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Abstract

Uncertainties are omni-present in wind energy applications, both in ex-
ternal conditions (such as wind and waves) as well as in the models
that are used to predict key quantities such as costs, energy yield, and
fatigue loads. This report summarizes and reviews the application of
uncertainty quantification techniques to wind energy problems. In the
wind industry, including uncertainties in predictions has classically been
done by using Monte Carlo methods. Recently, more advanced methods
have been considered (e.g. polynomial chaos expansion, stochastic col-
location, and Gaussian process regression), which are based on smartly
sampling the model (e.g. a complex aerodynamic blade model). These
methods generally have a greater efficiency compared to Monte Carlo
(depending on model properties) and additionally yield computationally
cheap surrogate models. Furthermore, surrogate models purely based on
data (e.g. via proper orthogonal decomposition) have received signific-
ant interest, especially for the representation of turbulent wind turbine
wakes. Both model-driven and data-driven surrogate models play a cru-
cial role in making control and optimization studies feasible. In the
near future, we expect that recent trends in uncertainty quantification,
namely Bayesian model calibration and optimization under uncertainty,
will become increasingly popular in wind energy applications.
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1
Introduction

1.1 Background

The size of the annual wind energy production is growing each year.
At the end of 2016, the global cumulative installed capacity was more
than 480 GW, of which approximately 55 GW was installed during the
year 2016 [37]. The size of the wind turbines has significantly increased
over the years, with the largest turbines now reaching rotor diameters of
150 m. These turbines are operating in the lower part of the atmospheric
boundary layer, with large wind shear and turbulence levels, and un-
certain, continuously varying meteorological conditions. These weather
conditions—such as atmospheric stability, wave height, and of course
wind—severely affect the service life of the turbines and the power yield
of the farm as a whole. It is common practice in industry that this uncer-
tain behaviour is captured using rather conservative safety factors due
to a lack of detailed knowledge of uncertainties and how they propagate
[103]. For example, a rigorous characterisation of wind conditions in
the IEC guidelines is missing [43, 58]. However, at the same time wind
turbines still suffer premature failures and reduced lifetimes compared
to design predictions, mainly caused by our limited understanding of
how turbines operate and interact with the atmosphere [94]. The pres-
ence of uncertainties in wind farm output, turbine lifetime, and failure
probability leads to an increased financial investment risk. Consequently,
there is room for reducing the costs of offshore wind energy by using a
probabilistic approach for the design of wind turbines and wind farms in
which the effect of uncertainties is quantified and reduced.

Currently, the use of uncertainty assessments in the wind energy in-
dustry is growing. In the research agenda of the European Academy of
Wind Energy (EAWE) [58] the need for quantification of uncertainties
is recognized, especially in the areas of aerodynamics, reliability, and
design1. A prototypical example of uncertainty quantificiation in wind 1 ‘A further additional approach is wind

turbine and wind farm uncertainty model-
ling, which is still in its infancy to date but
forms an intrinsic aspect for minimising
unexpected failures and downtime.’ [58]

farm models is the computation of the annual energy production (AEP)
and the associated confidence in the prediction [113]. Simple statistical
models (using the turbine power curve and a Weibull distribution for the
wind field) can quickly give a rough idea about the mean and variance
of the power production, but have a rather low accuracy because im-
portant physics, such as wake effects, are missing. Higher-fidelity models
can make more accurate power predictions, but the quantification of
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uncertainties becomes cumbersome due to the computational expense
associated with these models. One of the main topics in uncertainty
quantification, also addressed in this report, is to make uncertainties
computable for complex models in which multiple source of uncertainties
are involved.

1.2 Uncertainty Quantification

The growing awareness in the wind energy community on the relevance of
computing with uncertainties is in parallel with significant advancements
in the field of uncertainty quantification (UQ). The field of UQ provides
tools and methods to include statistics and randomness into model pre-
dictions. It entails many different topics, such as sensitivity analysis,
parameter estimation, data assimilation, and surrogate modelling. A
short summary of some main concepts in UQ are included in this report.

1.3 Goal and report outline

This literature review partially continues from the conclusions from a
previous review by one of the authors2. Similar to that review, the main 2 ‘... a possible next step is the quanti-

fication of uncertainties in the computa-
tions. These uncertainties originate not
only from discretization and turbulence
modelling errors but also from the descrip-
tion of the inflow, terrain geometry, rotor
geometry, etc. A quantification of uncer-
tainties would make the comparison with
experimental data more fair and will give a
guideline in which areas the CFD of wind
turbine wakes has to be improved.’ [89]

target audience in this report is again the wind energy community. The
main goal is to summarize and review the application of uncertainty
quantification techniques to wind energy problems. The focus is mostly
on the type of UQ techniques, but we will show practical examples of un-
certainties in models and external conditions, such as wind, waves, blade
and wake aerodynamics, and power production (chapter 2). Furthermore,
to make the report self-contained, we have included a chapter in which
we explain the main concepts in UQ (chapter 3). Chapter 4 forms the
core of this work and reviews the UQ techniques that have been used for
wind energy applications, mainly focusing on fluid dynamics applications.
Structural mechanics and fluid-structure interaction applications are not
directly covered, but the UQ techniques discussed in this report can in
principle also be applied in those areas. In chapter 5 we give a summary
and an outlook towards expected future developments.



2
Examples of uncertainties in models
and external conditions

In this chapter we give examples of uncertainties in models and external
conditions encountered in wind turbine design. In sections 2.1-2.2, we
discuss uncertain external conditions relevant for wind turbine operation,
focusing on wind and waves. For a more exhaustive list of uncertainty
sources, see for example Veldkamp [103]. A key distinction we make
in this chapter is between a statistical approach, where predictions are
made based on long-term measurement data, and a physical modelling
approach, where predictions are made based on conservation laws. In
sections 2.3-2.4 we give examples of uncertainties in models used for
blade and wake aerodynamics. A graphical representation is given in
figure 2.1.

A large amount of literature on (deterministic) models for wind tur-
bines, wind farm aerodynamics, wake effects, and power production, is
available. The interested reader can consult the general introduction in
wind energy provided by the book of Burton et al. [12].

wake aerodynamics

wave modeling

blade aerodynamics
wind modelling

Figure 2.1: This chapter discusses
models for external conditions (wind,
waves) and for blade and wake aerody-
namics.
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2.1 Wind modelling

2.1.1 Mean wind speed and annual energy production

One of the main purposes in wind modelling is to accurately estimate
the annual energy production (AEP), defined as

AEP = T ·E[P (U)], E[P (U)] =

∫
P (U)ρ(U)dU ,

where T is the time interval (i.e. 1 year), E[P ] is the expected power,
P (U) is the power as function of wind speed U , and ρ(U) is the prob-
ability density function (pdf) of the wind speed (discussed below). This
integral is split into several bins or sectors, associated to different wind
directions, and numerically evaluated for each bin. This is a statistical
approach, in which uncertainties in the wind field are captured via a
probability density function that is constructed based on long term wind
measurements.

The canonical model for ρ(U) is the Weibull distribution, a pdf with
two parameters, constructed based on 10-minute averaged wind speed
data. For different bins the sector-wise Weibull distribution is used [24],
although joint pdfs for wind speed and direction can also be considered
[14, 15]. Other distributions can be employed to fit wind data, and
sometimes perform better than Weibull [73], for example a bimodal
Weibull distribution [47] or a maximum entropy distribution [4]. The
fitting method used to determine the parameters of the distribution
is important; for example, Dorvlo [18] noted that different results are
obtained if different fitting methods are used. He compared a regression
method, moments method, and Chi-square method and large differences
were obtained for the two parameters of the Weibull distribution. It is
clear that in this simple wind model large uncertainties are present.

