numerical Solutions Using the Euler Equation Residuals.” Econometrica
68-6(November 2000):1377-1402

Schnitkey, Gary D., C. Robert Taylor, and Peter J. Barry. “Evaluating Farmland Investments Considering
Dynamic Stochastic Returns and Farmland Prices.” Western Journal of Agricultural Economics 14-1(July
1989):143-156.

Schumaker, Larry L. Spline Functions: Basic Theory. New York, NY: John Wiley & Sons, 1981.

 30

Schwab, Andrew, and Philip M. Raup. “The Minnesota Rural Real Estate Market in 1988.” University of
Minnesota, Economic Report ER 89-3, July 1989.

Stokey, Nancy L., and Robert E. Lucas, Jr., with Edward C. Prescott. Recursive Methods in Economic
Dynamics. Cambridge, MA: Harvard University Press, 1989.

Taff, Steve J. “Minnesota Land Economics” [Online]. Available HTTP: http://apec.umn.edu/faculty/sjtaff/
[March 1, 2001].

U.S. Department of Agriculture, Economic Research Service. Agricultural Income and Finance: Situation
and Outlook. Washington DC: February 2001.