0 10 200

0.05

0.1

U [m/s]

ρ
(U

)

Figure 2.2: Example of a Weibull dis-
tribution for wind speed.

A special case of the Weibull distribution is the Rayleigh distribution,
which is used in the IEC standard [43, 44]. The mean wind speed at hub
height Vhub according to the Rayleigh probability distribution is given
by

ρR(Uhub) = 1− exp
(
π

(
Uhub
2Uave

)2
)

, (2.1)

where Uave = 0.2Uref, and Uref depending on the class1 of the wind 1 Wind turbines are put in classes depend-
ing on their properties. For example, dif-
ferent classes are formed by wind turbines
of different sizes and whether they are off-
shore or onshore turbines.

turbine.

2.1.2 Power spectrum

The mean wind speed at hub height is not sufficient to simulate load
cases on a wind turbine. For such simulations, the wind speed over
the swept area is required, typically at a number of points that form a
grid. A spectrum of the turbulent wind field at these points is chosen
according to e.g. the von Kármán or Kaimal theory [12, 101]. This gives
a continuous, one-sided power spectrum density at a point j on the disk,
depending on the frequency f , called Gj,j(f). A discrete representation
of the spectrum is obtained by dividing the spectrum into bands with
width ∆f and center frequency of each band designated as fm. The
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correct variance is maintained by defining this discrete spectrum Sj,j(f)

by
Sj,j(fm) =

1
2 ∆fGj,j(fm).

The full spectral matrix S also requires cross-spectral densities (off-
diagonal terms). The power spectra on each point across the rotor disc
have to correlate, which is accomplished by using a coherence function
Cohj,k:

|Sj,k(fm)| = Cohj,k(fm, ∆rj,k,Uj ,Uk)
√
Sj,j(fm)Sk,k(fm),

where ∆rj,k denotes the distance between points j and k and Uj is the
mean wind speed at point j. Together, all power and cross spectral
densities are put in the matrix S. Using a decomposition S = HHT, the
Fourier coefficients of the wind field can be written as

Vj(fm) =

j∑
k=1

Hj,k(fm) exp(iϑk,m),

where ϑk,m is the phase angle associated with the kth input point and
mth frequency component. Typically, it is taken randomly distributed
in the interval [0, 2π). Time series of the wind speed follow by taking an
inverse Fourier transform of the Vj coefficients. Examples of coherence
functions and power spectra can be found in [101]. This idea has been
further improved by Mann [67], who also incorporated the atmospheric
shear layer of the flow of the von Kármán wind turbulence model. His
results are in some respects more physically reasonable and the algorithm
is generally faster.

2.1.3 Weather and wind forecasting

An alternative statistical approach is the use of autoregressive models,
often used in weather forecasting [50, 112], and wind speed prediction.
An example of an autoregressive moving-average (ARMA) model for the
mean wind speed U is the Gaussian process

Ut = c+ εt +

p∑
i=1

φiUt−i +

q∑
i=1

ϑiεt−i,

where φi is the autoregressive parameter, ϑi is the moving average para-
meter, c is a constant, and εt is an error term, for example modelled as a
normally distributed random variable. The ARMA model can be seen as
a fitting procedure based on past data with the aim to predict a future
state.

2.1.4 Precursor simulations

An alternative to the mainly statistical approaches mentioned above is
a physical modelling approach in which the wind field is the result of
a simulation based on computational fluid dynamics (CFD) techniques.
For blade loading calculations, see section 2.3, such an approach is not
used because it is too expensive. However, for wake modelling (section
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2.4), this is a common approach and is known as a precursor simulation.
In this technique the atmosphere, including the atmospheric boundary
layer, is simulated without the presence of wind turbines. The turbulent
wind field that is generated is then used as boundary condition for a
simulation that includes the wind turbines. Recently, coupling wake
simulations to atmospheric mesoscale models have made this approach
to wind field simulation even more advanced [90]. Such mesoscale models
are the realm of Numerical Weather Prediction (NWP) and will not be
discussed here.

2.2 Wave modelling

Many results exist about modelling wind for the simulation of wind
turbines, due to the advanced knowledge of onshore wind turbines. The
modelling of sea waves with the aim of evaluating offshore turbine loading
is a less developed field [1], but nevertheless very important [2]. Like in
wind modelling, the existing approaches will be categorized in statistical
approaches and physical modelling approaches. An excellent introduction
to sea wave modelling is the book of Holthuijsen [41], which is used
frequently in the coming sections.

2.2.1 Statistical approaches

Most key concepts in sea wave modelling are based on long-term statistics
of sea waves: the significant wave height (i.e. the mean of the highest
one-third of waves in the wave record), the significant wave period, and
the wave spectrum. These concepts are used in the IEC standard [44]
for offshore wind turbines, which describes that a design sea state has
to be described by a wave spectrum, together with the significant wave
height, a peak spectral period, and a mean wave direction. Examples of
wave spectra are the Pierson-Moskowitz spectrum (based on the concept
of fully developed sea) and the JONSWAP spectrum. The IEC standard
also prescribes the normal, severe, and extreme sea states which need to
be taken into account in turbine design.

The wave spectrum can be used to derive a probability density function
for the wave height. In case of a narrow spectrum, the wave height follows
a Rayleigh distribution (similar to the wind speed, equation (2.1)). The
free parameter in the Rayleigh distribution can be expressed directly in
terms of the moments of the wave spectrum. In a way quite similar to the
statistical approach in wind modelling, a sea state can then be obtained
by superposition of harmonic waves of different random amplitudes and
phases (the so-called random-phase/amplitude model); these are so-called
irregular waves. The amplitudes and phases are sampled based on their
respective probability density functions.

2.2.2 Physical modelling approaches

The harmonic waves mentioned in the last section are solutions of lin-
earised conservation equations (mass and momentum conservation), de-
scribing surface gravity waves (also known as Airy wave theory). The
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random-phase/amplitude model is thus in fact a mix between statistical
and physical modelling approaches. The assumption of linearity is a
good approximation for waves of small height in deep water. If waves are
steep or the water is shallow, the wave dynamics becomes non-linear and
more advanced theories must be used, for example Stokes’ wave theory,
cnoidal wave theory, or streamfunction theory. Figure 2.3 summarizes
many existing wave theories.

Figure 2.3: The ranges of applicability
of various wave theories (figure from
Wikipedia–Stokes wave; see also [41]);
h is the mean water depth, H the wave
height and τ the wave period.

Stokes’ theory, which is applicable to intermediate depth waves, suc-
cessively adds corrections to existing wave models. Repeatedly applying
it, starting with the linear wave model, the nth-order Stokes wave model
is obtained. It is based on perturbation theory and expands the wave in
terms of the wave steepness ε = ka, with k the wave number and a the
amplitude. The wave height η is then written as:

η = εη1 + ε2η2 + ε3η3 + . . . .

The principle is to first solve for η1, then for η2 (given η1) and so on. For
example, the first solution is the solution from linear wave theory:

η1 = k−1 cos(ωt− kx),

and the second solution is the so-called second order Stokes correction:

η2 = k−1 cosh kd
4 sinh3 kd

(2 + cosh 2kd) cos(2ωt− 2kx),

with d the water depth. The equations quickly become very complicated
for higher orders.

It is common practice in wind turbine industry to use Airy linear
wave theory for calculating fatigue loads [105]. However, offshore wind
turbines are generally sited in shallow water and non-linear effects and

https://en.wikipedia.org/wiki/Stokes_wave
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steeper waves are important [72]. Differences in fatigue predictions are
indeed observed depending on whether first-order, second-order, or fully
non-linear waves are used [105], and computed loads on turbines are
generally larger with non-linear wave models [1]. In [69, 70] potential
theory is used with a boundary element method to solve the non-linear
free surface problem and used to study extreme loading conditions on
offshore wind turbines. An alternative is to model fully non-linear waves
with Boussinesq theory [66] or, even more advanced, with Navier-Stokes
type methods (which can include wave breaking), but this technique is
in general computationally too expensive for calculating wave impacts
on offshore turbines.

2.3 Blade models

Aerodynamic blade models are crucial to determine the loads on wind
turbine blades and therefore their lifetime (for more information on aero-
dynamics of wind turbines see e.g. [40, 97]). We distinguish between
two approaches: the engineering methods, based on Blade Element Mo-
mentum (BEM) theory, and methods based on CFD techniques. Both
approaches are ‘physics based’, and apply conservation laws (conservation
of mass and momentum) to arrive at predictive models.

2.3.1 Blade-Element-Momentum theory

BEM is based on equating solutions for forces obtained from blade ele-
ment theory to those obtained in momentum theory. It is the industrial
workhorse in designing wind turbine blades and assessing loading scen-
arios. Although BEM is applied in many cases and shows acceptable
results, it still can have an error up to 20% (see [97], and for a recent re-
view see [7]). Some shortcomings are that the theory assumes an infinite
number of blades, that yaw and stall are not properly taken into account,
and that accurate airfoil lift and drag coefficients are required. The latter
are typically obtained with more advanced methods such as CFD models.
Several improvements and corrections have been suggested, which com-
pensate for the limitations in the theory, but the largest uncertainties
are still in the model constants associated with these corrections.

2.3.2 Potential flow and CFD models

To determine the relevant aerodynamic coefficients of airfoil sections,
as needed in BEM, one can solve the Navier-Stokes equations or use
accurate measurements, such as wind tunnel data. For design purposes,
solving the Navier-Stokes equations may be too expensive, and instead
the incompressible potential equations, coupled with a boundary layer
model, are often used. The potential flow equations arise from the
assumptions of incompressible, irrotational flow. This means that a
velocity potential exists (such that v = ∇φ), which satisfies the Laplace
equation ∆φ = 0. The incompressibility and irrotationality assumptions
are accurate away from the boundary of the blade. The boundary layer
is modelled differently, namely using the boundary layer equations. The
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potential flow and boundary layer equations are coupled through an
interaction scheme, as for example done in Xfoil [20].

The potential flow methods can be classified as CFD methods since
they solve a partial differential equation, although they do not require
the generation of a body-fitted mesh. More advanced methods, which
take into account vorticity, viscosity and compressibility in the entire
flow fields, are based on discretization of the Navier-Stokes equations on
body-fitted grids [89]. Recently, also immersed boundary methods have
been applied to wind turbine computations [31, 51]. Such methods solve
the full Navier-Stokes equations by locally changing the discretization
method in the neighbourhood of the blade, avoiding the construction of
a body-fitted grid. In all cases, a turbulence model is required to model
the effect of the smallest scales in the flow.

2.4 Wake modelling

The placement of offshore wind turbines in wind farms results in wake
effects that negatively influence power production and fatigue life of
downstream turbines, due to a reduced wind speed and increased turbu-
lence intensity [89, 97]. Many different wake models exist; most of them
are not based on statistical approaches but rather on physical arguments.
As in case of the blade models, we mention here two distinct approaches:
the low-fidelity algebraic models, used for wind farm optimization and
design, and the high-fidelity turbulence-resolving CFD models, used for
detailed computations.

2.4.1 Algebraic models

One of the simplest algebraic wake models is the model of Jensen [48]. It
is a combination of momentum theory (applied to the near wake) with
conservation of mass (applied to the far wake), assuming a linear wake
expansion:

Uwake(x) = Uin

(
1− 2a

(
r0

r0 + αx

)2
)

,

where a is the axial induction factor, x the distance behind the rotor, r0
the initial radius, α the wake expansion ratio, and Uin the incoming wind
speed. Many improvements and extensions of the Jensen model have
been made. For example, Larsen’s model [62] does not use the linear wake
expansion form, but uses Prandtl’s turbulent boundary layer equations to
describe the wake region. The Frandsen model [32] includes interaction
with neighbouring rows and with the atmospheric boundary layer. These
simplified and fast wake models are the work horse in industry and keep
on being improved. Recently, Bastankhah and Porté-Agel [8] and Keane
et al. [52] developed analytical wake models based on a Gaussian velocity
profile in the wake instead of the top-hat profile used by Jensen.

2.4.2 CFD models

Instead of analytical modelling based on simplified versions of the equa-
tions for conservation of mass and momentum it is also possible to use
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CFD techniques to solve the full incompressible Navier-Stokes equations:

∇ · u = 0,
∂u
∂t

+ (u · ∇)u = −1
ρ
∇p+ ν∆u.

Here, u is the velocity field, p is the pressure and ρ is the density. To
incorporate turbulence, Reynolds Averaged Navier-Stokes (RANS) or
Large Eddy Simulation (LES) models are employed. LES is the state-of-
the-art, but computationally expensive and mainly used to develop, test,
and improve less expensive models, and to parametrize wind farm effects
in weather and climate models; see [11, 31, 71, 89]. A recent review that
discusses the different scales and the associated methods in mesoscale to
microscale wind farm flow modelling is given in [90], and also includes a
section on the relevance of uncertainty quantification.

2.5 Summary and conclusions

In this chapter we have given examples of uncertainties in models and
external conditions. We distinguished between a statistical approach,
such as the characterization and generation of a wind field by a power
spectrum, and a physical modelling approach, such as the solution of
the Navier-Stokes equations to predict wake effects. In the former case,
the uncertainty is captured in the statistics, for example in the Weibull
distribution of the mean wind speed. With more measurements this
distribution will get better characterized. In the latter case, the uncer-
tainty is present in the model assumptions, for example the use of an
LES model to resolve turbulent flow. With better understanding of the
physics (or more computer power), the uncertainty in simulation results
can be reduced. The irreducible uncertainties are called aleatory, while
the reducible uncertainties are called epistemic. The distinction between
the two is the choice of the modeller; for example, wind and wave fields
can be generated with a statistical approach, but also with computational
fluid dynamics techniques. This distinction will be further discussed in
chapter 3.



3
A crash course in UQ

3.1 Introduction and definitions

In the field of uncertainty quantification (UQ) the problem of making pre-
dictions under uncertainties is addressed, by studying how uncertainties
in parameters and models affect the uncertainty in quantities of interest.
Several books and review articles have appeared on the topic of UQ,
e.g. [36, 63, 75, 95, 99, 110, 111]. The field of UQ is large and covers
many topics, such as optimization, parameter estimation and calibration,
model reduction, and sensitivity analysis [99]. A main distinction that we
use in this report is between uncertainty characterization and uncertainty
propagation [95].

Characterization is determining the nature of the uncertainties. These
can be roughly categorized in input (parametric) uncertainties and model-
form uncertainties. A further distinction is between aleatory (irreducible,
stochastic) and epistemic (reducible, systematic, due to a lack of know-
ledge) uncertainties. Aleatory uncertainties get better characterized with
an increase in knowledge, whereas epistemic uncertainties get reduced
with an increase in knowledge. The distinction between the two is the
modeller’s choice.1 The atmospheric wind speed, for example, has typic- 1 ‘Aleatory or epistemic? Does it matter?’

[56].ally been treated as aleatory uncertainty, being represented by probability
density functions (such as the Weibull distribution) and turbulence spec-
tra, from which wind fields can be generated - see chapter 2. When
more data becomes available, for example from meteorological masts,
the probability density functions can be better characterized. However,
in coupled mesoscale-microscale models [90], the wind field is modelled
with meteorological models, and then the uncertainty in wind speed
prediction can be seen as an epistemic uncertainty which reduces upon
improved model efforts. For describing aleatory uncertainties consensus
exists on the use of probability theory (probability density functions),
but for epistemic uncertainties several approaches are being used, such
as interval analysis and evidence theory [76, 114]. Interval analysis is
used when only lower and upper bounds are available. Evidence theory, a
generalization of classical probability theory, uses belief and plausibility
as measures.

Propagation is relating uncertainties in inputs and models to uncertain-
ties in output quantities, the quantities of interest (QoI). In wind energy
studies, the ultimate quantity of interest is typically the levelized cost
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of energy (LCOE). The LCOE is in itself influenced by other quantities
of interest, such as the wind farm power production, the fatigue loading
on the turbine blades, or sound level produced by the turbine. Related
to the propagation question is the analysis of sensitivities: which input
quantities have most influence on the QoI? For example, an outcome of
a sensitivity analysis could be that there is a large uncertainty in the
variation of insect contamination on turbine blades, but that the effect
on the produced sound is marginal [82].

A last distinction we make is between intrusive and non-intrusive
methods. Non-intrusive methods rely on existing models that are em-
ployed as a black box, see figure 3.1. Since these black box models
can be computationally very expensive (e.g. CFD codes), the art is to
smartly sample the input parameters and get accurate output predic-
tions with as few samples as possible. In intrusive methods on the other
hand the mathematical model is changed and existing codes have to be
modified. Depending on the model properties, this can lead to efficient
methods, but requires generally considerable coding effort that requires
revision once the model changes. The main focus in this report is on
non-intrusive methods, since these are most widely applied in the wind
energy community (an exception is the work of Fluck and Crawford [28]).

Forward problem

quantity of interest

output pdf

Computational model

geometry
boundary conditions
initial conditions
physical parameters

input pdf

Figure 3.1: Uncertainty propagation
with black box models.

3.2 Uncertainty propagation via sampling-based methods

In this report we focus on uncertainty propagation via sampling-based,
non-intrusive methods. We will discuss Monte Carlo methods, polynomial-
based methods, and Gaussian process regression. We are mainly inter-
ested in the pdf associated with a QoI given the pdfs for input parameters
(figure 3.1). Methods which perform well for constructing moments of
the solution (such as moment methods and Taylor expansion methods),
are therefore less applicable or have shown to perform less well [64].

Both the input parameters Q and the QoI Y are random variables,
which are related through the model via

Y = f(x,Q),

where x represents other (deterministic) variables, such as the independ-
ent variables space and time. Realizations of the random variable Q are
denoted by q = Q(ω), where ω is an event from the sample space Ω.2

2 Example: counting number of heads
when tossing two coins [95]. Q is
then the random variable representing
the number of heads in the toss, Ω
the sample space with possible outcomes,
(H, H), (T , H), (H, T ), (T , T ), and an ex-
ample event is ω = (H, H) for which
Q(ω) = 2.
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3.2.1 Monte Carlo methods

Monte Carlo is the simplest and most well-known sampling technique.
It is based on drawing random samples from the probability density
function ρQ(q) of the random variable(s) Q (e.g. via inverse transform
sampling). The mean of the quantity of interest Y is approximated via

µY = E[Y ] ≈ 1
N

N∑
i=1

f(x, qi),

with N the number of samples. The error in µY decreases with 1/
√
N ,

independent of the dimensionality of the problem (i.e., the number of
random variables). Improved sampling techniques are for example Quasi
Monte Carlo and Latin Hypercube Sampling (LHS) [77]. Although Monte
Carlo methods are versatile, robust and easy to implement and have a
strong mathematical theory, they typically require many individual model
runs. This can yield a prohibitively large computational expense.

3.2.2 Polynomial chaos expansion

In contrast to Monte Carlo methods, where samples are random, and
carry the same weight, polynomial chaos expansions are pseudospectral
methods that use a smarter choice of sampling points. This choice is
based on the fact that the pdf ρQ(q) associated to the random variable
Q defines a set of orthogonal polynomials φi(q) [36]:

∫
φi(q)φj(q)ρQ(q)dq =

γi i = j,
0 i 6= j.

An example of a normally distributed (Gaussian) random variable with
mean 2 and standard deviation 1 is shown in figure 3.2. The associated
orthogonal polynomials are the Hermite polynomials shown in figure 3.3.
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Figure 3.2: Normally distributed ran-
dom variable.
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Figure 3.3: First 5 Hermite polynomi-
als orthogonal to the random variable in
3.2.

The quantity of interest Y can be represented in terms of these ortho-
gonal polynomials as

Y = f(x, q) ≈ fPCE(x, q) =
N∑

i=0
f̂i(x)φi(q), (3.1)

the so-called generalized Polynomial Chaos (gPC) expansion [109]. The
problem has shifted to the determination of the coefficients f̂i(x):

f̂i(x) =
1
γi

∫
f(x, q)φi(q)ρQ(q)dq.

This integral is typically estimated using a quadrature rule:∫
f(x, q)φi(q)ρQ(q)dq ≈

K∑
k=1

f(x, qk)φi(qk)wk,

where qk and wk are the nodes and weights of the quadrature rule,
respectively, representing the nodes where the model f(x,Q) has to be
evaluated (sampled). The quadrature rule can for example be based
on the zeros of the polynomial basis. The nodes can be reused for
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computing each f̂i, so the number of model evaluations is K. If the
error in the quadrature rule is negligible, the expansion (3.1) possesses
spectral convergence. As an alternative to determining the coefficients
with quadrature methods, regression methods can be used [111].

The resulting polynomial fPCE(x, q) is an analytical approximation of
the real model f(x, q), from which estimates of the statistics of interest
can be obtained. The polynomial approximation can also serve as a
cheap ‘surrogate’ model for solving inverse or optimization problems.

3.2.3 Stochastic collocation (interpolation)

Another polynomial method, also based on smart sampling and con-
structing an approximating polynomial, is the Stochastic Collocation
(SC) method3. Instead of using the gPC expansion (3.1), an interpola- 3 Some authors reserve the term PCE for in-

trusive methods [109], and instead denote
non-intrusive PCE methods as collocation
methods, distinguishing between ‘interpol-
ation’ (what we call SC) and ‘discrete pro-
jection’ (what we call PCE).

tion polynomial is directly built based on the model evaluations f(x, qi):

f(x, q) ≈ fSC(x, q) =
N∑

i=1
Li(q)f(x, qi), (3.2)

where Li(q) are Lagrange interpolation polynomials,

Li(q) =
N∏

k=1
k 6=i

q− qk

qi − qk
.

The interpolant is exact in the nodes, i.e. fSC(x, qi) = f(x, qi). An
important choice is where to place the nodes qi; typical examples are
Clenshaw-Curtis nodes or Gauss nodes. Equidistant nodes should gen-
erally not be used as they can give unstable interpolants (see figure
3.4). −1 −0.5 0 0.5 1

0

0.5

1

q

f
,f

SC

Figure 3.4: Stochastic collocation ap-
plied to Runge function. In red ori-
ginal model, in blue interpolation with
Clenshaw-Curtis nodes, in green with
equidistant nodes.

Similar to the PCE method, the interpolant can be used instead of the
full model to get relevant statistical properties. Smith [95] gives a com-
parison between stochastic collocation and polynomial chaos expansions.
One advantage of SC over PCE is that it does not rely on construction
of orthogonal polynomials and hence is simpler to apply to general para-
meter distributions, including dependent variables. This makes it also
well suitable for model calibration. An advantage of PCE over SC is
that from the PCE coefficients one can directly obtain the sensitivity
indices (see section 3.3). A disadvantage of both SC and PCE is that the
accuracy of the interpolation polynomial or quadrature rule degrades as
the dimension of the problem increases. Furthermore, the model under
consideration should have sufficient smoothness to prevent over- and un-
dershoots (see figure 3.5). A comparison study [21] concluded that both
methods perform very similar, although when differences are present, SC
is a consistent winner.

3.2.4 Gaussian process regression (Kriging)

An alternative to the polynomial methods from sections 3.2.2-3.2.3 is
Gaussian process regression, also known as Kriging. The idea is to first
construct a Gaussian process assuming a certain covariance matrix and
then to regress it using model evaluations (or measurement data) with
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Figure 3.5: Example of stochastic col-
location for polynomial reconstruction
of a model f(x). In a typical wind en-
ergy application, this could represent the
power curve with x the wind speed and
f the normalized power.

a Gaussian noise structure. In a Bayesian context (further explained in
section 3.4.1) these are the prior and likelihood, respectively, and the
resulting Kriging model is the posterior. A main advantage of Kriging is
that not only a surrogate is constructed, but that also an error estimate
is obtained (the covariance of the posterior). Furthermore, the extension
to multiple dimensions is straightforward and it is relatively easy to
incorporate additional knowledge. Disadvantages are the computational
cost associated with the inversion of the covariance matrix and the choice
of the so-called hyperparameters: correlation length in the likelihood
model and variance of the noise. An example of Kriging is shown in
figure 3.6, where the model f(x) is evaluated at a number of points (the
training data) and a Gaussian process fGP with mean and covariance is
constructed through the training data points.
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G
P

model
training data
Kriging mean

Figure 3.6: Example of Gaussian pro-
cess regression applied to the example
of figure 3.5, for specific choice of hy-
perparameters. Shaded regions are one
and two standard deviations from the
mean.

3.2.5 Multivariate extensions and the curse of dimensionality

In many applications, the number of uncertain parameters is larger than
one, and the PCE and SC methods require multivariate extension. The
most straightforward extension is to use tensor products (employing
one-dimensional rules in each dimension), but this leads to exponential
growth of the required number of samples (figure 3.7). For example, with
5 random variables and 10 samples for each variable, 105 samples are
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necessary; this is the curse of dimensionality. Monte Carlo methods do
not suffer from this. A widely used alternative for tensor product grids is
to use so-called sparse grids (also called Smolyak grids [96]), which have
the same polynomial accuracy as tensor product grids, but a significantly
lower cost (figure 3.8). The multi-dimensional case is much more diffi-
cult and involved than the one-dimensional case, and consequently the
formulation of high-dimensional interpolation and integration methods
is an active field of research.
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Figure 3.7: Two-dimensional tensor
grid based on one-dimensional
Clenshaw-Curtis nodes.
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Figure 3.8: Two-dimensional sparse
grid based on one-dimensional
Clenshaw-Curtis nodes.

3.3 Sensitivity analysis

Sensitivity analysis is a central topic in the field of uncertainty quan-
tification. It can be used, for example, to determine what parameters
have a large influence on the model output and what parameters have
little effect and can potentially be fixed at their nominal values in uncer-
tainty propagation studies. A main distinction is between local and global
sensitivity analysis. Local sensitivities are typically defined via partial
derivatives: the change of the model output with respect to a change
in inputs at a given condition. This can be computed for example with
finite difference approximations and adjoint methods. Global sensitivity
analysis, on the other hand, is concerned with determining what part of
the model output can be attributed to the model input, over the entire
range of input values. A widely used technique in global sensitivity ana-
lysis is based on an analysis of variance (ANOVA) decomposition of the
model. This decomposition naturally leads to the definition of sensitivity
indices, the so-called Sobol’ indices [98]. The first order indices measure
which part of the variance of the model output is related to a certain
input, while higher order indices also measure interaction effects. For
models that can be written as a sum of submodels, each depending on a
single Gaussian random variable, the ANOVA decomposition yields the
same results as summation of variances [95].

3.4 Calibration

The uncertainty propagation and sensitivity techniques from section 3.2-
3.3 allow the study of parametric uncertainties on quantities of interest.
In principle, this can be done with the model only, i.e. without using
experimental data or field data. However, when such data is also taken
into account, one can calibrate the models by estimating parameters in
order to obtain more accurate predictions under uncertainties. Calibra-
tion can be seen as an inverse or backward problem, see figure 3.9, in
contrast to the forward approach from figure 3.1. A common way to
solve calibration problems is by using regression analysis, for example
with ordinary or non-linear least squares methods [95]. An alternative
approach, which we discuss here, is to use Bayesian model calibration
[53, 85, 86, 91].
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3.4.1 Bayesian model calibration

Bayesian model calibration has been applied often in uncertainty quan-
tification problems with parametric uncertainties [55]. The Bayesian
framework models both aleatoric and epistemic uncertainties as probabil-
istic, i.e. the parameters to be calibrated are treated as random variables.
The following ingredients are necessary: (i) prior knowledge, (ii) meas-
urement data, (iii) a computational model, (iv) a statistical model, and
(v) Bayes’ formula. Using these ingredients, the parameters of the model
are calibrated as random variables, resulting in the posterior. The pos-
terior can be used to assess the uncertainty in the model and to make
future predictions. The advantage of the Bayesian framework is that
prior knowledge and the statistical model are naturally included in the
formulation.

quantity of interest

output pdf

Computational model

geometry
boundary conditions
initial conditions
physical parameters

input pdf

measurement data
or

high-fidelity data

Backward problem

Figure 3.9: Uncertainty calibration with
black box models.This statistical model describes the relation between the data and the

model in a probabilistic fashion. Kennedy and O’Hagan [53] introduced
the following basic statistical model:

zi = f(x, θ) + εi,

where z is measurement data for observation i, f is again the model, θ

the parameters to be calibrated (similar to the random variables ξ used
in section 3.2), x are known inputs, and εi encodes model and observation
errors. A commonly used error term, εi ∼ N (0,σ2), assumes normally
distributed errors and assumes that the model on average returns the
correct data. It does not take spatial model errors into account (i.e., an
error term depending on x).

The fifth ingredient is the application of the rule of Bayes (the law of
conditional probabilities):

p(θ|z) = p(z|θ)p(θ)
p(z) , (3.3)

where p(θ) is prior information, p(z|θ) the likelihood, p(θ|z) the posterior
and p(z) the evidence. For the simple case that the error is assumed
normally distributed and assuming that σ is given, the likelihood is given
by:

p(z|θ) ∝ exp
[
−1

2
(z− f(θ))2

σ2

]
, (3.4)
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where z = (z1, . . . , zN )T. Combining (3.3) and (3.4), evaluating p(θ|z)
up to a scaling constant is possible. It is however non-trivial to determine
statistical moments, samples, and other statistical quantities, because
only certain values of p(θ|z) can be determined. Since the posterior does
not have an explicit form, it is difficult to sample from it. Typically
Markov chain Monte Carlo methods (MCMC) are used, but these meth-
ods can require thousands of sampling points before convergence of the
posterior is achieved. This is prohibitively expensive given that each
sampling point corresponds to an evaluation of the model. The downside
of the Bayesian model calibration approach is therefore its computational
expense. A possible solution is to use a surrogate of the full model f ,
for example the polynomial models fPCE or fSC introduced in equations
(3.2) and (3.2).

3.4.2 Data assimilation

Data assimilation can be seen as the integration of mathematical-physical
models with measurement data, typically to be performed in real-time.
The classical example is the one of weather prediction, where weather
simulation models are updated once new observations are made. Data
assimilation can be seen as a Bayesian calibration method with a certain
choice of prior and likelihood. The most basic data assimilation method,
the linear Kálmán filter, is the best unbiased estimator assuming a linear
model and linear observation operator, and Gaussian distributions for
the errors in both the model and the data. In the extended Kálmán
filter the restriction of linearity is relaxed by a linearisation of the model
and the observation operator. In the ensemble Kálmán filter the aim is
to reduce the computational cost of Kálmán filtering (associated with
inverting the covariance operator) by Monte Carlo sampling [23].

3.5 Input parametrization and modal decompositions

In many practical applications, the number of random variables can be
very large. For example, a turbulent inflow field can be modelled as a
high-dimensional correlated random field with a certain power spectrum
and covariance function (section 2.1.2). In a UQ context, such correl-
ated random fields are typically approximated with a lower dimensional
expansion, such as a Karhunen-Loève (KL) expansion. This expansion
is determined by the eigenvalues and eigenvectors of the covariance func-
tion. The coefficients in the expansion constitute the random variables
that can be used for uncertainty quantification studies.

The KL expansion is closely related to proper orthogonal decompos-
ition (POD), principal component analysis (PCA), and singular value
decomposition (SVD). In POD, for example, the covariance matrix is
computed based on snapshot data. A matrix is created which consists
of snapshots from a discrete velocity field u at different time instances ti
(ui ∈ RM ):

A =
(
u1 . . . uN

)
,

and the covariance matrix is formed as K = 1
NA

TA. An eigenvalue
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problem is solved to find the eigenfunctions φ and eigenvalues λ of K,
and a reduced model ũ for the velocity field is formed by selecting the J
most energetic components (corresponding to the largest singular values
of A):

ũ =
J∑

j=1
ajφj .

Another, recently developed, modal decomposition technique is dynamic
mode decomposition (DMD [93]). It has similarities with POD, but in
contrast to POD (which is a purely statistical method), DMD assumes
that the snapshots are generated by a dynamical system. The advantage
over POD is that DMD can distinguish between different time scales,
even if they have comparable energy content. A comparison between
POD and DMD for studying the stability of tip vortices in wakes is given
in [92].

3.6 Summary

In this chapter we have discussed some of the main components in un-
certainty quantification for black box models. For propagation of uncer-
tainty, Monte Carlo methods are robust and simple to implement, but
(depending on the model properties) can be computationally inefficient
compared to surrogate methods such as polynomial chaos expansion,
stochastic collocation, and Gaussian process regression. These surrogate
methods are useful also for solving the backward calibration problem,
in which uncertainties are characterized based on the combination of
model results and experimental data. A possible calibration technique is
Bayesian model calibration, which has the advantage that prior informa-
tion can be included and that the resulting parameters are characterized
by a probability distribution, although it is generally computationally
expensive. For characterization of high-dimensional problems modal de-
compositions such as a Karhunen-Loève expansion can be used to reduce
the dimension of the random space.





4
UQ techniques for wind turbine applications

4.1 Introduction

Many wind energy studies have been performed in which the effect of
input parameter variations on outputs has been assessed. For example,
Porté-Agel et al. [83] studied the influence of the wind direction on the
power output of a wind farm by simulating the Horns Rev wind farm
with an LES model at many different inflow angles. It was shown that
the power output is highly sensitive to wind direction: a change in wind
direction of just 10◦ from the worst case (full wake) conditions, can result
in a power output change of 43%. Although this is an important result,
this type of parameter variation study is often not denoted as uncertainty
quantification, because the probability distribution associated with in-
puts is not taken into account. In UQ, the wind direction would be seen
as a random variable with an associated probability density function.
For example, in [33], the wind direction is assumed to be normally dis-
tributed and wake effects are studied based on this distribution. With a
weighted average over several simulations, the measurement data could
be much better represented than in the case of single wind direction
simulations. It is concluded that earlier reported discrepancies between
models and data were not just caused by inaccuracy of the models, but
also by large uncertainty in the experimental datasets. The benefit of
using UQ, in which probabilities are included in simulations, is therefore
to significantly increase the accuracy and confidence in simulation out-
comes. However, this comes at an increased computational cost - in this
study, ‘cheap’ engineering wake models were used, and a large number of
model evaluations could be easily performed. For more complex RANS
or LES models a similar analysis might not be tractable.

The first studies in the wind community in which the probability
distribution of uncertain parameters is explicitly taken into account,
use a relatively simple technique: summation of individual variances of
the uncertainties (the root-sum-square method). This assumes that all
uncertainties have a Gaussian distribution (see section 3.3). Lackner
et al. [60, 61] use this method for estimating the uncertainty in wind
resource, in wind turbine power output and energy production, and in
overall AEP. The assumptions of independent, Gaussian uncertainties
is however limiting in many applications. In this chapter we give an
overview of more advanced methods that have been applied recently in
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wind turbine applications.

4.2 Monte Carlo techniques

A straightforward improvement of the root-sum-square method of [60],
which allows for correlated and non-Gaussian inputs, is to use Monte
Carlo sampling. For example, Engelen [22] use a Monte Carlo approach
to study the non-linear effect of (correlated) uncertainties in array ef-
ficiency and availability on the energy yield of a wind farm. Multiple
non-Gaussian uncertainty sources are also addressed by [59], who study
the effect of wind velocity, surface roughness, air density on the wind
energy potential with a Monte Carlo method. Uncertainties in the model
itself, namely in the power performance curve, are also included in their
work, and a good comparison between measured and computed standard
deviation of the AEP was found. Similarly, a probabilistic description
of the power curve in combination with a Monte Carlo technique is
used in [49], where it is assumed that the power curve follows a normal
distribution with a varying mean and a constant standard deviation.

The construction of a joint distribution function for the correlated
variables wind direction and wind speed is discussed in Feng and Shen [24].
A bivariate distribution (a joint distribution function of wind speed and
wind direction) is constructed based on interpolation of histogram data,
and used for layout optimization with a random search algorithm.

4.3 Approaches from reliability engineering

In the field of reliability engineering the question arises what the probab-
ility is of a wind turbine failing, given uncertainty in external conditions,
components, etc. This is a large field of research which has similarities to
uncertainty quantification and we will therefore mention a few approaches.
An early account of reliability and failure of components in wind farms
is given in [102], where the difference between common and independent
failure causes is addressed. More recently, Veldkamp [103, 104] gives
a comprehensive overview of the effect of several uncertainties on wind
turbine loads, specifically on fatigue loads. Five different groups of
uncertainties are described and characterized with probability density
functions: wind climate, sea climate, aerodynamics, structural model,
and material fatigue properties. These uncertainties are used to compute
failure probabilities by both a Monte Carlo method and a First Order
Reliability Method (FORM). The FORM consists of transforming the
random variables to standard normal distributions and linearising the ob-
jective function, and is shown to be faster than the Monte Carlo method.
Similarly, Hu et al. [42] perform a reliability analysis for wind turbine
blades under wind load uncertainty, and create an optimal fatigue-reliable
design with minimum costs. Monte Carlo sampling is used to calculate
the probability of failure and a Kriging-based surrogate model is built
to perform the optimisation.
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4.4 Propagation with surrogate models

The Monte Carlo techniques mentioned in sections 4.2 and 4.3 can be
computationally very expensive, because many model evaluations are
often required to obtain accurate results. Consequently, potentially more
efficient techniques, such as the surrogate model techniques described
in sections 3.2.2-3.2.4, have recently gained interest in the wind energy
community.

The stochastic collocation (SC) method is applied by Petrone et al. [82]
to study the effect of uncertainties in meteorological conditions, insect
contamination and manufacturing tolerances on sound pressure level and
turbine power coefficient. The curse of dimensionality is alleviated by
using a so-called simplex stochastic collocation method, which extends
the interpolation idea of stochastic collocation to higher dimensions by
using a triangulation of the random space [107, 108], which has the
advantage of being able to adaptively refine in regions of interest. This
method is also used to optimize turbine design [80, 81]. Another approach
for reducing the curse of dimensionality in stochastic collocation is to use
an adaptive sparse (Smolyak) grid, as done by Guo [39]. He studies the
effect of wind speed on turbine response and the effect of uncertainties in
blade material properties on deformation and stresses of turbine blades
and on failure probabilities. The input random variables are based on a
parametrization of the turbulent wind field (see sections 3.5 and 4.6). A
stochastic collocation method is also used by Rinker [87], who constructs
a four-dimensional polynomial interpolant to be able to calculate the
sensitivity of turbine load response to turbulence parameters (called
response surface in [87]). Monte Carlo methods are applied to this
response surface model to calculate the global sensitivity (Sobol’) indices.
It is found that the majority of the variance in the turbine loading can be
attributed to the variance in the free stream wind speed and turbulence
intensity. In this case the computational costs are manageable since
the number of samples used for each random variable is relatively small
(5-10). The polynomial degree of the interpolant is limited to five to
prevent overfitting.

Similar to SC, the polynomial chaos expansion (PCE) has been used
in wind energy applications to study uncertainty propagation. The ba-
sic ingredient in PCE, which also forms the main difference with SC,
is building the orthogonal polynomial basis. A non-trivial example of
building the polynomial basis for a sector-wise Weibull distribution for
the wind speed and for a uniform distribution for the wind direction
is given in [74]. In order to handle the different wind sectors, a multi-
element PCE method is used, in which the random space is divided in
several elements, and in each element locally a polynomial expansion is
constructed. Murcia et al. [74] use this PCE to predict uncertainty in
the AEP of a wind farm. The main role of PCE in this work is as an
integration rule with respect to a probability density function, and it
is indeed much more efficient than existing methods (which are based
on the trapezoidal method). This is confirmed by the results of Padrón
et al. [78], who take a very similar approach as [74], and use the analytic
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polynomial expression to optimize the layout of an offshore wind farm.
Issues with PCE may appear near discontinuities, where a polynomial
method can show under- and overshoots. Murcia et al. [74] show how
oscillations appear in the polynomial approximation of the power curve,
especially in the region of rated power or close to discontinuities (similar
to figure 3.5). Limiting the polynomial order such as in [87] can alle-
viate this issue. Liu et al. [65] employ a very low order (second order)
PCE, which compares well to a coarse Monte Carlo simulation (only 129
samples are used). They investigate the effect of uncertainties in pressure
coefficients and force coefficients of turbine blades due to uncertainties
in angle of attack and wind speed, by using 2D and 3D CFD simulations.
Foti [30, 31] also uses a relatively low-order (fourth order) PCE in two
random variables and shows that this already gives more accurate results
than a Monte Carlo approach that uses thousands of samples. He finds
a significant effect of uncertainties in ground roughness and induction
factor on the power production of a wind farm.

Ashuri et al. [6] take an approach related to the polynomial methods
just mentioned. In their uncertainty quantification technique they expand
the probability density function of the quantity of interest (in their case
the LCOE) in terms of a Gram-Charlier series, whose coefficients are
determined via numerical integration. To reduce computational costs,
the multi-dimensional model describing the power output is assumed to
consist of a sum of univariate models, reducing the multi-dimensional
integrals to one-dimensional integration over each uncertain parameter.
These integrals are approximated with Gaussian quadrature methods,
with the nodes and weights chosen based on the probability density
functions of the random input variables (similar to PCE). With this
technique, they investigate the influence of meteorological conditions
(wind shear, air density, average wind speed, Weibull shape parameter)
on the LCOE.

Kriging (Gaussian process regression, section 3.2.4), has been used to
a lesser extent than the polynomial methods. Wang et al. [106] consider
Kriging to combine low- and high-fidelity wake models into an accurate
surrogate model for predicting power output and AEP. The low-fidelity
model is the semi-analytical Larsen model, and the high-fidelity model is
a RANS model. Co-Kriging, in which data from both the low- and high-
fidelity model is used, is shown to give better predictions than normal
Kriging. It also turns out that building a surrogate model based on
wind speed is easier than wind direction, since the model is smoother
with respect to wind speed than to wind direction. A continuous pdf of
wind direction is therefore recommended in order to improve the analysis.
Some of the common issues with Kriging, such as the expensive inversion
of the covariance matrix, and determination of the hyperparameters, are
not explicitly mentioned in this article.

4.5 Intrusive methods

Fluck and Crawford [28] are one of the few sources who develop an
intrusive UQ method: a stochastic Galerkin method is used to create a
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stochastic blade loading model. This offers the significant advantage that
the entire stochastic solution is found at once without having to resort to
multiple deterministic realizations. However, in case of nonlinear models
the coupled system of equations that has to be solved can become large
and intractable. In later work, Fluck and Crawford [29] focus on the
construction of a reduced order model that generates a turbulent wind
field based on fewer random variables than the commonly used Veers
model, and that can be used for example as input for the stochastic
aerodynamic model in [28].

4.6 Data-driven models and model calibration

In the previous sections, uncertainty quantification was mainly model-
driven. The data-driven approach, in which data is incorporated to
calibrate or tune models has recently gained significant interest in wind
and wake modelling.

One approach, still mainly based on physical modelling, is to assume
a physical-mathematical model with certain free parameters and to tune
the model parameters based on experimental data (or high-fidelity simu-
lations). For example, Iungo et al. [46] tune the mixing length parameter
of a RANS turbulence model by using LES data and obtain a computa-
tionally efficient wake model. Similarly, Gebraad et al. [35] extend the
Jensen wake model to include yaw effects and calibrate the parameters
of the model based on LES data. This parametric model is used in an
optimization algorithm, and the resulting optimal yaw settings are sub-
sequently tested in an LES study. Van Buren et al. [100] are one of the
few who perform the calibration based on Bayesian inference (section
3.4.1). They develop a simplified finite element model for a turbine blade.
A sensitivity analysis based on ANOVA is carried out first to identify the
most important parameters influencing blade vibrations. Subsequently,
the parameters in the simplified model are calibrated with Bayesian in-
ference techniques (using MCMC). To alleviate the computational costs
associated with MCMC a Gaussian process is used to emulate the finite
element model.

A completely different, purely data-driven, approach is to use snap-
shots of turbulent velocity fields from experiments or CFD simulations
and to decompose these into lower dimensional models with methods
such as POD (section 3.5). These lower dimensional models can then be
evaluated at a fraction of the cost of the original model. For example,
Bastine et al. [9] employ POD to construct stochastic wake models based
on LES data and show that with only six modes (and a homogeneous tur-
bulence field for small scales) the wake and the turbine load dynamics on
large time scales can be reproduced. Doubrawa et al. [19] also construct
a stochastic wake model based on LES data. The stochastic model is
formed by a combination of a Fourier transform of the LES data for the
mean flow, and an autoregressive model (see section 2.1.3) for temporal
perturbations. In contrast to many engineering wake models, this syn-
thetic wake has the advantage that it reproduces the mean characteristics
of the original LES wake, and is asymmetric and unsteady. Guo [39] uses
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a bi-orthogonal decomposition (to separate temporal components from
coupled spatial-stochastic modes) and Karhunen-Loève decomposition
(to decouple the spatial and stochastic components) to construct a low-
fidelity wind model, based on wind snapshots from experimental data.
A synthetic wind field is then constructed by randomly sampling from
the low-fidelity model.

A third approach, roughly in between the previous two, is to only
assume that the underlying physics can be modelled as a dynamical
system, so that the dynamic mode decomposition (DMD) technique can
be applied [31, 45]. Foti [31] uses an LES database to create a DMD
and studies the effect of the nacelle and of the operating regime on
wake meandering. Iungo et al. [45] use DMD to build a reduced order
model for wakes based on high fidelity LES results. The resulting model
is updated with (synthetic) data using a Kálmán filter. These models
have the potential to be used for real-time control and optimization of
operational wind farms.

4.7 Optimization and control under uncertainty

Many techniques outlined in the previous sections have as ultimate goal
to obtain a turbine or farm design, or a control strategy, that has an
optimal energy yield or minimal costs. This leads to an optimization
problem. Most optimization techniques currently used are gradient-based
[16, 27, 34, 38, 54], or involve approaches from game theory [68], Bayesian
optimization [79], particle swarm optimization [10], or evolutionary (ge-
netic) algorithms. We will not go into details of optimization algorithms,
but rather discuss the recent trend of including uncertainty in the optim-
ization process. OUU, optimization under uncertainty [88], is a relatively
new field with only a few applications in the wind energy community.
The goal of OUU is to obtain robust designs, i.e. designs which not
only perform well at a specific condition, but also when conditions are
uncertain.

Petrone [80, 81] develops several methods for optimization under un-
certainty and applies them to turbine blade optimization given insect
contamination. The resulting design is more robust towards uncertainties
than the blade shape that resulted from a deterministic optimal design.
Campobasso et al. [13] similarly obtain an optimal blade design (in terms
of aerodynamic performance) with respect to uncertainties in the blade
geometry, by using Monte Carlo sampling and univariate reduced quad-
rature methods, and a BEM method for the aerodynamic analysis. Quick
et al. [84] employed OUU with a different goal, namely optimization of
rated power, rotor diameter, and hub height of a wind farm with respect
to LCOE, given uncertainty in the wind resource. For the case under con-
sideration, the probabilistic optimum design is not very different from the
deterministic design, except when assuming unusually large uncertain-
ties. These optimization studies, especially when including uncertainties,
are computationally very expensive and therefore are mainly performed
with engineering models. Instead of engineering models, one can rely
on reduced order models that are based on high fidelity simulations or
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accurate experimental data. Examples are the surrogate models based
on polynomial techniques or on Kriging mentioned in section 4.4, or the
data-driven methods like POD or DMD mentioned in section 4.6.

Besides optimization, the development of fast and accurate models
is also important for real-time control applications [5, 57]. Most farm
controllers use open-loop control [25, 26] with simplified models of the
aerodynamic interactions between turbines: for example, the static mod-
els mentioned in section 4.6 [35, 46], or simple dynamic models (e.g.
dynamic Park [5]). The wake interaction models need to contain a
parameter variation methodology to be applicable in a control setting.
Furthermore, real-time updates of the model state based on measure-
ments are necessary to prevent the model predictions from drifting. This
is typically done using the data assimilation techniques mentioned in sec-
tion 3.4.2 [17, 45]. The control objective is often a reduction in fatigue
loading or power optimization and is performed by axial induction con-
trol or yaw control [57]; typical controller parameters are the blade pitch,
the thrust or axial induction factor, and the yaw angle of the turbines.
An alternative objective is to follow so-called power set points (‘active
power control’) [3] that are determined by the grid operator. In any case,
combining control and optimization with uncertainty predictions is an
ongoing and challenging research area with a large potential impact on
turbine operation and design.





5
Summary and outlook

In this report we have reviewed the existing literature for uncertainty
quantification (UQ) for wind energy applications. Uncertainties are omni-
present in the wind industry, both in the external conditions (such as wind
and waves) as well as in the models that are used to predict key quantities
such as costs, energy yield and fatigue loads. The models currently in
use are often based on a statistical approach or on a physical modelling
approach. The statistical approach has classically been the basis for
many wind and wave models. For example, time series of wind or waves
are often generated by randomly sampling from measured power spectra.
Physics-based models, on the other hand, are increasing in fidelity and
popularity due to continuing advances in computational methods and
computational power. However, even though such models can reduce the
epistemic (systematic) uncertainties in predictions, stochastic (aleatoric)
uncertainties inevitably remain.

The field of UQ offers several approaches for dealing with both types
of uncertainties. A commonly used approach is the Monte Carlo method,
which is robust but often too expensive due to its slow convergence, re-
quiring many model evaluations. More advanced UQ methods, such as
polynomial chaos expansion or Gaussian process regression, are becoming
more popular and are being applied to estimate the effect of paramet-
ric uncertainties. An example is the uncertainty in the annual energy
prediction of a wind farm given uncertainties in wind speed and direc-
tion. Generally, only a few uncertain parameters have been taken into
account in most studies. This is due to the curse of dimensionality: when
many uncertain parameters are present, the number of required model
evaluations grows exponentially. Sparse grid techniques and surrogate
models are employed to significantly reduce this cost. Global sensitivity
studies are very useful to find which input parameters contribute most
to a quantity of interest and which parameters can be left out of the
analysis.

Next to the model-driven uncertainty studies, interest in the wind
community is growing in the use of data-driven techniques for the deriv-
ation of simplified models. This data is often obtained from high-fidelity
models, although experimental data can in principle be used as well. An
example is the generation of a synthetic wind field by random sampling
from a modal decomposition of LES data. In general, however, the ap-
proach of using data to calibrate models is an inverse problem for which
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the issue of computational costs and of problem dimensionality becomes
even more pressing than for the forward problem. This has received
little attention so far. Bayesian model calibration, an elegant method for
solving inverse problems which can take into account prior information,
is a possible candidate but needs acceleration to be applicable for cases
of practical interest.

The eventual goal behind many uncertainty quantification studies is
to understand and/or reduce uncertainties with the aim of obtaining an
optimal design that is robust under uncertainties. The field of optimiza-
tion under uncertainty is still in its infancy in the wind energy sector, and
is expected to grow significantly. The optimization algorithm adds an
additional layer of complexity on top of the high costs already associated
with UQ. The major challenge is therefore, again, to make this computa-
tionally tractable. Consequently, the development of accurate but cheap
surrogate models is a field of active research, with strong benefits to the
forward, the backward and the optimization problem.
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